linux/drivers/gpu/drm/Makefile

112 lines
4.0 KiB
Makefile
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
# SPDX-License-Identifier: GPL-2.0
# Makefile for the drm device driver. This driver provides support for the
# Direct Rendering Infrastructure (DRI) in XFree86 4.1.0 and higher.
drm-y := drm_auth.o drm_bufs.o drm_cache.o \
drm_context.o drm_dma.o \
drm_file.o drm_gem.o drm_ioctl.o drm_irq.o \
drm_lock.o drm_memory.o drm_drv.o \
drm_scatter.o drm_pci.o \
drm_sysfs.o drm_hashtab.o drm_mm.o \
drm_crtc.o drm_fourcc.o drm_modes.o drm_edid.o \
drm: Add API for capturing frame CRCs Adds files and directories to debugfs for controlling and reading frame CRCs, per CRTC: dri/0/crtc-0/crc dri/0/crtc-0/crc/control dri/0/crtc-0/crc/data Drivers can implement the set_crc_source callback() in drm_crtc_funcs to start and stop generating frame CRCs and can add entries to the output by calling drm_crtc_add_crc_entry. v2: - Lots of good fixes suggested by Thierry. - Added documentation. - Changed the debugfs layout. - Moved to allocate the entries circular queue once when frame generation gets enabled for the first time. v3: - Use the control file just to select the source, and start and stop capture when the data file is opened and closed, respectively. - Make variable the number of CRC values per entry, per source. - Allocate entries queue each time we start capturing as now there isn't a fixed number of CRC values per entry. - Store the frame counter in the data file as a 8-digit hex number. - For sources that cannot provide useful frame numbers, place XXXXXXXX in the frame field. v4: - Build only if CONFIG_DEBUG_FS is enabled. - Use memdup_user_nul. - Consolidate calculation of the size of an entry in a helper. - Add 0x prefix to hex numbers in the data file. - Remove unnecessary snprintf and strlen usage in read callback. v5: - Made the crcs array in drm_crtc_crc_entry fixed-size - Lots of other smaller improvements suggested by Emil Velikov v7: - Move definition of drm_debugfs_crtc_crc_add to drm_internal.h v8: - Call debugfs_remove_recursive when we fail to create the minor device v9: - Register the debugfs directory for a crtc from drm_crtc_register_all() v10: - Don't let debugfs failures interrupt CRTC registration (Emil Velikov) v11: - Remove extra brace that broke compilation. Sorry! Signed-off-by: Tomeu Vizoso <tomeu.vizoso@collabora.com> Reviewed-by: Emil Velikov <emil.velikov@collabora.com> Acked-by: Benjamin Gaignard <benjamin.gaignard@linaro.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: http://patchwork.freedesktop.org/patch/msgid/1475767268-14379-3-git-send-email-tomeu.vizoso@collabora.com
2016-10-06 23:21:06 +08:00
drm_info.o drm_encoder_slave.o \
drm_trace_points.o drm_global.o drm_prime.o \
drm_rect.o drm_vma_manager.o drm_flip_work.o \
drm_modeset_lock.o drm_atomic.o drm_bridge.o \
drm_framebuffer.o drm_connector.o drm_blend.o \
drm_encoder.o drm_mode_object.o drm_property.o \
drm_plane.o drm_color_mgmt.o drm_print.o \
drm_dumb_buffers.o drm_mode_config.o drm_vblank.o \
drm_syncobj.o drm_lease.o drm_writeback.o drm_client.o \
drm_atomic_uapi.o
drm-$(CONFIG_DRM_LIB_RANDOM) += lib/drm_random.o
drm-$(CONFIG_DRM_VM) += drm_vm.o
drm-$(CONFIG_COMPAT) += drm_ioc32.o
drm-$(CONFIG_DRM_GEM_CMA_HELPER) += drm_gem_cma_helper.o
drm-$(CONFIG_PCI) += ati_pcigart.o
drm-$(CONFIG_DRM_PANEL) += drm_panel.o
drm-$(CONFIG_OF) += drm_of.o
drm-$(CONFIG_AGP) += drm_agpsupport.o
