linux/arch/x86/crypto/sha1_ssse3_glue.c

379 lines
9.0 KiB
C
Raw Normal View History

crypto: sha1 - SSSE3 based SHA1 implementation for x86-64 This is an assembler implementation of the SHA1 algorithm using the Supplemental SSE3 (SSSE3) instructions or, when available, the Advanced Vector Extensions (AVX). Testing with the tcrypt module shows the raw hash performance is up to 2.3 times faster than the C implementation, using 8k data blocks on a Core 2 Duo T5500. For the smalest data set (16 byte) it is still 25% faster. Since this implementation uses SSE/YMM registers it cannot safely be used in every situation, e.g. while an IRQ interrupts a kernel thread. The implementation falls back to the generic SHA1 variant, if using the SSE/YMM registers is not possible. With this algorithm I was able to increase the throughput of a single IPsec link from 344 Mbit/s to 464 Mbit/s on a Core 2 Quad CPU using the SSSE3 variant -- a speedup of +34.8%. Saving and restoring SSE/YMM state might make the actual throughput fluctuate when there are FPU intensive userland applications running. For example, meassuring the performance using iperf2 directly on the machine under test gives wobbling numbers because iperf2 uses the FPU for each packet to check if the reporting interval has expired (in the above test I got min/max/avg: 402/484/464 MBit/s). Using this algorithm on a IPsec gateway gives much more reasonable and stable numbers, albeit not as high as in the directly connected case. Here is the result from an RFC 2544 test run with a EXFO Packet Blazer FTB-8510: frame size sha1-generic sha1-ssse3 delta 64 byte 37.5 MBit/s 37.5 MBit/s 0.0% 128 byte 56.3 MBit/s 62.5 MBit/s +11.0% 256 byte 87.5 MBit/s 100.0 MBit/s +14.3% 512 byte 131.3 MBit/s 150.0 MBit/s +14.2% 1024 byte 162.5 MBit/s 193.8 MBit/s +19.3% 1280 byte 175.0 MBit/s 212.5 MBit/s +21.4% 1420 byte 175.0 MBit/s 218.7 MBit/s +25.0% 1518 byte 150.0 MBit/s 181.2 MBit/s +20.8% The throughput for the largest frame size is lower than for the previous size because the IP packets need to be fragmented in this case to make there way through the IPsec tunnel. Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Maxim Locktyukhin <maxim.locktyukhin@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-08-05 02:19:25 +08:00
/*
* Cryptographic API.
*
* Glue code for the SHA1 Secure Hash Algorithm assembler implementation using
* Supplemental SSE3 instructions.
*
* This file is based on sha1_generic.c
*
* Copyright (c) Alan Smithee.
* Copyright (c) Andrew McDonald <andrew@mcdonald.org.uk>
* Copyright (c) Jean-Francois Dive <jef@linuxbe.org>
* Copyright (c) Mathias Krause <minipli@googlemail.com>
* Copyright (c) Chandramouli Narayanan <mouli@linux.intel.com>
crypto: sha1 - SSSE3 based SHA1 implementation for x86-64 This is an assembler implementation of the SHA1 algorithm using the Supplemental SSE3 (SSSE3) instructions or, when available, the Advanced Vector Extensions (AVX). Testing with the tcrypt module shows the raw hash performance is up to 2.3 times faster than the C implementation, using 8k data blocks on a Core 2 Duo T5500. For the smalest data set (16 byte) it is still 25% faster. Since this implementation uses SSE/YMM registers it cannot safely be used in every situation, e.g. while an IRQ interrupts a kernel thread. The implementation falls back to the generic SHA1 variant, if using the SSE/YMM registers is not possible. With this algorithm I was able to increase the throughput of a single IPsec link from 344 Mbit/s to 464 Mbit/s on a Core 2 Quad CPU using the SSSE3 variant -- a speedup of +34.8%. Saving and restoring SSE/YMM state might make the actual throughput fluctuate when there are FPU intensive userland applications running. For example, meassuring the performance using iperf2 directly on the machine under test gives wobbling numbers because iperf2 uses the FPU for each packet to check if the reporting interval has expired (in the above test I got min/max/avg: 402/484/464 MBit/s). Using this algorithm on a IPsec gateway gives much more reasonable and stable numbers, albeit not as high as in the directly connected case. Here is the result from an RFC 2544 test run with a EXFO Packet Blazer FTB-8510: frame size sha1-generic sha1-ssse3 delta 64 byte 37.5 MBit/s 37.5 MBit/s 0.0% 128 byte 56.3 MBit/s 62.5 MBit/s +11.0% 256 byte 87.5 MBit/s 100.0 MBit/s +14.3% 512 byte 131.3 MBit/s 150.0 MBit/s +14.2% 1024 byte 162.5 MBit/s 193.8 MBit/s +19.3% 1280 byte 175.0 MBit/s 212.5 MBit/s +21.4% 1420 byte 175.0 MBit/s 218.7 MBit/s +25.0% 1518 byte 150.0 MBit/s 181.2 MBit/s +20.8% The throughput for the largest frame size is lower than for the previous size because the IP packets need to be fragmented in this case to make there way through the IPsec tunnel. Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Maxim Locktyukhin <maxim.locktyukhin@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-08-05 02:19:25 +08:00
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <crypto/internal/hash.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/cryptohash.h>
#include <linux/types.h>
#include <crypto/sha.h>
#include <crypto/sha1_base.h>
#include <asm/fpu/api.h>
crypto: sha1 - SSSE3 based SHA1 implementation for x86-64 This is an assembler implementation of the SHA1 algorithm using the Supplemental SSE3 (SSSE3) instructions or, when available, the Advanced Vector Extensions (AVX). Testing with the tcrypt module shows the raw hash performance is up to 2.3 times faster than the C implementation, using 8k data blocks on a Core 2 Duo T5500. For the smalest data set (16 byte) it is still 25% faster. Since this implementation uses SSE/YMM registers it cannot safely be used in every situation, e.g. while an IRQ interrupts a kernel thread. The implementation falls back to the generic SHA1 variant, if using the SSE/YMM registers is not possible. With this algorithm I was able to increase the throughput of a single IPsec link from 344 Mbit/s to 464 Mbit/s on a Core 2 Quad CPU using the SSSE3 variant -- a speedup of +34.8%. Saving and restoring SSE/YMM state might make the actual throughput fluctuate when there are FPU intensive userland applications running. For example, meassuring the performance using iperf2 directly on the machine under test gives wobbling numbers because iperf2 uses the FPU for each packet to check if the reporting interval has expired (in the above test I got min/max/avg: 402/484/464 MBit/s). Using this algorithm on a IPsec gateway gives much more reasonable and stable numbers, albeit not as high as in the directly connected case. Here is the result from an RFC 2544 test run with a EXFO Packet Blazer FTB-8510: frame size sha1-generic sha1-ssse3 delta 64 byte 37.5 MBit/s 37.5 MBit/s 0.0% 128 byte 56.3 MBit/s 62.5 MBit/s +11.0% 256 byte 87.5 MBit/s 100.0 MBit/s +14.3% 512 byte 131.3 MBit/s 150.0 MBit/s +14.2% 1024 byte 162.5 MBit/s 193.8 MBit/s +19.3% 1280 byte 175.0 MBit/s 212.5 MBit/s +21.4% 1420 byte 175.0 MBit/s 218.7 MBit/s +25.0% 1518 byte 150.0 MBit/s 181.2 MBit/s +20.8% The throughput for the largest frame size is lower than for the previous size because the IP packets need to be fragmented in this case to make there way through the IPsec tunnel. Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Maxim Locktyukhin <maxim.locktyukhin@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-08-05 02:19:25 +08:00
typedef void (sha1_transform_fn)(u32 *digest, const char *data,
unsigned int rounds);
crypto: sha1 - SSSE3 based SHA1 implementation for x86-64 This is an assembler implementation of the SHA1 algorithm using the Supplemental SSE3 (SSSE3) instructions or, when available, the Advanced Vector Extensions (AVX). Testing with the tcrypt module shows the raw hash performance is up to 2.3 times faster than the C implementation, using 8k data blocks on a Core 2 Duo T5500. For the smalest data set (16 byte) it is still 25% faster. Since this implementation uses SSE/YMM registers it cannot safely be used in every situation, e.g. while an IRQ interrupts a kernel thread. The implementation falls back to the generic SHA1 variant, if using the SSE/YMM registers is not possible. With this algorithm I was able to increase the throughput of a single IPsec link from 344 Mbit/s to 464 Mbit/s on a Core 2 Quad CPU using the SSSE3 variant -- a speedup of +34.8%. Saving and restoring SSE/YMM state might make the actual throughput fluctuate when there are FPU intensive userland applications running. For example, meassuring the performance using iperf2 directly on the machine under test gives wobbling numbers because iperf2 uses the FPU for each packet to check if the reporting interval has expired (in the above test I got min/max/avg: 402/484/464 MBit/s). Using this algorithm on a IPsec gateway gives much more reasonable and stable numbers, albeit not as high as in the directly connected case. Here is the result from an RFC 2544 test run with a EXFO Packet Blazer FTB-8510: frame size sha1-generic sha1-ssse3 delta 64 byte 37.5 MBit/s 37.5 MBit/s 0.0% 128 byte 56.3 MBit/s 62.5 MBit/s +11.0% 256 byte 87.5 MBit/s 100.0 MBit/s +14.3% 512 byte 131.3 MBit/s 150.0 MBit/s +14.2% 1024 byte 162.5 MBit/s 193.8 MBit/s +19.3% 1280 byte 175.0 MBit/s 212.5 MBit/s +21.4% 1420 byte 175.0 MBit/s 218.7 MBit/s +25.0% 1518 byte 150.0 MBit/s 181.2 MBit/s +20.8% The throughput for the largest frame size is lower than for the previous size because the IP packets need to be fragmented in this case to make there way through the IPsec tunnel. Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Maxim Locktyukhin <maxim.locktyukhin@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-08-05 02:19:25 +08:00
