linux/drivers/gpu/drm/mgag200/mgag200_mode.c

1534 lines
36 KiB
C
Raw Normal View History

/*
* Copyright 2010 Matt Turner.
* Copyright 2012 Red Hat
*
* This file is subject to the terms and conditions of the GNU General
* Public License version 2. See the file COPYING in the main
* directory of this archive for more details.
*
* Authors: Matthew Garrett
* Matt Turner
* Dave Airlie
*/
#include <linux/delay.h>
#include "drmP.h"
#include "drm.h"
#include "drm_crtc_helper.h"
#include "mgag200_drv.h"
#define MGAG200_LUT_SIZE 256
/*
* This file contains setup code for the CRTC.
*/
static void mga_crtc_load_lut(struct drm_crtc *crtc)
{
struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct mga_device *mdev = dev->dev_private;
int i;
if (!crtc->enabled)
return;
WREG8(DAC_INDEX + MGA1064_INDEX, 0);
for (i = 0; i < MGAG200_LUT_SIZE; i++) {
/* VGA registers */
WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_r[i]);
WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_g[i]);
WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_b[i]);
}
}
static inline void mga_wait_vsync(struct mga_device *mdev)
{
unsigned int count = 0;
unsigned int status = 0;
do {
status = RREG32(MGAREG_Status);
count++;
} while ((status & 0x08) && (count < 250000));
count = 0;
status = 0;
do {
status = RREG32(MGAREG_Status);
count++;
} while (!(status & 0x08) && (count < 250000));
}
static inline void mga_wait_busy(struct mga_device *mdev)
{
unsigned int count = 0;
unsigned int status = 0;
do {
status = RREG8(MGAREG_Status + 2);
count++;
} while ((status & 0x01) && (count < 500000));
}
/*
* The core passes the desired mode to the CRTC code to see whether any
* CRTC-specific modifications need to be made to it. We're in a position
* to just pass that straight through, so this does nothing
*/
static bool mga_crtc_mode_fixup(struct drm_crtc *crtc,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
return true;
}
static int mga_g200se_set_plls(struct mga_device *mdev, long clock)
{
unsigned int vcomax, vcomin, pllreffreq;
unsigned int delta, tmpdelta, permitteddelta;
unsigned int testp, testm, testn;
unsigned int p, m, n;
unsigned int computed;
m = n = p = 0;
vcomax = 320000;
vcomin = 160000;
pllreffreq = 25000;
delta = 0xffffffff;
permitteddelta = clock * 5 / 1000;
for (testp = 8; testp > 0; testp /= 2) {
if (clock * testp > vcomax)
continue;
if (clock * testp < vcomin)
continue;
for (testn = 17; testn < 256; testn++) {
for (testm = 1; testm < 32; testm++) {
computed = (pllreffreq * testn) /
(testm * testp);
if (computed > clock)
tmpdelta = computed - clock;
else
tmpdelta = clock - computed;
if (tmpdelta < delta) {
delta = tmpdelta;
m = testm - 1;
n = testn - 1;
p = testp - 1;
}
}
}
}
if (delta > permitteddelta) {
printk(KERN_WARNING "PLL delta too large\n");
return 1;
}
WREG_DAC(MGA1064_PIX_PLLC_M, m);
WREG_DAC(MGA1064_PIX_PLLC_N, n);
WREG_DAC(MGA1064_PIX_PLLC_P, p);
return 0;
}
static int mga_g200wb_set_plls(struct mga_device *mdev, long clock)
{
unsigned int vcomax, vcomin, pllreffreq;
unsigned int delta, tmpdelta, permitteddelta;
unsigned int testp, testm, testn;
unsigned int p, m, n;
unsigned int computed;
int i, j, tmpcount, vcount;
bool pll_locked = false;
u8 tmp;
m = n = p = 0;
vcomax = 550000;
vcomin = 150000;
pllreffreq = 48000;
delta = 0xffffffff;
permitteddelta = clock * 5 / 1000;
for (testp = 1; testp < 9; testp++) {
if (clock * testp > vcomax)
continue;
if (clock * testp < vcomin)
continue;
for (testm = 1; testm < 17; testm++) {
for (testn = 1; testn < 151; testn++) {
computed = (pllreffreq * testn) /
(testm * testp);
if (computed > clock)
tmpdelta = computed - clock;
else
tmpdelta = clock - computed;
if (tmpdelta < delta) {
delta = tmpdelta;
n = testn - 1;
m = (testm - 1) | ((n >> 1) & 0x80);
p = testp - 1;
}
}
}
}
for (i = 0; i <= 32 && pll_locked == false; i++) {
if (i > 0) {
