linux/drivers/char/agp/generic.c

1425 lines
36 KiB
C
Raw Normal View History

/*
* AGPGART driver.
* Copyright (C) 2004 Silicon Graphics, Inc.
* Copyright (C) 2002-2005 Dave Jones.
* Copyright (C) 1999 Jeff Hartmann.
* Copyright (C) 1999 Precision Insight, Inc.
* Copyright (C) 1999 Xi Graphics, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* JEFF HARTMANN, OR ANY OTHER CONTRIBUTORS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* TODO:
* - Allocate more than order 0 pages to avoid too much linear map splitting.
*/
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/pagemap.h>
#include <linux/miscdevice.h>
#include <linux/pm.h>
#include <linux/agp_backend.h>
#include <linux/vmalloc.h>
#include <linux/dma-mapping.h>
#include <linux/mm.h>
#include <linux/sched.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <asm/io.h>
#include <asm/cacheflush.h>
#include <asm/pgtable.h>
#include "agp.h"
__u32 *agp_gatt_table;
int agp_memory_reserved;
/*
* Needed by the Nforce GART driver for the time being. Would be
* nice to do this some other way instead of needing this export.
*/
EXPORT_SYMBOL_GPL(agp_memory_reserved);
/*
* Generic routines for handling agp_memory structures -
* They use the basic page allocation routines to do the brunt of the work.
*/
void agp_free_key(int key)
{
if (key < 0)
return;
if (key < MAXKEY)
clear_bit(key, agp_bridge->key_list);
}
EXPORT_SYMBOL(agp_free_key);
static int agp_get_key(void)
{
int bit;
bit = find_first_zero_bit(agp_bridge->key_list, MAXKEY);
if (bit < MAXKEY) {
set_bit(bit, agp_bridge->key_list);
return bit;
}
return -1;
}
/*
* Use kmalloc if possible for the page list. Otherwise fall back to
* vmalloc. This speeds things up and also saves memory for small AGP
* regions.
*/
void agp_alloc_page_array(size_t size, struct agp_memory *mem)
{
mem->pages = NULL;
if (size <= 2*PAGE_SIZE)
mem->pages = kmalloc(size, GFP_KERNEL | __GFP_NOWARN);
if (mem->pages == NULL) {
mem->pages = vmalloc(size);
}
}
EXPORT_SYMBOL(agp_alloc_page_array);
static struct agp_memory *agp_create_user_memory(unsigned long num_agp_pages)
{
struct agp_memory *new;
unsigned long alloc_size = num_agp_pages*sizeof(struct page *);
if (INT_MAX/sizeof(struct page *) < num_agp_pages)
return NULL;
new = kzalloc(sizeof(struct agp_memory), GFP_KERNEL);
if (new == NULL)
return NULL;
new->key = agp_get_key();
if (new->key < 0) {
kfree(new);
return NULL;
}
agp_alloc_page_array(alloc_size, new);
if (new->pages == NULL) {
agp_free_key(new->key);
kfree(new);
return NULL;
}
new->num_scratch_pages = 0;
return new;
}
struct agp_memory *agp_create_memory(int scratch_pages)
{
struct agp_memory *new;
new = kzalloc(sizeof(struct agp_memory), GFP_KERNEL);
if (new == NULL)
return NULL;
new->key = agp_get_key();
if (new->key < 0) {
kfree(new);
return NULL;
}
agp_alloc_page_array(PAGE_SIZE * scratch_pages, new);
if (new->pages == NULL) {
agp_free_key(new->key);
kfree(new);
return NULL;
}
new->num_scratch_pages = scratch_pages;
new->type = AGP_NORMAL_MEMORY;
return new;
}
EXPORT_SYMBOL(agp_create_memory);
/**
* agp_free_memory - free memory associated with an agp_memory pointer.
*
* @curr: agp_memory pointer to be freed.
*
* It is the only function that can be called when the backend is not owned
* by the caller. (So it can free memory on client death.)
*/
void agp_free_memory(struct agp_memory *curr)
{
size_t i;
if (curr == NULL)
return;
if (curr->is_bound)
agp_unbind_memory(curr);
if (curr->type >= AGP_USER_TYPES) {
agp_generic_free_by_type(curr);
return;
}
if (curr->type != 0) {
curr->bridge->driver->free_by_type(curr);
return;
}
if (curr->page_count != 0) {
if (curr->bridge->driver->agp_destroy_pages) {
curr->bridge->driver->agp_destroy_pages(curr);
} else {
for (i = 0; i < curr->page_count; i++) {
curr->bridge->driver->agp_destroy_page(
curr->pages[i],
AGP_PAGE_DESTROY_UNMAP);
}
for (i = 0; i < curr->page_count; i++) {
curr->bridge->driver->agp_destroy_page(
curr->pages[i],
AGP_PAGE_DESTROY_FREE);
}
}
}
agp_free_key(curr->key);
agp_free_page_array(curr);
kfree(curr);
}
EXPORT_SYMBOL(agp_free_memory);
#define ENTRIES_PER_PAGE (PAGE_SIZE / sizeof(unsigned long))
/**
* agp_allocate_memory - allocate a group of pages of a certain type.
