linux/drivers/isdn/hardware/mISDN/mISDNisar.c

1694 lines
42 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* mISDNisar.c ISAR (Siemens PSB 7110) specific functions
*
* Author Karsten Keil (keil@isdn4linux.de)
*
* Copyright 2009 by Karsten Keil <keil@isdn4linux.de>
*/
/* define this to enable static debug messages, if you kernel supports
* dynamic debugging, you should use debugfs for this
*/
/* #define DEBUG */
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/gfp.h>
#include <linux/delay.h>
#include <linux/vmalloc.h>
#include <linux/mISDNhw.h>
#include <linux/module.h>
#include "isar.h"
#define ISAR_REV "2.1"
MODULE_AUTHOR("Karsten Keil");
MODULE_LICENSE("GPL v2");
MODULE_VERSION(ISAR_REV);
#define DEBUG_HW_FIRMWARE_FIFO 0x10000
static const u8 faxmodulation[] = {3, 24, 48, 72, 73, 74, 96, 97, 98, 121,
122, 145, 146};
#define FAXMODCNT 13
static void isar_setup(struct isar_hw *);
static inline int
waitforHIA(struct isar_hw *isar, int timeout)
{
int t = timeout;
u8 val = isar->read_reg(isar->hw, ISAR_HIA);
while ((val & 1) && t) {
udelay(1);
t--;
val = isar->read_reg(isar->hw, ISAR_HIA);
}
pr_debug("%s: HIA after %dus\n", isar->name, timeout - t);
return timeout;
}
/*
* send msg to ISAR mailbox
* if msg is NULL use isar->buf
*/
static int
send_mbox(struct isar_hw *isar, u8 his, u8 creg, u8 len, u8 *msg)
{
if (!waitforHIA(isar, 1000))
return 0;
pr_debug("send_mbox(%02x,%02x,%d)\n", his, creg, len);
isar->write_reg(isar->hw, ISAR_CTRL_H, creg);
isar->write_reg(isar->hw, ISAR_CTRL_L, len);
isar->write_reg(isar->hw, ISAR_WADR, 0);
if (!msg)
msg = isar->buf;
if (msg && len) {
isar->write_fifo(isar->hw, ISAR_MBOX, msg, len);
if (isar->ch[0].bch.debug & DEBUG_HW_BFIFO) {
int l = 0;
while (l < (int)len) {
hex_dump_to_buffer(msg + l, len - l, 32, 1,
isar->log, 256, 1);
pr_debug("%s: %s %02x: %s\n", isar->name,
__func__, l, isar->log);
l += 32;
}
}
}
isar->write_reg(isar->hw, ISAR_HIS, his);
waitforHIA(isar, 1000);
return 1;
}
/*
* receive message from ISAR mailbox
* if msg is NULL use isar->buf
*/
static void
rcv_mbox(struct isar_hw *isar, u8 *msg)
{
if (!msg)
msg = isar->buf;
isar->write_reg(isar->hw, ISAR_RADR, 0);
if (msg && isar->clsb) {
isar->read_fifo(isar->hw, ISAR_MBOX, msg, isar->clsb);
if (isar->ch[0].bch.debug & DEBUG_HW_BFIFO) {
int l = 0;
while (l < (int)isar->clsb) {
hex_dump_to_buffer(msg + l, isar->clsb - l, 32,
1, isar->log, 256, 1);
pr_debug("%s: %s %02x: %s\n", isar->name,
__func__, l, isar->log);
l += 32;
}
}
}
isar->write_reg(isar->hw, ISAR_IIA, 0);
}
static inline void
get_irq_infos(struct isar_hw *isar)
{
isar->iis = isar->read_reg(isar->hw, ISAR_IIS);
isar->cmsb = isar->read_reg(isar->hw, ISAR_CTRL_H);
isar->clsb = isar->read_reg(isar->hw, ISAR_CTRL_L);
pr_debug("%s: rcv_mbox(%02x,%02x,%d)\n", isar->name,
isar->iis, isar->cmsb, isar->clsb);
}
/*
* poll answer message from ISAR mailbox
* should be used only with ISAR IRQs disabled before DSP was started
*
*/
static int
poll_mbox(struct isar_hw *isar, int maxdelay)
{
int t = maxdelay;
u8 irq;
irq = isar->read_reg(isar->hw, ISAR_IRQBIT);
while (t && !(irq & ISAR_IRQSTA)) {
udelay(1);
t--;
}
if (t) {
get_irq_infos(isar);
rcv_mbox(isar, NULL);
}
pr_debug("%s: pulled %d bytes after %d us\n",
isar->name, isar->clsb, maxdelay - t);
return t;
}
static int
ISARVersion(struct isar_hw *isar)
{
int ver;
/* disable ISAR IRQ */
isar->write_reg(isar->hw, ISAR_IRQBIT, 0);
isar->buf[0] = ISAR_MSG_HWVER;
isar->buf[1] = 0;
isar->buf[2] = 1;
if (!send_mbox(isar, ISAR_HIS_VNR, 0, 3, NULL))
return -1;
if (!poll_mbox(isar, 1000))
return -2;
if (isar->iis == ISAR_IIS_VNR) {
if (isar->clsb == 1) {
ver = isar->buf[0] & 0xf;
return ver;
}
return -3;
}
return -4;
}
static int
load_firmware(struct isar_hw *isar, const u8 *buf, int size)
{
u32 saved_debug = isar->ch[0].bch.debug;
int ret, cnt;
u8 nom, noc;
u16 left, val, *sp = (u16 *)buf;
u8 *mp;
u_long flags;
struct {
u16 sadr;
u16 len;
u16 d_key;
} blk_head;
if (1 != isar->version) {
pr_err("%s: ISAR wrong version %d firmware download aborted\n",
isar->name, isar->version);
return -EINVAL;
}
if (!(saved_debug & DEBUG_HW_FIRMWARE_FIFO))
isar->ch[0].bch.debug &= ~DEBUG_HW_BFIFO;
pr_debug("%s: load firmware %d words (%d bytes)\n",
isar->name, size / 2, size);
cnt = 0;
size /= 2;
/* disable ISAR IRQ */
spin_lock_irqsave(isar->hwlock, flags);
isar->write_reg(isar->hw, ISAR_IRQBIT, 0);
spin_unlock_irqrestore(isar->hwlock, flags);
while (cnt < size) {
blk_head.sadr = le16_to_cpu(*sp++);
blk_head.len = le16_to_cpu(*sp++);
blk_head.d_key = le16_to_cpu(*sp++);
cnt += 3;
pr_debug("ISAR firmware block (%#x,%d,%#x)\n",
blk_head.sadr, blk_head.len, blk_head.d_key & 0xff);
left = blk_head.len;
if (cnt + left > size) {
pr_info("%s: firmware error have %d need %d words\n",
isar->name, size, cnt + left);
ret = -EINVAL;
goto reterrflg;
}
spin_lock_irqsave(isar->hwlock, flags);
if (!send_mbox(isar, ISAR_HIS_DKEY, blk_head.d_key & 0xff,
0, NULL)) {
pr_info("ISAR send_mbox dkey failed\n");
ret = -ETIME;
goto reterror;
}
if (!poll_mbox(isar, 1000)) {