WREG8(MGAREG_CRTC_INDEX, 0x1e);
tmp = RREG8(MGAREG_CRTC_DATA);
if (tmp < 0xff)
WREG8(MGAREG_CRTC_DATA, tmp+1);
}
/* set pixclkdis to 1 */
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
WREG_DAC(MGA1064_PIX_CLK_CTL_CLK_DIS, tmp);
WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
tmp = RREG8(DAC_DATA);
tmp |= MGA1064_REMHEADCTL_CLKDIS;
WREG_DAC(MGA1064_REMHEADCTL, tmp);
/* select PLL Set C */
tmp = RREG8(MGAREG_MEM_MISC_READ);
tmp |= 0x3 << 2;
WREG8(MGAREG_MEM_MISC_WRITE, tmp);
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN | 0x80;
WREG_DAC(MGA1064_PIX_CLK_CTL, tmp);
udelay(500);
/* reset the PLL */
WREG8(DAC_INDEX, MGA1064_VREF_CTL);
tmp = RREG8(DAC_DATA);
tmp &= ~0x04;
WREG_DAC(MGA1064_VREF_CTL, tmp);
udelay(50);
/* program pixel pll register */
WREG_DAC(MGA1064_WB_PIX_PLLC_N, n);
WREG_DAC(MGA1064_WB_PIX_PLLC_M, m);
WREG_DAC(MGA1064_WB_PIX_PLLC_P, p);
udelay(50);
/* turn pll on */
WREG8(DAC_INDEX, MGA1064_VREF_CTL);
tmp = RREG8(DAC_DATA);
tmp |= 0x04;
WREG_DAC(MGA1064_VREF_CTL, tmp);
udelay(500);
/* select the pixel pll */
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
WREG_DAC(MGA1064_PIX_CLK_CTL, tmp);
WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
tmp = RREG8(DAC_DATA);
tmp &= ~MGA1064_REMHEADCTL_CLKSL_MSK;
tmp |= MGA1064_REMHEADCTL_CLKSL_PLL;
WREG_DAC(MGA1064_REMHEADCTL, tmp);
/* reset dotclock rate bit */
WREG8(MGAREG_SEQ_INDEX, 1);
tmp = RREG8(MGAREG_SEQ_DATA);
tmp &= ~0x8;
WREG8(MGAREG_SEQ_DATA, tmp);
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
WREG_DAC(MGA1064_PIX_CLK_CTL, tmp);
vcount = RREG8(MGAREG_VCOUNT);
for (j = 0; j < 30 && pll_locked == false; j++) {
tmpcount = RREG8(MGAREG_VCOUNT);
if (tmpcount < vcount)
vcount = 0;
if ((tmpcount - vcount) > 2)
pll_locked = true;
else
udelay(5);
}
}
WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
tmp = RREG8(DAC_DATA);
tmp &= ~MGA1064_REMHEADCTL_CLKDIS;
WREG_DAC(MGA1064_REMHEADCTL, tmp);
return 0;
}
static int mga_g200ev_set_plls(struct mga_device *mdev, long clock)
{
unsigned int vcomax, vcomin, pllreffreq;
unsigned int delta, tmpdelta, permitteddelta;
unsigned int testp, testm, testn;
unsigned int p, m, n;
unsigned int computed;
u8 tmp;
m = n = p = 0;
vcomax = 550000;
vcomin = 150000;
pllreffreq = 50000;
delta = 0xffffffff;
permitteddelta = clock * 5 / 1000;
for (testp = 16; testp > 0; testp--) {
if (clock * testp > vcomax)
continue;
if (clock * testp < vcomin)
continue;
for (testn = 1; testn < 257; testn++) {
for (testm = 1; testm < 17; testm++) {
computed = (pllreffreq * testn) /
(testm * testp);
if (computed > clock)
tmpdelta = computed - clock;
else
tmpdelta = clock - computed;
if (tmpdelta < delta) {
delta = tmpdelta;
n = testn - 1;
m = testm - 1;
p = testp - 1;
}
}
}
}
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
WREG_DAC(MGA1064_PIX_CLK_CTL_CLK_DIS, tmp);
tmp = RREG8(MGAREG_MEM_MISC_READ);
tmp |= 0x3 << 2;
WREG8(MGAREG_MEM_MISC_WRITE, tmp);
WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT);
tmp = RREG8(DAC_DATA);
WREG_DAC(MGA1064_PIX_PLL_STAT, tmp & ~0x40);
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
WREG_DAC(MGA1064_PIX_CLK_CTL, tmp);
WREG_DAC(MGA1064_EV_PIX_PLLC_M, m);
WREG_DAC(MGA1064_EV_PIX_PLLC_N, n);
WREG_DAC(MGA1064_EV_PIX_PLLC_P, p);
udelay(50);
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
WREG_DAC(MGA1064_PIX_CLK_CTL, tmp);
udelay(500);
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
WREG_DAC(MGA1064_PIX_CLK_CTL, tmp);
WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT);
tmp = RREG8(DAC_DATA);
WREG_DAC(MGA1064_PIX_PLL_STAT, tmp | 0x40);
tmp = RREG8(MGAREG_MEM_MISC_READ);
tmp |= (0x3 << 2);
WREG8(MGAREG_MEM_MISC_WRITE, tmp);
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
WREG_DAC(MGA1064_PIX_CLK_CTL, tmp);
return 0;
}
static int mga_g200eh_set_plls(struct mga_device *mdev, long clock)
{