*
* @page_count: size_t argument of the number of pages
* @type: u32 argument of the type of memory to be allocated.
*
* Every agp bridge device will allow you to allocate AGP_NORMAL_MEMORY which
* maps to physical ram. Any other type is device dependent.
*
* It returns NULL whenever memory is unavailable.
*/
struct agp_memory *agp_allocate_memory(struct agp_bridge_data *bridge,
size_t page_count, u32 type)
{
int scratch_pages;
struct agp_memory *new;
size_t i;
int cur_memory;
if (!bridge)
return NULL;
cur_memory = atomic_read(&bridge->current_memory_agp);
if ((cur_memory + page_count > bridge->max_memory_agp) ||
(cur_memory + page_count < page_count))
return NULL;
if (type >= AGP_USER_TYPES) {
new = agp_generic_alloc_user(page_count, type);
if (new)
new->bridge = bridge;
return new;
}
if (type != 0) {
new = bridge->driver->alloc_by_type(page_count, type);
if (new)
new->bridge = bridge;
return new;
}
scratch_pages = (page_count + ENTRIES_PER_PAGE - 1) / ENTRIES_PER_PAGE;
new = agp_create_memory(scratch_pages);
if (new == NULL)
return NULL;
if (bridge->driver->agp_alloc_pages) {
if (bridge->driver->agp_alloc_pages(bridge, new, page_count)) {
agp_free_memory(new);
return NULL;
}
new->bridge = bridge;
return new;
}
for (i = 0; i < page_count; i++) {
struct page *page = bridge->driver->agp_alloc_page(bridge);
if (page == NULL) {
agp_free_memory(new);
return NULL;
}
new->pages[i] = page;
new->page_count++;
}
new->bridge = bridge;
return new;
}
EXPORT_SYMBOL(agp_allocate_memory);
/* End - Generic routines for handling agp_memory structures */
static int agp_return_size(void)
{
int current_size;
void *temp;
temp = agp_bridge->current_size;
switch (agp_bridge->driver->size_type) {
case U8_APER_SIZE:
current_size = A_SIZE_8(temp)->size;
break;
case U16_APER_SIZE:
current_size = A_SIZE_16(temp)->size;
break;
case U32_APER_SIZE:
current_size = A_SIZE_32(temp)->size;
break;
case LVL2_APER_SIZE:
current_size = A_SIZE_LVL2(temp)->size;
break;
case FIXED_APER_SIZE:
current_size = A_SIZE_FIX(temp)->size;
break;
default:
current_size = 0;
break;
}
current_size -= (agp_memory_reserved / (1024*1024));
if (current_size <0)
current_size = 0;
return current_size;
}
int agp_num_entries(void)
{
int num_entries;
void *temp;
temp = agp_bridge->current_size;
switch (agp_bridge->driver->size_type) {
case U8_APER_SIZE:
num_entries = A_SIZE_8(temp)->num_entries;
break;
case U16_APER_SIZE:
num_entries = A_SIZE_16(temp)->num_entries;
break;
case U32_APER_SIZE:
num_entries = A_SIZE_32(temp)->num_entries;
break;
case LVL2_APER_SIZE:
num_entries = A_SIZE_LVL2(temp)->num_entries;
break;
case FIXED_APER_SIZE:
num_entries = A_SIZE_FIX(temp)->num_entries;
break;
default:
num_entries = 0;
break;
}
num_entries -= agp_memory_reserved>>PAGE_SHIFT;
if (num_entries<0)
num_entries = 0;
return num_entries;
}
EXPORT_SYMBOL_GPL(agp_num_entries);
/**
* agp_copy_info - copy bridge state information
*
* @info: agp_kern_info pointer. The caller should insure that this pointer is valid.
*
* This function copies information about the agp bridge device and the state of
* the agp backend into an agp_kern_info pointer.
*/
int agp_copy_info(struct agp_bridge_data *bridge, struct agp_kern_info *info)
{
memset(info, 0, sizeof(struct agp_kern_info));
if (!bridge) {
info->chipset = NOT_SUPPORTED;
return -EIO;
}
info->version.major = bridge->version->major;
info->version.minor = bridge->version->minor;
info->chipset = SUPPORTED;
info->device = bridge->dev;
if (bridge->mode & AGPSTAT_MODE_3_0)
info->mode = bridge->mode & ~AGP3_RESERVED_MASK;
else
info->mode = bridge->mode & ~AGP2_RESERVED_MASK;
info->aper_base = bridge->gart_bus_addr;
info->aper_size = agp_return_size();
info->max_memory = bridge->max_memory_agp;
info->current_memory = atomic_read(&bridge->current_memory_agp);
info->cant_use_aperture = bridge->driver->cant_use_aperture;
info->vm_ops = bridge->vm_ops;
info->page_mask = ~0UL;
return 0;
}
EXPORT_SYMBOL(agp_copy_info);
/* End - Routine to copy over information structure */
/*
* Routines for handling swapping of agp_memory into the GATT -
* These routines take agp_memory and insert them into the GATT.