pr_warn("ISAR poll_mbox dkey failed\n");
ret = -ETIME;
goto reterror;
}
spin_unlock_irqrestore(isar->hwlock, flags);
if ((isar->iis != ISAR_IIS_DKEY) || isar->cmsb || isar->clsb) {
pr_info("ISAR wrong dkey response (%x,%x,%x)\n",
isar->iis, isar->cmsb, isar->clsb);
ret = 1;
goto reterrflg;
}
while (left > 0) {
if (left > 126)
noc = 126;
else
noc = left;
nom = (2 * noc) + 3;
mp = isar->buf;
/* the ISAR is big endian */
*mp++ = blk_head.sadr >> 8;
*mp++ = blk_head.sadr & 0xFF;
left -= noc;
cnt += noc;
*mp++ = noc;
pr_debug("%s: load %3d words at %04x\n", isar->name,
noc, blk_head.sadr);
blk_head.sadr += noc;
while (noc) {
val = le16_to_cpu(*sp++);
*mp++ = val >> 8;
*mp++ = val & 0xFF;
noc--;
}
spin_lock_irqsave(isar->hwlock, flags);
if (!send_mbox(isar, ISAR_HIS_FIRM, 0, nom, NULL)) {
pr_info("ISAR send_mbox prog failed\n");
ret = -ETIME;
goto reterror;
}
if (!poll_mbox(isar, 1000)) {
pr_info("ISAR poll_mbox prog failed\n");
ret = -ETIME;
goto reterror;
}
spin_unlock_irqrestore(isar->hwlock, flags);
if ((isar->iis != ISAR_IIS_FIRM) ||
isar->cmsb || isar->clsb) {
pr_info("ISAR wrong prog response (%x,%x,%x)\n",
isar->iis, isar->cmsb, isar->clsb);
ret = -EIO;
goto reterrflg;
}
}
pr_debug("%s: ISAR firmware block %d words loaded\n",
isar->name, blk_head.len);
}
isar->ch[0].bch.debug = saved_debug;
/* 10ms delay */
cnt = 10;
while (cnt--)
mdelay(1);
isar->buf[0] = 0xff;
isar->buf[1] = 0xfe;
isar->bstat = 0;
spin_lock_irqsave(isar->hwlock, flags);
if (!send_mbox(isar, ISAR_HIS_STDSP, 0, 2, NULL)) {
pr_info("ISAR send_mbox start dsp failed\n");
ret = -ETIME;
goto reterror;
}
if (!poll_mbox(isar, 1000)) {
pr_info("ISAR poll_mbox start dsp failed\n");
ret = -ETIME;
goto reterror;
}
if ((isar->iis != ISAR_IIS_STDSP) || isar->cmsb || isar->clsb) {
pr_info("ISAR wrong start dsp response (%x,%x,%x)\n",
isar->iis, isar->cmsb, isar->clsb);
ret = -EIO;
goto reterror;
} else
pr_debug("%s: ISAR start dsp success\n", isar->name);
/* NORMAL mode entered */
/* Enable IRQs of ISAR */
isar->write_reg(isar->hw, ISAR_IRQBIT, ISAR_IRQSTA);
spin_unlock_irqrestore(isar->hwlock, flags);
cnt = 1000; /* max 1s */
while ((!isar->bstat) && cnt) {
mdelay(1);
cnt--;
}
if (!cnt) {
pr_info("ISAR no general status event received\n");
ret = -ETIME;
goto reterrflg;
} else
pr_debug("%s: ISAR general status event %x\n",
isar->name, isar->bstat);
/* 10ms delay */
cnt = 10;
while (cnt--)
mdelay(1);
isar->iis = 0;
spin_lock_irqsave(isar->hwlock, flags);
if (!send_mbox(isar, ISAR_HIS_DIAG, ISAR_CTRL_STST, 0, NULL)) {
pr_info("ISAR send_mbox self tst failed\n");
ret = -ETIME;
goto reterror;
}
spin_unlock_irqrestore(isar->hwlock, flags);
cnt = 10000; /* max 100 ms */
while ((isar->iis != ISAR_IIS_DIAG) && cnt) {
udelay(10);
cnt--;
}
mdelay(1);
if (!cnt) {
pr_info("ISAR no self tst response\n");
ret = -ETIME;
goto reterrflg;
}
if ((isar->cmsb == ISAR_CTRL_STST) && (isar->clsb == 1)
&& (isar->buf[0] == 0))
pr_debug("%s: ISAR selftest OK\n", isar->name);
else {
pr_info("ISAR selftest not OK %x/%x/%x\n",
isar->cmsb, isar->clsb, isar->buf[0]);
ret = -EIO;
goto reterrflg;
}
spin_lock_irqsave(isar->hwlock, flags);
isar->iis = 0;
if (!send_mbox(isar, ISAR_HIS_DIAG, ISAR_CTRL_SWVER, 0, NULL)) {
pr_info("ISAR RQST SVN failed\n");
ret = -ETIME;
goto reterror;
}
spin_unlock_irqrestore(isar->hwlock, flags);
cnt = 30000; /* max 300 ms */
while ((isar->iis != ISAR_IIS_DIAG) && cnt) {
udelay(10);
cnt--;
}
mdelay(1);
if (!cnt) {
pr_info("ISAR no SVN response\n");
ret = -ETIME;
goto reterrflg;
} else {
if ((isar->cmsb == ISAR_CTRL_SWVER) && (isar->clsb == 1)) {
pr_notice("%s: ISAR software version %#x\n",
isar->name, isar->buf[0]);
} else {
pr_info("%s: ISAR wrong swver response (%x,%x)"
" cnt(%d)\n", isar->name, isar->cmsb,
isar->clsb, cnt);
ret = -EIO;
goto reterrflg;
}
}
spin_lock_irqsave(isar->hwlock, flags);
isar_setup(isar);
spin_unlock_irqrestore(isar->hwlock, flags);
ret = 0;
reterrflg:
spin_lock_irqsave(isar->hwlock, flags);
reterror:
isar->ch[0].bch.debug = saved_debug;
if (ret)
/* disable ISAR IRQ */
isar->write_reg(isar->hw, ISAR_IRQBIT, 0);
spin_unlock_irqrestore(isar->hwlock, flags);
return ret;
}
static inline void
deliver_status(struct isar_ch *ch, int status)
{
pr_debug("%s: HL->LL FAXIND %x\n", ch->is->name, status);
_queue_data(&ch->bch.ch, PH_CONTROL_IND, status, 0, NULL, GFP_ATOMIC);
}
static inline void
isar_rcv_frame(struct isar_ch *ch)
{
u8 *ptr;
int maxlen;
if (!ch->is->clsb) {
pr_debug("%s; ISAR zero len frame\n", ch->is->name);
ch->is->write_reg(ch->is->hw, ISAR_IIA, 0);
return;
}
if (test_bit(FLG_RX_OFF, &ch->bch.Flags)) {
ch->bch.dropcnt += ch->is->clsb;
ch->is->write_reg(ch->is->hw, ISAR_IIA, 0);
return;
}
switch (ch->bch.state) {
case ISDN_P_NONE:
pr_debug("%s: ISAR protocol 0 spurious IIS_RDATA %x/%x/%x\n",
ch->is->name, ch->is->iis, ch->is->cmsb, ch->is->clsb);
ch->is->write_reg(ch->is->hw, ISAR_IIA, 0);
break;
case ISDN_P_B_RAW:
case ISDN_P_B_L2DTMF:
case ISDN_P_B_MODEM_ASYNC:
maxlen = bchannel_get_rxbuf(&ch->bch, ch->is->clsb);
if (maxlen < 0) {