static int sha1_update(struct shash_desc *desc, const u8 *data,
unsigned int len, sha1_transform_fn *sha1_xform)
crypto: sha1 - SSSE3 based SHA1 implementation for x86-64 This is an assembler implementation of the SHA1 algorithm using the Supplemental SSE3 (SSSE3) instructions or, when available, the Advanced Vector Extensions (AVX). Testing with the tcrypt module shows the raw hash performance is up to 2.3 times faster than the C implementation, using 8k data blocks on a Core 2 Duo T5500. For the smalest data set (16 byte) it is still 25% faster. Since this implementation uses SSE/YMM registers it cannot safely be used in every situation, e.g. while an IRQ interrupts a kernel thread. The implementation falls back to the generic SHA1 variant, if using the SSE/YMM registers is not possible. With this algorithm I was able to increase the throughput of a single IPsec link from 344 Mbit/s to 464 Mbit/s on a Core 2 Quad CPU using the SSSE3 variant -- a speedup of +34.8%. Saving and restoring SSE/YMM state might make the actual throughput fluctuate when there are FPU intensive userland applications running. For example, meassuring the performance using iperf2 directly on the machine under test gives wobbling numbers because iperf2 uses the FPU for each packet to check if the reporting interval has expired (in the above test I got min/max/avg: 402/484/464 MBit/s). Using this algorithm on a IPsec gateway gives much more reasonable and stable numbers, albeit not as high as in the directly connected case. Here is the result from an RFC 2544 test run with a EXFO Packet Blazer FTB-8510: frame size sha1-generic sha1-ssse3 delta 64 byte 37.5 MBit/s 37.5 MBit/s 0.0% 128 byte 56.3 MBit/s 62.5 MBit/s +11.0% 256 byte 87.5 MBit/s 100.0 MBit/s +14.3% 512 byte 131.3 MBit/s 150.0 MBit/s +14.2% 1024 byte 162.5 MBit/s 193.8 MBit/s +19.3% 1280 byte 175.0 MBit/s 212.5 MBit/s +21.4% 1420 byte 175.0 MBit/s 218.7 MBit/s +25.0% 1518 byte 150.0 MBit/s 181.2 MBit/s +20.8% The throughput for the largest frame size is lower than for the previous size because the IP packets need to be fragmented in this case to make there way through the IPsec tunnel. Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Maxim Locktyukhin <maxim.locktyukhin@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-08-05 02:19:25 +08:00
{
struct sha1_state *sctx = shash_desc_ctx(desc);
if (!irq_fpu_usable() ||
(sctx->count % SHA1_BLOCK_SIZE) + len < SHA1_BLOCK_SIZE)
return crypto_sha1_update(desc, data, len);
crypto: sha1 - SSSE3 based SHA1 implementation for x86-64 This is an assembler implementation of the SHA1 algorithm using the Supplemental SSE3 (SSSE3) instructions or, when available, the Advanced Vector Extensions (AVX). Testing with the tcrypt module shows the raw hash performance is up to 2.3 times faster than the C implementation, using 8k data blocks on a Core 2 Duo T5500. For the smalest data set (16 byte) it is still 25% faster. Since this implementation uses SSE/YMM registers it cannot safely be used in every situation, e.g. while an IRQ interrupts a kernel thread. The implementation falls back to the generic SHA1 variant, if using the SSE/YMM registers is not possible. With this algorithm I was able to increase the throughput of a single IPsec link from 344 Mbit/s to 464 Mbit/s on a Core 2 Quad CPU using the SSSE3 variant -- a speedup of +34.8%. Saving and restoring SSE/YMM state might make the actual throughput fluctuate when there are FPU intensive userland applications running. For example, meassuring the performance using iperf2 directly on the machine under test gives wobbling numbers because iperf2 uses the FPU for each packet to check if the reporting interval has expired (in the above test I got min/max/avg: 402/484/464 MBit/s). Using this algorithm on a IPsec gateway gives much more reasonable and stable numbers, albeit not as high as in the directly connected case. Here is the result from an RFC 2544 test run with a EXFO Packet Blazer FTB-8510: frame size sha1-generic sha1-ssse3 delta 64 byte 37.5 MBit/s 37.5 MBit/s 0.0% 128 byte 56.3 MBit/s 62.5 MBit/s +11.0% 256 byte 87.5 MBit/s 100.0 MBit/s +14.3% 512 byte 131.3 MBit/s 150.0 MBit/s +14.2% 1024 byte 162.5 MBit/s 193.8 MBit/s +19.3% 1280 byte 175.0 MBit/s 212.5 MBit/s +21.4% 1420 byte 175.0 MBit/s 218.7 MBit/s +25.0% 1518 byte 150.0 MBit/s 181.2 MBit/s +20.8% The throughput for the largest frame size is lower than for the previous size because the IP packets need to be fragmented in this case to make there way through the IPsec tunnel. Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Maxim Locktyukhin <maxim.locktyukhin@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-08-05 02:19:25 +08:00
/* make sure casting to sha1_block_fn() is safe */
BUILD_BUG_ON(offsetof(struct sha1_state, state) != 0);
crypto: sha1 - SSSE3 based SHA1 implementation for x86-64 This is an assembler implementation of the SHA1 algorithm using the Supplemental SSE3 (SSSE3) instructions or, when available, the Advanced Vector Extensions (AVX). Testing with the tcrypt module shows the raw hash performance is up to 2.3 times faster than the C implementation, using 8k data blocks on a Core 2 Duo T5500. For the smalest data set (16 byte) it is still 25% faster. Since this implementation uses SSE/YMM registers it cannot safely be used in every situation, e.g. while an IRQ interrupts a kernel thread. The implementation falls back to the generic SHA1 variant, if using the SSE/YMM registers is not possible. With this algorithm I was able to increase the throughput of a single IPsec link from 344 Mbit/s to 464 Mbit/s on a Core 2 Quad CPU using the SSSE3 variant -- a speedup of +34.8%. Saving and restoring SSE/YMM state might make the actual throughput fluctuate when there are FPU intensive userland applications running. For example, meassuring the performance using iperf2 directly on the machine under test gives wobbling numbers because iperf2 uses the FPU for each packet to check if the reporting interval has expired (in the above test I got min/max/avg: 402/484/464 MBit/s). Using this algorithm on a IPsec gateway gives much more reasonable and stable numbers, albeit not as high as in the directly connected case. Here is the result from an RFC 2544 test run with a EXFO Packet Blazer FTB-8510: frame size sha1-generic sha1-ssse3 delta 64 byte 37.5 MBit/s 37.5 MBit/s 0.0% 128 byte 56.3 MBit/s 62.5 MBit/s +11.0% 256 byte 87.5 MBit/s 100.0 MBit/s +14.3% 512 byte 131.3 MBit/s 150.0 MBit/s +14.2% 1024 byte 162.5 MBit/s 193.8 MBit/s +19.3% 1280 byte 175.0 MBit/s 212.5 MBit/s +21.4% 1420 byte 175.0 MBit/s 218.7 MBit/s +25.0% 1518 byte 150.0 MBit/s 181.2 MBit/s +20.8% The throughput for the largest frame size is lower than for the previous size because the IP packets need to be fragmented in this case to make there way through the IPsec tunnel. Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Maxim Locktyukhin <maxim.locktyukhin@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-08-05 02:19:25 +08:00
kernel_fpu_begin();
sha1_base_do_update(desc, data, len,
(sha1_block_fn *)sha1_xform);
kernel_fpu_end();
crypto: sha1 - SSSE3 based SHA1 implementation for x86-64 This is an assembler implementation of the SHA1 algorithm using the Supplemental SSE3 (SSSE3) instructions or, when available, the Advanced Vector Extensions (AVX). Testing with the tcrypt module shows the raw hash performance is up to 2.3 times faster than the C implementation, using 8k data blocks on a Core 2 Duo T5500. For the smalest data set (16 byte) it is still 25% faster. Since this implementation uses SSE/YMM registers it cannot safely be used in every situation, e.g. while an IRQ interrupts a kernel thread. The implementation falls back to the generic SHA1 variant, if using the SSE/YMM registers is not possible. With this algorithm I was able to increase the throughput of a single IPsec link from 344 Mbit/s to 464 Mbit/s on a Core 2 Quad CPU using the SSSE3 variant -- a speedup of +34.8%. Saving and restoring SSE/YMM state might make the actual throughput fluctuate when there are FPU intensive userland applications running. For example, meassuring the performance using iperf2 directly on the machine under test gives wobbling numbers because iperf2 uses the FPU for each packet to check if the reporting interval has expired (in the above test I got min/max/avg: 402/484/464 MBit/s). Using this algorithm on a IPsec gateway gives much more reasonable and stable numbers, albeit not as high as in the directly connected case. Here is the result from an RFC 2544 test run with a EXFO Packet Blazer FTB-8510: frame size sha1-generic sha1-ssse3 delta 64 byte 37.5 MBit/s 37.5 MBit/s 0.0% 128 byte 56.3 MBit/s 62.5 MBit/s +11.0% 256 byte 87.5 MBit/s 100.0 MBit/s +14.3% 512 byte 131.3 MBit/s 150.0 MBit/s +14.2% 1024 byte 162.5 MBit/s 193.8 MBit/s +19.3% 1280 byte 175.0 MBit/s 212.5 MBit/s +21.4% 1420 byte 175.0 MBit/s 218.7 MBit/s +25.0% 1518 byte 150.0 MBit/s 181.2 MBit/s +20.8% The throughput for the largest frame size is lower than for the previous size because the IP packets need to be fragmented in this case to make there way through the IPsec tunnel. Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Maxim Locktyukhin <maxim.locktyukhin@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-08-05 02:19:25 +08:00