unsigned int vcomax, vcomin, pllreffreq;
unsigned int delta, tmpdelta, permitteddelta;
unsigned int testp, testm, testn;
unsigned int p, m, n;
unsigned int computed;
int i, j, tmpcount, vcount;
u8 tmp;
bool pll_locked = false;
m = n = p = 0;
vcomax = 800000;
vcomin = 400000;
pllreffreq = 3333;
delta = 0xffffffff;
permitteddelta = clock * 5 / 1000;
for (testp = 16; testp > 0; testp--) {
if (clock * testp > vcomax)
continue;
if (clock * testp < vcomin)
continue;
for (testm = 1; testm < 33; testm++) {
for (testn = 1; testn < 257; testn++) {
computed = (pllreffreq * testn) /
(testm * testp);
if (computed > clock)
tmpdelta = computed - clock;
else
tmpdelta = clock - computed;
if (tmpdelta < delta) {
delta = tmpdelta;
n = testn - 1;
m = (testm - 1) | ((n >> 1) & 0x80);
p = testp - 1;
}
if ((clock * testp) >= 600000)
p |= 80;
}
}
}
for (i = 0; i <= 32 && pll_locked == false; i++) {
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
WREG_DAC(MGA1064_PIX_CLK_CTL_CLK_DIS, tmp);
tmp = RREG8(MGAREG_MEM_MISC_READ);
tmp |= 0x3 << 2;
WREG8(MGAREG_MEM_MISC_WRITE, tmp);
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
WREG_DAC(MGA1064_PIX_CLK_CTL, tmp);
udelay(500);
WREG_DAC(MGA1064_EH_PIX_PLLC_M, m);
WREG_DAC(MGA1064_EH_PIX_PLLC_N, n);
WREG_DAC(MGA1064_EH_PIX_PLLC_P, p);
udelay(500);
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
WREG_DAC(MGA1064_PIX_CLK_CTL, tmp);
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
WREG_DAC(MGA1064_PIX_CLK_CTL, tmp);
vcount = RREG8(MGAREG_VCOUNT);
for (j = 0; j < 30 && pll_locked == false; j++) {
tmpcount = RREG8(MGAREG_VCOUNT);
if (tmpcount < vcount)
vcount = 0;
if ((tmpcount - vcount) > 2)
pll_locked = true;
else
udelay(5);
}
}
return 0;
}
static int mga_g200er_set_plls(struct mga_device *mdev, long clock)
{
unsigned int vcomax, vcomin, pllreffreq;
unsigned int delta, tmpdelta;
unsigned int testr, testn, testm, testo;
unsigned int p, m, n;
unsigned int computed;
int tmp;
m = n = p = 0;
vcomax = 1488000;
vcomin = 1056000;
pllreffreq = 48000;
delta = 0xffffffff;
for (testr = 0; testr < 4; testr++) {
if (delta == 0)
break;
for (testn = 5; testn < 129; testn++) {
if (delta == 0)
break;
for (testm = 3; testm >= 0; testm--) {
if (delta == 0)
break;
for (testo = 5; testo < 33; testo++) {
computed = pllreffreq * (testn + 1) /
(testr + 1);
if (computed < vcomin)
continue;
if (computed > vcomax)
continue;
if (computed > clock)
tmpdelta = computed - clock;
else
tmpdelta = clock - computed;
if (tmpdelta < delta) {
delta = tmpdelta;
m = testm | (testo << 3);
n = testn;
p = testr | (testr << 3);
}
}
}
}
}
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
WREG_DAC(MGA1064_PIX_CLK_CTL_CLK_DIS, tmp);
WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
tmp = RREG8(DAC_DATA);
tmp |= MGA1064_REMHEADCTL_CLKDIS;
WREG_DAC(MGA1064_REMHEADCTL, tmp);
tmp = RREG8(MGAREG_MEM_MISC_READ);
tmp |= (0x3<<2) | 0xc0;
WREG8(MGAREG_MEM_MISC_WRITE, tmp);
WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
tmp = RREG8(DAC_DATA);
tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
WREG_DAC(MGA1064_PIX_CLK_CTL, tmp);
udelay(500);
WREG_DAC(MGA1064_ER_PIX_PLLC_N, n);
WREG_DAC(MGA1064_ER_PIX_PLLC_M, m);
WREG_DAC(MGA1064_ER_PIX_PLLC_P, p);
udelay(50);
return 0;
}
static int mga_crtc_set_plls(struct mga_device *mdev, long clock)
{
switch(mdev->type) {
case G200_SE_A:
case G200_SE_B:
return mga_g200se_set_plls(mdev, clock);
break;
case G200_WB:
return mga_g200wb_set_plls(mdev, clock);
break;
case G200_EV:
return mga_g200ev_set_plls(mdev, clock);
break;
case G200_EH:
return mga_g200eh_set_plls(mdev, clock);
break;
case G200_ER:
return mga_g200er_set_plls(mdev, clock);
break;
}
return 0;
}
static void mga_g200wb_prepare(struct drm_crtc *crtc)
{
struct mga_device *mdev = crtc->dev->dev_private;
u8 tmp;
int iter_max;
/* 1- The first step is to warn the BMC of an upcoming mode change.