pr_warn("%s.B%d: No bufferspace for %d bytes\n",
ch->is->name, ch->bch.nr, ch->is->clsb);
ch->is->write_reg(ch->is->hw, ISAR_IIA, 0);
break;
}
rcv_mbox(ch->is, skb_put(ch->bch.rx_skb, ch->is->clsb));
recv_Bchannel(&ch->bch, 0, false);
break;
case ISDN_P_B_HDLC:
maxlen = bchannel_get_rxbuf(&ch->bch, ch->is->clsb);
if (maxlen < 0) {
pr_warn("%s.B%d: No bufferspace for %d bytes\n",
ch->is->name, ch->bch.nr, ch->is->clsb);
ch->is->write_reg(ch->is->hw, ISAR_IIA, 0);
break;
}
if (ch->is->cmsb & HDLC_ERROR) {
pr_debug("%s: ISAR frame error %x len %d\n",
ch->is->name, ch->is->cmsb, ch->is->clsb);
#ifdef ERROR_STATISTIC
if (ch->is->cmsb & HDLC_ERR_RER)
ch->bch.err_inv++;
if (ch->is->cmsb & HDLC_ERR_CER)
ch->bch.err_crc++;
#endif
skb_trim(ch->bch.rx_skb, 0);
ch->is->write_reg(ch->is->hw, ISAR_IIA, 0);
break;
}
if (ch->is->cmsb & HDLC_FSD)
skb_trim(ch->bch.rx_skb, 0);
ptr = skb_put(ch->bch.rx_skb, ch->is->clsb);
rcv_mbox(ch->is, ptr);
if (ch->is->cmsb & HDLC_FED) {
if (ch->bch.rx_skb->len < 3) { /* last 2 are the FCS */
pr_debug("%s: ISAR frame to short %d\n",
ch->is->name, ch->bch.rx_skb->len);
skb_trim(ch->bch.rx_skb, 0);
break;
}
skb_trim(ch->bch.rx_skb, ch->bch.rx_skb->len - 2);
recv_Bchannel(&ch->bch, 0, false);
}
break;
case ISDN_P_B_T30_FAX:
if (ch->state != STFAX_ACTIV) {
pr_debug("%s: isar_rcv_frame: not ACTIV\n",
ch->is->name);
ch->is->write_reg(ch->is->hw, ISAR_IIA, 0);
if (ch->bch.rx_skb)
skb_trim(ch->bch.rx_skb, 0);
break;
}
if (!ch->bch.rx_skb) {
ch->bch.rx_skb = mI_alloc_skb(ch->bch.maxlen,
GFP_ATOMIC);
if (unlikely(!ch->bch.rx_skb)) {
pr_info("%s: B receive out of memory\n",
__func__);
ch->is->write_reg(ch->is->hw, ISAR_IIA, 0);
break;
}
}
if (ch->cmd == PCTRL_CMD_FRM) {
rcv_mbox(ch->is, skb_put(ch->bch.rx_skb, ch->is->clsb));
pr_debug("%s: isar_rcv_frame: %d\n",
ch->is->name, ch->bch.rx_skb->len);
if (ch->is->cmsb & SART_NMD) { /* ABORT */
pr_debug("%s: isar_rcv_frame: no more data\n",
ch->is->name);
ch->is->write_reg(ch->is->hw, ISAR_IIA, 0);
send_mbox(ch->is, SET_DPS(ch->dpath) |
ISAR_HIS_PUMPCTRL, PCTRL_CMD_ESC,
0, NULL);
ch->state = STFAX_ESCAPE;
/* set_skb_flag(skb, DF_NOMOREDATA); */
}
recv_Bchannel(&ch->bch, 0, false);
if (ch->is->cmsb & SART_NMD)
deliver_status(ch, HW_MOD_NOCARR);
break;
}
if (ch->cmd != PCTRL_CMD_FRH) {
pr_debug("%s: isar_rcv_frame: unknown fax mode %x\n",
ch->is->name, ch->cmd);
ch->is->write_reg(ch->is->hw, ISAR_IIA, 0);
if (ch->bch.rx_skb)
skb_trim(ch->bch.rx_skb, 0);
break;
}
/* PCTRL_CMD_FRH */
if ((ch->bch.rx_skb->len + ch->is->clsb) >
(ch->bch.maxlen + 2)) {
pr_info("%s: %s incoming packet too large\n",
ch->is->name, __func__);
ch->is->write_reg(ch->is->hw, ISAR_IIA, 0);
skb_trim(ch->bch.rx_skb, 0);
break;
} else if (ch->is->cmsb & HDLC_ERROR) {
pr_info("%s: ISAR frame error %x len %d\n",
ch->is->name, ch->is->cmsb, ch->is->clsb);
skb_trim(ch->bch.rx_skb, 0);
ch->is->write_reg(ch->is->hw, ISAR_IIA, 0);
break;
}
if (ch->is->cmsb & HDLC_FSD)
skb_trim(ch->bch.rx_skb, 0);
ptr = skb_put(ch->bch.rx_skb, ch->is->clsb);
rcv_mbox(ch->is, ptr);
if (ch->is->cmsb & HDLC_FED) {
if (ch->bch.rx_skb->len < 3) { /* last 2 are the FCS */
pr_info("%s: ISAR frame to short %d\n",
ch->is->name, ch->bch.rx_skb->len);
skb_trim(ch->bch.rx_skb, 0);
break;
}
skb_trim(ch->bch.rx_skb, ch->bch.rx_skb->len - 2);
recv_Bchannel(&ch->bch, 0, false);
}
if (ch->is->cmsb & SART_NMD) { /* ABORT */
pr_debug("%s: isar_rcv_frame: no more data\n",
ch->is->name);
ch->is->write_reg(ch->is->hw, ISAR_IIA, 0);
if (ch->bch.rx_skb)
skb_trim(ch->bch.rx_skb, 0);
send_mbox(ch->is, SET_DPS(ch->dpath) |
ISAR_HIS_PUMPCTRL, PCTRL_CMD_ESC, 0, NULL);
ch->state = STFAX_ESCAPE;
deliver_status(ch, HW_MOD_NOCARR);
}
break;
default:
pr_info("isar_rcv_frame protocol (%x)error\n", ch->bch.state);
ch->is->write_reg(ch->is->hw, ISAR_IIA, 0);
break;
}
}
static void
isar_fill_fifo(struct isar_ch *ch)
{
int count;
u8 msb;
u8 *ptr;
pr_debug("%s: ch%d tx_skb %d tx_idx %d\n", ch->is->name, ch->bch.nr,
ch->bch.tx_skb ? ch->bch.tx_skb->len : -1, ch->bch.tx_idx);
if (!(ch->is->bstat &
(ch->dpath == 1 ? BSTAT_RDM1 : BSTAT_RDM2)))
return;
if (!ch->bch.tx_skb) {
if (!test_bit(FLG_TX_EMPTY, &ch->bch.Flags) ||
(ch->bch.state != ISDN_P_B_RAW))
return;
count = ch->mml;
/* use the card buffer */
memset(ch->is->buf, ch->bch.fill[0], count);
send_mbox(ch->is, SET_DPS(ch->dpath) | ISAR_HIS_SDATA,
0, count, ch->is->buf);
return;
}
count = ch->bch.tx_skb->len - ch->bch.tx_idx;
if (count <= 0)
return;
if (count > ch->mml) {
msb = 0;
count = ch->mml;
} else {
msb = HDLC_FED;
}
ptr = ch->bch.tx_skb->data + ch->bch.tx_idx;
if (!ch->bch.tx_idx) {
pr_debug("%s: frame start\n", ch->is->name);
if ((ch->bch.state == ISDN_P_B_T30_FAX) &&
(ch->cmd == PCTRL_CMD_FTH)) {
if (count > 1) {
if ((ptr[0] == 0xff) && (ptr[1] == 0x13)) {
/* last frame */
test_and_set_bit(FLG_LASTDATA,
&ch->bch.Flags);
pr_debug("%s: set LASTDATA\n",
ch->is->name);
if (msb == HDLC_FED)
test_and_set_bit(FLG_DLEETX,
&ch->bch.Flags);
}
}
}
msb |= HDLC_FST;
}
ch->bch.tx_idx += count;
switch (ch->bch.state) {