return 0;
}
static int sha1_finup(struct shash_desc *desc, const u8 *data,
unsigned int len, u8 *out, sha1_transform_fn *sha1_xform)
crypto: sha1 - SSSE3 based SHA1 implementation for x86-64 This is an assembler implementation of the SHA1 algorithm using the Supplemental SSE3 (SSSE3) instructions or, when available, the Advanced Vector Extensions (AVX). Testing with the tcrypt module shows the raw hash performance is up to 2.3 times faster than the C implementation, using 8k data blocks on a Core 2 Duo T5500. For the smalest data set (16 byte) it is still 25% faster. Since this implementation uses SSE/YMM registers it cannot safely be used in every situation, e.g. while an IRQ interrupts a kernel thread. The implementation falls back to the generic SHA1 variant, if using the SSE/YMM registers is not possible. With this algorithm I was able to increase the throughput of a single IPsec link from 344 Mbit/s to 464 Mbit/s on a Core 2 Quad CPU using the SSSE3 variant -- a speedup of +34.8%. Saving and restoring SSE/YMM state might make the actual throughput fluctuate when there are FPU intensive userland applications running. For example, meassuring the performance using iperf2 directly on the machine under test gives wobbling numbers because iperf2 uses the FPU for each packet to check if the reporting interval has expired (in the above test I got min/max/avg: 402/484/464 MBit/s). Using this algorithm on a IPsec gateway gives much more reasonable and stable numbers, albeit not as high as in the directly connected case. Here is the result from an RFC 2544 test run with a EXFO Packet Blazer FTB-8510: frame size sha1-generic sha1-ssse3 delta 64 byte 37.5 MBit/s 37.5 MBit/s 0.0% 128 byte 56.3 MBit/s 62.5 MBit/s +11.0% 256 byte 87.5 MBit/s 100.0 MBit/s +14.3% 512 byte 131.3 MBit/s 150.0 MBit/s +14.2% 1024 byte 162.5 MBit/s 193.8 MBit/s +19.3% 1280 byte 175.0 MBit/s 212.5 MBit/s +21.4% 1420 byte 175.0 MBit/s 218.7 MBit/s +25.0% 1518 byte 150.0 MBit/s 181.2 MBit/s +20.8% The throughput for the largest frame size is lower than for the previous size because the IP packets need to be fragmented in this case to make there way through the IPsec tunnel. Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Maxim Locktyukhin <maxim.locktyukhin@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-08-05 02:19:25 +08:00
{
if (!irq_fpu_usable())
return crypto_sha1_finup(desc, data, len, out);
crypto: sha1 - SSSE3 based SHA1 implementation for x86-64 This is an assembler implementation of the SHA1 algorithm using the Supplemental SSE3 (SSSE3) instructions or, when available, the Advanced Vector Extensions (AVX). Testing with the tcrypt module shows the raw hash performance is up to 2.3 times faster than the C implementation, using 8k data blocks on a Core 2 Duo T5500. For the smalest data set (16 byte) it is still 25% faster. Since this implementation uses SSE/YMM registers it cannot safely be used in every situation, e.g. while an IRQ interrupts a kernel thread. The implementation falls back to the generic SHA1 variant, if using the SSE/YMM registers is not possible. With this algorithm I was able to increase the throughput of a single IPsec link from 344 Mbit/s to 464 Mbit/s on a Core 2 Quad CPU using the SSSE3 variant -- a speedup of +34.8%. Saving and restoring SSE/YMM state might make the actual throughput fluctuate when there are FPU intensive userland applications running. For example, meassuring the performance using iperf2 directly on the machine under test gives wobbling numbers because iperf2 uses the FPU for each packet to check if the reporting interval has expired (in the above test I got min/max/avg: 402/484/464 MBit/s). Using this algorithm on a IPsec gateway gives much more reasonable and stable numbers, albeit not as high as in the directly connected case. Here is the result from an RFC 2544 test run with a EXFO Packet Blazer FTB-8510: frame size sha1-generic sha1-ssse3 delta 64 byte 37.5 MBit/s 37.5 MBit/s 0.0% 128 byte 56.3 MBit/s 62.5 MBit/s +11.0% 256 byte 87.5 MBit/s 100.0 MBit/s +14.3% 512 byte 131.3 MBit/s 150.0 MBit/s +14.2% 1024 byte 162.5 MBit/s 193.8 MBit/s +19.3% 1280 byte 175.0 MBit/s 212.5 MBit/s +21.4% 1420 byte 175.0 MBit/s 218.7 MBit/s +25.0% 1518 byte 150.0 MBit/s 181.2 MBit/s +20.8% The throughput for the largest frame size is lower than for the previous size because the IP packets need to be fragmented in this case to make there way through the IPsec tunnel. Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Maxim Locktyukhin <maxim.locktyukhin@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-08-05 02:19:25 +08:00
kernel_fpu_begin();
if (len)
sha1_base_do_update(desc, data, len,
(sha1_block_fn *)sha1_xform);
sha1_base_do_finalize(desc, (sha1_block_fn *)sha1_xform);
kernel_fpu_end();
crypto: sha1 - SSSE3 based SHA1 implementation for x86-64 This is an assembler implementation of the SHA1 algorithm using the Supplemental SSE3 (SSSE3) instructions or, when available, the Advanced Vector Extensions (AVX). Testing with the tcrypt module shows the raw hash performance is up to 2.3 times faster than the C implementation, using 8k data blocks on a Core 2 Duo T5500. For the smalest data set (16 byte) it is still 25% faster. Since this implementation uses SSE/YMM registers it cannot safely be used in every situation, e.g. while an IRQ interrupts a kernel thread. The implementation falls back to the generic SHA1 variant, if using the SSE/YMM registers is not possible. With this algorithm I was able to increase the throughput of a single IPsec link from 344 Mbit/s to 464 Mbit/s on a Core 2 Quad CPU using the SSSE3 variant -- a speedup of +34.8%. Saving and restoring SSE/YMM state might make the actual throughput fluctuate when there are FPU intensive userland applications running. For example, meassuring the performance using iperf2 directly on the machine under test gives wobbling numbers because iperf2 uses the FPU for each packet to check if the reporting interval has expired (in the above test I got min/max/avg: 402/484/464 MBit/s). Using this algorithm on a IPsec gateway gives much more reasonable and stable numbers, albeit not as high as in the directly connected case. Here is the result from an RFC 2544 test run with a EXFO Packet Blazer FTB-8510: frame size sha1-generic sha1-ssse3 delta 64 byte 37.5 MBit/s 37.5 MBit/s 0.0% 128 byte 56.3 MBit/s 62.5 MBit/s +11.0% 256 byte 87.5 MBit/s 100.0 MBit/s +14.3% 512 byte 131.3 MBit/s 150.0 MBit/s +14.2% 1024 byte 162.5 MBit/s 193.8 MBit/s +19.3% 1280 byte 175.0 MBit/s 212.5 MBit/s +21.4% 1420 byte 175.0 MBit/s 218.7 MBit/s +25.0% 1518 byte 150.0 MBit/s 181.2 MBit/s +20.8% The throughput for the largest frame size is lower than for the previous size because the IP packets need to be fragmented in this case to make there way through the IPsec tunnel. Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Maxim Locktyukhin <maxim.locktyukhin@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-08-05 02:19:25 +08:00
return sha1_base_finish(desc, out);
crypto: sha1 - SSSE3 based SHA1 implementation for x86-64 This is an assembler implementation of the SHA1 algorithm using the Supplemental SSE3 (SSSE3) instructions or, when available, the Advanced Vector Extensions (AVX). Testing with the tcrypt module shows the raw hash performance is up to 2.3 times faster than the C implementation, using 8k data blocks on a Core 2 Duo T5500. For the smalest data set (16 byte) it is still 25% faster. Since this implementation uses SSE/YMM registers it cannot safely be used in every situation, e.g. while an IRQ interrupts a kernel thread. The implementation falls back to the generic SHA1 variant, if using the SSE/YMM registers is not possible. With this algorithm I was able to increase the throughput of a single IPsec link from 344 Mbit/s to 464 Mbit/s on a Core 2 Quad CPU using the SSSE3 variant -- a speedup of +34.8%. Saving and restoring SSE/YMM state might make the actual throughput fluctuate when there are FPU intensive userland applications running. For example, meassuring the performance using iperf2 directly on the machine under test gives wobbling numbers because iperf2 uses the FPU for each packet to check if the reporting interval has expired (in the above test I got min/max/avg: 402/484/464 MBit/s). Using this algorithm on a IPsec gateway gives much more reasonable and stable numbers, albeit not as high as in the directly connected case. Here is the result from an RFC 2544 test run with a EXFO Packet Blazer FTB-8510: frame size sha1-generic sha1-ssse3 delta 64 byte 37.5 MBit/s 37.5 MBit/s 0.0% 128 byte 56.3 MBit/s 62.5 MBit/s +11.0% 256 byte 87.5 MBit/s 100.0 MBit/s +14.3% 512 byte 131.3 MBit/s 150.0 MBit/s +14.2% 1024 byte 162.5 MBit/s 193.8 MBit/s +19.3% 1280 byte 175.0 MBit/s 212.5 MBit/s +21.4% 1420 byte 175.0 MBit/s 218.7 MBit/s +25.0% 1518 byte 150.0 MBit/s 181.2 MBit/s +20.8% The throughput for the largest frame size is lower than for the previous size because the IP packets need to be fragmented in this case to make there way through the IPsec tunnel. Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Maxim Locktyukhin <maxim.locktyukhin@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-08-05 02:19:25 +08:00