drm: Add API for capturing frame CRCs Adds files and directories to debugfs for controlling and reading frame CRCs, per CRTC: dri/0/crtc-0/crc dri/0/crtc-0/crc/control dri/0/crtc-0/crc/data Drivers can implement the set_crc_source callback() in drm_crtc_funcs to start and stop generating frame CRCs and can add entries to the output by calling drm_crtc_add_crc_entry. v2: - Lots of good fixes suggested by Thierry. - Added documentation. - Changed the debugfs layout. - Moved to allocate the entries circular queue once when frame generation gets enabled for the first time. v3: - Use the control file just to select the source, and start and stop capture when the data file is opened and closed, respectively. - Make variable the number of CRC values per entry, per source. - Allocate entries queue each time we start capturing as now there isn't a fixed number of CRC values per entry. - Store the frame counter in the data file as a 8-digit hex number. - For sources that cannot provide useful frame numbers, place XXXXXXXX in the frame field. v4: - Build only if CONFIG_DEBUG_FS is enabled. - Use memdup_user_nul. - Consolidate calculation of the size of an entry in a helper. - Add 0x prefix to hex numbers in the data file. - Remove unnecessary snprintf and strlen usage in read callback. v5: - Made the crcs array in drm_crtc_crc_entry fixed-size - Lots of other smaller improvements suggested by Emil Velikov v7: - Move definition of drm_debugfs_crtc_crc_add to drm_internal.h v8: - Call debugfs_remove_recursive when we fail to create the minor device v9: - Register the debugfs directory for a crtc from drm_crtc_register_all() v10: - Don't let debugfs failures interrupt CRTC registration (Emil Velikov) v11: - Remove extra brace that broke compilation. Sorry! Signed-off-by: Tomeu Vizoso <tomeu.vizoso@collabora.com> Reviewed-by: Emil Velikov <emil.velikov@collabora.com> Acked-by: Benjamin Gaignard <benjamin.gaignard@linaro.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: http://patchwork.freedesktop.org/patch/msgid/1475767268-14379-3-git-send-email-tomeu.vizoso@collabora.com
2016-10-06 23:21:06 +08:00
drm-$(CONFIG_DEBUG_FS) += drm_debugfs.o drm_debugfs_crc.o
drm: handle override and firmware EDID at drm_do_get_edid() level Handle debugfs override edid and firmware edid at the low level to transparently and completely replace the real edid. Previously, we practically only used the modes from the override EDID, and none of the other data, such as audio parameters. This change also prevents actual EDID reads when the EDID is to be overridden, but retains the DDC probe. This is useful if the reason for preferring override EDID are problems with reading the data, or corruption of the data. Move firmware EDID loading from helper to core, as the functionality moves to lower level as well. This will result in a change of module parameter from drm_kms_helper.edid_firmware to drm.edid_firmware, which arguably makes more sense anyway. Some future work remains related to override and firmware EDID validation. Like before, no validation is done for override EDID. The firmware EDID is validated separately in the loader. Some unification and deduplication would be in order, to validate all of them at the drm_do_get_edid() level, like "real" EDIDs. v2: move firmware loading to core v3: rebase, commit message refresh Cc: Abdiel Janulgue <abdiel.janulgue@linux.intel.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Tested-by: Abdiel Janulgue <abdiel.janulgue@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Acked-by: Dave Airlie <airlied@gmail.com> Signed-off-by: Jani Nikula <jani.nikula@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/1e8a710bcac46e5136c1a7b430074893c81f364a.1505203831.git.jani.nikula@intel.com
2017-09-12 16:19:26 +08:00
drm-$(CONFIG_DRM_LOAD_EDID_FIRMWARE) += drm_edid_load.o
drm_kms_helper-y := drm_crtc_helper.o drm_dp_helper.o drm_probe_helper.o \
drm_plane_helper.o drm_dp_mst_topology.o drm_atomic_helper.o \
