linux/drivers/iio/accel/bmc150-accel-core.c

1751 lines
44 KiB
C
Raw Normal View History

/*
* 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
* - BMC150
* - BMI055
* - BMA255
* - BMA250E
* - BMA222E
* - BMA280
*
* Copyright (c) 2014, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/acpi.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/buffer.h>
#include <linux/iio/events.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/regmap.h>
#include "bmc150-accel.h"
#define BMC150_ACCEL_DRV_NAME "bmc150_accel"
#define BMC150_ACCEL_IRQ_NAME "bmc150_accel_event"
#define BMC150_ACCEL_REG_CHIP_ID 0x00
#define BMC150_ACCEL_REG_INT_STATUS_2 0x0B
#define BMC150_ACCEL_ANY_MOTION_MASK 0x07
#define BMC150_ACCEL_ANY_MOTION_BIT_X BIT(0)
#define BMC150_ACCEL_ANY_MOTION_BIT_Y BIT(1)
#define BMC150_ACCEL_ANY_MOTION_BIT_Z BIT(2)
#define BMC150_ACCEL_ANY_MOTION_BIT_SIGN BIT(3)
#define BMC150_ACCEL_REG_PMU_LPW 0x11
#define BMC150_ACCEL_PMU_MODE_MASK 0xE0
#define BMC150_ACCEL_PMU_MODE_SHIFT 5
#define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK 0x17
#define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT 1
#define BMC150_ACCEL_REG_PMU_RANGE 0x0F
#define BMC150_ACCEL_DEF_RANGE_2G 0x03
#define BMC150_ACCEL_DEF_RANGE_4G 0x05
#define BMC150_ACCEL_DEF_RANGE_8G 0x08
#define BMC150_ACCEL_DEF_RANGE_16G 0x0C
/* Default BW: 125Hz */
#define BMC150_ACCEL_REG_PMU_BW 0x10
#define BMC150_ACCEL_DEF_BW 125
#define BMC150_ACCEL_REG_INT_MAP_0 0x19
#define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE BIT(2)
#define BMC150_ACCEL_REG_INT_MAP_1 0x1A
#define BMC150_ACCEL_INT_MAP_1_BIT_DATA BIT(0)
#define BMC150_ACCEL_INT_MAP_1_BIT_FWM BIT(1)
#define BMC150_ACCEL_INT_MAP_1_BIT_FFULL BIT(2)
#define BMC150_ACCEL_REG_INT_RST_LATCH 0x21
#define BMC150_ACCEL_INT_MODE_LATCH_RESET 0x80
#define BMC150_ACCEL_INT_MODE_LATCH_INT 0x0F
#define BMC150_ACCEL_INT_MODE_NON_LATCH_INT 0x00
#define BMC150_ACCEL_REG_INT_EN_0 0x16
#define BMC150_ACCEL_INT_EN_BIT_SLP_X BIT(0)
#define BMC150_ACCEL_INT_EN_BIT_SLP_Y BIT(1)
#define BMC150_ACCEL_INT_EN_BIT_SLP_Z BIT(2)
#define BMC150_ACCEL_REG_INT_EN_1 0x17
#define BMC150_ACCEL_INT_EN_BIT_DATA_EN BIT(4)
#define BMC150_ACCEL_INT_EN_BIT_FFULL_EN BIT(5)
#define BMC150_ACCEL_INT_EN_BIT_FWM_EN BIT(6)
#define BMC150_ACCEL_REG_INT_OUT_CTRL 0x20
#define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL BIT(0)
#define BMC150_ACCEL_REG_INT_5 0x27
#define BMC150_ACCEL_SLOPE_DUR_MASK 0x03
#define BMC150_ACCEL_REG_INT_6 0x28
#define BMC150_ACCEL_SLOPE_THRES_MASK 0xFF
/* Slope duration in terms of number of samples */
#define BMC150_ACCEL_DEF_SLOPE_DURATION 1
/* in terms of multiples of g's/LSB, based on range */
#define BMC150_ACCEL_DEF_SLOPE_THRESHOLD 1
#define BMC150_ACCEL_REG_XOUT_L 0x02
#define BMC150_ACCEL_MAX_STARTUP_TIME_MS 100
/* Sleep Duration values */
#define BMC150_ACCEL_SLEEP_500_MICRO 0x05
#define BMC150_ACCEL_SLEEP_1_MS 0x06
#define BMC150_ACCEL_SLEEP_2_MS 0x07
#define BMC150_ACCEL_SLEEP_4_MS 0x08
#define BMC150_ACCEL_SLEEP_6_MS 0x09
#define BMC150_ACCEL_SLEEP_10_MS 0x0A
#define BMC150_ACCEL_SLEEP_25_MS 0x0B
#define BMC150_ACCEL_SLEEP_50_MS 0x0C
#define BMC150_ACCEL_SLEEP_100_MS 0x0D
#define BMC150_ACCEL_SLEEP_500_MS 0x0E
#define BMC150_ACCEL_SLEEP_1_SEC 0x0F
#define BMC150_ACCEL_REG_TEMP 0x08
#define BMC150_ACCEL_TEMP_CENTER_VAL 24
#define BMC150_ACCEL_AXIS_TO_REG(axis) (BMC150_ACCEL_REG_XOUT_L + (axis * 2))
#define BMC150_AUTO_SUSPEND_DELAY_MS 2000
#define BMC150_ACCEL_REG_FIFO_STATUS 0x0E
#define BMC150_ACCEL_REG_FIFO_CONFIG0 0x30
#define BMC150_ACCEL_REG_FIFO_CONFIG1 0x3E
#define BMC150_ACCEL_REG_FIFO_DATA 0x3F
#define BMC150_ACCEL_FIFO_LENGTH 32
enum bmc150_accel_axis {
AXIS_X,
AXIS_Y,
AXIS_Z,
AXIS_MAX,
};
enum bmc150_power_modes {
BMC150_ACCEL_SLEEP_MODE_NORMAL,
BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
BMC150_ACCEL_SLEEP_MODE_LPM,
BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
};
struct bmc150_scale_info {
int scale;
u8 reg_range;
};
struct bmc150_accel_chip_info {
const char *name;
u8 chip_id;
const struct iio_chan_spec *channels;
int num_channels;
const struct bmc150_scale_info scale_table[4];
};
struct bmc150_accel_interrupt {
const struct bmc150_accel_interrupt_info *info;
atomic_t users;
};
struct bmc150_accel_trigger {
struct bmc150_accel_data *data;
struct iio_trigger *indio_trig;
int (*setup)(struct bmc150_accel_trigger *t, bool state);
int intr;
bool enabled;
};
enum bmc150_accel_interrupt_id {
BMC150_ACCEL_INT_DATA_READY,
BMC150_ACCEL_INT_ANY_MOTION,
BMC150_ACCEL_INT_WATERMARK,
BMC150_ACCEL_INTERRUPTS,
};
enum bmc150_accel_trigger_id {
BMC150_ACCEL_TRIGGER_DATA_READY,
BMC150_ACCEL_TRIGGER_ANY_MOTION,
BMC150_ACCEL_TRIGGERS,
};
struct bmc150_accel_data {
struct regmap *regmap;
struct device *dev;
int irq;
struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS];
atomic_t active_intr;
struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS];
struct mutex mutex;
u8 fifo_mode, watermark;
s16 buffer[8];
u8 bw_bits;
u32 slope_dur;
u32 slope_thres;
u32 range;
int ev_enable_state;
int64_t timestamp, old_timestamp; /* Only used in hw fifo mode. */
const struct bmc150_accel_chip_info *chip_info;
};
static const struct {
int val;
int val2;
u8 bw_bits;
} bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
{31, 260000, 0x09},
{62, 500000, 0x0A},
{125, 0, 0x0B},
{250, 0, 0x0C},
{500, 0, 0x0D},
{1000, 0, 0x0E},
{2000, 0, 0x0F} };
static const struct {
int bw_bits;
int msec;
} bmc150_accel_sample_upd_time[] = { {0x08, 64},
{0x09, 32},
{0x0A, 16},
{0x0B, 8},
{0x0C, 4},
{0x0D, 2},
{0x0E, 1},
{0x0F, 1} };
static const struct {
int sleep_dur;
u8 reg_value;
} bmc150_accel_sleep_value_table[] = { {0, 0},
{500, BMC150_ACCEL_SLEEP_500_MICRO},
{1000, BMC150_ACCEL_SLEEP_1_MS},
{2000, BMC150_ACCEL_SLEEP_2_MS},
{4000, BMC150_ACCEL_SLEEP_4_MS},
{6000, BMC150_ACCEL_SLEEP_6_MS},
{10000, BMC150_ACCEL_SLEEP_10_MS},
{25000, BMC150_ACCEL_SLEEP_25_MS},
{50000, BMC150_ACCEL_SLEEP_50_MS},
{100000, BMC150_ACCEL_SLEEP_100_MS},
{500000, BMC150_ACCEL_SLEEP_500_MS},
{1000000, BMC150_ACCEL_SLEEP_1_SEC} };
static const struct regmap_config bmc150_i2c_regmap_conf = {
.reg_bits = 8,
.val_bits = 8,
.max_register = 0x3f,
};
static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
enum bmc150_power_modes mode,
int dur_us)
{
int i;
int ret;
u8 lpw_bits;
int dur_val = -1;
if (dur_us > 0) {
for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
++i) {
if (bmc150_accel_sleep_value_table[i].sleep_dur ==
dur_us)
dur_val =
bmc150_accel_sleep_value_table[i].reg_value;
}
} else {
dur_val = 0;
}
if (dur_val < 0)
return -EINVAL;
lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);
dev_dbg(data->dev, "Set Mode bits %x\n", lpw_bits);
ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
if (ret < 0) {
dev_err(data->dev, "Error writing reg_pmu_lpw\n");
return ret;
}
return 0;
}
static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
int val2)
{
int i;
int ret;
for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
if (bmc150_accel_samp_freq_table[i].val == val &&
bmc150_accel_samp_freq_table[i].val2 == val2) {
ret = regmap_write(data->regmap,
BMC150_ACCEL_REG_PMU_BW,
bmc150_accel_samp_freq_table[i].bw_bits);
if (ret < 0)
return ret;
data->bw_bits =
bmc150_accel_samp_freq_table[i].bw_bits;
return 0;
}
}
return -EINVAL;
}
static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
{
int ret;
ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
data->slope_thres);
if (ret < 0) {
dev_err(data->dev, "Error writing reg_int_6\n");
return ret;
}
ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
if (ret < 0) {
dev_err(data->dev, "Error updating reg_int_5\n");
return ret;
}
dev_dbg(data->dev, "%s: %x %x\n", __func__, data->slope_thres,
data->slope_dur);
return ret;
}
static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
bool state)
{
if (state)
return bmc150_accel_update_slope(t->data);
return 0;
}
static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
int *val2)
{
int i;
for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
*val = bmc150_accel_samp_freq_table[i].val;
*val2 = bmc150_accel_samp_freq_table[i].val2;
return IIO_VAL_INT_PLUS_MICRO;
}
}
return -EINVAL;
}
#ifdef CONFIG_PM
static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
{
int i;
for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
return bmc150_accel_sample_upd_time[i].msec;
}
return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
}
static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
{
int ret;
if (on) {
ret = pm_runtime_get_sync(data->dev);
} else {
pm_runtime_mark_last_busy(data->dev);
ret = pm_runtime_put_autosuspend(data->dev);
}
if (ret < 0) {
dev_err(data->dev,
"Failed: bmc150_accel_set_power_state for %d\n", on);
if (on)
pm_runtime_put_noidle(data->dev);
return ret;
}
return 0;
}
#else
static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
{
return 0;
}
#endif
static const struct bmc150_accel_interrupt_info {
u8 map_reg;
u8 map_bitmask;
u8 en_reg;
u8 en_bitmask;
} bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
{ /* data ready interrupt */
.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
.en_reg = BMC150_ACCEL_REG_INT_EN_1,
.en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
},
{ /* motion interrupt */
.map_reg = BMC150_ACCEL_REG_INT_MAP_0,
.map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
.en_reg = BMC150_ACCEL_REG_INT_EN_0,
.en_bitmask = BMC150_ACCEL_INT_EN_BIT_SLP_X |
BMC150_ACCEL_INT_EN_BIT_SLP_Y |
BMC150_ACCEL_INT_EN_BIT_SLP_Z
},
{ /* fifo watermark interrupt */
.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