}
asmlinkage void sha1_transform_ssse3(u32 *digest, const char *data,
unsigned int rounds);
static int sha1_ssse3_update(struct shash_desc *desc, const u8 *data,
unsigned int len)
crypto: sha1 - SSSE3 based SHA1 implementation for x86-64 This is an assembler implementation of the SHA1 algorithm using the Supplemental SSE3 (SSSE3) instructions or, when available, the Advanced Vector Extensions (AVX). Testing with the tcrypt module shows the raw hash performance is up to 2.3 times faster than the C implementation, using 8k data blocks on a Core 2 Duo T5500. For the smalest data set (16 byte) it is still 25% faster. Since this implementation uses SSE/YMM registers it cannot safely be used in every situation, e.g. while an IRQ interrupts a kernel thread. The implementation falls back to the generic SHA1 variant, if using the SSE/YMM registers is not possible. With this algorithm I was able to increase the throughput of a single IPsec link from 344 Mbit/s to 464 Mbit/s on a Core 2 Quad CPU using the SSSE3 variant -- a speedup of +34.8%. Saving and restoring SSE/YMM state might make the actual throughput fluctuate when there are FPU intensive userland applications running. For example, meassuring the performance using iperf2 directly on the machine under test gives wobbling numbers because iperf2 uses the FPU for each packet to check if the reporting interval has expired (in the above test I got min/max/avg: 402/484/464 MBit/s). Using this algorithm on a IPsec gateway gives much more reasonable and stable numbers, albeit not as high as in the directly connected case. Here is the result from an RFC 2544 test run with a EXFO Packet Blazer FTB-8510: frame size sha1-generic sha1-ssse3 delta 64 byte 37.5 MBit/s 37.5 MBit/s 0.0% 128 byte 56.3 MBit/s 62.5 MBit/s +11.0% 256 byte 87.5 MBit/s 100.0 MBit/s +14.3% 512 byte 131.3 MBit/s 150.0 MBit/s +14.2% 1024 byte 162.5 MBit/s 193.8 MBit/s +19.3% 1280 byte 175.0 MBit/s 212.5 MBit/s +21.4% 1420 byte 175.0 MBit/s 218.7 MBit/s +25.0% 1518 byte 150.0 MBit/s 181.2 MBit/s +20.8% The throughput for the largest frame size is lower than for the previous size because the IP packets need to be fragmented in this case to make there way through the IPsec tunnel. Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Maxim Locktyukhin <maxim.locktyukhin@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-08-05 02:19:25 +08:00
{
return sha1_update(desc, data, len,
(sha1_transform_fn *) sha1_transform_ssse3);
crypto: sha1 - SSSE3 based SHA1 implementation for x86-64 This is an assembler implementation of the SHA1 algorithm using the Supplemental SSE3 (SSSE3) instructions or, when available, the Advanced Vector Extensions (AVX). Testing with the tcrypt module shows the raw hash performance is up to 2.3 times faster than the C implementation, using 8k data blocks on a Core 2 Duo T5500. For the smalest data set (16 byte) it is still 25% faster. Since this implementation uses SSE/YMM registers it cannot safely be used in every situation, e.g. while an IRQ interrupts a kernel thread. The implementation falls back to the generic SHA1 variant, if using the SSE/YMM registers is not possible. With this algorithm I was able to increase the throughput of a single IPsec link from 344 Mbit/s to 464 Mbit/s on a Core 2 Quad CPU using the SSSE3 variant -- a speedup of +34.8%. Saving and restoring SSE/YMM state might make the actual throughput fluctuate when there are FPU intensive userland applications running. For example, meassuring the performance using iperf2 directly on the machine under test gives wobbling numbers because iperf2 uses the FPU for each packet to check if the reporting interval has expired (in the above test I got min/max/avg: 402/484/464 MBit/s). Using this algorithm on a IPsec gateway gives much more reasonable and stable numbers, albeit not as high as in the directly connected case. Here is the result from an RFC 2544 test run with a EXFO Packet Blazer FTB-8510: frame size sha1-generic sha1-ssse3 delta 64 byte 37.5 MBit/s 37.5 MBit/s 0.0% 128 byte 56.3 MBit/s 62.5 MBit/s +11.0% 256 byte 87.5 MBit/s 100.0 MBit/s +14.3% 512 byte 131.3 MBit/s 150.0 MBit/s +14.2% 1024 byte 162.5 MBit/s 193.8 MBit/s +19.3% 1280 byte 175.0 MBit/s 212.5 MBit/s +21.4% 1420 byte 175.0 MBit/s 218.7 MBit/s +25.0% 1518 byte 150.0 MBit/s 181.2 MBit/s +20.8% The throughput for the largest frame size is lower than for the previous size because the IP packets need to be fragmented in this case to make there way through the IPsec tunnel. Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Maxim Locktyukhin <maxim.locktyukhin@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-08-05 02:19:25 +08:00
}
static int sha1_ssse3_finup(struct shash_desc *desc, const u8 *data,
unsigned int len, u8 *out)
{
return sha1_finup(desc, data, len, out,
(sha1_transform_fn *) sha1_transform_ssse3);
}
/* Add padding and return the message digest. */
static int sha1_ssse3_final(struct shash_desc *desc, u8 *out)
{
return sha1_ssse3_finup(desc, NULL, 0, out);
}
static struct shash_alg sha1_ssse3_alg = {
crypto: sha1 - SSSE3 based SHA1 implementation for x86-64 This is an assembler implementation of the SHA1 algorithm using the Supplemental SSE3 (SSSE3) instructions or, when available, the Advanced Vector Extensions (AVX). Testing with the tcrypt module shows the raw hash performance is up to 2.3 times faster than the C implementation, using 8k data blocks on a Core 2 Duo T5500. For the smalest data set (16 byte) it is still 25% faster. Since this implementation uses SSE/YMM registers it cannot safely be used in every situation, e.g. while an IRQ interrupts a kernel thread. The implementation falls back to the generic SHA1 variant, if using the SSE/YMM registers is not possible. With this algorithm I was able to increase the throughput of a single IPsec link from 344 Mbit/s to 464 Mbit/s on a Core 2 Quad CPU using the SSSE3 variant -- a speedup of +34.8%. Saving and restoring SSE/YMM state might make the actual throughput fluctuate when there are FPU intensive userland applications running. For example, meassuring the performance using iperf2 directly on the machine under test gives wobbling numbers because iperf2 uses the FPU for each packet to check if the reporting interval has expired (in the above test I got min/max/avg: 402/484/464 MBit/s). Using this algorithm on a IPsec gateway gives much more reasonable and stable numbers, albeit not as high as in the directly connected case. Here is the result from an RFC 2544 test run with a EXFO Packet Blazer FTB-8510: frame size sha1-generic sha1-ssse3 delta 64 byte 37.5 MBit/s 37.5 MBit/s 0.0% 128 byte 56.3 MBit/s 62.5 MBit/s +11.0% 256 byte 87.5 MBit/s 100.0 MBit/s +14.3% 512 byte 131.3 MBit/s 150.0 MBit/s +14.2% 1024 byte 162.5 MBit/s 193.8 MBit/s +19.3% 1280 byte 175.0 MBit/s 212.5 MBit/s +21.4% 1420 byte 175.0 MBit/s 218.7 MBit/s +25.0% 1518 byte 150.0 MBit/s 181.2 MBit/s +20.8% The throughput for the largest frame size is lower than for the previous size because the IP packets need to be fragmented in this case to make there way through the IPsec tunnel. Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Maxim Locktyukhin <maxim.locktyukhin@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-08-05 02:19:25 +08:00
.digestsize = SHA1_DIGEST_SIZE,
.init = sha1_base_init,
crypto: sha1 - SSSE3 based SHA1 implementation for x86-64 This is an assembler implementation of the SHA1 algorithm using the Supplemental SSE3 (SSSE3) instructions or, when available, the Advanced Vector Extensions (AVX). Testing with the tcrypt module shows the raw hash performance is up to 2.3 times faster than the C implementation, using 8k data blocks on a Core 2 Duo T5500. For the smalest data set (16 byte) it is still 25% faster. Since this implementation uses SSE/YMM registers it cannot safely be used in every situation, e.g. while an IRQ interrupts a kernel thread. The implementation falls back to the generic SHA1 variant, if using the SSE/YMM registers is not possible. With this algorithm I was able to increase the throughput of a single IPsec link from 344 Mbit/s to 464 Mbit/s on a Core 2 Quad CPU using the SSSE3 variant -- a speedup of +34.8%. Saving and restoring SSE/YMM state might make the actual throughput fluctuate when there are FPU intensive userland applications running. For example, meassuring the performance using iperf2 directly on the machine under test gives wobbling numbers because iperf2 uses the FPU for each packet to check if the reporting interval has expired (in the above test I got min/max/avg: 402/484/464 MBit/s). Using this algorithm on a IPsec gateway gives much more reasonable and stable numbers, albeit not as high as in the directly connected case. Here is the result from an RFC 2544 test run with a EXFO Packet Blazer FTB-8510: frame size sha1-generic sha1-ssse3 delta 64 byte 37.5 MBit/s 37.5 MBit/s 0.0% 128 byte 56.3 MBit/s 62.5 MBit/s +11.0% 256 byte 87.5 MBit/s 100.0 MBit/s +14.3% 512 byte 131.3 MBit/s 150.0 MBit/s +14.2% 1024 byte 162.5 MBit/s 193.8 MBit/s +19.3% 1280 byte 175.0 MBit/s 212.5 MBit/s +21.4% 1420 byte 175.0 MBit/s 218.7 MBit/s +25.0% 1518 byte 150.0 MBit/s 181.2 MBit/s +20.8% The throughput for the largest frame size is lower than for the previous size because the IP packets need to be fragmented in this case to make there way through the IPsec tunnel. Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Maxim Locktyukhin <maxim.locktyukhin@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-08-05 02:19:25 +08:00