drm_kms_helper_common.o drm_dp_dual_mode_helper.o \
drm_simple_kms_helper.o drm_modeset_helper.o \
drm_scdc_helper.o drm_gem_framebuffer_helper.o \
drm_atomic_state_helper.o
drm_kms_helper-$(CONFIG_DRM_PANEL_BRIDGE) += bridge/panel.o
drm_kms_helper-$(CONFIG_DRM_FBDEV_EMULATION) += drm_fb_helper.o
drm_kms_helper-$(CONFIG_DRM_KMS_CMA_HELPER) += drm_fb_cma_helper.o
drm/dp: Add a drm_aux-dev module for reading/writing dpcd registers. This module is heavily based on i2c-dev. Once loaded, it provides one dev node per DP AUX channel, named drm_dp_auxN, where N is an integer. It's possible to know which connector owns this aux channel by looking at the respective sysfs /sys/class/drm_aux_dev/drm_dp_auxN/connector, if the connector device pointer was correctly set in the aux helper struct. Two main operations are provided on the registers read and write. The address of the register to be read or written is given using lseek. The seek position is updated upon read or write. v2: - lseek is used to select the register to read/write - read/write are used instead of ioctl - no blocking_notifier is used, just a direct callback v3: - use drm_dp_aux_dev prefix for public functions - chardev is named drm_dp_auxN - read/write don't allocate a buffer anymore, and transfer up to 16 bytes a time - remove notifier list from the implementation - option on menuconfig is now a boolean - add inline stub functions to avoid breakage when this option is disabled v4: - fix build system changes - actually disable this module when not selected. v5: - Use kref to avoid device closing while still in use - Don't use list, use an idr for storing aux_dev - Remove "connector" attribute - set aux.dev to the connector drm_connector device, instead of drm_device v6: - Use atomic_t for usage count - Use a mutex instead of spinlock for idr lock - Destroy chardev immediately on unregister - other minor suggestions from Ville v7: - style fixes - error handling fixes v8: - more error handling fixes v9: - remove module_init and module_exit, and add drm_dp_aux_dev_init/exit to drm_kms_helper_init/exit. Signed-off-by: Rafael Antognolli <rafael.antognolli@intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: http://patchwork.freedesktop.org/patch/msgid/1453417821-2811-3-git-send-email-rafael.antognolli@intel.com
2016-01-22 07:10:19 +08:00
drm_kms_helper-$(CONFIG_DRM_DP_AUX_CHARDEV) += drm_dp_aux_dev.o
drm_kms_helper-$(CONFIG_DRM_DP_CEC) += drm_dp_cec.o
obj-$(CONFIG_DRM_KMS_HELPER) += drm_kms_helper.o
obj-$(CONFIG_DRM_DEBUG_SELFTEST) += selftests/
obj-$(CONFIG_DRM) += drm.o
obj-$(CONFIG_DRM_MIPI_DSI) += drm_mipi_dsi.o
obj-$(CONFIG_DRM_PANEL_ORIENTATION_QUIRKS) += drm_panel_orientation_quirks.o
obj-$(CONFIG_DRM_ARM) += arm/
obj-$(CONFIG_DRM_TTM) += ttm/
obj-$(CONFIG_DRM_SCHED) += scheduler/
obj-$(CONFIG_DRM_TDFX) += tdfx/
obj-$(CONFIG_DRM_R128) += r128/
obj-y += amd/lib/
obj-$(CONFIG_HSA_AMD) += amd/amdkfd/
obj-$(CONFIG_DRM_RADEON)+= radeon/
obj-$(CONFIG_DRM_AMDGPU)+= amd/amdgpu/
obj-$(CONFIG_DRM_MGA) += mga/
obj-$(CONFIG_DRM_I810) += i810/
obj-$(CONFIG_DRM_I915) += i915/
obj-$(CONFIG_DRM_MGAG200) += mgag200/
obj-$(CONFIG_DRM_V3D) += v3d/
obj-$(CONFIG_DRM_VC4) += vc4/
obj-$(CONFIG_DRM_CIRRUS_QEMU) += cirrus/
obj-$(CONFIG_DRM_SIS) += sis/
obj-$(CONFIG_DRM_SAVAGE)+= savage/
obj-$(CONFIG_DRM_VMWGFX)+= vmwgfx/
obj-$(CONFIG_DRM_VIA) +=via/
obj-$(CONFIG_DRM_VGEM) += vgem/
obj-$(CONFIG_DRM_VKMS) += vkms/
obj-$(CONFIG_DRM_NOUVEAU) +=nouveau/