case ISDN_P_NONE:
pr_info("%s: wrong protocol 0\n", __func__);
break;
case ISDN_P_B_RAW:
case ISDN_P_B_L2DTMF:
case ISDN_P_B_MODEM_ASYNC:
send_mbox(ch->is, SET_DPS(ch->dpath) | ISAR_HIS_SDATA,
0, count, ptr);
break;
case ISDN_P_B_HDLC:
send_mbox(ch->is, SET_DPS(ch->dpath) | ISAR_HIS_SDATA,
msb, count, ptr);
break;
case ISDN_P_B_T30_FAX:
if (ch->state != STFAX_ACTIV)
pr_debug("%s: not ACTIV\n", ch->is->name);
else if (ch->cmd == PCTRL_CMD_FTH)
send_mbox(ch->is, SET_DPS(ch->dpath) | ISAR_HIS_SDATA,
msb, count, ptr);
else if (ch->cmd == PCTRL_CMD_FTM)
send_mbox(ch->is, SET_DPS(ch->dpath) | ISAR_HIS_SDATA,
0, count, ptr);
else
pr_debug("%s: not FTH/FTM\n", ch->is->name);
break;
default:
pr_info("%s: protocol(%x) error\n",
__func__, ch->bch.state);
break;
}
}
static inline struct isar_ch *
sel_bch_isar(struct isar_hw *isar, u8 dpath)
{
struct isar_ch *base = &isar->ch[0];
if ((!dpath) || (dpath > 2))
return NULL;
if (base->dpath == dpath)
return base;
base++;
if (base->dpath == dpath)
return base;
return NULL;
}
static void
send_next(struct isar_ch *ch)
{
pr_debug("%s: %s ch%d tx_skb %d tx_idx %d\n", ch->is->name, __func__,
ch->bch.nr, ch->bch.tx_skb ? ch->bch.tx_skb->len : -1,
ch->bch.tx_idx);
if (ch->bch.state == ISDN_P_B_T30_FAX) {
if (ch->cmd == PCTRL_CMD_FTH) {
if (test_bit(FLG_LASTDATA, &ch->bch.Flags)) {
pr_debug("set NMD_DATA\n");
test_and_set_bit(FLG_NMD_DATA, &ch->bch.Flags);
}
} else if (ch->cmd == PCTRL_CMD_FTM) {
if (test_bit(FLG_DLEETX, &ch->bch.Flags)) {
test_and_set_bit(FLG_LASTDATA, &ch->bch.Flags);
test_and_set_bit(FLG_NMD_DATA, &ch->bch.Flags);
}
}
}
dev_kfree_skb(ch->bch.tx_skb);
if (get_next_bframe(&ch->bch)) {
isar_fill_fifo(ch);
test_and_clear_bit(FLG_TX_EMPTY, &ch->bch.Flags);
} else if (test_bit(FLG_TX_EMPTY, &ch->bch.Flags)) {
isar_fill_fifo(ch);
} else {
if (test_and_clear_bit(FLG_DLEETX, &ch->bch.Flags)) {
if (test_and_clear_bit(FLG_LASTDATA,
&ch->bch.Flags)) {
if (test_and_clear_bit(FLG_NMD_DATA,
&ch->bch.Flags)) {
u8 zd = 0;
send_mbox(ch->is, SET_DPS(ch->dpath) |
ISAR_HIS_SDATA, 0x01, 1, &zd);
}
test_and_set_bit(FLG_LL_OK, &ch->bch.Flags);
} else {
deliver_status(ch, HW_MOD_CONNECT);
}
} else if (test_bit(FLG_FILLEMPTY, &ch->bch.Flags)) {
test_and_set_bit(FLG_TX_EMPTY, &ch->bch.Flags);
}
}
}
static void
check_send(struct isar_hw *isar, u8 rdm)
{
struct isar_ch *ch;
pr_debug("%s: rdm %x\n", isar->name, rdm);
if (rdm & BSTAT_RDM1) {
ch = sel_bch_isar(isar, 1);
if (ch && test_bit(FLG_ACTIVE, &ch->bch.Flags)) {
if (ch->bch.tx_skb && (ch->bch.tx_skb->len >
ch->bch.tx_idx))
isar_fill_fifo(ch);
else
send_next(ch);
}
}
if (rdm & BSTAT_RDM2) {
ch = sel_bch_isar(isar, 2);
if (ch && test_bit(FLG_ACTIVE, &ch->bch.Flags)) {
if (ch->bch.tx_skb && (ch->bch.tx_skb->len >
ch->bch.tx_idx))
isar_fill_fifo(ch);
else
send_next(ch);
}
}
}
static const char *dmril[] = {"NO SPEED", "1200/75", "NODEF2", "75/1200", "NODEF4",
"300", "600", "1200", "2400", "4800", "7200",
"9600nt", "9600t", "12000", "14400", "WRONG"};
static const char *dmrim[] = {"NO MOD", "NO DEF", "V32/V32b", "V22", "V21",
"Bell103", "V23", "Bell202", "V17", "V29", "V27ter"};
static void
isar_pump_status_rsp(struct isar_ch *ch) {
u8 ril = ch->is->buf[0];
u8 rim;
if (!test_and_clear_bit(ISAR_RATE_REQ, &ch->is->Flags))
return;
if (ril > 14) {
pr_info("%s: wrong pstrsp ril=%d\n", ch->is->name, ril);
ril = 15;
}
switch (ch->is->buf[1]) {
case 0:
rim = 0;
break;
case 0x20:
rim = 2;
break;
case 0x40:
rim = 3;
break;
case 0x41:
rim = 4;
break;
case 0x51:
rim = 5;
break;
case 0x61:
rim = 6;
break;
case 0x71:
rim = 7;
break;
case 0x82:
rim = 8;
break;
case 0x92:
rim = 9;
break;
case 0xa2:
rim = 10;
break;
default:
rim = 1;
break;
}
sprintf(ch->conmsg, "%s %s", dmril[ril], dmrim[rim]);
pr_debug("%s: pump strsp %s\n", ch->is->name, ch->conmsg);
}
static void
isar_pump_statev_modem(struct isar_ch *ch, u8 devt) {
u8 dps = SET_DPS(ch->dpath);
switch (devt) {
case PSEV_10MS_TIMER:
pr_debug("%s: pump stev TIMER\n", ch->is->name);
break;
case PSEV_CON_ON:
pr_debug("%s: pump stev CONNECT\n", ch->is->name);
deliver_status(ch, HW_MOD_CONNECT);
break;
case PSEV_CON_OFF:
pr_debug("%s: pump stev NO CONNECT\n", ch->is->name);
send_mbox(ch->is, dps | ISAR_HIS_PSTREQ, 0, 0, NULL);
deliver_status(ch, HW_MOD_NOCARR);
break;
case PSEV_V24_OFF:
pr_debug("%s: pump stev V24 OFF\n", ch->is->name);
break;
case PSEV_CTS_ON:
pr_debug("%s: pump stev CTS ON\n", ch->is->name);
break;
case PSEV_CTS_OFF:
pr_debug("%s pump stev CTS OFF\n", ch->is->name);
break;
case PSEV_DCD_ON:
pr_debug("%s: pump stev CARRIER ON\n", ch->is->name);
test_and_set_bit(ISAR_RATE_REQ, &ch->is->Flags);
send_mbox(ch->is, dps | ISAR_HIS_PSTREQ, 0, 0, NULL);
break;
case PSEV_DCD_OFF:
pr_debug("%s: pump stev CARRIER OFF\n", ch->is->name);
break;
case PSEV_DSR_ON:
pr_debug("%s: pump stev DSR ON\n", ch->is->name);
break;
case PSEV_DSR_OFF:
pr_debug("%s: pump stev DSR_OFF\n", ch->is->name);
break;
case PSEV_REM_RET:
pr_debug("%s: pump stev REMOTE RETRAIN\n", ch->is->name);
break;
case PSEV_REM_REN:
pr_debug("%s: pump stev REMOTE RENEGOTIATE\n", ch->is->name);
break;
case PSEV_GSTN_CLR:
pr_debug("%s: pump stev GSTN CLEAR\n", ch->is->name);
break;
default:
pr_info("u%s: unknown pump stev %x\n", ch->is->name, devt);
break;
}
}
static void
isar_pump_statev_fax(struct isar_ch *ch, u8 devt) {
u8 dps = SET_DPS(ch->dpath);
u8 p1;
switch (devt) {
case PSEV_10MS_TIMER:
pr_debug("%s: pump stev TIMER\n", ch->is->name);
break;
case PSEV_RSP_READY:
pr_debug("%s: pump stev RSP_READY\n", ch->is->name);
ch->state = STFAX_READY;
deliver_status(ch, HW_MOD_READY);
#ifdef AUTOCON
if (test_bit(BC_FLG_ORIG, &ch->bch.Flags))
isar_pump_cmd(bch, HW_MOD_FRH, 3);
else
isar_pump_cmd(bch, HW_MOD_FTH, 3);
#endif
break;
case PSEV_LINE_TX_H:
if (ch->state == STFAX_LINE) {
pr_debug("%s: pump stev LINE_TX_H\n", ch->is->name);
ch->state = STFAX_CONT;
send_mbox(ch->is, dps | ISAR_HIS_PUMPCTRL,
PCTRL_CMD_CONT, 0, NULL);
} else {
pr_debug("%s: pump stev LINE_TX_H wrong st %x\n",
ch->is->name, ch->state);
}
break;
case PSEV_LINE_RX_H:
if (ch->state == STFAX_LINE) {
pr_debug("%s: pump stev LINE_RX_H\n", ch->is->name);
ch->state = STFAX_CONT;
send_mbox(ch->is, dps | ISAR_HIS_PUMPCTRL,
PCTRL_CMD_CONT, 0, NULL);
} else {
pr_debug("%s: pump stev LINE_RX_H wrong st %x\n",
ch->is->name, ch->state);
}
break;
case PSEV_LINE_TX_B:
if (ch->state == STFAX_LINE) {
pr_debug("%s: pump stev LINE_TX_B\n", ch->is->name);
ch->state = STFAX_CONT;
send_mbox(ch->is, dps | ISAR_HIS_PUMPCTRL,
PCTRL_CMD_CONT, 0, NULL);
} else {
pr_debug("%s: pump stev LINE_TX_B wrong st %x\n",
ch->is->name, ch->state);
}
break;
case PSEV_LINE_RX_B:
if (ch->state == STFAX_LINE) {
pr_debug("%s: pump stev LINE_RX_B\n", ch->is->name);
ch->state = STFAX_CONT;
send_mbox(ch->is, dps | ISAR_HIS_PUMPCTRL,
PCTRL_CMD_CONT, 0, NULL);
} else {
pr_debug("%s: pump stev LINE_RX_B wrong st %x\n",
ch->is->name, ch->state);
}
break;
case PSEV_RSP_CONN:
if (ch->state == STFAX_CONT) {
pr_debug("%s: pump stev RSP_CONN\n", ch->is->name);
ch->state = STFAX_ACTIV;
test_and_set_bit(ISAR_RATE_REQ, &ch->is->Flags);
send_mbox(ch->is, dps | ISAR_HIS_PSTREQ, 0, 0, NULL);
if (ch->cmd == PCTRL_CMD_FTH) {
int delay = (ch->mod == 3) ? 1000 : 200;
/* 1s (200 ms) Flags before data */
if (test_and_set_bit(FLG_FTI_RUN,
&ch->bch.Flags))
del_timer(&ch->ftimer);
ch->ftimer.expires =
jiffies + ((delay * HZ) / 1000);
test_and_set_bit(FLG_LL_CONN,
&ch->bch.Flags);
add_timer(&ch->ftimer);
} else {
deliver_status(ch, HW_MOD_CONNECT);
}
} else {
pr_debug("%s: pump stev RSP_CONN wrong st %x\n",
ch->is->name, ch->state);
}
break;
case PSEV_FLAGS_DET:
pr_debug("%s: pump stev FLAGS_DET\n", ch->is->name);
break;
case PSEV_RSP_DISC:
pr_debug("%s: pump stev RSP_DISC state(%d)\n",
ch->is->name, ch->state);
if (ch->state == STFAX_ESCAPE) {
p1 = 5;
switch (ch->newcmd) {
case 0:
ch->state = STFAX_READY;
break;
case PCTRL_CMD_FTM:
p1 = 2;
fallthrough;
case PCTRL_CMD_FTH:
send_mbox(ch->is, dps | ISAR_HIS_PUMPCTRL,
PCTRL_CMD_SILON, 1, &p1);
ch->state = STFAX_SILDET;
break;
case PCTRL_CMD_FRH:
case PCTRL_CMD_FRM:
ch->mod = ch->newmod;
p1 = ch->newmod;
ch->newmod = 0;
ch->cmd = ch->newcmd;
ch->newcmd = 0;
send_mbox(ch->is, dps | ISAR_HIS_PUMPCTRL,
ch->cmd, 1, &p1);
ch->state = STFAX_LINE;
ch->try_mod = 3;
break;
default:
pr_debug("%s: RSP_DISC unknown newcmd %x\n",
ch->is->name, ch->newcmd);
break;
}
} else if (ch->state == STFAX_ACTIV) {
if (test_and_clear_bit(FLG_LL_OK, &ch->bch.Flags))
deliver_status(ch, HW_MOD_OK);
else if (ch->cmd == PCTRL_CMD_FRM)
deliver_status(ch, HW_MOD_NOCARR);
else
deliver_status(ch, HW_MOD_FCERROR);
ch->state = STFAX_READY;
} else if (ch->state != STFAX_SILDET) {
/* ignore in STFAX_SILDET */
ch->state = STFAX_READY;
deliver_status(ch, HW_MOD_FCERROR);
}
break;
case PSEV_RSP_SILDET:
pr_debug("%s: pump stev RSP_SILDET\n", ch->is->name);
if (ch->state == STFAX_SILDET) {
ch->mod = ch->newmod;
p1 = ch->newmod;
ch->newmod = 0;
ch->cmd = ch->newcmd;
ch->newcmd = 0;
send_mbox(ch->is, dps | ISAR_HIS_PUMPCTRL,
ch->cmd, 1, &p1);
ch->state = STFAX_LINE;
ch->try_mod = 3;
}
break;
case PSEV_RSP_SILOFF:
pr_debug("%s: pump stev RSP_SILOFF\n", ch->is->name);
break;
case PSEV_RSP_FCERR:
if (ch->state == STFAX_LINE) {
pr_debug("%s: pump stev RSP_FCERR try %d\n",
ch->is->name, ch->try_mod);
if (ch->try_mod--) {
send_mbox(ch->is, dps | ISAR_HIS_PUMPCTRL,
ch->cmd, 1, &ch->mod);
break;
}
}
pr_debug("%s: pump stev RSP_FCERR\n", ch->is->name);
ch->state = STFAX_ESCAPE;
send_mbox(ch->is, dps | ISAR_HIS_PUMPCTRL, PCTRL_CMD_ESC,
0, NULL);
deliver_status(ch, HW_MOD_FCERROR);
break;
default:
break;
}
}
void
mISDNisar_irq(struct isar_hw *isar)
{
struct isar_ch *ch;
get_irq_infos(isar);
switch (isar->iis & ISAR_IIS_MSCMSD) {
case ISAR_IIS_RDATA:
ch = sel_bch_isar(isar, isar->iis >> 6);
if (ch)
isar_rcv_frame(ch);
else {
pr_debug("%s: ISAR spurious IIS_RDATA %x/%x/%x\n",
isar->name, isar->iis, isar->cmsb,
isar->clsb);
isar->write_reg(isar->hw, ISAR_IIA, 0);
}
break;
case ISAR_IIS_GSTEV:
isar->write_reg(isar->hw, ISAR_IIA, 0);
isar->bstat |= isar->cmsb;
check_send(isar, isar->cmsb);