* We are putting the misc<0> to output.*/
WREG8(DAC_INDEX, MGA1064_GEN_IO_CTL);
tmp = RREG8(DAC_DATA);
tmp |= 0x10;
WREG_DAC(MGA1064_GEN_IO_CTL, tmp);
/* we are putting a 1 on the misc<0> line */
WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA);
tmp = RREG8(DAC_DATA);
tmp |= 0x10;
WREG_DAC(MGA1064_GEN_IO_DATA, tmp);
/* 2- Second step to mask and further scan request
* This will be done by asserting the remfreqmsk bit (XSPAREREG<7>)
*/
WREG8(DAC_INDEX, MGA1064_SPAREREG);
tmp = RREG8(DAC_DATA);
tmp |= 0x80;
WREG_DAC(MGA1064_SPAREREG, tmp);
/* 3a- the third step is to verifu if there is an active scan
* We are searching for a 0 on remhsyncsts <XSPAREREG<0>)
*/
iter_max = 300;
while (!(tmp & 0x1) && iter_max) {
WREG8(DAC_INDEX, MGA1064_SPAREREG);
tmp = RREG8(DAC_DATA);
udelay(1000);
iter_max--;
}
/* 3b- this step occurs only if the remove is actually scanning
* we are waiting for the end of the frame which is a 1 on
* remvsyncsts (XSPAREREG<1>)
*/
if (iter_max) {
iter_max = 300;
while ((tmp & 0x2) && iter_max) {
WREG8(DAC_INDEX, MGA1064_SPAREREG);
tmp = RREG8(DAC_DATA);
udelay(1000);
iter_max--;
}
}
}
static void mga_g200wb_commit(struct drm_crtc *crtc)
{
u8 tmp;
struct mga_device *mdev = crtc->dev->dev_private;
/* 1- The first step is to ensure that the vrsten and hrsten are set */
WREG8(MGAREG_CRTCEXT_INDEX, 1);
tmp = RREG8(MGAREG_CRTCEXT_DATA);
WREG8(MGAREG_CRTCEXT_DATA, tmp | 0x88);
/* 2- second step is to assert the rstlvl2 */
WREG8(DAC_INDEX, MGA1064_REMHEADCTL2);
tmp = RREG8(DAC_DATA);
tmp |= 0x8;
WREG8(DAC_DATA, tmp);
/* wait 10 us */
udelay(10);
/* 3- deassert rstlvl2 */
tmp &= ~0x08;
WREG8(DAC_INDEX, MGA1064_REMHEADCTL2);
WREG8(DAC_DATA, tmp);
/* 4- remove mask of scan request */
WREG8(DAC_INDEX, MGA1064_SPAREREG);
tmp = RREG8(DAC_DATA);
tmp &= ~0x80;
WREG8(DAC_DATA, tmp);
/* 5- put back a 0 on the misc<0> line */
WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA);
tmp = RREG8(DAC_DATA);
tmp &= ~0x10;
WREG_DAC(MGA1064_GEN_IO_DATA, tmp);
}
void mga_set_start_address(struct drm_crtc *crtc, unsigned offset)
{
struct mga_device *mdev = crtc->dev->dev_private;
u32 addr;
int count;
while (RREG8(0x1fda) & 0x08);
while (!(RREG8(0x1fda) & 0x08));
count = RREG8(MGAREG_VCOUNT) + 2;
while (RREG8(MGAREG_VCOUNT) < count);
addr = offset >> 2;
WREG_CRT(0x0d, (u8)(addr & 0xff));
WREG_CRT(0x0c, (u8)(addr >> 8) & 0xff);
WREG_CRT(0xaf, (u8)(addr >> 16) & 0xf);
}
/* ast is different - we will force move buffers out of VRAM */
static int mga_crtc_do_set_base(struct drm_crtc *crtc,
struct drm_framebuffer *fb,
int x, int y, int atomic)
{
struct mga_device *mdev = crtc->dev->dev_private;
struct drm_gem_object *obj;
struct mga_framebuffer *mga_fb;
struct mgag200_bo *bo;
int ret;
u64 gpu_addr;
/* push the previous fb to system ram */
if (!atomic && fb) {
mga_fb = to_mga_framebuffer(fb);
obj = mga_fb->obj;
bo = gem_to_mga_bo(obj);
ret = mgag200_bo_reserve(bo, false);
if (ret)
return ret;
mgag200_bo_push_sysram(bo);
mgag200_bo_unreserve(bo);
}
mga_fb = to_mga_framebuffer(crtc->fb);
obj = mga_fb->obj;
bo = gem_to_mga_bo(obj);
ret = mgag200_bo_reserve(bo, false);
if (ret)
return ret;
ret = mgag200_bo_pin(bo, TTM_PL_FLAG_VRAM, &gpu_addr);
if (ret) {
mgag200_bo_unreserve(bo);
return ret;
}
if (&mdev->mfbdev->mfb == mga_fb) {
/* if pushing console in kmap it */
ret = ttm_bo_kmap(&bo->bo, 0, bo->bo.num_pages, &bo->kmap);
if (ret)
DRM_ERROR("failed to kmap fbcon\n");
}
mgag200_bo_unreserve(bo);
DRM_INFO("mga base %llx\n", gpu_addr);
mga_set_start_address(crtc, (u32)gpu_addr);
return 0;
}
static int mga_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
struct drm_framebuffer *old_fb)
{
return mga_crtc_do_set_base(crtc, old_fb, x, y, 0);
}
static int mga_crtc_mode_set(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode,
int x, int y, struct drm_framebuffer *old_fb)
{
struct drm_device *dev = crtc->dev;
struct mga_device *mdev = dev->dev_private;
int hdisplay, hsyncstart, hsyncend, htotal;
int vdisplay, vsyncstart, vsyncend, vtotal;
int pitch;
int option = 0, option2 = 0;
int i;
unsigned char misc = 0;
unsigned char ext_vga[6];
unsigned char ext_vga_index24;
unsigned char dac_index90 = 0;
u8 bppshift;
static unsigned char dacvalue[] = {
/* 0x00: */ 0, 0, 0, 0, 0, 0, 0x00, 0,
/* 0x08: */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x10: */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x18: */ 0x00, 0, 0xC9, 0xFF, 0xBF, 0x20, 0x1F, 0x20,