DRM: add DRM Driver for Samsung SoC EXYNOS4210. This patch is a DRM Driver for Samsung SoC Exynos4210 and now enables only FIMD yet but we will add HDMI support also in the future. this patch is based on git repository below: git://people.freedesktop.org/~airlied/linux.git branch name: drm-next commit-id: 88ef4e3f4f616462b78a7838eb3ffc3818d30f67 you can refer to our working repository below: http://git.infradead.org/users/kmpark/linux-2.6-samsung branch name: samsung-drm We tried to re-use lowlevel codes of the FIMD driver(s3c-fb.c based on Linux framebuffer) but couldn't so because lowlevel codes of s3c-fb.c are included internally and so FIMD module of this driver has its own lowlevel codes. We used GEM framework for buffer management and DMA APIs(dma_alloc_*) for buffer allocation so we can allocate physically continuous memory for DMA through it and also we could use CMA later if CMA is applied to mainline. Refer to this link for CMA(Continuous Memory Allocator): http://lkml.org/lkml/2011/7/20/45 this driver supports only physically continuous memory(non-iommu). Links to previous versions of the patchset: v1: < https://lwn.net/Articles/454380/ > v2: < http://www.spinics.net/lists/kernel/msg1224275.html > v3: < http://www.spinics.net/lists/dri-devel/msg13755.html > v4: < http://permalink.gmane.org/gmane.comp.video.dri.devel/60439 > v5: < http://comments.gmane.org/gmane.comp.video.dri.devel/60802 > Changelog v2: DRM: add DRM_IOCTL_SAMSUNG_GEM_MMAP ioctl command. this feature maps user address space to physical memory region once user application requests DRM_IOCTL_SAMSUNG_GEM_MMAP ioctl. DRM: code clean and add exception codes. Changelog v3: DRM: Support multiple irq. FIMD and HDMI have their own irq handler but DRM Framework can regiter only one irq handler this patch supports mutiple irq for Samsung SoC. DRM: Consider modularization. each DRM, FIMD could be built as a module. DRM: Have indenpendent crtc object. crtc isn't specific to SoC Platform so this patch gets a crtc to be used as common object. created crtc could be attached to any encoder object. DRM: code clean and add exception codes. Changelog v4: DRM: remove is_defult from samsung_fb. is_default isn't used for default framebuffer. DRM: code refactoring to fimd module. this patch is be considered with multiple display objects and would use its own request_irq() to register a irq handler instead of drm framework's one. DRM: remove find_samsung_drm_gem_object() DRM: move kernel private data structures and definitions to driver folder. samsung_drm.h would contain only public information for userspace ioctl interface. DRM: code refactoring to gem modules. buffer module isn't dependent of gem module anymore. DRM: fixed security issue. DRM: remove encoder porinter from specific connector. samsung connector doesn't need to have generic encoder. DRM: code clean and add exception codes. Changelog v5: DRM: updated fimd(display controller) driver. added various pixel formats, color key and pixel blending features. DRM: removed end_buf_off from samsung_drm_overlay structure. this variable isn't used and end buffer address would be calculated by each sub driver. DRM: use generic function for mmap_offset. replaced samsung_drm_gem_create_mmap_offset() and samsung_drm_free_mmap_offset() with generic ones applied to mainline recentrly. DRM: removed unnecessary codes and added exception codes. DRM: added comments and code clean. Changelog v6: DRM: added default config options. DRM: added padding for 64-bit align. DRM: changed prefix 'samsung' to 'exynos' Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Reviewed-by: Dave Airlie <airlied@redhat.com> Reviewed-by: Rob Clark <robdclark@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2011-10-04 18:19:01 +08:00
obj-$(CONFIG_DRM_EXYNOS) +=exynos/
obj-$(CONFIG_DRM_ROCKCHIP) +=rockchip/
obj-$(CONFIG_DRM_GMA500) += gma500/
obj-$(CONFIG_DRM_UDL) += udl/
obj-$(CONFIG_DRM_AST) += ast/
obj-$(CONFIG_DRM_ARMADA) += armada/
obj-$(CONFIG_DRM_ATMEL_HLCDC) += atmel-hlcdc/