.update = sha1_ssse3_update,
.final = sha1_ssse3_final,
.finup = sha1_ssse3_finup,
crypto: sha1 - SSSE3 based SHA1 implementation for x86-64 This is an assembler implementation of the SHA1 algorithm using the Supplemental SSE3 (SSSE3) instructions or, when available, the Advanced Vector Extensions (AVX). Testing with the tcrypt module shows the raw hash performance is up to 2.3 times faster than the C implementation, using 8k data blocks on a Core 2 Duo T5500. For the smalest data set (16 byte) it is still 25% faster. Since this implementation uses SSE/YMM registers it cannot safely be used in every situation, e.g. while an IRQ interrupts a kernel thread. The implementation falls back to the generic SHA1 variant, if using the SSE/YMM registers is not possible. With this algorithm I was able to increase the throughput of a single IPsec link from 344 Mbit/s to 464 Mbit/s on a Core 2 Quad CPU using the SSSE3 variant -- a speedup of +34.8%. Saving and restoring SSE/YMM state might make the actual throughput fluctuate when there are FPU intensive userland applications running. For example, meassuring the performance using iperf2 directly on the machine under test gives wobbling numbers because iperf2 uses the FPU for each packet to check if the reporting interval has expired (in the above test I got min/max/avg: 402/484/464 MBit/s). Using this algorithm on a IPsec gateway gives much more reasonable and stable numbers, albeit not as high as in the directly connected case. Here is the result from an RFC 2544 test run with a EXFO Packet Blazer FTB-8510: frame size sha1-generic sha1-ssse3 delta 64 byte 37.5 MBit/s 37.5 MBit/s 0.0% 128 byte 56.3 MBit/s 62.5 MBit/s +11.0% 256 byte 87.5 MBit/s 100.0 MBit/s +14.3% 512 byte 131.3 MBit/s 150.0 MBit/s +14.2% 1024 byte 162.5 MBit/s 193.8 MBit/s +19.3% 1280 byte 175.0 MBit/s 212.5 MBit/s +21.4% 1420 byte 175.0 MBit/s 218.7 MBit/s +25.0% 1518 byte 150.0 MBit/s 181.2 MBit/s +20.8% The throughput for the largest frame size is lower than for the previous size because the IP packets need to be fragmented in this case to make there way through the IPsec tunnel. Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Maxim Locktyukhin <maxim.locktyukhin@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-08-05 02:19:25 +08:00
.descsize = sizeof(struct sha1_state),
.base = {
.cra_name = "sha1",
.cra_driver_name = "sha1-ssse3",
crypto: sha1 - SSSE3 based SHA1 implementation for x86-64 This is an assembler implementation of the SHA1 algorithm using the Supplemental SSE3 (SSSE3) instructions or, when available, the Advanced Vector Extensions (AVX). Testing with the tcrypt module shows the raw hash performance is up to 2.3 times faster than the C implementation, using 8k data blocks on a Core 2 Duo T5500. For the smalest data set (16 byte) it is still 25% faster. Since this implementation uses SSE/YMM registers it cannot safely be used in every situation, e.g. while an IRQ interrupts a kernel thread. The implementation falls back to the generic SHA1 variant, if using the SSE/YMM registers is not possible. With this algorithm I was able to increase the throughput of a single IPsec link from 344 Mbit/s to 464 Mbit/s on a Core 2 Quad CPU using the SSSE3 variant -- a speedup of +34.8%. Saving and restoring SSE/YMM state might make the actual throughput fluctuate when there are FPU intensive userland applications running. For example, meassuring the performance using iperf2 directly on the machine under test gives wobbling numbers because iperf2 uses the FPU for each packet to check if the reporting interval has expired (in the above test I got min/max/avg: 402/484/464 MBit/s). Using this algorithm on a IPsec gateway gives much more reasonable and stable numbers, albeit not as high as in the directly connected case. Here is the result from an RFC 2544 test run with a EXFO Packet Blazer FTB-8510: frame size sha1-generic sha1-ssse3 delta 64 byte 37.5 MBit/s 37.5 MBit/s 0.0% 128 byte 56.3 MBit/s 62.5 MBit/s +11.0% 256 byte 87.5 MBit/s 100.0 MBit/s +14.3% 512 byte 131.3 MBit/s 150.0 MBit/s +14.2% 1024 byte 162.5 MBit/s 193.8 MBit/s +19.3% 1280 byte 175.0 MBit/s 212.5 MBit/s +21.4% 1420 byte 175.0 MBit/s 218.7 MBit/s +25.0% 1518 byte 150.0 MBit/s 181.2 MBit/s +20.8% The throughput for the largest frame size is lower than for the previous size because the IP packets need to be fragmented in this case to make there way through the IPsec tunnel. Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Maxim Locktyukhin <maxim.locktyukhin@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-08-05 02:19:25 +08:00
.cra_priority = 150,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_module = THIS_MODULE,
}
};
static int register_sha1_ssse3(void)
{
if (boot_cpu_has(X86_FEATURE_SSSE3))
return crypto_register_shash(&sha1_ssse3_alg);
return 0;
}
static void unregister_sha1_ssse3(void)
{
if (boot_cpu_has(X86_FEATURE_SSSE3))
crypto_unregister_shash(&sha1_ssse3_alg);
}
#ifdef CONFIG_AS_AVX
asmlinkage void sha1_transform_avx(u32 *digest, const char *data,
unsigned int rounds);
static int sha1_avx_update(struct shash_desc *desc, const u8 *data,
unsigned int len)
{
return sha1_update(desc, data, len,
(sha1_transform_fn *) sha1_transform_avx);
}
static int sha1_avx_finup(struct shash_desc *desc, const u8 *data,
unsigned int len, u8 *out)
{
return sha1_finup(desc, data, len, out,
(sha1_transform_fn *) sha1_transform_avx);
}
static int sha1_avx_final(struct shash_desc *desc, u8 *out)
{
return sha1_avx_finup(desc, NULL, 0, out);
}
static struct shash_alg sha1_avx_alg = {
.digestsize = SHA1_DIGEST_SIZE,
.init = sha1_base_init,
.update = sha1_avx_update,
.final = sha1_avx_final,
.finup = sha1_avx_finup,
.descsize = sizeof(struct sha1_state),
.base = {
.cra_name = "sha1",
.cra_driver_name = "sha1-avx",
.cra_priority = 160,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_module = THIS_MODULE,
}
};
static bool avx_usable(void)
crypto: sha1 - SSSE3 based SHA1 implementation for x86-64 This is an assembler implementation of the SHA1 algorithm using the Supplemental SSE3 (SSSE3) instructions or, when available, the Advanced Vector Extensions (AVX). Testing with the tcrypt module shows the raw hash performance is up to 2.3 times faster than the C implementation, using 8k data blocks on a Core 2 Duo T5500. For the smalest data set (16 byte) it is still 25% faster. Since this implementation uses SSE/YMM registers it cannot safely be used in every situation, e.g. while an IRQ interrupts a kernel thread. The implementation falls back to the generic SHA1 variant, if using the SSE/YMM registers is not possible. With this algorithm I was able to increase the throughput of a single IPsec link from 344 Mbit/s to 464 Mbit/s on a Core 2 Quad CPU using the SSSE3 variant -- a speedup of +34.8%. Saving and restoring SSE/YMM state might make the actual throughput fluctuate when there are FPU intensive userland applications running. For example, meassuring the performance using iperf2 directly on the machine under test gives wobbling numbers because iperf2 uses the FPU for each packet to check if the reporting interval has expired (in the above test I got min/max/avg: 402/484/464 MBit/s). Using this algorithm on a IPsec gateway gives much more reasonable and stable numbers, albeit not as high as in the directly connected case. Here is the result from an RFC 2544 test run with a EXFO Packet Blazer FTB-8510: frame size sha1-generic sha1-ssse3 delta 64 byte 37.5 MBit/s 37.5 MBit/s 0.0% 128 byte 56.3 MBit/s 62.5 MBit/s +11.0% 256 byte 87.5 MBit/s 100.0 MBit/s +14.3% 512 byte 131.3 MBit/s 150.0 MBit/s +14.2% 1024 byte 162.5 MBit/s 193.8 MBit/s +19.3% 1280 byte 175.0 MBit/s 212.5 MBit/s +21.4% 1420 byte 175.0 MBit/s 218.7 MBit/s +25.0% 1518 byte 150.0 MBit/s 181.2 MBit/s +20.8% The throughput for the largest frame size is lower than for the previous size because the IP packets need to be fragmented in this case to make there way through the IPsec tunnel. Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Maxim Locktyukhin <maxim.locktyukhin@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-08-05 02:19:25 +08:00
{