/* 0x20: */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 0x28: */ 0x00, 0x00, 0x00, 0x00, 0, 0, 0, 0x40,
/* 0x30: */ 0x00, 0xB0, 0x00, 0xC2, 0x34, 0x14, 0x02, 0x83,
/* 0x38: */ 0x00, 0x93, 0x00, 0x77, 0x00, 0x00, 0x00, 0x3A,
/* 0x40: */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x48: */ 0, 0, 0, 0, 0, 0, 0, 0
};
bppshift = mdev->bpp_shifts[(crtc->fb->bits_per_pixel >> 3) - 1];
switch (mdev->type) {
case G200_SE_A:
case G200_SE_B:
dacvalue[MGA1064_VREF_CTL] = 0x03;
dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL;
dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_DAC_EN |
MGA1064_MISC_CTL_VGA8 |
MGA1064_MISC_CTL_DAC_RAM_CS;
if (mdev->has_sdram)
option = 0x40049120;
else
option = 0x4004d120;
option2 = 0x00008000;
break;
case G200_WB:
dacvalue[MGA1064_VREF_CTL] = 0x07;
option = 0x41049120;
option2 = 0x0000b000;
break;
case G200_EV:
dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL;
dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 |
MGA1064_MISC_CTL_DAC_RAM_CS;
option = 0x00000120;
option2 = 0x0000b000;
break;
case G200_EH:
dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 |
MGA1064_MISC_CTL_DAC_RAM_CS;
option = 0x00000120;
option2 = 0x0000b000;
break;
case G200_ER:
dac_index90 = 0;
break;
}
switch (crtc->fb->bits_per_pixel) {
case 8:
dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_8bits;
break;
case 16:
if (crtc->fb->depth == 15)
dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_15bits;
else
dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_16bits;
break;
case 24:
dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_24bits;
break;
case 32:
dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_32_24bits;
break;
}
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
misc |= 0x40;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
misc |= 0x80;
for (i = 0; i < sizeof(dacvalue); i++) {
if ((i <= 0x03) ||
(i == 0x07) ||
(i == 0x0b) ||
(i == 0x0f) ||
((i >= 0x13) && (i <= 0x17)) ||
(i == 0x1b) ||
(i == 0x1c) ||
((i >= 0x1f) && (i <= 0x29)) ||
((i >= 0x30) && (i <= 0x37)))
continue;
if (IS_G200_SE(mdev) &&
((i == 0x2c) || (i == 0x2d) || (i == 0x2e)))
continue;
if ((mdev->type == G200_EV || mdev->type == G200_WB || mdev->type == G200_EH) &&
(i >= 0x44) && (i <= 0x4e))
continue;
WREG_DAC(i, dacvalue[i]);
}
if (mdev->type == G200_ER) {
WREG_DAC(0x90, dac_index90);
}
if (option)
pci_write_config_dword(dev->pdev, PCI_MGA_OPTION, option);
if (option2)
pci_write_config_dword(dev->pdev, PCI_MGA_OPTION2, option2);
WREG_SEQ(2, 0xf);
WREG_SEQ(3, 0);
WREG_SEQ(4, 0xe);
pitch = crtc->fb->pitches[0] / (crtc->fb->bits_per_pixel / 8);
if (crtc->fb->bits_per_pixel == 24)
pitch = pitch >> (4 - bppshift);
else
pitch = pitch >> (4 - bppshift);
hdisplay = mode->hdisplay / 8 - 1;
hsyncstart = mode->hsync_start / 8 - 1;
hsyncend = mode->hsync_end / 8 - 1;
htotal = mode->htotal / 8 - 1;
/* Work around hardware quirk */
if ((htotal & 0x07) == 0x06 || (htotal & 0x07) == 0x04)
htotal++;
vdisplay = mode->vdisplay - 1;
vsyncstart = mode->vsync_start - 1;
vsyncend = mode->vsync_end - 1;
vtotal = mode->vtotal - 2;
WREG_GFX(0, 0);
WREG_GFX(1, 0);
WREG_GFX(2, 0);
WREG_GFX(3, 0);
WREG_GFX(4, 0);
WREG_GFX(5, 0x40);
WREG_GFX(6, 0x5);
WREG_GFX(7, 0xf);
WREG_GFX(8, 0xf);
WREG_CRT(0, htotal - 4);
WREG_CRT(1, hdisplay);
WREG_CRT(2, hdisplay);
WREG_CRT(3, (htotal & 0x1F) | 0x80);
WREG_CRT(4, hsyncstart);
WREG_CRT(5, ((htotal & 0x20) << 2) | (hsyncend & 0x1F));
WREG_CRT(6, vtotal & 0xFF);
WREG_CRT(7, ((vtotal & 0x100) >> 8) |
((vdisplay & 0x100) >> 7) |
((vsyncstart & 0x100) >> 6) |
((vdisplay & 0x100) >> 5) |
((vdisplay & 0x100) >> 4) | /* linecomp */
((vtotal & 0x200) >> 4)|
((vdisplay & 0x200) >> 3) |
((vsyncstart & 0x200) >> 2));
WREG_CRT(9, ((vdisplay & 0x200) >> 4) |
((vdisplay & 0x200) >> 3));
WREG_CRT(10, 0);
WREG_CRT(11, 0);
WREG_CRT(12, 0);
WREG_CRT(13, 0);
WREG_CRT(14, 0);
WREG_CRT(15, 0);
WREG_CRT(16, vsyncstart & 0xFF);
WREG_CRT(17, (vsyncend & 0x0F) | 0x20);
WREG_CRT(18, vdisplay & 0xFF);
WREG_CRT(19, pitch & 0xFF);
WREG_CRT(20, 0);
WREG_CRT(21, vdisplay & 0xFF);
WREG_CRT(22, (vtotal + 1) & 0xFF);
WREG_CRT(23, 0xc3);
WREG_CRT(24, vdisplay & 0xFF);
ext_vga[0] = 0;
ext_vga[5] = 0;
/* TODO interlace */
ext_vga[0] |= (pitch & 0x300) >> 4;
ext_vga[1] = (((htotal - 4) & 0x100) >> 8) |
((hdisplay & 0x100) >> 7) |