* They call device specific routines to actually write to the GATT.
*/
/**
* agp_bind_memory - Bind an agp_memory structure into the GATT.
*
* @curr: agp_memory pointer
* @pg_start: an offset into the graphics aperture translation table
*
* It returns -EINVAL if the pointer == NULL.
* It returns -EBUSY if the area of the table requested is already in use.
*/
int agp_bind_memory(struct agp_memory *curr, off_t pg_start)
{
int ret_val;
if (curr == NULL)
return -EINVAL;
if (curr->is_bound) {
printk(KERN_INFO PFX "memory %p is already bound!\n", curr);
return -EINVAL;
}
if (!curr->is_flushed) {
curr->bridge->driver->cache_flush();
curr->is_flushed = true;
}
ret_val = curr->bridge->driver->insert_memory(curr, pg_start, curr->type);
if (ret_val != 0)
return ret_val;
curr->is_bound = true;
curr->pg_start = pg_start;
spin_lock(&agp_bridge->mapped_lock);
list_add(&curr->mapped_list, &agp_bridge->mapped_list);
spin_unlock(&agp_bridge->mapped_lock);
return 0;
}
EXPORT_SYMBOL(agp_bind_memory);
/**
* agp_unbind_memory - Removes an agp_memory structure from the GATT
*
* @curr: agp_memory pointer to be removed from the GATT.
*
* It returns -EINVAL if this piece of agp_memory is not currently bound to
* the graphics aperture translation table or if the agp_memory pointer == NULL
*/
int agp_unbind_memory(struct agp_memory *curr)
{
int ret_val;
if (curr == NULL)
return -EINVAL;
if (!curr->is_bound) {
printk(KERN_INFO PFX "memory %p was not bound!\n", curr);
return -EINVAL;
}
ret_val = curr->bridge->driver->remove_memory(curr, curr->pg_start, curr->type);
if (ret_val != 0)
return ret_val;
curr->is_bound = false;
curr->pg_start = 0;
spin_lock(&curr->bridge->mapped_lock);
list_del(&curr->mapped_list);
spin_unlock(&curr->bridge->mapped_lock);
return 0;
}
EXPORT_SYMBOL(agp_unbind_memory);
/* End - Routines for handling swapping of agp_memory into the GATT */
/* Generic Agp routines - Start */
static void agp_v2_parse_one(u32 *requested_mode, u32 *bridge_agpstat, u32 *vga_agpstat)
{
u32 tmp;
if (*requested_mode & AGP2_RESERVED_MASK) {
printk(KERN_INFO PFX "reserved bits set (%x) in mode 0x%x. Fixed.\n",
*requested_mode & AGP2_RESERVED_MASK, *requested_mode);
*requested_mode &= ~AGP2_RESERVED_MASK;
}
/*
* Some dumb bridges are programmed to disobey the AGP2 spec.
* This is likely a BIOS misprogramming rather than poweron default, or
* it would be a lot more common.
* https://bugs.freedesktop.org/show_bug.cgi?id=8816
* AGPv2 spec 6.1.9 states:
* The RATE field indicates the data transfer rates supported by this
* device. A.G.P. devices must report all that apply.
* Fix them up as best we can.
*/
switch (*bridge_agpstat & 7) {
case 4:
*bridge_agpstat |= (AGPSTAT2_2X | AGPSTAT2_1X);
printk(KERN_INFO PFX "BIOS bug. AGP bridge claims to only support x4 rate. "
"Fixing up support for x2 & x1\n");
break;
case 2:
*bridge_agpstat |= AGPSTAT2_1X;
printk(KERN_INFO PFX "BIOS bug. AGP bridge claims to only support x2 rate. "
"Fixing up support for x1\n");
break;
default:
break;
}
/* Check the speed bits make sense. Only one should be set. */
tmp = *requested_mode & 7;
switch (tmp) {
case 0:
printk(KERN_INFO PFX "%s tried to set rate=x0. Setting to x1 mode.\n", current->comm);
*requested_mode |= AGPSTAT2_1X;
break;
case 1:
case 2:
break;
case 3:
*requested_mode &= ~(AGPSTAT2_1X); /* rate=2 */
break;
case 4:
break;
case 5:
case 6:
case 7:
*requested_mode &= ~(AGPSTAT2_1X|AGPSTAT2_2X); /* rate=4*/
break;
}
/* disable SBA if it's not supported */