x86/fpu: Rename XSAVE macros There are two concepts that have some confusing naming: 1. Extended State Component numbers (currently called XFEATURE_BIT_*) 2. Extended State Component masks (currently called XSTATE_*) The numbers are (currently) from 0-9. State component 3 is the bounds registers for MPX, for instance. But when we want to enable "state component 3", we go set a bit in XCR0. The bit we set is 1<<3. We can check to see if a state component feature is enabled by looking at its bit. The current 'xfeature_bit's are at best xfeature bit _numbers_. Calling them bits is at best inconsistent with ending the enum list with 'XFEATURES_NR_MAX'. This patch renames the enum to be 'xfeature'. These also happen to be what the Intel documentation calls a "state component". We also want to differentiate these from the "XSTATE_*" macros. The "XSTATE_*" macros are a mask, and we rename them to match. These macros are reasonably widely used so this patch is a wee bit big, but this really is just a rename. The only non-mechanical part of this is the s/XSTATE_EXTEND_MASK/XFEATURE_MASK_EXTEND/ We need a better name for it, but that's another patch. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: dave@sr71.net Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20150902233126.38653250@viggo.jf.intel.com [ Ported to v4.3-rc1. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-03 07:31:26 +08:00
if (!cpu_has_xfeatures(XFEATURE_MASK_SSE | XFEATURE_MASK_YMM, NULL)) {
if (boot_cpu_has(X86_FEATURE_AVX))
pr_info("AVX detected but unusable.\n");
crypto: sha1 - SSSE3 based SHA1 implementation for x86-64 This is an assembler implementation of the SHA1 algorithm using the Supplemental SSE3 (SSSE3) instructions or, when available, the Advanced Vector Extensions (AVX). Testing with the tcrypt module shows the raw hash performance is up to 2.3 times faster than the C implementation, using 8k data blocks on a Core 2 Duo T5500. For the smalest data set (16 byte) it is still 25% faster. Since this implementation uses SSE/YMM registers it cannot safely be used in every situation, e.g. while an IRQ interrupts a kernel thread. The implementation falls back to the generic SHA1 variant, if using the SSE/YMM registers is not possible. With this algorithm I was able to increase the throughput of a single IPsec link from 344 Mbit/s to 464 Mbit/s on a Core 2 Quad CPU using the SSSE3 variant -- a speedup of +34.8%. Saving and restoring SSE/YMM state might make the actual throughput fluctuate when there are FPU intensive userland applications running. For example, meassuring the performance using iperf2 directly on the machine under test gives wobbling numbers because iperf2 uses the FPU for each packet to check if the reporting interval has expired (in the above test I got min/max/avg: 402/484/464 MBit/s). Using this algorithm on a IPsec gateway gives much more reasonable and stable numbers, albeit not as high as in the directly connected case. Here is the result from an RFC 2544 test run with a EXFO Packet Blazer FTB-8510: frame size sha1-generic sha1-ssse3 delta 64 byte 37.5 MBit/s 37.5 MBit/s 0.0% 128 byte 56.3 MBit/s 62.5 MBit/s +11.0% 256 byte 87.5 MBit/s 100.0 MBit/s +14.3% 512 byte 131.3 MBit/s 150.0 MBit/s +14.2% 1024 byte 162.5 MBit/s 193.8 MBit/s +19.3% 1280 byte 175.0 MBit/s 212.5 MBit/s +21.4% 1420 byte 175.0 MBit/s 218.7 MBit/s +25.0% 1518 byte 150.0 MBit/s 181.2 MBit/s +20.8% The throughput for the largest frame size is lower than for the previous size because the IP packets need to be fragmented in this case to make there way through the IPsec tunnel. Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Maxim Locktyukhin <maxim.locktyukhin@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-08-05 02:19:25 +08:00
return false;
}
return true;
}
static int register_sha1_avx(void)
{
if (avx_usable())
return crypto_register_shash(&sha1_avx_alg);
return 0;
}
static void unregister_sha1_avx(void)
{
if (avx_usable())
crypto_unregister_shash(&sha1_avx_alg);
}
#else /* CONFIG_AS_AVX */
static inline int register_sha1_avx(void) { return 0; }
static inline void unregister_sha1_avx(void) { }
#endif /* CONFIG_AS_AVX */
#if defined(CONFIG_AS_AVX2) && (CONFIG_AS_AVX)
#define SHA1_AVX2_BLOCK_OPTSIZE 4 /* optimal 4*64 bytes of SHA1 blocks */
asmlinkage void sha1_transform_avx2(u32 *digest, const char *data,
unsigned int rounds);
static bool avx2_usable(void)
{
if (avx_usable() && boot_cpu_has(X86_FEATURE_AVX2)
&& boot_cpu_has(X86_FEATURE_BMI1)
&& boot_cpu_has(X86_FEATURE_BMI2))
return true;
return false;
}
crypto: sha1 - SSSE3 based SHA1 implementation for x86-64 This is an assembler implementation of the SHA1 algorithm using the Supplemental SSE3 (SSSE3) instructions or, when available, the Advanced Vector Extensions (AVX). Testing with the tcrypt module shows the raw hash performance is up to 2.3 times faster than the C implementation, using 8k data blocks on a Core 2 Duo T5500. For the smalest data set (16 byte) it is still 25% faster. Since this implementation uses SSE/YMM registers it cannot safely be used in every situation, e.g. while an IRQ interrupts a kernel thread. The implementation falls back to the generic SHA1 variant, if using the SSE/YMM registers is not possible. With this algorithm I was able to increase the throughput of a single IPsec link from 344 Mbit/s to 464 Mbit/s on a Core 2 Quad CPU using the SSSE3 variant -- a speedup of +34.8%. Saving and restoring SSE/YMM state might make the actual throughput fluctuate when there are FPU intensive userland applications running. For example, meassuring the performance using iperf2 directly on the machine under test gives wobbling numbers because iperf2 uses the FPU for each packet to check if the reporting interval has expired (in the above test I got min/max/avg: 402/484/464 MBit/s). Using this algorithm on a IPsec gateway gives much more reasonable and stable numbers, albeit not as high as in the directly connected case. Here is the result from an RFC 2544 test run with a EXFO Packet Blazer FTB-8510: frame size sha1-generic sha1-ssse3 delta 64 byte 37.5 MBit/s 37.5 MBit/s 0.0% 128 byte 56.3 MBit/s 62.5 MBit/s +11.0% 256 byte 87.5 MBit/s 100.0 MBit/s +14.3% 512 byte 131.3 MBit/s 150.0 MBit/s +14.2% 1024 byte 162.5 MBit/s 193.8 MBit/s +19.3% 1280 byte 175.0 MBit/s 212.5 MBit/s +21.4% 1420 byte 175.0 MBit/s 218.7 MBit/s +25.0% 1518 byte 150.0 MBit/s 181.2 MBit/s +20.8% The throughput for the largest frame size is lower than for the previous size because the IP packets need to be fragmented in this case to make there way through the IPsec tunnel. Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Maxim Locktyukhin <maxim.locktyukhin@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-08-05 02:19:25 +08:00
static void sha1_apply_transform_avx2(u32 *digest, const char *data,
unsigned int rounds)
crypto: sha1 - SSSE3 based SHA1 implementation for x86-64 This is an assembler implementation of the SHA1 algorithm using the Supplemental SSE3 (SSSE3) instructions or, when available, the Advanced Vector Extensions (AVX). Testing with the tcrypt module shows the raw hash performance is up to 2.3 times faster than the C implementation, using 8k data blocks on a Core 2 Duo T5500. For the smalest data set (16 byte) it is still 25% faster. Since this implementation uses SSE/YMM registers it cannot safely be used in every situation, e.g. while an IRQ interrupts a kernel thread. The implementation falls back to the generic SHA1 variant, if using the SSE/YMM registers is not possible. With this algorithm I was able to increase the throughput of a single IPsec link from 344 Mbit/s to 464 Mbit/s on a Core 2 Quad CPU using the SSSE3 variant -- a speedup of +34.8%. Saving and restoring SSE/YMM state might make the actual throughput fluctuate when there are FPU intensive userland applications running. For example, meassuring the performance using iperf2 directly on the machine under test gives wobbling numbers because iperf2 uses the FPU for each packet to check if the reporting interval has expired (in the above test I got min/max/avg: 402/484/464 MBit/s). Using this algorithm on a IPsec gateway gives much more reasonable and stable numbers, albeit not as high as in the directly connected case. Here is the result from an RFC 2544 test run with a EXFO Packet Blazer FTB-8510: frame size sha1-generic sha1-ssse3 delta 64 byte 37.5 MBit/s 37.5 MBit/s 0.0% 128 byte 56.3 MBit/s 62.5 MBit/s +11.0% 256 byte 87.5 MBit/s 100.0 MBit/s +14.3% 512 byte 131.3 MBit/s 150.0 MBit/s +14.2% 1024 byte 162.5 MBit/s 193.8 MBit/s +19.3% 1280 byte 175.0 MBit/s 212.5 MBit/s +21.4% 1420 byte 175.0 MBit/s 218.7 MBit/s +25.0% 1518 byte 150.0 MBit/s 181.2 MBit/s +20.8% The throughput for the largest frame size is lower than for the previous size because the IP packets need to be fragmented in this case to make there way through the IPsec tunnel. Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Maxim Locktyukhin <maxim.locktyukhin@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-08-05 02:19:25 +08:00
{
/* Select the optimal transform based on data block size */
if (rounds >= SHA1_AVX2_BLOCK_OPTSIZE)
sha1_transform_avx2(digest, data, rounds);
else
sha1_transform_avx(digest, data, rounds);
}
static int sha1_avx2_update(struct shash_desc *desc, const u8 *data,
unsigned int len)
{
return sha1_update(desc, data, len,
(sha1_transform_fn *) sha1_apply_transform_avx2);
}