.en_reg = BMC150_ACCEL_REG_INT_EN_1,
.en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
},
};
static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
struct bmc150_accel_data *data)
{
int i;
for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
data->interrupts[i].info = &bmc150_accel_interrupts[i];
}
static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
bool state)
{
struct bmc150_accel_interrupt *intr = &data->interrupts[i];
const struct bmc150_accel_interrupt_info *info = intr->info;
int ret;
if (state) {
if (atomic_inc_return(&intr->users) > 1)
return 0;
} else {
if (atomic_dec_return(&intr->users) > 0)
return 0;
}
/*
* We will expect the enable and disable to do operation in reverse
* order. This will happen here anyway, as our resume operation uses
* sync mode runtime pm calls. The suspend operation will be delayed
* by autosuspend delay.
* So the disable operation will still happen in reverse order of
* enable operation. When runtime pm is disabled the mode is always on,
* so sequence doesn't matter.
*/
ret = bmc150_accel_set_power_state(data, state);
if (ret < 0)
return ret;
/* map the interrupt to the appropriate pins */
ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
(state ? info->map_bitmask : 0));
if (ret < 0) {
dev_err(data->dev, "Error updating reg_int_map\n");
goto out_fix_power_state;
}
/* enable/disable the interrupt */
ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
(state ? info->en_bitmask : 0));
if (ret < 0) {
dev_err(data->dev, "Error updating reg_int_en\n");
goto out_fix_power_state;
}
if (state)
atomic_inc(&data->active_intr);
else
atomic_dec(&data->active_intr);
return 0;
out_fix_power_state:
bmc150_accel_set_power_state(data, false);
return ret;
}
static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
{
int ret, i;
for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
if (data->chip_info->scale_table[i].scale == val) {
ret = regmap_write(data->regmap,
BMC150_ACCEL_REG_PMU_RANGE,
data->chip_info->scale_table[i].reg_range);
if (ret < 0) {
dev_err(data->dev,
"Error writing pmu_range\n");
return ret;
}
data->range = data->chip_info->scale_table[i].reg_range;
return 0;
}
}
return -EINVAL;
}
static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
{
int ret;
unsigned int value;
mutex_lock(&data->mutex);
ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
if (ret < 0) {
dev_err(data->dev, "Error reading reg_temp\n");
mutex_unlock(&data->mutex);
return ret;
}
*val = sign_extend32(value, 7);
mutex_unlock(&data->mutex);
return IIO_VAL_INT;
}
static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
struct iio_chan_spec const *chan,
int *val)
{
int ret;
int axis = chan->scan_index;
unsigned int raw_val;
mutex_lock(&data->mutex);
ret = bmc150_accel_set_power_state(data, true);
if (ret < 0) {
mutex_unlock(&data->mutex);
return ret;
}
ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
&raw_val, 2);
if (ret < 0) {
dev_err(data->dev, "Error reading axis %d\n", axis);
bmc150_accel_set_power_state(data, false);
mutex_unlock(&data->mutex);
return ret;
}
*val = sign_extend32(raw_val >> chan->scan_type.shift,
chan->scan_type.realbits - 1);
ret = bmc150_accel_set_power_state(data, false);
mutex_unlock(&data->mutex);
if (ret < 0)
return ret;
return IIO_VAL_INT;
}
static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct bmc150_accel_data *data = iio_priv(indio_dev);
int ret;
switch (mask) {
case IIO_CHAN_INFO_RAW:
switch (chan->type) {
case IIO_TEMP:
return bmc150_accel_get_temp(data, val);
case IIO_ACCEL:
if (iio_buffer_enabled(indio_dev))
return -EBUSY;
else
return bmc150_accel_get_axis(data, chan, val);
default:
return -EINVAL;
}
case IIO_CHAN_INFO_OFFSET:
if (chan->type == IIO_TEMP) {
*val = BMC150_ACCEL_TEMP_CENTER_VAL;
return IIO_VAL_INT;
} else {
return -EINVAL;
}
case IIO_CHAN_INFO_SCALE:
*val = 0;
switch (chan->type) {
case IIO_TEMP:
*val2 = 500000;
return IIO_VAL_INT_PLUS_MICRO;
case IIO_ACCEL:
{
int i;
const struct bmc150_scale_info *si;
int st_size = ARRAY_SIZE(data->chip_info->scale_table);
for (i = 0; i < st_size; ++i) {
si = &data->chip_info->scale_table[i];
if (si->reg_range == data->range) {
*val2 = si->scale;
return IIO_VAL_INT_PLUS_MICRO;
}
}
return -EINVAL;
}
default:
return -EINVAL;
}
case IIO_CHAN_INFO_SAMP_FREQ:
mutex_lock(&data->mutex);
ret = bmc150_accel_get_bw(data, val, val2);
mutex_unlock(&data->mutex);
return ret;
default:
return -EINVAL;
}
}
static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct bmc150_accel_data *data = iio_priv(indio_dev);
int ret;
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
mutex_lock(&data->mutex);
ret = bmc150_accel_set_bw(data, val, val2);
mutex_unlock(&data->mutex);
break;
case IIO_CHAN_INFO_SCALE:
if (val)
return -EINVAL;