((hsyncstart & 0x100) >> 6) |
(htotal & 0x40);
ext_vga[2] = ((vtotal & 0xc00) >> 10) |
((vdisplay & 0x400) >> 8) |
((vdisplay & 0xc00) >> 7) |
((vsyncstart & 0xc00) >> 5) |
((vdisplay & 0x400) >> 3);
if (crtc->fb->bits_per_pixel == 24)
ext_vga[3] = (((1 << bppshift) * 3) - 1) | 0x80;
else
ext_vga[3] = ((1 << bppshift) - 1) | 0x80;
ext_vga[4] = 0;
if (mdev->type == G200_WB)
ext_vga[1] |= 0x88;
ext_vga_index24 = 0x05;
/* Set pixel clocks */
misc = 0x2d;
WREG8(MGA_MISC_OUT, misc);
mga_crtc_set_plls(mdev, mode->clock);
for (i = 0; i < 6; i++) {
WREG_ECRT(i, ext_vga[i]);
}
if (mdev->type == G200_ER)
WREG_ECRT(24, ext_vga_index24);
if (mdev->type == G200_EV) {
WREG_ECRT(6, 0);
}
WREG_ECRT(0, ext_vga[0]);
/* Enable mga pixel clock */
misc = 0x2d;
WREG8(MGA_MISC_OUT, misc);
if (adjusted_mode)
memcpy(&mdev->mode, mode, sizeof(struct drm_display_mode));
mga_crtc_do_set_base(crtc, old_fb, x, y, 0);
/* reset tagfifo */
if (mdev->type == G200_ER) {
u32 mem_ctl = RREG32(MGAREG_MEMCTL);
u8 seq1;
/* screen off */
WREG8(MGAREG_SEQ_INDEX, 0x01);
seq1 = RREG8(MGAREG_SEQ_DATA) | 0x20;
WREG8(MGAREG_SEQ_DATA, seq1);
WREG32(MGAREG_MEMCTL, mem_ctl | 0x00200000);
udelay(1000);
WREG32(MGAREG_MEMCTL, mem_ctl & ~0x00200000);
WREG8(MGAREG_SEQ_DATA, seq1 & ~0x20);
}
if (IS_G200_SE(mdev)) {
if (mdev->reg_1e24 >= 0x02) {
u8 hi_pri_lvl;
u32 bpp;
u32 mb;
if (crtc->fb->bits_per_pixel > 16)
bpp = 32;
else if (crtc->fb->bits_per_pixel > 8)
bpp = 16;
else
bpp = 8;
mb = (mode->clock * bpp) / 1000;
if (mb > 3100)
hi_pri_lvl = 0;
else if (mb > 2600)
hi_pri_lvl = 1;
else if (mb > 1900)
hi_pri_lvl = 2;
else if (mb > 1160)
hi_pri_lvl = 3;
else if (mb > 440)
hi_pri_lvl = 4;
else
hi_pri_lvl = 5;
WREG8(0x1fde, 0x06);
WREG8(0x1fdf, hi_pri_lvl);
} else {
if (mdev->reg_1e24 >= 0x01)
WREG8(0x1fdf, 0x03);
else
WREG8(0x1fdf, 0x04);
}
}
return 0;
}
#if 0 /* code from mjg to attempt D3 on crtc dpms off - revisit later */
static int mga_suspend(struct drm_crtc *crtc)
{
struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct mga_device *mdev = dev->dev_private;
struct pci_dev *pdev = dev->pdev;
int option;
if (mdev->suspended)
return 0;
WREG_SEQ(1, 0x20);
WREG_ECRT(1, 0x30);
/* Disable the pixel clock */
WREG_DAC(0x1a, 0x05);
/* Power down the DAC */
WREG_DAC(0x1e, 0x18);
/* Power down the pixel PLL */
WREG_DAC(0x1a, 0x0d);
/* Disable PLLs and clocks */
pci_read_config_dword(pdev, PCI_MGA_OPTION, &option);
option &= ~(0x1F8024);
pci_write_config_dword(pdev, PCI_MGA_OPTION, option);
pci_set_power_state(pdev, PCI_D3hot);
pci_disable_device(pdev);
mdev->suspended = true;
return 0;
}
static int mga_resume(struct drm_crtc *crtc)
{
struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct mga_device *mdev = dev->dev_private;
struct pci_dev *pdev = dev->pdev;
int option;
if (!mdev->suspended)
return 0;
pci_set_power_state(pdev, PCI_D0);
pci_enable_device(pdev);
/* Disable sysclk */
pci_read_config_dword(pdev, PCI_MGA_OPTION, &option);
option &= ~(0x4);
pci_write_config_dword(pdev, PCI_MGA_OPTION, option);
mdev->suspended = false;
return 0;
}
#endif
static void mga_crtc_dpms(struct drm_crtc *crtc, int mode)
{
struct drm_device *dev = crtc->dev;
struct mga_device *mdev = dev->dev_private;
u8 seq1 = 0, crtcext1 = 0;
switch (mode) {
case DRM_MODE_DPMS_ON:
seq1 = 0;
crtcext1 = 0;
mga_crtc_load_lut(crtc);
break;
case DRM_MODE_DPMS_STANDBY:
seq1 = 0x20;
crtcext1 = 0x10;
break;
case DRM_MODE_DPMS_SUSPEND:
seq1 = 0x20;
crtcext1 = 0x20;
break;
case DRM_MODE_DPMS_OFF:
seq1 = 0x20;
crtcext1 = 0x30;
break;
}
#if 0
if (mode == DRM_MODE_DPMS_OFF) {
mga_suspend(crtc);
}
#endif
WREG8(MGAREG_SEQ_INDEX, 0x01);
seq1 |= RREG8(MGAREG_SEQ_DATA) & ~0x20;
mga_wait_vsync(mdev);
mga_wait_busy(mdev);
WREG8(MGAREG_SEQ_DATA, seq1);
msleep(20);
WREG8(MGAREG_CRTCEXT_INDEX, 0x01);
crtcext1 |= RREG8(MGAREG_CRTCEXT_DATA) & ~0x30;
WREG8(MGAREG_CRTCEXT_DATA, crtcext1);
#if 0
if (mode == DRM_MODE_DPMS_ON && mdev->suspended == true) {
mga_resume(crtc);
drm_helper_resume_force_mode(dev);
}
#endif
}
/*
* This is called before a mode is programmed. A typical use might be to
* enable DPMS during the programming to avoid seeing intermediate stages,
* but that's not relevant to us
*/
static void mga_crtc_prepare(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct mga_device *mdev = dev->dev_private;
u8 tmp;
/* mga_resume(crtc);*/
WREG8(MGAREG_CRTC_INDEX, 0x11);
tmp = RREG8(MGAREG_CRTC_DATA);