obj-$(CONFIG_DRM_RCAR_DU) += rcar-du/
obj-$(CONFIG_DRM_SHMOBILE) +=shmobile/
obj-y += omapdrm/
obj-$(CONFIG_DRM_SUN4I) += sun4i/
obj-y += tilcdc/
obj-$(CONFIG_DRM_QXL) += qxl/
obj-$(CONFIG_DRM_BOCHS) += bochs/
obj-$(CONFIG_DRM_VIRTIO_GPU) += virtio/
obj-$(CONFIG_DRM_MSM) += msm/
obj-$(CONFIG_DRM_TEGRA) += tegra/
obj-$(CONFIG_DRM_STM) += stm/
obj-$(CONFIG_DRM_STI) += sti/
obj-$(CONFIG_DRM_IMX) += imx/
obj-$(CONFIG_DRM_MEDIATEK) += mediatek/
drm: Add support for Amlogic Meson Graphic Controller The Amlogic Meson Display controller is composed of several components : DMC|---------------VPU (Video Processing Unit)----------------|------HHI------| | vd1 _______ _____________ _________________ | | D |-------| |----| | | | | HDMI PLL | D | vd2 | VIU | | Video Post | | Video Encoders |<---|-----VCLK | R |-------| |----| Processing | | | | | | osd2 | | | |---| Enci ----------|----|-----VDAC------| R |-------| CSC |----| Scalers | | Encp ----------|----|----HDMI-TX----| A | osd1 | | | Blenders | | Encl ----------|----|---------------| M |-------|______|----|____________| |________________| | | ___|__________________________________________________________|_______________| VIU: Video Input Unit --------------------- The Video Input Unit is in charge of the pixel scanout from the DDR memory. It fetches the frames addresses, stride and parameters from the "Canvas" memory. This part is also in charge of the CSC (Colorspace Conversion). It can handle 2 OSD Planes and 2 Video Planes. VPP: Video Post Processing -------------------------- The Video Post Processing is in charge of the scaling and blending of the various planes into a single pixel stream. There is a special "pre-blending" used by the video planes with a dedicated scaler and a "post-blending" to merge with the OSD Planes. The OSD planes also have a dedicated scaler for one of the OSD. VENC: Video Encoders -------------------- The VENC is composed of the multiple pixel encoders : - ENCI : Interlace Video encoder for CVBS and Interlace HDMI - ENCP : Progressive Video Encoder for HDMI - ENCL : LCD LVDS Encoder The VENC Unit gets a Pixel Clocks (VCLK) from a dedicated HDMI PLL and clock tree and provides the scanout clock to the VPP and VIU. The ENCI is connected to a single VDAC for Composite Output. The ENCI and ENCP are connected to an on-chip HDMI Transceiver. This driver is a DRM/KMS driver using the following DRM components : - GEM-CMA - PRIME-CMA - Atomic Modesetting - FBDev-CMA For the following SoCs : - GXBB Family (S905) - GXL Family (S905X, S905D) - GXM Family (S912) The current driver only supports the CVBS PAL/NTSC output modes, but the CRTC/Planes management should support bigger modes. But Advanced Colorspace Conversion, Scaling and HDMI Modes will be added in a second time. The Device Tree bindings makes use of the endpoints video interface definitions to connect to the optional CVBS and in the future the HDMI Connector nodes. HDMI Support is planned for a next release. Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch> Signed-off-by: Neil Armstrong <narmstrong@baylibre.com>
2016-11-10 22:29:37 +08:00
obj-$(CONFIG_DRM_MESON) += meson/
obj-y += i2c/
obj-y += panel/
obj-y += bridge/