mutex_lock(&data->mutex);
ret = bmc150_accel_set_scale(data, val2);
mutex_unlock(&data->mutex);
return ret;
default:
ret = -EINVAL;
}
return ret;
}
static int bmc150_accel_read_event(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info,
int *val, int *val2)
{
struct bmc150_accel_data *data = iio_priv(indio_dev);
*val2 = 0;
switch (info) {
case IIO_EV_INFO_VALUE:
*val = data->slope_thres;
break;
case IIO_EV_INFO_PERIOD:
*val = data->slope_dur;
break;
default:
return -EINVAL;
}
return IIO_VAL_INT;
}
static int bmc150_accel_write_event(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info,
int val, int val2)
{
struct bmc150_accel_data *data = iio_priv(indio_dev);
if (data->ev_enable_state)
return -EBUSY;
switch (info) {
case IIO_EV_INFO_VALUE:
data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
break;
case IIO_EV_INFO_PERIOD:
data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
break;
default:
return -EINVAL;
}
return 0;
}
static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir)
{
struct bmc150_accel_data *data = iio_priv(indio_dev);
return data->ev_enable_state;
}
static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
int state)
{
struct bmc150_accel_data *data = iio_priv(indio_dev);
int ret;
if (state == data->ev_enable_state)
return 0;
mutex_lock(&data->mutex);
ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
state);
if (ret < 0) {
mutex_unlock(&data->mutex);
return ret;
}
data->ev_enable_state = state;
mutex_unlock(&data->mutex);
return 0;
}
static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
struct iio_trigger *trig)
{
struct bmc150_accel_data *data = iio_priv(indio_dev);
int i;
for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
if (data->triggers[i].indio_trig == trig)
return 0;
}
return -EINVAL;
}
static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct bmc150_accel_data *data = iio_priv(indio_dev);
int wm;
mutex_lock(&data->mutex);
wm = data->watermark;
mutex_unlock(&data->mutex);
return sprintf(buf, "%d\n", wm);
}
static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct bmc150_accel_data *data = iio_priv(indio_dev);
bool state;
mutex_lock(&data->mutex);
state = data->fifo_mode;
mutex_unlock(&data->mutex);
return sprintf(buf, "%d\n", state);
}
static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
static IIO_CONST_ATTR(hwfifo_watermark_max,
__stringify(BMC150_ACCEL_FIFO_LENGTH));
static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
bmc150_accel_get_fifo_state, NULL, 0);
static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
bmc150_accel_get_fifo_watermark, NULL, 0);
static const struct attribute *bmc150_accel_fifo_attributes[] = {
&iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
&iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
&iio_dev_attr_hwfifo_watermark.dev_attr.attr,
&iio_dev_attr_hwfifo_enabled.dev_attr.attr,
NULL,
};
static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
{
struct bmc150_accel_data *data = iio_priv(indio_dev);
if (val > BMC150_ACCEL_FIFO_LENGTH)
val = BMC150_ACCEL_FIFO_LENGTH;
mutex_lock(&data->mutex);
data->watermark = val;
mutex_unlock(&data->mutex);
return 0;
}
/*
* We must read at least one full frame in one burst, otherwise the rest of the
* frame data is discarded.
*/
static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
char *buffer, int samples)
{
int sample_length = 3 * 2;
int ret;
int total_length = samples * sample_length;
int i;
size_t step = regmap_get_raw_read_max(data->regmap);
if (!step || step > total_length)
step = total_length;
else if (step < total_length)
step = sample_length;
/*
* Seems we have a bus with size limitation so we have to execute
* multiple reads
*/
for (i = 0; i < total_length; i += step) {
ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
&buffer[i], step);
if (ret)
break;
}
if (ret)
dev_err(data->dev, "Error transferring data from fifo in single steps of %zu\n",
step);
return ret;
}
static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
unsigned samples, bool irq)
{
struct bmc150_accel_data *data = iio_priv(indio_dev);
int ret, i;
u8 count;
u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
int64_t tstamp;
uint64_t sample_period;
unsigned int val;
ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
if (ret < 0) {
dev_err(data->dev, "Error reading reg_fifo_status\n");
return ret;
}
count = val & 0x7F;
if (!count)
return 0;
/*
* If we getting called from IRQ handler we know the stored timestamp is
* fairly accurate for the last stored sample. Otherwise, if we are
* called as a result of a read operation from userspace and hence
* before the watermark interrupt was triggered, take a timestamp
* now. We can fall anywhere in between two samples so the error in this
* case is at most one sample period.