if (!((*bridge_agpstat & AGPSTAT_SBA) && (*vga_agpstat & AGPSTAT_SBA) && (*requested_mode & AGPSTAT_SBA)))
*bridge_agpstat &= ~AGPSTAT_SBA;
/* Set rate */
if (!((*bridge_agpstat & AGPSTAT2_4X) && (*vga_agpstat & AGPSTAT2_4X) && (*requested_mode & AGPSTAT2_4X)))
*bridge_agpstat &= ~AGPSTAT2_4X;
if (!((*bridge_agpstat & AGPSTAT2_2X) && (*vga_agpstat & AGPSTAT2_2X) && (*requested_mode & AGPSTAT2_2X)))
*bridge_agpstat &= ~AGPSTAT2_2X;
if (!((*bridge_agpstat & AGPSTAT2_1X) && (*vga_agpstat & AGPSTAT2_1X) && (*requested_mode & AGPSTAT2_1X)))
*bridge_agpstat &= ~AGPSTAT2_1X;
/* Now we know what mode it should be, clear out the unwanted bits. */
if (*bridge_agpstat & AGPSTAT2_4X)
*bridge_agpstat &= ~(AGPSTAT2_1X | AGPSTAT2_2X); /* 4X */
if (*bridge_agpstat & AGPSTAT2_2X)
*bridge_agpstat &= ~(AGPSTAT2_1X | AGPSTAT2_4X); /* 2X */
if (*bridge_agpstat & AGPSTAT2_1X)
*bridge_agpstat &= ~(AGPSTAT2_2X | AGPSTAT2_4X); /* 1X */
/* Apply any errata. */
if (agp_bridge->flags & AGP_ERRATA_FASTWRITES)
*bridge_agpstat &= ~AGPSTAT_FW;
if (agp_bridge->flags & AGP_ERRATA_SBA)
*bridge_agpstat &= ~AGPSTAT_SBA;
if (agp_bridge->flags & AGP_ERRATA_1X) {
*bridge_agpstat &= ~(AGPSTAT2_2X | AGPSTAT2_4X);
*bridge_agpstat |= AGPSTAT2_1X;
}
/* If we've dropped down to 1X, disable fast writes. */
if (*bridge_agpstat & AGPSTAT2_1X)
*bridge_agpstat &= ~AGPSTAT_FW;
}
/*
* requested_mode = Mode requested by (typically) X.
* bridge_agpstat = PCI_AGP_STATUS from agp bridge.
* vga_agpstat = PCI_AGP_STATUS from graphic card.
*/
static void agp_v3_parse_one(u32 *requested_mode, u32 *bridge_agpstat, u32 *vga_agpstat)
{
u32 origbridge=*bridge_agpstat, origvga=*vga_agpstat;
u32 tmp;
if (*requested_mode & AGP3_RESERVED_MASK) {
printk(KERN_INFO PFX "reserved bits set (%x) in mode 0x%x. Fixed.\n",
*requested_mode & AGP3_RESERVED_MASK, *requested_mode);
*requested_mode &= ~AGP3_RESERVED_MASK;
}
/* Check the speed bits make sense. */
tmp = *requested_mode & 7;
if (tmp == 0) {
printk(KERN_INFO PFX "%s tried to set rate=x0. Setting to AGP3 x4 mode.\n", current->comm);
*requested_mode |= AGPSTAT3_4X;
}
if (tmp >= 3) {
printk(KERN_INFO PFX "%s tried to set rate=x%d. Setting to AGP3 x8 mode.\n", current->comm, tmp * 4);
*requested_mode = (*requested_mode & ~7) | AGPSTAT3_8X;
}
/* ARQSZ - Set the value to the maximum one.
* Don't allow the mode register to override values. */
*bridge_agpstat = ((*bridge_agpstat & ~AGPSTAT_ARQSZ) |
max_t(u32,(*bridge_agpstat & AGPSTAT_ARQSZ),(*vga_agpstat & AGPSTAT_ARQSZ)));
/* Calibration cycle.
* Don't allow the mode register to override values. */
*bridge_agpstat = ((*bridge_agpstat & ~AGPSTAT_CAL_MASK) |
min_t(u32,(*bridge_agpstat & AGPSTAT_CAL_MASK),(*vga_agpstat & AGPSTAT_CAL_MASK)));
/* SBA *must* be supported for AGP v3 */
*bridge_agpstat |= AGPSTAT_SBA;
/*
* Set speed.
* Check for invalid speeds. This can happen when applications
* written before the AGP 3.0 standard pass AGP2.x modes to AGP3 hardware
*/
if (*requested_mode & AGPSTAT_MODE_3_0) {
/*
* Caller hasn't a clue what it is doing. Bridge is in 3.0 mode,
* have been passed a 3.0 mode, but with 2.x speed bits set.
* AGP2.x 4x -> AGP3.0 4x.
*/
if (*requested_mode & AGPSTAT2_4X) {
printk(KERN_INFO PFX "%s passes broken AGP3 flags (%x). Fixed.\n",
current->comm, *requested_mode);
*requested_mode &= ~AGPSTAT2_4X;
*requested_mode |= AGPSTAT3_4X;
}
} else {
/*
* The caller doesn't know what they are doing. We are in 3.0 mode,
* but have been passed an AGP 2.x mode.