crypto: sha1 - SSSE3 based SHA1 implementation for x86-64 This is an assembler implementation of the SHA1 algorithm using the Supplemental SSE3 (SSSE3) instructions or, when available, the Advanced Vector Extensions (AVX). Testing with the tcrypt module shows the raw hash performance is up to 2.3 times faster than the C implementation, using 8k data blocks on a Core 2 Duo T5500. For the smalest data set (16 byte) it is still 25% faster. Since this implementation uses SSE/YMM registers it cannot safely be used in every situation, e.g. while an IRQ interrupts a kernel thread. The implementation falls back to the generic SHA1 variant, if using the SSE/YMM registers is not possible. With this algorithm I was able to increase the throughput of a single IPsec link from 344 Mbit/s to 464 Mbit/s on a Core 2 Quad CPU using the SSSE3 variant -- a speedup of +34.8%. Saving and restoring SSE/YMM state might make the actual throughput fluctuate when there are FPU intensive userland applications running. For example, meassuring the performance using iperf2 directly on the machine under test gives wobbling numbers because iperf2 uses the FPU for each packet to check if the reporting interval has expired (in the above test I got min/max/avg: 402/484/464 MBit/s). Using this algorithm on a IPsec gateway gives much more reasonable and stable numbers, albeit not as high as in the directly connected case. Here is the result from an RFC 2544 test run with a EXFO Packet Blazer FTB-8510: frame size sha1-generic sha1-ssse3 delta 64 byte 37.5 MBit/s 37.5 MBit/s 0.0% 128 byte 56.3 MBit/s 62.5 MBit/s +11.0% 256 byte 87.5 MBit/s 100.0 MBit/s +14.3% 512 byte 131.3 MBit/s 150.0 MBit/s +14.2% 1024 byte 162.5 MBit/s 193.8 MBit/s +19.3% 1280 byte 175.0 MBit/s 212.5 MBit/s +21.4% 1420 byte 175.0 MBit/s 218.7 MBit/s +25.0% 1518 byte 150.0 MBit/s 181.2 MBit/s +20.8% The throughput for the largest frame size is lower than for the previous size because the IP packets need to be fragmented in this case to make there way through the IPsec tunnel. Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Maxim Locktyukhin <maxim.locktyukhin@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-08-05 02:19:25 +08:00
static int sha1_avx2_finup(struct shash_desc *desc, const u8 *data,
unsigned int len, u8 *out)
{
return sha1_finup(desc, data, len, out,
(sha1_transform_fn *) sha1_apply_transform_avx2);
}
static int sha1_avx2_final(struct shash_desc *desc, u8 *out)
{
return sha1_avx2_finup(desc, NULL, 0, out);
}
static struct shash_alg sha1_avx2_alg = {
.digestsize = SHA1_DIGEST_SIZE,
.init = sha1_base_init,
.update = sha1_avx2_update,
.final = sha1_avx2_final,
.finup = sha1_avx2_finup,
.descsize = sizeof(struct sha1_state),
.base = {
.cra_name = "sha1",
.cra_driver_name = "sha1-avx2",
.cra_priority = 170,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_module = THIS_MODULE,
}
};
static int register_sha1_avx2(void)
{
if (avx2_usable())
return crypto_register_shash(&sha1_avx2_alg);
return 0;
}
static void unregister_sha1_avx2(void)
{
if (avx2_usable())
crypto_unregister_shash(&sha1_avx2_alg);
}
#else
static inline int register_sha1_avx2(void) { return 0; }
static inline void unregister_sha1_avx2(void) { }
#endif
#ifdef CONFIG_AS_SHA1_NI
asmlinkage void sha1_ni_transform(u32 *digest, const char *data,
unsigned int rounds);
static int sha1_ni_update(struct shash_desc *desc, const u8 *data,
unsigned int len)
{
return sha1_update(desc, data, len,
(sha1_transform_fn *) sha1_ni_transform);
}
static int sha1_ni_finup(struct shash_desc *desc, const u8 *data,
unsigned int len, u8 *out)
{
return sha1_finup(desc, data, len, out,
(sha1_transform_fn *) sha1_ni_transform);
}
static int sha1_ni_final(struct shash_desc *desc, u8 *out)
{
return sha1_ni_finup(desc, NULL, 0, out);
}
static struct shash_alg sha1_ni_alg = {
.digestsize = SHA1_DIGEST_SIZE,
.init = sha1_base_init,
.update = sha1_ni_update,
.final = sha1_ni_final,
.finup = sha1_ni_finup,
.descsize = sizeof(struct sha1_state),
.base = {
.cra_name = "sha1",
.cra_driver_name = "sha1-ni",
.cra_priority = 250,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_module = THIS_MODULE,
}
};
static int register_sha1_ni(void)
{
if (boot_cpu_has(X86_FEATURE_SHA_NI))
return crypto_register_shash(&sha1_ni_alg);
return 0;
}
static void unregister_sha1_ni(void)
{
if (boot_cpu_has(X86_FEATURE_SHA_NI))
crypto_unregister_shash(&sha1_ni_alg);
}
#else
static inline int register_sha1_ni(void) { return 0; }
static inline void unregister_sha1_ni(void) { }
crypto: sha1 - SSSE3 based SHA1 implementation for x86-64 This is an assembler implementation of the SHA1 algorithm using the Supplemental SSE3 (SSSE3) instructions or, when available, the Advanced Vector Extensions (AVX). Testing with the tcrypt module shows the raw hash performance is up to 2.3 times faster than the C implementation, using 8k data blocks on a Core 2 Duo T5500. For the smalest data set (16 byte) it is still 25% faster. Since this implementation uses SSE/YMM registers it cannot safely be used in every situation, e.g. while an IRQ interrupts a kernel thread. The implementation falls back to the generic SHA1 variant, if using the SSE/YMM registers is not possible. With this algorithm I was able to increase the throughput of a single IPsec link from 344 Mbit/s to 464 Mbit/s on a Core 2 Quad CPU using the SSSE3 variant -- a speedup of +34.8%. Saving and restoring SSE/YMM state might make the actual throughput fluctuate when there are FPU intensive userland applications running. For example, meassuring the performance using iperf2 directly on the machine under test gives wobbling numbers because iperf2 uses the FPU for each packet to check if the reporting interval has expired (in the above test I got min/max/avg: 402/484/464 MBit/s). Using this algorithm on a IPsec gateway gives much more reasonable and stable numbers, albeit not as high as in the directly connected case. Here is the result from an RFC 2544 test run with a EXFO Packet Blazer FTB-8510: frame size sha1-generic sha1-ssse3 delta 64 byte 37.5 MBit/s 37.5 MBit/s 0.0% 128 byte 56.3 MBit/s 62.5 MBit/s +11.0% 256 byte 87.5 MBit/s 100.0 MBit/s +14.3% 512 byte 131.3 MBit/s 150.0 MBit/s +14.2% 1024 byte 162.5 MBit/s 193.8 MBit/s +19.3% 1280 byte 175.0 MBit/s 212.5 MBit/s +21.4% 1420 byte 175.0 MBit/s 218.7 MBit/s +25.0% 1518 byte 150.0 MBit/s 181.2 MBit/s +20.8% The throughput for the largest frame size is lower than for the previous size because the IP packets need to be fragmented in this case to make there way through the IPsec tunnel. Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Maxim Locktyukhin <maxim.locktyukhin@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-08-05 02:19:25 +08:00
#endif
static int __init sha1_ssse3_mod_init(void)
{
if (register_sha1_ssse3())
goto fail;
if (register_sha1_avx()) {
unregister_sha1_ssse3();
goto fail;
}
crypto: sha1 - SSSE3 based SHA1 implementation for x86-64 This is an assembler implementation of the SHA1 algorithm using the Supplemental SSE3 (SSSE3) instructions or, when available, the Advanced Vector Extensions (AVX). Testing with the tcrypt module shows the raw hash performance is up to 2.3 times faster than the C implementation, using 8k data blocks on a Core 2 Duo T5500. For the smalest data set (16 byte) it is still 25% faster. Since this implementation uses SSE/YMM registers it cannot safely be used in every situation, e.g. while an IRQ interrupts a kernel thread. The implementation falls back to the generic SHA1 variant, if using the SSE/YMM registers is not possible. With this algorithm I was able to increase the throughput of a single IPsec link from 344 Mbit/s to 464 Mbit/s on a Core 2 Quad CPU using the SSSE3 variant -- a speedup of +34.8%. Saving and restoring SSE/YMM state might make the actual throughput fluctuate when there are FPU intensive userland applications running. For example, meassuring the performance using iperf2 directly on the machine under test gives wobbling numbers because iperf2 uses the FPU for each packet to check if the reporting interval has expired (in the above test I got min/max/avg: 402/484/464 MBit/s). Using this algorithm on a IPsec gateway gives much more reasonable and stable numbers, albeit not as high as in the directly connected case. Here is the result from an RFC 2544 test run with a EXFO Packet Blazer FTB-8510: frame size sha1-generic sha1-ssse3 delta 64 byte 37.5 MBit/s 37.5 MBit/s 0.0% 128 byte 56.3 MBit/s 62.5 MBit/s +11.0% 256 byte 87.5 MBit/s 100.0 MBit/s +14.3% 512 byte 131.3 MBit/s 150.0 MBit/s +14.2% 1024 byte 162.5 MBit/s 193.8 MBit/s +19.3% 1280 byte 175.0 MBit/s 212.5 MBit/s +21.4% 1420 byte 175.0 MBit/s 218.7 MBit/s +25.0% 1518 byte 150.0 MBit/s 181.2 MBit/s +20.8% The throughput for the largest frame size is lower than for the previous size because the IP packets need to be fragmented in this case to make there way through the IPsec tunnel. Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Maxim Locktyukhin <maxim.locktyukhin@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-08-05 02:19:25 +08:00
if (register_sha1_avx2()) {
unregister_sha1_avx();
unregister_sha1_ssse3();
goto fail;
}