*/
if (!irq) {
data->old_timestamp = data->timestamp;
data->timestamp = iio_get_time_ns();
}
/*
* Approximate timestamps for each of the sample based on the sampling
* frequency, timestamp for last sample and number of samples.
*
* Note that we can't use the current bandwidth settings to compute the
* sample period because the sample rate varies with the device
* (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
* small variation adds when we store a large number of samples and
* creates significant jitter between the last and first samples in
* different batches (e.g. 32ms vs 21ms).
*
* To avoid this issue we compute the actual sample period ourselves
* based on the timestamp delta between the last two flush operations.
*/
sample_period = (data->timestamp - data->old_timestamp);
do_div(sample_period, count);
tstamp = data->timestamp - (count - 1) * sample_period;
if (samples && count > samples)
count = samples;
ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
if (ret)
return ret;
/*
* Ideally we want the IIO core to handle the demux when running in fifo
* mode but not when running in triggered buffer mode. Unfortunately
* this does not seem to be possible, so stick with driver demux for
* now.
*/
for (i = 0; i < count; i++) {
u16 sample[8];
int j, bit;
j = 0;
for_each_set_bit(bit, indio_dev->active_scan_mask,
indio_dev->masklength)
memcpy(&sample[j++], &buffer[i * 3 + bit], 2);
iio_push_to_buffers_with_timestamp(indio_dev, sample, tstamp);
tstamp += sample_period;
}
return count;
}
static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
{
struct bmc150_accel_data *data = iio_priv(indio_dev);
int ret;
mutex_lock(&data->mutex);
ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
mutex_unlock(&data->mutex);
return ret;
}
static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
"15.620000 31.260000 62.50000 125 250 500 1000 2000");
static struct attribute *bmc150_accel_attributes[] = {
&iio_const_attr_sampling_frequency_available.dev_attr.attr,
NULL,
};
static const struct attribute_group bmc150_accel_attrs_group = {
.attrs = bmc150_accel_attributes,
};
static const struct iio_event_spec bmc150_accel_event = {
.type = IIO_EV_TYPE_ROC,
.dir = IIO_EV_DIR_EITHER,
.mask_separate = BIT(IIO_EV_INFO_VALUE) |
BIT(IIO_EV_INFO_ENABLE) |
BIT(IIO_EV_INFO_PERIOD)
};
#define BMC150_ACCEL_CHANNEL(_axis, bits) { \
.type = IIO_ACCEL, \
.modified = 1, \
.channel2 = IIO_MOD_##_axis, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_SAMP_FREQ), \
.scan_index = AXIS_##_axis, \
.scan_type = { \
.sign = 's', \
.realbits = (bits), \
.storagebits = 16, \
.shift = 16 - (bits), \
.endianness = IIO_LE, \
}, \
.event_spec = &bmc150_accel_event, \
.num_event_specs = 1 \
}
#define BMC150_ACCEL_CHANNELS(bits) { \
{ \
.type = IIO_TEMP, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_OFFSET), \
.scan_index = -1, \
}, \
BMC150_ACCEL_CHANNEL(X, bits), \
BMC150_ACCEL_CHANNEL(Y, bits), \
BMC150_ACCEL_CHANNEL(Z, bits), \
IIO_CHAN_SOFT_TIMESTAMP(3), \
}
static const struct iio_chan_spec bma222e_accel_channels[] =
BMC150_ACCEL_CHANNELS(8);
static const struct iio_chan_spec bma250e_accel_channels[] =
BMC150_ACCEL_CHANNELS(10);
static const struct iio_chan_spec bmc150_accel_channels[] =
BMC150_ACCEL_CHANNELS(12);
static const struct iio_chan_spec bma280_accel_channels[] =
BMC150_ACCEL_CHANNELS(14);
static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
[bmc150] = {
.name = "BMC150A",
.chip_id = 0xFA,
.channels = bmc150_accel_channels,
.num_channels = ARRAY_SIZE(bmc150_accel_channels),
.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
{19122, BMC150_ACCEL_DEF_RANGE_4G},
{38344, BMC150_ACCEL_DEF_RANGE_8G},
{76590, BMC150_ACCEL_DEF_RANGE_16G} },
},
[bmi055] = {
.name = "BMI055A",
.chip_id = 0xFA,
.channels = bmc150_accel_channels,
.num_channels = ARRAY_SIZE(bmc150_accel_channels),
.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
{19122, BMC150_ACCEL_DEF_RANGE_4G},
{38344, BMC150_ACCEL_DEF_RANGE_8G},
{76590, BMC150_ACCEL_DEF_RANGE_16G} },
},
[bma255] = {
.name = "BMA0255",
.chip_id = 0xFA,
.channels = bmc150_accel_channels,
.num_channels = ARRAY_SIZE(bmc150_accel_channels),
.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
{19122, BMC150_ACCEL_DEF_RANGE_4G},
{38344, BMC150_ACCEL_DEF_RANGE_8G},
{76590, BMC150_ACCEL_DEF_RANGE_16G} },
},
[bma250e] = {
.name = "BMA250E",
.chip_id = 0xF9,
.channels = bma250e_accel_channels,
.num_channels = ARRAY_SIZE(bma250e_accel_channels),
.scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
{76590, BMC150_ACCEL_DEF_RANGE_4G},
{153277, BMC150_ACCEL_DEF_RANGE_8G},
{306457, BMC150_ACCEL_DEF_RANGE_16G} },
},
[bma222e] = {
.name = "BMA222E",
.chip_id = 0xF8,
.channels = bma222e_accel_channels,
.num_channels = ARRAY_SIZE(bma222e_accel_channels),
.scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
{306457, BMC150_ACCEL_DEF_RANGE_4G},
{612915, BMC150_ACCEL_DEF_RANGE_8G},
{1225831, BMC150_ACCEL_DEF_RANGE_16G} },