* Convert AGP 1x,2x,4x -> AGP 3.0 4x.
*/
printk(KERN_INFO PFX "%s passes broken AGP2 flags (%x) in AGP3 mode. Fixed.\n",
current->comm, *requested_mode);
*requested_mode &= ~(AGPSTAT2_4X | AGPSTAT2_2X | AGPSTAT2_1X);
*requested_mode |= AGPSTAT3_4X;
}
if (*requested_mode & AGPSTAT3_8X) {
if (!(*bridge_agpstat & AGPSTAT3_8X)) {
*bridge_agpstat &= ~(AGPSTAT3_8X | AGPSTAT3_RSVD);
*bridge_agpstat |= AGPSTAT3_4X;
printk(KERN_INFO PFX "%s requested AGPx8 but bridge not capable.\n", current->comm);
return;
}
if (!(*vga_agpstat & AGPSTAT3_8X)) {
*bridge_agpstat &= ~(AGPSTAT3_8X | AGPSTAT3_RSVD);
*bridge_agpstat |= AGPSTAT3_4X;
printk(KERN_INFO PFX "%s requested AGPx8 but graphic card not capable.\n", current->comm);
return;
}
/* All set, bridge & device can do AGP x8*/
*bridge_agpstat &= ~(AGPSTAT3_4X | AGPSTAT3_RSVD);
goto done;
} else if (*requested_mode & AGPSTAT3_4X) {
*bridge_agpstat &= ~(AGPSTAT3_8X | AGPSTAT3_RSVD);
*bridge_agpstat |= AGPSTAT3_4X;
goto done;
} else {
/*
* If we didn't specify an AGP mode, we see if both
* the graphics card, and the bridge can do x8, and use if so.
* If not, we fall back to x4 mode.
*/
if ((*bridge_agpstat & AGPSTAT3_8X) && (*vga_agpstat & AGPSTAT3_8X)) {
printk(KERN_INFO PFX "No AGP mode specified. Setting to highest mode "
"supported by bridge & card (x8).\n");
*bridge_agpstat &= ~(AGPSTAT3_4X | AGPSTAT3_RSVD);
*vga_agpstat &= ~(AGPSTAT3_4X | AGPSTAT3_RSVD);
} else {
printk(KERN_INFO PFX "Fell back to AGPx4 mode because ");
if (!(*bridge_agpstat & AGPSTAT3_8X)) {
printk(KERN_INFO PFX "bridge couldn't do x8. bridge_agpstat:%x (orig=%x)\n",
*bridge_agpstat, origbridge);
*bridge_agpstat &= ~(AGPSTAT3_8X | AGPSTAT3_RSVD);
*bridge_agpstat |= AGPSTAT3_4X;
}
if (!(*vga_agpstat & AGPSTAT3_8X)) {
printk(KERN_INFO PFX "graphics card couldn't do x8. vga_agpstat:%x (orig=%x)\n",
*vga_agpstat, origvga);
*vga_agpstat &= ~(AGPSTAT3_8X | AGPSTAT3_RSVD);
*vga_agpstat |= AGPSTAT3_4X;
}
}
}
done:
/* Apply any errata. */
if (agp_bridge->flags & AGP_ERRATA_FASTWRITES)
*bridge_agpstat &= ~AGPSTAT_FW;
if (agp_bridge->flags & AGP_ERRATA_SBA)
*bridge_agpstat &= ~AGPSTAT_SBA;
if (agp_bridge->flags & AGP_ERRATA_1X) {
*bridge_agpstat &= ~(AGPSTAT2_2X | AGPSTAT2_4X);
*bridge_agpstat |= AGPSTAT2_1X;
}
}
/**
* agp_collect_device_status - determine correct agp_cmd from various agp_stat's
* @bridge: an agp_bridge_data struct allocated for the AGP host bridge.
* @requested_mode: requested agp_stat from userspace (Typically from X)
* @bridge_agpstat: current agp_stat from AGP bridge.
*
* This function will hunt for an AGP graphics card, and try to match
* the requested mode to the capabilities of both the bridge and the card.
*/
u32 agp_collect_device_status(struct agp_bridge_data *bridge, u32 requested_mode, u32 bridge_agpstat)
{
struct pci_dev *device = NULL;
u32 vga_agpstat;
u8 cap_ptr;
for (;;) {
device = pci_get_class(PCI_CLASS_DISPLAY_VGA << 8, device);
if (!device) {
printk(KERN_INFO PFX "Couldn't find an AGP VGA controller.\n");
return 0;
}
cap_ptr = pci_find_capability(device, PCI_CAP_ID_AGP);
if (cap_ptr)
break;
}
/*
* Ok, here we have a AGP device. Disable impossible
* settings, and adjust the readqueue to the minimum.