drm/layerscape: Add Freescale DCU DRM driver This patch add support for Two Dimensional Animation and Compositing Engine (2D-ACE) on the Freescale SoCs. 2D-ACE is a Freescale display controller. 2D-ACE describes the functionality of the module extremely well its name is a value that cannot be used as a token in programming languages. Instead the valid token "DCU" is used to tag the register names and function names. The Display Controller Unit (DCU) module is a system master that fetches graphics stored in internal or external memory and displays them on a TFT LCD panel. A wide range of panel sizes is supported and the timing of the interface signals is highly configurable. Graphics are read directly from memory and then blended in real-time, which allows for dynamic content creation with minimal CPU intervention. The features: (1) Full RGB888 output to TFT LCD panel. (2) Blending of each pixel using up to 4 source layers dependent on size of panel. (3) Each graphic layer can be placed with one pixel resolution in either axis. (4) Each graphic layer support RGB565 and RGB888 direct colors without alpha channel and BGRA8888 BGRA4444 ARGB1555 direct colors with an alpha channel and YUV422 format. (5) Each graphic layer support alpha blending with 8-bit resolution. This is a simplified version, only one primary plane, one framebuffer, one crtc, one connector and one encoder for TFT LCD panel. Signed-off-by: Alison Wang <b18965@freescale.com> Signed-off-by: Xiubo Li <lixiubo@cmss.chinamobile.com> Signed-off-by: Jianwei Wang <jianwei.wang.chn@gmail.com> Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-08-20 10:19:49 +08:00
obj-$(CONFIG_DRM_FSL_DCU) += fsl-dcu/
obj-$(CONFIG_DRM_ETNAVIV) += etnaviv/
obj-$(CONFIG_DRM_ARCPGU)+= arc/
obj-y += hisilicon/
obj-$(CONFIG_DRM_ZTE) += zte/
obj-$(CONFIG_DRM_MXSFB) += mxsfb/
obj-$(CONFIG_DRM_TINYDRM) += tinydrm/
obj-$(CONFIG_DRM_PL111) += pl111/
obj-$(CONFIG_DRM_TVE200) += tve200/
drm/xen-front: Add support for Xen PV display frontend Add support for Xen para-virtualized frontend display driver. Accompanying backend [1] is implemented as a user-space application and its helper library [2], capable of running as a Weston client or DRM master. Configuration of both backend and frontend is done via Xen guest domain configuration options [3]. Driver limitations: 1. Only primary plane without additional properties is supported. 2. Only one video mode supported which resolution is configured via XenStore. 3. All CRTCs operate at fixed frequency of 60Hz. 1. Implement Xen bus state machine for the frontend driver according to the state diagram and recovery flow from display para-virtualized protocol: xen/interface/io/displif.h. 2. Read configuration values from Xen store according to xen/interface/io/displif.h protocol: - read connector(s) configuration - read buffer allocation mode (backend/frontend) 3. Handle Xen event channels: - create for all configured connectors and publish corresponding ring references and event channels in Xen store, so backend can connect - implement event channels interrupt handlers - create and destroy event channels with respect to Xen bus state 4. Implement shared buffer handling according to the para-virtualized display device protocol at xen/interface/io/displif.h: - handle page directories according to displif protocol: - allocate and share page directories - grant references to the required set of pages for the page directory - allocate xen balllooned pages via Xen balloon driver with alloc_xenballooned_pages/free_xenballooned_pages - grant references to the required set of pages for the shared buffer itself - implement pages map/unmap for the buffers allocated by the backend (gnttab_map_refs/gnttab_unmap_refs) 5. Implement kernel modesetiing/connector handling using DRM simple KMS helper pipeline: - implement KMS part of the driver with the help of DRM simple pipepline helper which is possible due to the fact that the para-virtualized driver only supports a single (primary) plane: - initialize connectors according to XenStore configuration - handle frame done events from the backend - create and destroy frame buffers and propagate those to the backend - propagate set/reset