WREG_CRT(0x11, tmp | 0x80);
if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) {
WREG_SEQ(0, 1);
msleep(50);
WREG_SEQ(1, 0x20);
msleep(20);
} else {
WREG8(MGAREG_SEQ_INDEX, 0x1);
tmp = RREG8(MGAREG_SEQ_DATA);
/* start sync reset */
WREG_SEQ(0, 1);
WREG_SEQ(1, tmp | 0x20);
}
if (mdev->type == G200_WB)
mga_g200wb_prepare(crtc);
WREG_CRT(17, 0);
}
/*
* This is called after a mode is programmed. It should reverse anything done
* by the prepare function
*/
static void mga_crtc_commit(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct mga_device *mdev = dev->dev_private;
struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
u8 tmp;
if (mdev->type == G200_WB)
mga_g200wb_commit(crtc);
if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) {
msleep(50);
WREG_SEQ(1, 0x0);
msleep(20);
WREG_SEQ(0, 0x3);
} else {
WREG8(MGAREG_SEQ_INDEX, 0x1);
tmp = RREG8(MGAREG_SEQ_DATA);
tmp &= ~0x20;
WREG_SEQ(0x1, tmp);
WREG_SEQ(0, 3);
}
crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
}
/*
* The core can pass us a set of gamma values to program. We actually only
* use this for 8-bit mode so can't perform smooth fades on deeper modes,
* but it's a requirement that we provide the function
*/
static void mga_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
u16 *blue, uint32_t start, uint32_t size)
{
struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
int end = (start + size > MGAG200_LUT_SIZE) ? MGAG200_LUT_SIZE : start + size;
int i;
for (i = start; i < end; i++) {
mga_crtc->lut_r[i] = red[i] >> 8;
mga_crtc->lut_g[i] = green[i] >> 8;
mga_crtc->lut_b[i] = blue[i] >> 8;
}
mga_crtc_load_lut(crtc);
}
/* Simple cleanup function */
static void mga_crtc_destroy(struct drm_crtc *crtc)
{
struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
drm_crtc_cleanup(crtc);
kfree(mga_crtc);
}
/* These provide the minimum set of functions required to handle a CRTC */
static const struct drm_crtc_funcs mga_crtc_funcs = {
.gamma_set = mga_crtc_gamma_set,
.set_config = drm_crtc_helper_set_config,
.destroy = mga_crtc_destroy,
};
static const struct drm_crtc_helper_funcs mga_helper_funcs = {
.dpms = mga_crtc_dpms,
.mode_fixup = mga_crtc_mode_fixup,
.mode_set = mga_crtc_mode_set,
.mode_set_base = mga_crtc_mode_set_base,
.prepare = mga_crtc_prepare,
.commit = mga_crtc_commit,
.load_lut = mga_crtc_load_lut,
};
/* CRTC setup */
static void mga_crtc_init(struct drm_device *dev)
{
struct mga_device *mdev = dev->dev_private;
struct mga_crtc *mga_crtc;
int i;
mga_crtc = kzalloc(sizeof(struct mga_crtc) +
(MGAG200FB_CONN_LIMIT * sizeof(struct drm_connector *)),
GFP_KERNEL);
if (mga_crtc == NULL)
return;
drm_crtc_init(dev, &mga_crtc->base, &mga_crtc_funcs);
drm_mode_crtc_set_gamma_size(&mga_crtc->base, MGAG200_LUT_SIZE);
mdev->mode_info.crtc = mga_crtc;
for (i = 0; i < MGAG200_LUT_SIZE; i++) {
mga_crtc->lut_r[i] = i;
mga_crtc->lut_g[i] = i;
mga_crtc->lut_b[i] = i;
}
drm_crtc_helper_add(&mga_crtc->base, &mga_helper_funcs);
}
/** Sets the color ramps on behalf of fbcon */
void mga_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
u16 blue, int regno)
{
struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
mga_crtc->lut_r[regno] = red >> 8;
mga_crtc->lut_g[regno] = green >> 8;
mga_crtc->lut_b[regno] = blue >> 8;
}
/** Gets the color ramps on behalf of fbcon */
void mga_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
u16 *blue, int regno)
{
struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
*red = (u16)mga_crtc->lut_r[regno] << 8;
*green = (u16)mga_crtc->lut_g[regno] << 8;
*blue = (u16)mga_crtc->lut_b[regno] << 8;
}
/*
* The encoder comes after the CRTC in the output pipeline, but before
* the connector. It's responsible for ensuring that the digital
* stream is appropriately converted into the output format. Setup is
* very simple in this case - all we have to do is inform qemu of the
* colour depth in order to ensure that it displays appropriately
*/
/*
* These functions are analagous to those in the CRTC code, but are intended
* to handle any encoder-specific limitations
*/
static bool mga_encoder_mode_fixup(struct drm_encoder *encoder,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
return true;
}
static void mga_encoder_mode_set(struct drm_encoder *encoder,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
}
static void mga_encoder_dpms(struct drm_encoder *encoder, int state)
{
return;
}