break;
case ISAR_IIS_BSTEV:
#ifdef ERROR_STATISTIC
ch = sel_bch_isar(isar, isar->iis >> 6);
if (ch) {
if (isar->cmsb == BSTEV_TBO)
ch->bch.err_tx++;
if (isar->cmsb == BSTEV_RBO)
ch->bch.err_rdo++;
}
#endif
pr_debug("%s: Buffer STEV dpath%d msb(%x)\n",
isar->name, isar->iis >> 6, isar->cmsb);
isar->write_reg(isar->hw, ISAR_IIA, 0);
break;
case ISAR_IIS_PSTEV:
ch = sel_bch_isar(isar, isar->iis >> 6);
if (ch) {
rcv_mbox(isar, NULL);
if (ch->bch.state == ISDN_P_B_MODEM_ASYNC)
isar_pump_statev_modem(ch, isar->cmsb);
else if (ch->bch.state == ISDN_P_B_T30_FAX)
isar_pump_statev_fax(ch, isar->cmsb);
else if (ch->bch.state == ISDN_P_B_RAW) {
int tt;
tt = isar->cmsb | 0x30;
if (tt == 0x3e)
tt = '*';
else if (tt == 0x3f)
tt = '#';
else if (tt > '9')
tt += 7;
tt |= DTMF_TONE_VAL;
_queue_data(&ch->bch.ch, PH_CONTROL_IND,
MISDN_ID_ANY, sizeof(tt), &tt,
GFP_ATOMIC);
} else
pr_debug("%s: ISAR IIS_PSTEV pm %d sta %x\n",
isar->name, ch->bch.state,
isar->cmsb);
} else {
pr_debug("%s: ISAR spurious IIS_PSTEV %x/%x/%x\n",
isar->name, isar->iis, isar->cmsb,
isar->clsb);
isar->write_reg(isar->hw, ISAR_IIA, 0);
}
break;
case ISAR_IIS_PSTRSP:
ch = sel_bch_isar(isar, isar->iis >> 6);
if (ch) {
rcv_mbox(isar, NULL);
isar_pump_status_rsp(ch);
} else {
pr_debug("%s: ISAR spurious IIS_PSTRSP %x/%x/%x\n",
isar->name, isar->iis, isar->cmsb,
isar->clsb);
isar->write_reg(isar->hw, ISAR_IIA, 0);
}
break;
case ISAR_IIS_DIAG:
case ISAR_IIS_BSTRSP:
case ISAR_IIS_IOM2RSP:
rcv_mbox(isar, NULL);
break;
case ISAR_IIS_INVMSG:
rcv_mbox(isar, NULL);
pr_debug("%s: invalid msg his:%x\n", isar->name, isar->cmsb);
break;
default:
rcv_mbox(isar, NULL);
pr_debug("%s: unhandled msg iis(%x) ctrl(%x/%x)\n",
isar->name, isar->iis, isar->cmsb, isar->clsb);
break;
}
}
EXPORT_SYMBOL(mISDNisar_irq);
static void
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-17 05:43:17 +08:00
ftimer_handler(struct timer_list *t)
{
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-17 05:43:17 +08:00
struct isar_ch *ch = from_timer(ch, t, ftimer);
pr_debug("%s: ftimer flags %lx\n", ch->is->name, ch->bch.Flags);
test_and_clear_bit(FLG_FTI_RUN, &ch->bch.Flags);
if (test_and_clear_bit(FLG_LL_CONN, &ch->bch.Flags))
deliver_status(ch, HW_MOD_CONNECT);
}
static void
setup_pump(struct isar_ch *ch) {
u8 dps = SET_DPS(ch->dpath);
u8 ctrl, param[6];
switch (ch->bch.state) {
case ISDN_P_NONE:
case ISDN_P_B_RAW:
case ISDN_P_B_HDLC:
send_mbox(ch->is, dps | ISAR_HIS_PUMPCFG, PMOD_BYPASS, 0, NULL);
break;
case ISDN_P_B_L2DTMF:
if (test_bit(FLG_DTMFSEND, &ch->bch.Flags)) {
param[0] = 5; /* TOA 5 db */
send_mbox(ch->is, dps | ISAR_HIS_PUMPCFG,
PMOD_DTMF_TRANS, 1, param);
} else {
param[0] = 40; /* REL -46 dbm */
send_mbox(ch->is, dps | ISAR_HIS_PUMPCFG,
PMOD_DTMF, 1, param);
}
fallthrough;
case ISDN_P_B_MODEM_ASYNC:
ctrl = PMOD_DATAMODEM;
if (test_bit(FLG_ORIGIN, &ch->bch.Flags)) {
ctrl |= PCTRL_ORIG;
param[5] = PV32P6_CTN;
} else {
param[5] = PV32P6_ATN;
}
param[0] = 6; /* 6 db */
param[1] = PV32P2_V23R | PV32P2_V22A | PV32P2_V22B |
PV32P2_V22C | PV32P2_V21 | PV32P2_BEL;
param[2] = PV32P3_AMOD | PV32P3_V32B | PV32P3_V23B;
param[3] = PV32P4_UT144;
param[4] = PV32P5_UT144;
send_mbox(ch->is, dps | ISAR_HIS_PUMPCFG, ctrl, 6, param);
break;
case ISDN_P_B_T30_FAX:
ctrl = PMOD_FAX;
if (test_bit(FLG_ORIGIN, &ch->bch.Flags)) {
ctrl |= PCTRL_ORIG;
param[1] = PFAXP2_CTN;
} else {
param[1] = PFAXP2_ATN;
}
param[0] = 6; /* 6 db */
send_mbox(ch->is, dps | ISAR_HIS_PUMPCFG, ctrl, 2, param);
ch->state = STFAX_NULL;
ch->newcmd = 0;
ch->newmod = 0;
test_and_set_bit(FLG_FTI_RUN, &ch->bch.Flags);
break;
}
udelay(1000);
send_mbox(ch->is, dps | ISAR_HIS_PSTREQ, 0, 0, NULL);
udelay(1000);
}
static void
setup_sart(struct isar_ch *ch) {
u8 dps = SET_DPS(ch->dpath);
u8 ctrl, param[2] = {0, 0};
switch (ch->bch.state) {
case ISDN_P_NONE:
send_mbox(ch->is, dps | ISAR_HIS_SARTCFG, SMODE_DISABLE,
0, NULL);
break;
case ISDN_P_B_RAW:
case ISDN_P_B_L2DTMF:
send_mbox(ch->is, dps | ISAR_HIS_SARTCFG, SMODE_BINARY,
2, param);
break;
case ISDN_P_B_HDLC:
case ISDN_P_B_T30_FAX:
send_mbox(ch->is, dps | ISAR_HIS_SARTCFG, SMODE_HDLC,
1, param);
break;
case ISDN_P_B_MODEM_ASYNC:
ctrl = SMODE_V14 | SCTRL_HDMC_BOTH;
param[0] = S_P1_CHS_8;
param[1] = S_P2_BFT_DEF;
send_mbox(ch->is, dps | ISAR_HIS_SARTCFG, ctrl, 2, param);
break;
}
udelay(1000);
send_mbox(ch->is, dps | ISAR_HIS_BSTREQ, 0, 0, NULL);
udelay(1000);
}
static void
setup_iom2(struct isar_ch *ch) {
u8 dps = SET_DPS(ch->dpath);
u8 cmsb = IOM_CTRL_ENA, msg[5] = {IOM_P1_TXD, 0, 0, 0, 0};
if (ch->bch.nr == 2) {
msg[1] = 1;
msg[3] = 1;
}
switch (ch->bch.state) {
case ISDN_P_NONE:
cmsb = 0;
/* dummy slot */
msg[1] = ch->dpath + 2;
msg[3] = ch->dpath + 2;
break;
case ISDN_P_B_RAW:
case ISDN_P_B_HDLC:
break;
case ISDN_P_B_MODEM_ASYNC:
case ISDN_P_B_T30_FAX:
cmsb |= IOM_CTRL_RCV;
fallthrough;
case ISDN_P_B_L2DTMF:
if (test_bit(FLG_DTMFSEND, &ch->bch.Flags))
cmsb |= IOM_CTRL_RCV;
cmsb |= IOM_CTRL_ALAW;
break;
}
send_mbox(ch->is, dps | ISAR_HIS_IOM2CFG, cmsb, 5, msg);
udelay(1000);
