linux/arch/s390/kernel/crash_dump.c

622 lines
15 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
// SPDX-License-Identifier: GPL-2.0
/*
* S390 kdump implementation
*
* Copyright IBM Corp. 2011
* Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
*/
#include <linux/crash_dump.h>
#include <asm/lowcore.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/gfp.h>
#include <linux/slab.h>
#include <linux/bootmem.h>
#include <linux/elf.h>
#include <asm/asm-offsets.h>
#include <linux/memblock.h>
#include <asm/os_info.h>
#include <asm/elf.h>
#include <asm/ipl.h>
#include <asm/sclp.h>
#define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
#define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
#define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
static struct memblock_region oldmem_region;
static struct memblock_type oldmem_type = {
.cnt = 1,
.max = 1,
.total_size = 0,
.regions = &oldmem_region,
.name = "oldmem",
};
struct save_area {
struct list_head list;
u64 psw[2];
u64 ctrs[16];
u64 gprs[16];
u32 acrs[16];
u64 fprs[16];
u32 fpc;
u32 prefix;
u64 todpreg;
u64 timer;
u64 todcmp;
u64 vxrs_low[16];
__vector128 vxrs_high[16];
};
static LIST_HEAD(dump_save_areas);
/*
* Allocate a save area
*/
struct save_area * __init save_area_alloc(bool is_boot_cpu)
{
struct save_area *sa;
sa = (void *) memblock_alloc(sizeof(*sa), 8);
if (is_boot_cpu)
list_add(&sa->list, &dump_save_areas);
else
list_add_tail(&sa->list, &dump_save_areas);
return sa;
}
/*
* Return the address of the save area for the boot CPU
*/
struct save_area * __init save_area_boot_cpu(void)
{
return list_first_entry_or_null(&dump_save_areas, struct save_area, list);
}
/*
* Copy CPU registers into the save area
*/
void __init save_area_add_regs(struct save_area *sa, void *regs)
{
struct lowcore *lc;
lc = (struct lowcore *)(regs - __LC_FPREGS_SAVE_AREA);
memcpy(&sa->psw, &lc->psw_save_area, sizeof(sa->psw));
memcpy(&sa->ctrs, &lc->cregs_save_area, sizeof(sa->ctrs));
memcpy(&sa->gprs, &lc->gpregs_save_area, sizeof(sa->gprs));
memcpy(&sa->acrs, &lc->access_regs_save_area, sizeof(sa->acrs));
memcpy(&sa->fprs, &lc->floating_pt_save_area, sizeof(sa->fprs));
memcpy(&sa->fpc, &lc->fpt_creg_save_area, sizeof(sa->fpc));
memcpy(&sa->prefix, &lc->prefixreg_save_area, sizeof(sa->prefix));
memcpy(&sa->todpreg, &lc->tod_progreg_save_area, sizeof(sa->todpreg));
memcpy(&sa->timer, &lc->cpu_timer_save_area, sizeof(sa->timer));
memcpy(&sa->todcmp, &lc->clock_comp_save_area, sizeof(sa->todcmp));
}
/*
* Copy vector registers into the save area
*/
void __init save_area_add_vxrs(struct save_area *sa, __vector128 *vxrs)
{
int i;
/* Copy lower halves of vector registers 0-15 */
for (i = 0; i < 16; i++)
memcpy(&sa->vxrs_low[i], &vxrs[i].u[2], 8);
/* Copy vector registers 16-31 */
memcpy(sa->vxrs_high, vxrs + 16, 16 * sizeof(__vector128));
}
/*
* Return physical address for virtual address
*/
static inline void *load_real_addr(void *addr)
{
unsigned long real_addr;
asm volatile(
" lra %0,0(%1)\n"
" jz 0f\n"
" la %0,0\n"
"0:"
: "=a" (real_addr) : "a" (addr) : "cc");
return (void *)real_addr;
}
/*
* Copy memory of the old, dumped system to a kernel space virtual address
*/
int copy_oldmem_kernel(void *dst, void *src, size_t count)
{
unsigned long from, len;
void *ra;
int rc;
while (count) {
from = __pa(src);
if (!OLDMEM_BASE && from < sclp.hsa_size) {
/* Copy from zfcpdump HSA area */
len = min(count, sclp.hsa_size - from);
rc = memcpy_hsa_kernel(dst, from, len);
if (rc)
return rc;
} else {
/* Check for swapped kdump oldmem areas */
if (OLDMEM_BASE && from - OLDMEM_BASE < OLDMEM_SIZE) {
from -= OLDMEM_BASE;
len = min(count, OLDMEM_SIZE - from);