static void mga_encoder_prepare(struct drm_encoder *encoder)
{
}
static void mga_encoder_commit(struct drm_encoder *encoder)
{
}
void mga_encoder_destroy(struct drm_encoder *encoder)
{
struct mga_encoder *mga_encoder = to_mga_encoder(encoder);
drm_encoder_cleanup(encoder);
kfree(mga_encoder);
}
static const struct drm_encoder_helper_funcs mga_encoder_helper_funcs = {
.dpms = mga_encoder_dpms,
.mode_fixup = mga_encoder_mode_fixup,
.mode_set = mga_encoder_mode_set,
.prepare = mga_encoder_prepare,
.commit = mga_encoder_commit,
};
static const struct drm_encoder_funcs mga_encoder_encoder_funcs = {
.destroy = mga_encoder_destroy,
};
static struct drm_encoder *mga_encoder_init(struct drm_device *dev)
{
struct drm_encoder *encoder;
struct mga_encoder *mga_encoder;
mga_encoder = kzalloc(sizeof(struct mga_encoder), GFP_KERNEL);
if (!mga_encoder)
return NULL;
encoder = &mga_encoder->base;
encoder->possible_crtcs = 0x1;
drm_encoder_init(dev, encoder, &mga_encoder_encoder_funcs,
DRM_MODE_ENCODER_DAC);
drm_encoder_helper_add(encoder, &mga_encoder_helper_funcs);
return encoder;
}
static int mga_vga_get_modes(struct drm_connector *connector)
{
struct mga_connector *mga_connector = to_mga_connector(connector);
struct edid *edid;
int ret = 0;
edid = drm_get_edid(connector, &mga_connector->i2c->adapter);
if (edid) {
drm_mode_connector_update_edid_property(connector, edid);
ret = drm_add_edid_modes(connector, edid);
connector->display_info.raw_edid = NULL;
kfree(edid);
}
return ret;
}
static int mga_vga_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
/* FIXME: Add bandwidth and g200se limitations */
if (mode->crtc_hdisplay > 2048 || mode->crtc_hsync_start > 4096 ||
mode->crtc_hsync_end > 4096 || mode->crtc_htotal > 4096 ||
mode->crtc_vdisplay > 2048 || mode->crtc_vsync_start > 4096 ||
mode->crtc_vsync_end > 4096 || mode->crtc_vtotal > 4096) {
return MODE_BAD;
}
return MODE_OK;
}
struct drm_encoder *mga_connector_best_encoder(struct drm_connector
*connector)
{
int enc_id = connector->encoder_ids[0];
struct drm_mode_object *obj;
struct drm_encoder *encoder;
/* pick the encoder ids */
if (enc_id) {
obj =
drm_mode_object_find(connector->dev, enc_id,
DRM_MODE_OBJECT_ENCODER);
if (!obj)
return NULL;
encoder = obj_to_encoder(obj);
return encoder;
}
return NULL;
}
static enum drm_connector_status mga_vga_detect(struct drm_connector
*connector, bool force)
{
return connector_status_connected;
}
static void mga_connector_destroy(struct drm_connector *connector)
{
struct mga_connector *mga_connector = to_mga_connector(connector);
mgag200_i2c_destroy(mga_connector->i2c);
drm_connector_cleanup(connector);
kfree(connector);
}
struct drm_connector_helper_funcs mga_vga_connector_helper_funcs = {
.get_modes = mga_vga_get_modes,
.mode_valid = mga_vga_mode_valid,
.best_encoder = mga_connector_best_encoder,
};
struct drm_connector_funcs mga_vga_connector_funcs = {
.dpms = drm_helper_connector_dpms,
.detect = mga_vga_detect,
.fill_modes = drm_helper_probe_single_connector_modes,
.destroy = mga_connector_destroy,
};
static struct drm_connector *mga_vga_init(struct drm_device *dev)
{
struct drm_connector *connector;
struct mga_connector *mga_connector;
mga_connector = kzalloc(sizeof(struct mga_connector), GFP_KERNEL);
if (!mga_connector)
return NULL;
connector = &mga_connector->base;
drm_connector_init(dev, connector,
&mga_vga_connector_funcs, DRM_MODE_CONNECTOR_VGA);
drm_connector_helper_add(connector, &mga_vga_connector_helper_funcs);
mga_connector->i2c = mgag200_i2c_create(dev);
if (!mga_connector->i2c)
DRM_ERROR("failed to add ddc bus\n");
return connector;
}
int mgag200_modeset_init(struct mga_device *mdev)
{
struct drm_encoder *encoder;
struct drm_connector *connector;
int ret;
mdev->mode_info.mode_config_initialized = true;
mdev->dev->mode_config.max_width = MGAG200_MAX_FB_WIDTH;
mdev->dev->mode_config.max_height = MGAG200_MAX_FB_HEIGHT;
mdev->dev->mode_config.fb_base = mdev->mc.vram_base;
mga_crtc_init(mdev->dev);
encoder = mga_encoder_init(mdev->dev);
if (!encoder) {
DRM_ERROR("mga_encoder_init failed\n");
return -1;
}
connector = mga_vga_init(mdev->dev);
if (!connector) {
DRM_ERROR("mga_vga_init failed\n");
return -1;
}
drm_mode_connector_attach_encoder(connector, encoder);
ret = mgag200_fbdev_init(mdev);
if (ret) {
DRM_ERROR("mga_fbdev_init failed\n");
return ret;
}
return 0;
}
void mgag200_modeset_fini(struct mga_device *mdev)
{
}