send_mbox(ch->is, dps | ISAR_HIS_IOM2REQ, 0, 0, NULL);
udelay(1000);
}
static int
modeisar(struct isar_ch *ch, u32 bprotocol)
{
/* Here we are selecting the best datapath for requested protocol */
if (ch->bch.state == ISDN_P_NONE) { /* New Setup */
switch (bprotocol) {
case ISDN_P_NONE: /* init */
if (!ch->dpath)
/* no init for dpath 0 */
return 0;
test_and_clear_bit(FLG_HDLC, &ch->bch.Flags);
test_and_clear_bit(FLG_TRANSPARENT, &ch->bch.Flags);
break;
case ISDN_P_B_RAW:
case ISDN_P_B_HDLC:
/* best is datapath 2 */
if (!test_and_set_bit(ISAR_DP2_USE, &ch->is->Flags))
ch->dpath = 2;
else if (!test_and_set_bit(ISAR_DP1_USE,
&ch->is->Flags))
ch->dpath = 1;
else {
pr_info("modeisar both paths in use\n");
return -EBUSY;
}
if (bprotocol == ISDN_P_B_HDLC)
test_and_set_bit(FLG_HDLC, &ch->bch.Flags);
else
test_and_set_bit(FLG_TRANSPARENT,
&ch->bch.Flags);
break;
case ISDN_P_B_MODEM_ASYNC:
case ISDN_P_B_T30_FAX:
case ISDN_P_B_L2DTMF:
/* only datapath 1 */
if (!test_and_set_bit(ISAR_DP1_USE, &ch->is->Flags))
ch->dpath = 1;
else {
pr_info("%s: ISAR modeisar analog functions"
"only with DP1\n", ch->is->name);
return -EBUSY;
}
break;
default:
pr_info("%s: protocol not known %x\n", ch->is->name,
bprotocol);
return -ENOPROTOOPT;
}
}
pr_debug("%s: ISAR ch%d dp%d protocol %x->%x\n", ch->is->name,
ch->bch.nr, ch->dpath, ch->bch.state, bprotocol);
ch->bch.state = bprotocol;
setup_pump(ch);
setup_iom2(ch);
setup_sart(ch);
if (ch->bch.state == ISDN_P_NONE) {
/* Clear resources */
if (ch->dpath == 1)
test_and_clear_bit(ISAR_DP1_USE, &ch->is->Flags);
else if (ch->dpath == 2)
test_and_clear_bit(ISAR_DP2_USE, &ch->is->Flags);
ch->dpath = 0;
ch->is->ctrl(ch->is->hw, HW_DEACT_IND, ch->bch.nr);
} else
ch->is->ctrl(ch->is->hw, HW_ACTIVATE_IND, ch->bch.nr);
return 0;
}
static void
isar_pump_cmd(struct isar_ch *ch, u32 cmd, u8 para)
{
u8 dps = SET_DPS(ch->dpath);
u8 ctrl = 0, nom = 0, p1 = 0;
pr_debug("%s: isar_pump_cmd %x/%x state(%x)\n",
ch->is->name, cmd, para, ch->bch.state);
switch (cmd) {
case HW_MOD_FTM:
if (ch->state == STFAX_READY) {
p1 = para;
ctrl = PCTRL_CMD_FTM;
nom = 1;
ch->state = STFAX_LINE;
ch->cmd = ctrl;
ch->mod = para;
ch->newmod = 0;
ch->newcmd = 0;
ch->try_mod = 3;
} else if ((ch->state == STFAX_ACTIV) &&
(ch->cmd == PCTRL_CMD_FTM) && (ch->mod == para))
deliver_status(ch, HW_MOD_CONNECT);
else {
ch->newmod = para;
ch->newcmd = PCTRL_CMD_FTM;
nom = 0;
ctrl = PCTRL_CMD_ESC;
ch->state = STFAX_ESCAPE;
}
break;
case HW_MOD_FTH:
if (ch->state == STFAX_READY) {
p1 = para;
ctrl = PCTRL_CMD_FTH;
nom = 1;
ch->state = STFAX_LINE;
ch->cmd = ctrl;
ch->mod = para;
ch->newmod = 0;
ch->newcmd = 0;
ch->try_mod = 3;
} else if ((ch->state == STFAX_ACTIV) &&
(ch->cmd == PCTRL_CMD_FTH) && (ch->mod == para))
deliver_status(ch, HW_MOD_CONNECT);
else {
ch->newmod = para;
ch->newcmd = PCTRL_CMD_FTH;
nom = 0;
ctrl = PCTRL_CMD_ESC;
ch->state = STFAX_ESCAPE;
}
break;
case HW_MOD_FRM:
if (ch->state == STFAX_READY) {
p1 = para;
ctrl = PCTRL_CMD_FRM;
nom = 1;
ch->state = STFAX_LINE;
ch->cmd = ctrl;
ch->mod = para;
ch->newmod = 0;
ch->newcmd = 0;
ch->try_mod = 3;
} else if ((ch->state == STFAX_ACTIV) &&
(ch->cmd == PCTRL_CMD_FRM) && (ch->mod == para))
deliver_status(ch, HW_MOD_CONNECT);
else {
ch->newmod = para;
ch->newcmd = PCTRL_CMD_FRM;
nom = 0;
ctrl = PCTRL_CMD_ESC;
ch->state = STFAX_ESCAPE;
}
break;
case HW_MOD_FRH:
if (ch->state == STFAX_READY) {
p1 = para;
ctrl = PCTRL_CMD_FRH;
nom = 1;
ch->state = STFAX_LINE;
ch->cmd = ctrl;
ch->mod = para;
ch->newmod = 0;
ch->newcmd = 0;
ch->try_mod = 3;
} else if ((ch->state == STFAX_ACTIV) &&
(ch->cmd == PCTRL_CMD_FRH) && (ch->mod == para))
deliver_status(ch, HW_MOD_CONNECT);
else {
ch->newmod = para;
ch->newcmd = PCTRL_CMD_FRH;
nom = 0;
ctrl = PCTRL_CMD_ESC;
ch->state = STFAX_ESCAPE;
}
break;
case PCTRL_CMD_TDTMF:
p1 = para;
nom = 1;
ctrl = PCTRL_CMD_TDTMF;
break;
}
if (ctrl)
send_mbox(ch->is, dps | ISAR_HIS_PUMPCTRL, ctrl, nom, &p1);
}
static void
isar_setup(struct isar_hw *isar)
{
u8 msg;
int i;
/* Dpath 1, 2 */
msg = 61;
for (i = 0; i < 2; i++) {
/* Buffer Config */
send_mbox(isar, (i ? ISAR_HIS_DPS2 : ISAR_HIS_DPS1) |
ISAR_HIS_P12CFG, 4, 1, &msg);
isar->ch[i].mml = msg;
isar->ch[i].bch.state = 0;
isar->ch[i].dpath = i + 1;
modeisar(&isar->ch[i], ISDN_P_NONE);
}
}
static int
isar_l2l1(struct mISDNchannel *ch, struct sk_buff *skb)
{
struct bchannel *bch = container_of(ch, struct bchannel, ch);
struct isar_ch *ich = container_of(bch, struct isar_ch, bch);
int ret = -EINVAL;
struct mISDNhead *hh = mISDN_HEAD_P(skb);
u32 id, *val;
u_long flags;
switch (hh->prim) {
case PH_DATA_REQ:
spin_lock_irqsave(ich->is->hwlock, flags);
ret = bchannel_senddata(bch, skb);
if (ret > 0) { /* direct TX */
ret = 0;
isar_fill_fifo(ich);
}
spin_unlock_irqrestore(ich->is->hwlock, flags);
return ret;
case PH_ACTIVATE_REQ:
spin_lock_irqsave(ich->is->hwlock, flags);
if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags))
ret = modeisar(ich, ch->protocol);
else
ret = 0;
spin_unlock_irqrestore(ich->is->hwlock, flags);
if (!ret)
_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