} else if (OLDMEM_BASE && from < OLDMEM_SIZE) {
len = min(count, OLDMEM_SIZE - from);
from += OLDMEM_BASE;
} else {
len = count;
}
if (is_vmalloc_or_module_addr(dst)) {
ra = load_real_addr(dst);
len = min(PAGE_SIZE - offset_in_page(ra), len);
} else {
ra = dst;
}
if (memcpy_real(ra, (void *) from, len))
return -EFAULT;
}
dst += len;
src += len;
count -= len;
}
return 0;
}
/*
* Copy memory of the old, dumped system to a user space virtual address
*/
static int copy_oldmem_user(void __user *dst, void *src, size_t count)
{
unsigned long from, len;
int rc;
while (count) {
from = __pa(src);
if (!OLDMEM_BASE && from < sclp.hsa_size) {
/* Copy from zfcpdump HSA area */
len = min(count, sclp.hsa_size - from);
rc = memcpy_hsa_user(dst, from, len);
if (rc)
return rc;
} else {
/* Check for swapped kdump oldmem areas */
if (OLDMEM_BASE && from - OLDMEM_BASE < OLDMEM_SIZE) {
from -= OLDMEM_BASE;
len = min(count, OLDMEM_SIZE - from);
} else if (OLDMEM_BASE && from < OLDMEM_SIZE) {
len = min(count, OLDMEM_SIZE - from);
from += OLDMEM_BASE;
} else {
len = count;
}
rc = copy_to_user_real(dst, (void *) from, count);
if (rc)
return rc;
}
dst += len;
src += len;
count -= len;
}
return 0;
}
/*
* Copy one page from "oldmem"
*/
ssize_t copy_oldmem_page(unsigned long pfn, char *buf, size_t csize,
unsigned long offset, int userbuf)
{
void *src;
int rc;
if (!csize)
return 0;
src = (void *) (pfn << PAGE_SHIFT) + offset;
if (userbuf)
rc = copy_oldmem_user((void __force __user *) buf, src, csize);
else
rc = copy_oldmem_kernel((void *) buf, src, csize);
return rc;
}
/*
* Remap "oldmem" for kdump
*
* For the kdump reserved memory this functions performs a swap operation:
* [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
*/
static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma,
unsigned long from, unsigned long pfn,
unsigned long size, pgprot_t prot)
{
unsigned long size_old;
int rc;
if (pfn < OLDMEM_SIZE >> PAGE_SHIFT) {
size_old = min(size, OLDMEM_SIZE - (pfn << PAGE_SHIFT));
rc = remap_pfn_range(vma, from,
pfn + (OLDMEM_BASE >> PAGE_SHIFT),
size_old, prot);
if (rc || size == size_old)
return rc;
size -= size_old;
from += size_old;
pfn += size_old >> PAGE_SHIFT;
}
return remap_pfn_range(vma, from, pfn, size, prot);
}
/*
* Remap "oldmem" for zfcpdump
*
* We only map available memory above HSA size. Memory below HSA size
* is read on demand using the copy_oldmem_page() function.
*/
static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma,
unsigned long from,
unsigned long pfn,
unsigned long size, pgprot_t prot)
{
unsigned long hsa_end = sclp.hsa_size;
unsigned long size_hsa;
if (pfn < hsa_end >> PAGE_SHIFT) {
size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT));
if (size == size_hsa)
return 0;
size -= size_hsa;
from += size_hsa;
pfn += size_hsa >> PAGE_SHIFT;
}
return remap_pfn_range(vma, from, pfn, size, prot);
}
/*
* Remap "oldmem" for kdump or zfcpdump
*/
int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from,
unsigned long pfn, unsigned long size, pgprot_t prot)
{
if (OLDMEM_BASE)
return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot);
else
return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size,
prot);
}
/*
* Alloc memory and panic in case of ENOMEM
*/
static void *kzalloc_panic(int len)
{
void *rc;
rc = kzalloc(len, GFP_KERNEL);
if (!rc)
panic("s390 kdump kzalloc (%d) failed", len);
return rc;
}
/*
* Initialize ELF note
*/
static void *nt_init_name(void *buf, Elf64_Word type, void *desc, int d_len,
const char *name)
{
Elf64_Nhdr *note;
u64 len;
note = (Elf64_Nhdr *)buf;
note->n_namesz = strlen(name) + 1;
note->n_descsz = d_len;
note->n_type = type;