},
[bma280] = {
.name = "BMA0280",
.chip_id = 0xFB,
.channels = bma280_accel_channels,
.num_channels = ARRAY_SIZE(bma280_accel_channels),
.scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
{4785, BMC150_ACCEL_DEF_RANGE_4G},
{9581, BMC150_ACCEL_DEF_RANGE_8G},
{19152, BMC150_ACCEL_DEF_RANGE_16G} },
},
};
static const struct iio_info bmc150_accel_info = {
.attrs = &bmc150_accel_attrs_group,
.read_raw = bmc150_accel_read_raw,
.write_raw = bmc150_accel_write_raw,
.read_event_value = bmc150_accel_read_event,
.write_event_value = bmc150_accel_write_event,
.write_event_config = bmc150_accel_write_event_config,
.read_event_config = bmc150_accel_read_event_config,
.driver_module = THIS_MODULE,
};
static const struct iio_info bmc150_accel_info_fifo = {
.attrs = &bmc150_accel_attrs_group,
.read_raw = bmc150_accel_read_raw,
.write_raw = bmc150_accel_write_raw,
.read_event_value = bmc150_accel_read_event,
.write_event_value = bmc150_accel_write_event,
.write_event_config = bmc150_accel_write_event_config,
.read_event_config = bmc150_accel_read_event_config,
.validate_trigger = bmc150_accel_validate_trigger,
.hwfifo_set_watermark = bmc150_accel_set_watermark,
.hwfifo_flush_to_buffer = bmc150_accel_fifo_flush,
.driver_module = THIS_MODULE,
};
static const unsigned long bmc150_accel_scan_masks[] = {
BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
0};
static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct bmc150_accel_data *data = iio_priv(indio_dev);
int ret;
mutex_lock(&data->mutex);
ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L,
data->buffer, AXIS_MAX * 2);
mutex_unlock(&data->mutex);
if (ret < 0)
goto err_read;
iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
pf->timestamp);
err_read:
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static int bmc150_accel_trig_try_reen(struct iio_trigger *trig)
{
struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
struct bmc150_accel_data *data = t->data;
int ret;
/* new data interrupts don't need ack */
if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
return 0;
mutex_lock(&data->mutex);
/* clear any latched interrupt */
ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
BMC150_ACCEL_INT_MODE_LATCH_INT |
BMC150_ACCEL_INT_MODE_LATCH_RESET);
mutex_unlock(&data->mutex);
if (ret < 0) {
dev_err(data->dev,
"Error writing reg_int_rst_latch\n");
return ret;
}
return 0;
}
static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
bool state)
{
struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
struct bmc150_accel_data *data = t->data;
int ret;
mutex_lock(&data->mutex);
if (t->enabled == state) {
mutex_unlock(&data->mutex);
return 0;
}
if (t->setup) {
ret = t->setup(t, state);
if (ret < 0) {
mutex_unlock(&data->mutex);
return ret;
}
}
ret = bmc150_accel_set_interrupt(data, t->intr, state);
if (ret < 0) {
mutex_unlock(&data->mutex);
return ret;
}
t->enabled = state;
mutex_unlock(&data->mutex);
return ret;
}
static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
.set_trigger_state = bmc150_accel_trigger_set_state,
.try_reenable = bmc150_accel_trig_try_reen,
.owner = THIS_MODULE,
};
static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
{
struct bmc150_accel_data *data = iio_priv(indio_dev);
int dir;
int ret;
unsigned int val;
ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
if (ret < 0) {
dev_err(data->dev, "Error reading reg_int_status_2\n");
return ret;
}
if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
dir = IIO_EV_DIR_FALLING;
else
dir = IIO_EV_DIR_RISING;
if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
iio_push_event(indio_dev,
IIO_MOD_EVENT_CODE(IIO_ACCEL,
0,
IIO_MOD_X,
IIO_EV_TYPE_ROC,
dir),
data->timestamp);
if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
iio_push_event(indio_dev,
IIO_MOD_EVENT_CODE(IIO_ACCEL,
0,
IIO_MOD_Y,
IIO_EV_TYPE_ROC,
dir),
data->timestamp);
if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
iio_push_event(indio_dev,
IIO_MOD_EVENT_CODE(IIO_ACCEL,
0,
IIO_MOD_Z,
IIO_EV_TYPE_ROC,
dir),
data->timestamp);
return ret;
}
static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
{
struct iio_dev *indio_dev = private;
struct bmc150_accel_data *data = iio_priv(indio_dev);
bool ack = false;
int ret;
mutex_lock(&data->mutex);
if (data->fifo_mode) {
ret = __bmc150_accel_fifo_flush(indio_dev,
BMC150_ACCEL_FIFO_LENGTH, true);
if (ret > 0)
ack = true;
}
if (data->ev_enable_state) {
ret = bmc150_accel_handle_roc_event(indio_dev);
if (ret > 0)
ack = true;
}
if (ack) {
ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
BMC150_ACCEL_INT_MODE_LATCH_INT |
BMC150_ACCEL_INT_MODE_LATCH_RESET);
if (ret)
dev_err(data->dev, "Error writing reg_int_rst_latch\n");
ret = IRQ_HANDLED;
} else {
ret = IRQ_NONE;
}
mutex_unlock(&data->mutex);
return ret;
}
static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
{
struct iio_dev *indio_dev = private;
struct bmc150_accel_data *data = iio_priv(indio_dev);
bool ack = false;
int i;