*/
pci_read_config_dword(device, cap_ptr+PCI_AGP_STATUS, &vga_agpstat);
/* adjust RQ depth */
bridge_agpstat = ((bridge_agpstat & ~AGPSTAT_RQ_DEPTH) |
min_t(u32, (requested_mode & AGPSTAT_RQ_DEPTH),
min_t(u32, (bridge_agpstat & AGPSTAT_RQ_DEPTH), (vga_agpstat & AGPSTAT_RQ_DEPTH))));
/* disable FW if it's not supported */
if (!((bridge_agpstat & AGPSTAT_FW) &&
(vga_agpstat & AGPSTAT_FW) &&
(requested_mode & AGPSTAT_FW)))
bridge_agpstat &= ~AGPSTAT_FW;
/* Check to see if we are operating in 3.0 mode */
if (agp_bridge->mode & AGPSTAT_MODE_3_0)
agp_v3_parse_one(&requested_mode, &bridge_agpstat, &vga_agpstat);
else
agp_v2_parse_one(&requested_mode, &bridge_agpstat, &vga_agpstat);
pci_dev_put(device);
return bridge_agpstat;
}
EXPORT_SYMBOL(agp_collect_device_status);
void agp_device_command(u32 bridge_agpstat, bool agp_v3)
{
struct pci_dev *device = NULL;
int mode;
mode = bridge_agpstat & 0x7;
if (agp_v3)
mode *= 4;
for_each_pci_dev(device) {
u8 agp = pci_find_capability(device, PCI_CAP_ID_AGP);
if (!agp)
continue;
dev_info(&device->dev, "putting AGP V%d device into %dx mode\n",
agp_v3 ? 3 : 2, mode);
pci_write_config_dword(device, agp + PCI_AGP_COMMAND, bridge_agpstat);
}
}
EXPORT_SYMBOL(agp_device_command);
void get_agp_version(struct agp_bridge_data *bridge)
{
u32 ncapid;
/* Exit early if already set by errata workarounds. */
if (bridge->major_version != 0)
return;
pci_read_config_dword(bridge->dev, bridge->capndx, &ncapid);
bridge->major_version = (ncapid >> AGP_MAJOR_VERSION_SHIFT) & 0xf;
bridge->minor_version = (ncapid >> AGP_MINOR_VERSION_SHIFT) & 0xf;
}
EXPORT_SYMBOL(get_agp_version);
void agp_generic_enable(struct agp_bridge_data *bridge, u32 requested_mode)
{
u32 bridge_agpstat, temp;
get_agp_version(agp_bridge);
dev_info(&agp_bridge->dev->dev, "AGP %d.%d bridge\n",
agp_bridge->major_version, agp_bridge->minor_version);
pci_read_config_dword(agp_bridge->dev,
agp_bridge->capndx + PCI_AGP_STATUS, &bridge_agpstat);
bridge_agpstat = agp_collect_device_status(agp_bridge, requested_mode, bridge_agpstat);
if (bridge_agpstat == 0)
/* Something bad happened. FIXME: Return error code? */
return;
bridge_agpstat |= AGPSTAT_AGP_ENABLE;
/* Do AGP version specific frobbing. */
if (bridge->major_version >= 3) {
if (bridge->mode & AGPSTAT_MODE_3_0) {
/* If we have 3.5, we can do the isoch stuff. */
if (bridge->minor_version >= 5)
agp_3_5_enable(bridge);
agp_device_command(bridge_agpstat, true);
return;
} else {
/* Disable calibration cycle in RX91<1> when not in AGP3.0 mode of operation.*/
bridge_agpstat &= ~(7<<10) ;
pci_read_config_dword(bridge->dev,
bridge->capndx+AGPCTRL, &temp);
temp |= (1<<9);
pci_write_config_dword(bridge->dev,
bridge->capndx+AGPCTRL, temp);
dev_info(&bridge->dev->dev, "bridge is in legacy mode, falling back to 2.x\n");
}
}
/* AGP v<3 */
agp_device_command(bridge_agpstat, false);
}
EXPORT_SYMBOL(agp_generic_enable);
int agp_generic_create_gatt_table(struct agp_bridge_data *bridge)
{
char *table;
char *table_end;
int size;
int page_order;
int num_entries;
int i;
void *temp;
struct page *page;
/* The generic routines can't handle 2 level gatt's */
if (bridge->driver->size_type == LVL2_APER_SIZE)
return -EINVAL;
table = NULL;
i = bridge->aperture_size_idx;
temp = bridge->current_size;
size = page_order = num_entries = 0;
if (bridge->driver->size_type != FIXED_APER_SIZE) {
do {
switch (bridge->driver->size_type) {
case U8_APER_SIZE:
size = A_SIZE_8(temp)->size;
page_order =
A_SIZE_8(temp)->page_order;
num_entries =
A_SIZE_8(temp)->num_entries;
break;
case U16_APER_SIZE:
size = A_SIZE_16(temp)->size;
page_order = A_SIZE_16(temp)->page_order;
num_entries = A_SIZE_16(temp)->num_entries;
break;
case U32_APER_SIZE:
size = A_SIZE_32(temp)->size;
page_order = A_SIZE_32(temp)->page_order;
num_entries = A_SIZE_32(temp)->num_entries;
break;
/* This case will never really happen. */
case FIXED_APER_SIZE:
case LVL2_APER_SIZE:
default:
size = page_order = num_entries = 0;
break;
}
table = alloc_gatt_pages(page_order);
if (table == NULL) {
i++;
switch (bridge->driver->size_type) {
case U8_APER_SIZE:
bridge->current_size = A_IDX8(bridge);
break;
case U16_APER_SIZE:
bridge->current_size = A_IDX16(bridge);
break;
case U32_APER_SIZE:
bridge->current_size = A_IDX32(bridge);
break;
/* These cases will never really happen. */
case FIXED_APER_SIZE:
case LVL2_APER_SIZE:
default:
break;
}
temp = bridge->current_size;
} else {
bridge->aperture_size_idx = i;
}
} while (!table && (i < bridge->driver->num_aperture_sizes));
} else {
size = ((struct aper_size_info_fixed *) temp)->size;
page_order = ((struct aper_size_info_fixed *) temp)->page_order;
num_entries = ((struct aper_size_info_fixed *) temp)->num_entries;
table = alloc_gatt_pages(page_order);
}
if (table == NULL)
return -ENOMEM;
table_end = table + ((PAGE_SIZE * (1 << page_order)) - 1);
for (page = virt_to_page(table); page <= virt_to_page(table_end); page++)
SetPageReserved(page);
bridge->gatt_table_real = (u32 *) table;
agp_gatt_table = (void *)table;
bridge->driver->cache_flush();
#ifdef CONFIG_X86
if (set_memory_uc((unsigned long)table, 1 << page_order))
printk(KERN_WARNING "Could not set GATT table memory to UC!\n");
bridge->gatt_table = (u32 __iomem *)table;
#else
bridge->gatt_table = ioremap_nocache(virt_to_phys(table),
(PAGE_SIZE * (1 << page_order)));
bridge->driver->cache_flush();
#endif
if (bridge->gatt_table == NULL) {
for (page = virt_to_page(table); page <= virt_to_page(table_end); page++)
ClearPageReserved(page);
free_gatt_pages(table, page_order);
return -ENOMEM;
}
bridge->gatt_bus_addr = virt_to_phys(bridge->gatt_table_real);
/* AK: bogus, should encode addresses > 4GB */
for (i = 0; i < num_entries; i++) {
writel(bridge->scratch_page, bridge->gatt_table+i);
readl(bridge->gatt_table+i); /* PCI Posting. */
}
return 0;
}
EXPORT_SYMBOL(agp_generic_create_gatt_table);
int agp_generic_free_gatt_table(struct agp_bridge_data *bridge)
{
int page_order;
char *table, *table_end;
void *temp;
struct page *page;
temp = bridge->current_size;
switch (bridge->driver->size_type) {
case U8_APER_SIZE:
page_order = A_SIZE_8(temp)->page_order;
break;
case U16_APER_SIZE:
page_order = A_SIZE_16(temp)->page_order;
break;
case U32_APER_SIZE:
page_order = A_SIZE_32(temp)->page_order;
break;
case FIXED_APER_SIZE:
page_order = A_SIZE_FIX(temp)->page_order;
break;
case LVL2_APER_SIZE:
/* The generic routines can't deal with 2 level gatt's */
return -EINVAL;
default:
page_order = 0;
break;
}
/* Do not worry about freeing memory, because if this is
* called, then all agp memory is deallocated and removed
* from the table. */
#ifdef CONFIG_X86
set_memory_wb((unsigned long)bridge->gatt_table, 1 << page_order);
#else
iounmap(bridge->gatt_table);
#endif
table = (char *) bridge->gatt_table_real;
table_end = table + ((PAGE_SIZE * (1 << page_order)) - 1);
for (page = virt_to_page(table); page <= virt_to_page(table_end); page++)
ClearPageReserved(page);
free_gatt_pages(bridge->gatt_table_real, page_order);
agp_gatt_table = NULL;
bridge->gatt_table = NULL;
bridge->gatt_table_real = NULL;
bridge->gatt_bus_addr = 0;
return 0;
}
EXPORT_SYMBOL(agp_generic_free_gatt_table);
int agp_generic_insert_memory(struct agp_memory * mem, off_t pg_start, int type)
{
int num_entries;
size_t i;
off_t j;
void *temp;
struct agp_bridge_data *bridge;
int mask_type;
bridge = mem->bridge;
if (!bridge)
return -EINVAL;
if (mem->page_count == 0)
return 0;
temp = bridge->current_size;
switch (bridge->driver->size_type) {
case U8_APER_SIZE:
num_entries = A_SIZE_8(temp)->num_entries;
break;
case U16_APER_SIZE:
num_entries = A_SIZE_16(temp)->num_entries;
break;
case U32_APER_SIZE:
num_entries = A_SIZE_32(temp)->num_entries;
break;
case FIXED_APER_SIZE:
num_entries = A_SIZE_FIX(temp)->num_entries;
break;
case LVL2_APER_SIZE:
/* The generic routines can't deal with 2 level gatt's */
return -EINVAL;