len = sizeof(Elf64_Nhdr);
memcpy(buf + len, name, note->n_namesz);
len = roundup(len + note->n_namesz, 4);
memcpy(buf + len, desc, note->n_descsz);
len = roundup(len + note->n_descsz, 4);
return PTR_ADD(buf, len);
}
static inline void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len)
{
const char *note_name = "LINUX";
if (type == NT_PRPSINFO || type == NT_PRSTATUS || type == NT_PRFPREG)
note_name = KEXEC_CORE_NOTE_NAME;
return nt_init_name(buf, type, desc, d_len, note_name);
}
/*
* Fill ELF notes for one CPU with save area registers
*/
static void *fill_cpu_elf_notes(void *ptr, int cpu, struct save_area *sa)
{
struct elf_prstatus nt_prstatus;
elf_fpregset_t nt_fpregset;
/* Prepare prstatus note */
memset(&nt_prstatus, 0, sizeof(nt_prstatus));
memcpy(&nt_prstatus.pr_reg.gprs, sa->gprs, sizeof(sa->gprs));
memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
memcpy(&nt_prstatus.pr_reg.acrs, sa->acrs, sizeof(sa->acrs));
nt_prstatus.pr_pid = cpu;
/* Prepare fpregset (floating point) note */
memset(&nt_fpregset, 0, sizeof(nt_fpregset));
memcpy(&nt_fpregset.fpc, &sa->fpc, sizeof(sa->fpc));
memcpy(&nt_fpregset.fprs, &sa->fprs, sizeof(sa->fprs));
/* Create ELF notes for the CPU */
ptr = nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus));
ptr = nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset));
ptr = nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer));
ptr = nt_init(ptr, NT_S390_TODCMP, &sa->todcmp, sizeof(sa->todcmp));
ptr = nt_init(ptr, NT_S390_TODPREG, &sa->todpreg, sizeof(sa->todpreg));
ptr = nt_init(ptr, NT_S390_CTRS, &sa->ctrs, sizeof(sa->ctrs));
ptr = nt_init(ptr, NT_S390_PREFIX, &sa->prefix, sizeof(sa->prefix));
if (MACHINE_HAS_VX) {
ptr = nt_init(ptr, NT_S390_VXRS_HIGH,
&sa->vxrs_high, sizeof(sa->vxrs_high));
ptr = nt_init(ptr, NT_S390_VXRS_LOW,
&sa->vxrs_low, sizeof(sa->vxrs_low));
}
return ptr;
}
/*
* Initialize prpsinfo note (new kernel)
*/
static void *nt_prpsinfo(void *ptr)
{
struct elf_prpsinfo prpsinfo;
memset(&prpsinfo, 0, sizeof(prpsinfo));
prpsinfo.pr_sname = 'R';
strcpy(prpsinfo.pr_fname, "vmlinux");
return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo));
}
/*
* Get vmcoreinfo using lowcore->vmcore_info (new kernel)
*/
static void *get_vmcoreinfo_old(unsigned long *size)
{
char nt_name[11], *vmcoreinfo;
Elf64_Nhdr note;
void *addr;
if (copy_oldmem_kernel(&addr, &S390_lowcore.vmcore_info, sizeof(addr)))
return NULL;
memset(nt_name, 0, sizeof(nt_name));
if (copy_oldmem_kernel(&note, addr, sizeof(note)))
return NULL;
if (copy_oldmem_kernel(nt_name, addr + sizeof(note),
sizeof(nt_name) - 1))
return NULL;
if (strcmp(nt_name, "VMCOREINFO") != 0)
return NULL;
vmcoreinfo = kzalloc_panic(note.n_descsz);
if (copy_oldmem_kernel(vmcoreinfo, addr + 24, note.n_descsz))
return NULL;
*size = note.n_descsz;
return vmcoreinfo;
}
/*
* Initialize vmcoreinfo note (new kernel)
*/
static void *nt_vmcoreinfo(void *ptr)
{
unsigned long size;
void *vmcoreinfo;
vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
if (!vmcoreinfo)
vmcoreinfo = get_vmcoreinfo_old(&size);
if (!vmcoreinfo)
return ptr;
return nt_init_name(ptr, 0, vmcoreinfo, size, "VMCOREINFO");
}
/*
* Initialize final note (needed for /proc/vmcore code)
*/
static void *nt_final(void *ptr)
{
Elf64_Nhdr *note;
note = (Elf64_Nhdr *) ptr;
note->n_namesz = 0;
note->n_descsz = 0;
note->n_type = 0;
return PTR_ADD(ptr, sizeof(Elf64_Nhdr));
}
/*
* Initialize ELF header (new kernel)
*/
static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt)
{
memset(ehdr, 0, sizeof(*ehdr));
memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
ehdr->e_ident[EI_CLASS] = ELFCLASS64;
ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