data->old_timestamp = data->timestamp;
data->timestamp = iio_get_time_ns();
for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
if (data->triggers[i].enabled) {
iio_trigger_poll(data->triggers[i].indio_trig);
ack = true;
break;
}
}
if (data->ev_enable_state || data->fifo_mode)
return IRQ_WAKE_THREAD;
if (ack)
return IRQ_HANDLED;
return IRQ_NONE;
}
static const struct {
int intr;
const char *name;
int (*setup)(struct bmc150_accel_trigger *t, bool state);
} bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
{
.intr = 0,
.name = "%s-dev%d",
},
{
.intr = 1,
.name = "%s-any-motion-dev%d",
.setup = bmc150_accel_any_motion_setup,
},
};
static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
int from)
{
int i;
for (i = from; i >= 0; i--) {
if (data->triggers[i].indio_trig) {
iio_trigger_unregister(data->triggers[i].indio_trig);
data->triggers[i].indio_trig = NULL;
}
}
}
static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
struct bmc150_accel_data *data)
{
int i, ret;
for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
struct bmc150_accel_trigger *t = &data->triggers[i];
t->indio_trig = devm_iio_trigger_alloc(data->dev,
bmc150_accel_triggers[i].name,
indio_dev->name,
indio_dev->id);
if (!t->indio_trig) {
ret = -ENOMEM;
break;
}
t->indio_trig->dev.parent = data->dev;
t->indio_trig->ops = &bmc150_accel_trigger_ops;
t->intr = bmc150_accel_triggers[i].intr;
t->data = data;
t->setup = bmc150_accel_triggers[i].setup;
iio_trigger_set_drvdata(t->indio_trig, t);
ret = iio_trigger_register(t->indio_trig);
if (ret)
break;
}
if (ret)
bmc150_accel_unregister_triggers(data, i - 1);
return ret;
}
#define BMC150_ACCEL_FIFO_MODE_STREAM 0x80
#define BMC150_ACCEL_FIFO_MODE_FIFO 0x40
#define BMC150_ACCEL_FIFO_MODE_BYPASS 0x00
static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
{
u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
int ret;
ret = regmap_write(data->regmap, reg, data->fifo_mode);
if (ret < 0) {
dev_err(data->dev, "Error writing reg_fifo_config1\n");
return ret;
}
if (!data->fifo_mode)
return 0;
ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
data->watermark);
if (ret < 0)
dev_err(data->dev, "Error writing reg_fifo_config0\n");
return ret;
}
static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
{
struct bmc150_accel_data *data = iio_priv(indio_dev);
return bmc150_accel_set_power_state(data, true);
}
static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
{
struct bmc150_accel_data *data = iio_priv(indio_dev);
int ret = 0;
if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
return iio_triggered_buffer_postenable(indio_dev);
mutex_lock(&data->mutex);
if (!data->watermark)
goto out;
ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
true);
if (ret)
goto out;
data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;
ret = bmc150_accel_fifo_set_mode(data);
if (ret) {
data->fifo_mode = 0;
bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
false);
}
out:
mutex_unlock(&data->mutex);
return ret;
}
static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
{
struct bmc150_accel_data *data = iio_priv(indio_dev);
if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
return iio_triggered_buffer_predisable(indio_dev);
mutex_lock(&data->mutex);
if (!data->fifo_mode)
goto out;
bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
__bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
data->fifo_mode = 0;
bmc150_accel_fifo_set_mode(data);
out:
mutex_unlock(&data->mutex);
return 0;
}
static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
{
struct bmc150_accel_data *data = iio_priv(indio_dev);
return bmc150_accel_set_power_state(data, false);
}
static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
.preenable = bmc150_accel_buffer_preenable,
.postenable = bmc150_accel_buffer_postenable,
.predisable = bmc150_accel_buffer_predisable,
.postdisable = bmc150_accel_buffer_postdisable,
};
static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
{
int ret, i;
unsigned int val;
ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
if (ret < 0) {
dev_err(data->dev,
"Error: Reading chip id\n");
return ret;
}
dev_dbg(data->dev, "Chip Id %x\n", val);
for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
data->chip_info = &bmc150_accel_chip_info_tbl[i];
break;
}
}
if (!data->chip_info) {
dev_err(data->dev, "Invalid chip %x\n", val);
return -ENODEV;
}
ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
if (ret < 0)
return ret;
/* Set Bandwidth */
ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
if (ret < 0)
return ret;
/* Set Default Range */
ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
BMC150_ACCEL_DEF_RANGE_4G);
if (ret < 0) {
dev_err(data->dev,
"Error writing reg_pmu_range\n");
return ret;
}
data->range = BMC150_ACCEL_DEF_RANGE_4G;
/* Set default slope duration and thresholds */
data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
ret = bmc150_accel_update_slope(data);
if (ret < 0)