mode configuration to the backend on display enable/disable callbacks - send page flip request to the backend and implement logic for reporting backend IO errors on prepare fb callback - implement virtual connector handling: - support only pixel formats suitable for single plane modes - make sure the connector is always connected - support a single video mode as per para-virtualized driver configuration 6. Implement GEM handling depending on driver mode of operation: depending on the requirements for the para-virtualized environment, namely requirements dictated by the accompanying DRM/(v)GPU drivers running in both host and guest environments, number of operating modes of para-virtualized display driver are supported: - display buffers can be allocated by either frontend driver or backend - display buffers can be allocated to be contiguous in memory or not Note! Frontend driver itself has no dependency on contiguous memory for its operation. 6.1. Buffers allocated by the frontend driver. The below modes of operation are configured at compile-time via frontend driver's kernel configuration. 6.1.1. Front driver configured to use GEM CMA helpers This use-case is useful when used with accompanying DRM/vGPU driver in guest domain which was designed to only work with contiguous buffers, e.g. DRM driver based on GEM CMA helpers: such drivers can only import contiguous PRIME buffers, thus requiring frontend driver to provide such. In order to implement this mode of operation para-virtualized frontend driver can be configured to use GEM CMA helpers. 6.1.2. Front driver doesn't use GEM CMA If accompanying drivers can cope with non-contiguous memory then, to lower pressure on CMA subsystem of the kernel, driver can allocate buffers from system memory. Note! If used with accompanying DRM/(v)GPU drivers this mode of operation may require IOMMU support on the platform, so accompanying DRM/vGPU hardware can still reach display buffer memory while importing PRIME buffers from the frontend driver. 6.2. Buffers allocated by the backend This mode of operation is run-time configured via guest domain configuration through XenStore entries. For systems which do not provide IOMMU support, but having specific requirements for display buffers it is possible to allocate such buffers at backend side and share those with the frontend. For example, if host domain is 1:1 mapped and has DRM/GPU hardware expecting physically contiguous memory, this allows implementing zero-copying use-cases. Note, while using this scenario the following should be considered: a) If guest domain dies then pages/grants received from the backend cannot be claimed back b) Misbehaving guest may send too many requests to the backend exhausting its grant references and memory (consider this from security POV). Note! Configuration options 1.1 (contiguous display buffers) and 2 (backend allocated buffers) are not supported at the same time. 7. Handle communication with the backend: - send requests and wait for the responses according to the displif protocol - serialize access to the communication channel - time-out used for backend communication is set to 3000 ms - manage display buffers shared with the backend [1] https://github.com/xen-troops/displ_be [2] https://github.com/xen-troops/libxenbe [3] https://xenbits.xen.org/gitweb/?p=xen.git;a=blob;f=docs/man/xl.cfg.pod.5.in;h=a699367779e2ae1212ff8f638eff0206ec1a1cc9;hb=refs/heads/master#l1257 Signed-off-by: Oleksandr Andrushchenko <oleksandr_andrushchenko@epam.com> Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: https://patchwork.freedesktop.org/patch/msgid/20180403112317.28751-2-andr2000@gmail.com
2018-04-03 19:23:17 +08:00
obj-$(CONFIG_DRM_XEN) += xen/