NULL, GFP_KERNEL);
break;
case PH_DEACTIVATE_REQ:
spin_lock_irqsave(ich->is->hwlock, flags);
mISDN_clear_bchannel(bch);
modeisar(ich, ISDN_P_NONE);
spin_unlock_irqrestore(ich->is->hwlock, flags);
_queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0,
NULL, GFP_KERNEL);
ret = 0;
break;
case PH_CONTROL_REQ:
val = (u32 *)skb->data;
pr_debug("%s: PH_CONTROL | REQUEST %x/%x\n", ich->is->name,
hh->id, *val);
if ((hh->id == 0) && ((*val & ~DTMF_TONE_MASK) ==
DTMF_TONE_VAL)) {
if (bch->state == ISDN_P_B_L2DTMF) {
char tt = *val & DTMF_TONE_MASK;
if (tt == '*')
tt = 0x1e;
else if (tt == '#')
tt = 0x1f;
else if (tt > '9')
tt -= 7;
tt &= 0x1f;
spin_lock_irqsave(ich->is->hwlock, flags);
isar_pump_cmd(ich, PCTRL_CMD_TDTMF, tt);
spin_unlock_irqrestore(ich->is->hwlock, flags);
} else {
pr_info("%s: DTMF send wrong protocol %x\n",
__func__, bch->state);
return -EINVAL;
}
} else if ((hh->id == HW_MOD_FRM) || (hh->id == HW_MOD_FRH) ||
(hh->id == HW_MOD_FTM) || (hh->id == HW_MOD_FTH)) {
for (id = 0; id < FAXMODCNT; id++)
if (faxmodulation[id] == *val)
break;
if ((FAXMODCNT > id) &&
test_bit(FLG_INITIALIZED, &bch->Flags)) {
pr_debug("%s: isar: new mod\n", ich->is->name);
isar_pump_cmd(ich, hh->id, *val);
ret = 0;
} else {
pr_info("%s: wrong modulation\n",
ich->is->name);
ret = -EINVAL;
}
} else if (hh->id == HW_MOD_LASTDATA)
test_and_set_bit(FLG_DLEETX, &bch->Flags);
else {
pr_info("%s: unknown PH_CONTROL_REQ %x\n",
ich->is->name, hh->id);
ret = -EINVAL;
}
fallthrough;
default:
pr_info("%s: %s unknown prim(%x,%x)\n",
ich->is->name, __func__, hh->prim, hh->id);
ret = -EINVAL;
}
if (!ret)
dev_kfree_skb(skb);
return ret;
}
static int
channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
{
return mISDN_ctrl_bchannel(bch, cq);
}
static int
isar_bctrl(struct mISDNchannel *ch, u32 cmd, void *arg)
{
struct bchannel *bch = container_of(ch, struct bchannel, ch);
struct isar_ch *ich = container_of(bch, struct isar_ch, bch);
int ret = -EINVAL;
u_long flags;
pr_debug("%s: %s cmd:%x %p\n", ich->is->name, __func__, cmd, arg);
switch (cmd) {
case CLOSE_CHANNEL:
test_and_clear_bit(FLG_OPEN, &bch->Flags);
cancel_work_sync(&bch->workq);
spin_lock_irqsave(ich->is->hwlock, flags);
mISDN_clear_bchannel(bch);
modeisar(ich, ISDN_P_NONE);
spin_unlock_irqrestore(ich->is->hwlock, flags);
ch->protocol = ISDN_P_NONE;
ch->peer = NULL;
module_put(ich->is->owner);
ret = 0;
break;
case CONTROL_CHANNEL:
ret = channel_bctrl(bch, arg);
break;
default:
pr_info("%s: %s unknown prim(%x)\n",
ich->is->name, __func__, cmd);
}
return ret;
}
static void
free_isar(struct isar_hw *isar)
{
modeisar(&isar->ch[0], ISDN_P_NONE);
modeisar(&isar->ch[1], ISDN_P_NONE);
del_timer(&isar->ch[0].ftimer);
del_timer(&isar->ch[1].ftimer);
test_and_clear_bit(FLG_INITIALIZED, &isar->ch[0].bch.Flags);
test_and_clear_bit(FLG_INITIALIZED, &isar->ch[1].bch.Flags);
}
static int
init_isar(struct isar_hw *isar)
{
int cnt = 3;
while (cnt--) {
isar->version = ISARVersion(isar);
if (isar->ch[0].bch.debug & DEBUG_HW)
pr_notice("%s: Testing version %d (%d time)\n",
isar->name, isar->version, 3 - cnt);
if (isar->version == 1)
break;
isar->ctrl(isar->hw, HW_RESET_REQ, 0);
}
if (isar->version != 1)
return -EINVAL;
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-17 05:43:17 +08:00
timer_setup(&isar->ch[0].ftimer, ftimer_handler, 0);
test_and_set_bit(FLG_INITIALIZED, &isar->ch[0].bch.Flags);
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-17 05:43:17 +08:00
timer_setup(&isar->ch[1].ftimer, ftimer_handler, 0);
test_and_set_bit(FLG_INITIALIZED, &isar->ch[1].bch.Flags);
return 0;
}
static int
isar_open(struct isar_hw *isar, struct channel_req *rq)
{
struct bchannel *bch;
if (rq->adr.channel == 0 || rq->adr.channel > 2)
return -EINVAL;
if (rq->protocol == ISDN_P_NONE)
return -EINVAL;
bch = &isar->ch[rq->adr.channel - 1].bch;
if (test_and_set_bit(FLG_OPEN, &bch->Flags))
return -EBUSY; /* b-channel can be only open once */
bch->ch.protocol = rq->protocol;
rq->ch = &bch->ch;
return 0;
}
u32
mISDNisar_init(struct isar_hw *isar, void *hw)
{
u32 ret, i;
isar->hw = hw;
for (i = 0; i < 2; i++) {
isar->ch[i].bch.nr = i + 1;
mISDN_initbchannel(&isar->ch[i].bch, MAX_DATA_MEM, 32);
isar->ch[i].bch.ch.nr = i + 1;
isar->ch[i].bch.ch.send = &isar_l2l1;
isar->ch[i].bch.ch.ctrl = isar_bctrl;
isar->ch[i].bch.hw = hw;
isar->ch[i].is = isar;
}
isar->init = &init_isar;
isar->release = &free_isar;
isar->firmware = &load_firmware;
isar->open = &isar_open;
ret = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
(1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK)) |
(1 << (ISDN_P_B_L2DTMF & ISDN_P_B_MASK)) |
(1 << (ISDN_P_B_MODEM_ASYNC & ISDN_P_B_MASK)) |
(1 << (ISDN_P_B_T30_FAX & ISDN_P_B_MASK));
return ret;
}
EXPORT_SYMBOL(mISDNisar_init);
static int __init isar_mod_init(void)
{
pr_notice("mISDN: ISAR driver Rev. %s\n", ISAR_REV);
return 0;
}
static void __exit isar_mod_cleanup(void)
{
pr_notice("mISDN: ISAR module unloaded\n");
}
module_init(isar_mod_init);
module_exit(isar_mod_cleanup);