ehdr->e_ident[EI_VERSION] = EV_CURRENT;
memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
ehdr->e_type = ET_CORE;
ehdr->e_machine = EM_S390;
ehdr->e_version = EV_CURRENT;
ehdr->e_phoff = sizeof(Elf64_Ehdr);
ehdr->e_ehsize = sizeof(Elf64_Ehdr);
ehdr->e_phentsize = sizeof(Elf64_Phdr);
ehdr->e_phnum = mem_chunk_cnt + 1;
return ehdr + 1;
}
/*
* Return CPU count for ELF header (new kernel)
*/
static int get_cpu_cnt(void)
{
struct save_area *sa;
int cpus = 0;
list_for_each_entry(sa, &dump_save_areas, list)
if (sa->prefix != 0)
cpus++;
return cpus;
}
/*
* Return memory chunk count for ELF header (new kernel)
*/
static int get_mem_chunk_cnt(void)
{
int cnt = 0;
u64 idx;
for_each_mem_range(idx, &memblock.physmem, &oldmem_type, NUMA_NO_NODE,
MEMBLOCK_NONE, NULL, NULL, NULL)
cnt++;
return cnt;
}
/*
* Initialize ELF loads (new kernel)
*/
static void loads_init(Elf64_Phdr *phdr, u64 loads_offset)
{
phys_addr_t start, end;
u64 idx;
for_each_mem_range(idx, &memblock.physmem, &oldmem_type, NUMA_NO_NODE,
MEMBLOCK_NONE, &start, &end, NULL) {
phdr->p_filesz = end - start;
phdr->p_type = PT_LOAD;
phdr->p_offset = start;
phdr->p_vaddr = start;
phdr->p_paddr = start;
phdr->p_memsz = end - start;
phdr->p_flags = PF_R | PF_W | PF_X;
phdr->p_align = PAGE_SIZE;
phdr++;
}
}
/*
* Initialize notes (new kernel)
*/
static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
{
struct save_area *sa;
void *ptr_start = ptr;
int cpu;
ptr = nt_prpsinfo(ptr);
cpu = 1;
list_for_each_entry(sa, &dump_save_areas, list)
if (sa->prefix != 0)
ptr = fill_cpu_elf_notes(ptr, cpu++, sa);
ptr = nt_vmcoreinfo(ptr);
ptr = nt_final(ptr);
memset(phdr, 0, sizeof(*phdr));
phdr->p_type = PT_NOTE;
phdr->p_offset = notes_offset;
phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
phdr->p_memsz = phdr->p_filesz;
return ptr;
}
/*
* Create ELF core header (new kernel)
*/
int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
{
Elf64_Phdr *phdr_notes, *phdr_loads;
int mem_chunk_cnt;
void *ptr, *hdr;
u32 alloc_size;
u64 hdr_off;
/* If we are not in kdump or zfcpdump mode return */
if (!OLDMEM_BASE && ipl_info.type != IPL_TYPE_FCP_DUMP)
return 0;
/* If we cannot get HSA size for zfcpdump return error */
if (ipl_info.type == IPL_TYPE_FCP_DUMP && !sclp.hsa_size)
return -ENODEV;
/* For kdump, exclude previous crashkernel memory */
if (OLDMEM_BASE) {
oldmem_region.base = OLDMEM_BASE;
oldmem_region.size = OLDMEM_SIZE;
oldmem_type.total_size = OLDMEM_SIZE;
}
mem_chunk_cnt = get_mem_chunk_cnt();
alloc_size = 0x1000 + get_cpu_cnt() * 0x4a0 +
mem_chunk_cnt * sizeof(Elf64_Phdr);
hdr = kzalloc_panic(alloc_size);
/* Init elf header */
ptr = ehdr_init(hdr, mem_chunk_cnt);
/* Init program headers */
phdr_notes = ptr;
ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr));
phdr_loads = ptr;
ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt);
/* Init notes */
hdr_off = PTR_DIFF(ptr, hdr);
ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
/* Init loads */
hdr_off = PTR_DIFF(ptr, hdr);
loads_init(phdr_loads, hdr_off);
*addr = (unsigned long long) hdr;
*size = (unsigned long long) hdr_off;
BUG_ON(elfcorehdr_size > alloc_size);
return 0;
}
/*
* Free ELF core header (new kernel)
*/
void elfcorehdr_free(unsigned long long addr)
{
kfree((void *)(unsigned long)addr);
}
/*
* Read from ELF header
*/
ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
{
void *src = (void *)(unsigned long)*ppos;
memcpy(buf, src, count);
*ppos += count;
return count;
}
/*
* Read from ELF notes data
*/
ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
{
void *src = (void *)(unsigned long)*ppos;
memcpy(buf, src, count);
*ppos += count;
return count;
}