crypto: sha1 - SSSE3 based SHA1 implementation for x86-64 This is an assembler implementation of the SHA1 algorithm using the Supplemental SSE3 (SSSE3) instructions or, when available, the Advanced Vector Extensions (AVX). Testing with the tcrypt module shows the raw hash performance is up to 2.3 times faster than the C implementation, using 8k data blocks on a Core 2 Duo T5500. For the smalest data set (16 byte) it is still 25% faster. Since this implementation uses SSE/YMM registers it cannot safely be used in every situation, e.g. while an IRQ interrupts a kernel thread. The implementation falls back to the generic SHA1 variant, if using the SSE/YMM registers is not possible. With this algorithm I was able to increase the throughput of a single IPsec link from 344 Mbit/s to 464 Mbit/s on a Core 2 Quad CPU using the SSSE3 variant -- a speedup of +34.8%. Saving and restoring SSE/YMM state might make the actual throughput fluctuate when there are FPU intensive userland applications running. For example, meassuring the performance using iperf2 directly on the machine under test gives wobbling numbers because iperf2 uses the FPU for each packet to check if the reporting interval has expired (in the above test I got min/max/avg: 402/484/464 MBit/s). Using this algorithm on a IPsec gateway gives much more reasonable and stable numbers, albeit not as high as in the directly connected case. Here is the result from an RFC 2544 test run with a EXFO Packet Blazer FTB-8510: frame size sha1-generic sha1-ssse3 delta 64 byte 37.5 MBit/s 37.5 MBit/s 0.0% 128 byte 56.3 MBit/s 62.5 MBit/s +11.0% 256 byte 87.5 MBit/s 100.0 MBit/s +14.3% 512 byte 131.3 MBit/s 150.0 MBit/s +14.2% 1024 byte 162.5 MBit/s 193.8 MBit/s +19.3% 1280 byte 175.0 MBit/s 212.5 MBit/s +21.4% 1420 byte 175.0 MBit/s 218.7 MBit/s +25.0% 1518 byte 150.0 MBit/s 181.2 MBit/s +20.8% The throughput for the largest frame size is lower than for the previous size because the IP packets need to be fragmented in this case to make there way through the IPsec tunnel. Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Maxim Locktyukhin <maxim.locktyukhin@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-08-05 02:19:25 +08:00
if (register_sha1_ni()) {
unregister_sha1_avx2();
unregister_sha1_avx();
unregister_sha1_ssse3();
goto fail;
crypto: sha1 - SSSE3 based SHA1 implementation for x86-64 This is an assembler implementation of the SHA1 algorithm using the Supplemental SSE3 (SSSE3) instructions or, when available, the Advanced Vector Extensions (AVX). Testing with the tcrypt module shows the raw hash performance is up to 2.3 times faster than the C implementation, using 8k data blocks on a Core 2 Duo T5500. For the smalest data set (16 byte) it is still 25% faster. Since this implementation uses SSE/YMM registers it cannot safely be used in every situation, e.g. while an IRQ interrupts a kernel thread. The implementation falls back to the generic SHA1 variant, if using the SSE/YMM registers is not possible. With this algorithm I was able to increase the throughput of a single IPsec link from 344 Mbit/s to 464 Mbit/s on a Core 2 Quad CPU using the SSSE3 variant -- a speedup of +34.8%. Saving and restoring SSE/YMM state might make the actual throughput fluctuate when there are FPU intensive userland applications running. For example, meassuring the performance using iperf2 directly on the machine under test gives wobbling numbers because iperf2 uses the FPU for each packet to check if the reporting interval has expired (in the above test I got min/max/avg: 402/484/464 MBit/s). Using this algorithm on a IPsec gateway gives much more reasonable and stable numbers, albeit not as high as in the directly connected case. Here is the result from an RFC 2544 test run with a EXFO Packet Blazer FTB-8510: frame size sha1-generic sha1-ssse3 delta 64 byte 37.5 MBit/s 37.5 MBit/s 0.0% 128 byte 56.3 MBit/s 62.5 MBit/s +11.0% 256 byte 87.5 MBit/s 100.0 MBit/s +14.3% 512 byte 131.3 MBit/s 150.0 MBit/s +14.2% 1024 byte 162.5 MBit/s 193.8 MBit/s +19.3% 1280 byte 175.0 MBit/s 212.5 MBit/s +21.4% 1420 byte 175.0 MBit/s 218.7 MBit/s +25.0% 1518 byte 150.0 MBit/s 181.2 MBit/s +20.8% The throughput for the largest frame size is lower than for the previous size because the IP packets need to be fragmented in this case to make there way through the IPsec tunnel. Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Maxim Locktyukhin <maxim.locktyukhin@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-08-05 02:19:25 +08:00
}
return 0;
fail:
crypto: sha1 - SSSE3 based SHA1 implementation for x86-64 This is an assembler implementation of the SHA1 algorithm using the Supplemental SSE3 (SSSE3) instructions or, when available, the Advanced Vector Extensions (AVX). Testing with the tcrypt module shows the raw hash performance is up to 2.3 times faster than the C implementation, using 8k data blocks on a Core 2 Duo T5500. For the smalest data set (16 byte) it is still 25% faster. Since this implementation uses SSE/YMM registers it cannot safely be used in every situation, e.g. while an IRQ interrupts a kernel thread. The implementation falls back to the generic SHA1 variant, if using the SSE/YMM registers is not possible. With this algorithm I was able to increase the throughput of a single IPsec link from 344 Mbit/s to 464 Mbit/s on a Core 2 Quad CPU using the SSSE3 variant -- a speedup of +34.8%. Saving and restoring SSE/YMM state might make the actual throughput fluctuate when there are FPU intensive userland applications running. For example, meassuring the performance using iperf2 directly on the machine under test gives wobbling numbers because iperf2 uses the FPU for each packet to check if the reporting interval has expired (in the above test I got min/max/avg: 402/484/464 MBit/s). Using this algorithm on a IPsec gateway gives much more reasonable and stable numbers, albeit not as high as in the directly connected case. Here is the result from an RFC 2544 test run with a EXFO Packet Blazer FTB-8510: frame size sha1-generic sha1-ssse3 delta 64 byte 37.5 MBit/s 37.5 MBit/s 0.0% 128 byte 56.3 MBit/s 62.5 MBit/s +11.0% 256 byte 87.5 MBit/s 100.0 MBit/s +14.3% 512 byte 131.3 MBit/s 150.0 MBit/s +14.2% 1024 byte 162.5 MBit/s 193.8 MBit/s +19.3% 1280 byte 175.0 MBit/s 212.5 MBit/s +21.4% 1420 byte 175.0 MBit/s 218.7 MBit/s +25.0% 1518 byte 150.0 MBit/s 181.2 MBit/s +20.8% The throughput for the largest frame size is lower than for the previous size because the IP packets need to be fragmented in this case to make there way through the IPsec tunnel. Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Maxim Locktyukhin <maxim.locktyukhin@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-08-05 02:19:25 +08:00
return -ENODEV;
}
static void __exit sha1_ssse3_mod_fini(void)
{
unregister_sha1_ni();
unregister_sha1_avx2();
unregister_sha1_avx();
unregister_sha1_ssse3();
crypto: sha1 - SSSE3 based SHA1 implementation for x86-64 This is an assembler implementation of the SHA1 algorithm using the Supplemental SSE3 (SSSE3) instructions or, when available, the Advanced Vector Extensions (AVX). Testing with the tcrypt module shows the raw hash performance is up to 2.3 times faster than the C implementation, using 8k data blocks on a Core 2 Duo T5500. For the smalest data set (16 byte) it is still 25% faster. Since this implementation uses SSE/YMM registers it cannot safely be used in every situation, e.g. while an IRQ interrupts a kernel thread. The implementation falls back to the generic SHA1 variant, if using the SSE/YMM registers is not possible. With this algorithm I was able to increase the throughput of a single IPsec link from 344 Mbit/s to 464 Mbit/s on a Core 2 Quad CPU using the SSSE3 variant -- a speedup of +34.8%. Saving and restoring SSE/YMM state might make the actual throughput fluctuate when there are FPU intensive userland applications running. For example, meassuring the performance using iperf2 directly on the machine under test gives wobbling numbers because iperf2 uses the FPU for each packet to check if the reporting interval has expired (in the above test I got min/max/avg: 402/484/464 MBit/s). Using this algorithm on a IPsec gateway gives much more reasonable and stable numbers, albeit not as high as in the directly connected case. Here is the result from an RFC 2544 test run with a EXFO Packet Blazer FTB-8510: frame size sha1-generic sha1-ssse3 delta 64 byte 37.5 MBit/s 37.5 MBit/s 0.0% 128 byte 56.3 MBit/s 62.5 MBit/s +11.0% 256 byte 87.5 MBit/s 100.0 MBit/s +14.3% 512 byte 131.3 MBit/s 150.0 MBit/s +14.2% 1024 byte 162.5 MBit/s 193.8 MBit/s +19.3% 1280 byte 175.0 MBit/s 212.5 MBit/s +21.4% 1420 byte 175.0 MBit/s 218.7 MBit/s +25.0% 1518 byte 150.0 MBit/s 181.2 MBit/s +20.8% The throughput for the largest frame size is lower than for the previous size because the IP packets need to be fragmented in this case to make there way through the IPsec tunnel. Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Maxim Locktyukhin <maxim.locktyukhin@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-08-05 02:19:25 +08:00
}
module_init(sha1_ssse3_mod_init);
module_exit(sha1_ssse3_mod_fini);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("SHA1 Secure Hash Algorithm, Supplemental SSE3 accelerated");
MODULE_ALIAS_CRYPTO("sha1");
MODULE_ALIAS_CRYPTO("sha1-ssse3");
MODULE_ALIAS_CRYPTO("sha1-avx");
MODULE_ALIAS_CRYPTO("sha1-avx2");
#ifdef CONFIG_AS_SHA1_NI
MODULE_ALIAS_CRYPTO("sha1-ni");
#endif