return ret;
/* Set default as latched interrupts */
ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
BMC150_ACCEL_INT_MODE_LATCH_INT |
BMC150_ACCEL_INT_MODE_LATCH_RESET);
if (ret < 0) {
dev_err(data->dev,
"Error writing reg_int_rst_latch\n");
return ret;
}
return 0;
}
int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
const char *name, bool block_supported)
{
struct bmc150_accel_data *data;
struct iio_dev *indio_dev;
int ret;
indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
if (!indio_dev)
return -ENOMEM;
data = iio_priv(indio_dev);
dev_set_drvdata(dev, indio_dev);
data->dev = dev;
data->irq = irq;
data->regmap = regmap;
ret = bmc150_accel_chip_init(data);
if (ret < 0)
return ret;
mutex_init(&data->mutex);
indio_dev->dev.parent = dev;
indio_dev->channels = data->chip_info->channels;
indio_dev->num_channels = data->chip_info->num_channels;
indio_dev->name = name ? name : data->chip_info->name;
indio_dev->available_scan_masks = bmc150_accel_scan_masks;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->info = &bmc150_accel_info;
ret = iio_triggered_buffer_setup(indio_dev,
&iio_pollfunc_store_time,
bmc150_accel_trigger_handler,
&bmc150_accel_buffer_ops);
if (ret < 0) {
dev_err(data->dev, "Failed: iio triggered buffer setup\n");
return ret;
}
if (data->irq > 0) {
ret = devm_request_threaded_irq(
data->dev, data->irq,
bmc150_accel_irq_handler,
bmc150_accel_irq_thread_handler,
IRQF_TRIGGER_RISING,
BMC150_ACCEL_IRQ_NAME,
indio_dev);
if (ret)
goto err_buffer_cleanup;
/*
* Set latched mode interrupt. While certain interrupts are
* non-latched regardless of this settings (e.g. new data) we
* want to use latch mode when we can to prevent interrupt
* flooding.
*/
ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
BMC150_ACCEL_INT_MODE_LATCH_RESET);
if (ret < 0) {
dev_err(data->dev, "Error writing reg_int_rst_latch\n");
goto err_buffer_cleanup;
}
bmc150_accel_interrupts_setup(indio_dev, data);
ret = bmc150_accel_triggers_setup(indio_dev, data);
if (ret)
goto err_buffer_cleanup;
if (block_supported) {
indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
indio_dev->info = &bmc150_accel_info_fifo;
indio_dev->buffer->attrs = bmc150_accel_fifo_attributes;
}
}
ret = pm_runtime_set_active(dev);
if (ret)
goto err_trigger_unregister;
pm_runtime_enable(dev);
pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
pm_runtime_use_autosuspend(dev);
ret = iio_device_register(indio_dev);
if (ret < 0) {
dev_err(dev, "Unable to register iio device\n");
goto err_trigger_unregister;
}
return 0;
err_trigger_unregister:
bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
err_buffer_cleanup:
iio_triggered_buffer_cleanup(indio_dev);
return ret;
}
EXPORT_SYMBOL_GPL(bmc150_accel_core_probe);
int bmc150_accel_core_remove(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct bmc150_accel_data *data = iio_priv(indio_dev);
iio_device_unregister(indio_dev);
pm_runtime_disable(data->dev);
pm_runtime_set_suspended(data->dev);
pm_runtime_put_noidle(data->dev);
bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
iio_triggered_buffer_cleanup(indio_dev);
mutex_lock(&data->mutex);
bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
mutex_unlock(&data->mutex);
return 0;
}
EXPORT_SYMBOL_GPL(bmc150_accel_core_remove);
#ifdef CONFIG_PM_SLEEP
static int bmc150_accel_suspend(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct bmc150_accel_data *data = iio_priv(indio_dev);
mutex_lock(&data->mutex);
bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
mutex_unlock(&data->mutex);
return 0;
}
static int bmc150_accel_resume(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct bmc150_accel_data *data = iio_priv(indio_dev);
mutex_lock(&data->mutex);
if (atomic_read(&data->active_intr))
bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
bmc150_accel_fifo_set_mode(data);
mutex_unlock(&data->mutex);
return 0;
}
#endif
#ifdef CONFIG_PM
static int bmc150_accel_runtime_suspend(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct bmc150_accel_data *data = iio_priv(indio_dev);
int ret;
dev_dbg(data->dev, __func__);
ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
if (ret < 0)
return -EAGAIN;
return 0;
}
static int bmc150_accel_runtime_resume(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct bmc150_accel_data *data = iio_priv(indio_dev);
int ret;
int sleep_val;
dev_dbg(data->dev, __func__);
ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
if (ret < 0)
return ret;
ret = bmc150_accel_fifo_set_mode(data);
if (ret < 0)
return ret;
sleep_val = bmc150_accel_get_startup_times(data);
if (sleep_val < 20)
usleep_range(sleep_val * 1000, 20000);
else
msleep_interruptible(sleep_val);
return 0;
}
#endif
const struct dev_pm_ops bmc150_accel_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
bmc150_accel_runtime_resume, NULL)
};
EXPORT_SYMBOL_GPL(bmc150_accel_pm_ops);
MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("BMC150 accelerometer driver");