default:
num_entries = 0;
break;
}
num_entries -= agp_memory_reserved/PAGE_SIZE;
if (num_entries < 0) num_entries = 0;
if (type != mem->type)
return -EINVAL;
mask_type = bridge->driver->agp_type_to_mask_type(bridge, type);
if (mask_type != 0) {
/* The generic routines know nothing of memory types */
return -EINVAL;
}
if (((pg_start + mem->page_count) > num_entries) ||
((pg_start + mem->page_count) < pg_start))
return -EINVAL;
j = pg_start;
while (j < (pg_start + mem->page_count)) {
if (!PGE_EMPTY(bridge, readl(bridge->gatt_table+j)))
return -EBUSY;
j++;
}
if (!mem->is_flushed) {
bridge->driver->cache_flush();
mem->is_flushed = true;
}
for (i = 0, j = pg_start; i < mem->page_count; i++, j++) {
writel(bridge->driver->mask_memory(bridge,
page_to_phys(mem->pages[i]),
mask_type),
bridge->gatt_table+j);
}
readl(bridge->gatt_table+j-1); /* PCI Posting. */
bridge->driver->tlb_flush(mem);
return 0;
}
EXPORT_SYMBOL(agp_generic_insert_memory);
int agp_generic_remove_memory(struct agp_memory *mem, off_t pg_start, int type)
{
size_t i;
struct agp_bridge_data *bridge;
int mask_type, num_entries;
bridge = mem->bridge;
if (!bridge)
return -EINVAL;
if (mem->page_count == 0)
return 0;
if (type != mem->type)
return -EINVAL;
num_entries = agp_num_entries();
if (((pg_start + mem->page_count) > num_entries) ||
((pg_start + mem->page_count) < pg_start))
return -EINVAL;
mask_type = bridge->driver->agp_type_to_mask_type(bridge, type);
if (mask_type != 0) {
/* The generic routines know nothing of memory types */
return -EINVAL;
}
/* AK: bogus, should encode addresses > 4GB */
for (i = pg_start; i < (mem->page_count + pg_start); i++) {
writel(bridge->scratch_page, bridge->gatt_table+i);
}
readl(bridge->gatt_table+i-1); /* PCI Posting. */
bridge->driver->tlb_flush(mem);
return 0;
}
EXPORT_SYMBOL(agp_generic_remove_memory);
struct agp_memory *agp_generic_alloc_by_type(size_t page_count, int type)
{
return NULL;
}
EXPORT_SYMBOL(agp_generic_alloc_by_type);
void agp_generic_free_by_type(struct agp_memory *curr)
{
agp_free_page_array(curr);
agp_free_key(curr->key);
kfree(curr);
}
EXPORT_SYMBOL(agp_generic_free_by_type);
struct agp_memory *agp_generic_alloc_user(size_t page_count, int type)
{
struct agp_memory *new;
int i;
int pages;
pages = (page_count + ENTRIES_PER_PAGE - 1) / ENTRIES_PER_PAGE;
new = agp_create_user_memory(page_count);
if (new == NULL)
return NULL;
for (i = 0; i < page_count; i++)
new->pages[i] = NULL;
new->page_count = 0;
new->type = type;
new->num_scratch_pages = pages;
return new;
}
EXPORT_SYMBOL(agp_generic_alloc_user);
/*
* Basic Page Allocation Routines -
* These routines handle page allocation and by default they reserve the allocated
* memory. They also handle incrementing the current_memory_agp value, Which is checked
* against a maximum value.
*/
int agp_generic_alloc_pages(struct agp_bridge_data *bridge, struct agp_memory *mem, size_t num_pages)
{
struct page * page;
int i, ret = -ENOMEM;
for (i = 0; i < num_pages; i++) {
page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
/* agp_free_memory() needs gart address */
if (page == NULL)
goto out;
#ifndef CONFIG_X86
map_page_into_agp(page);
#endif
get_page(page);
atomic_inc(&agp_bridge->current_memory_agp);
mem->pages[i] = page;
mem->page_count++;
}
#ifdef CONFIG_X86
set_pages_array_uc(mem->pages, num_pages);
#endif
ret = 0;
out:
return ret;
}
EXPORT_SYMBOL(agp_generic_alloc_pages);
struct page *agp_generic_alloc_page(struct agp_bridge_data *bridge)
{
struct page * page;
page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
if (page == NULL)
return NULL;
map_page_into_agp(page);
get_page(page);
atomic_inc(&agp_bridge->current_memory_agp);
return page;
}
EXPORT_SYMBOL(agp_generic_alloc_page);
void agp_generic_destroy_pages(struct agp_memory *mem)
{
int i;
struct page *page;
if (!mem)
return;
#ifdef CONFIG_X86
set_pages_array_wb(mem->pages, mem->page_count);
#endif
for (i = 0; i < mem->page_count; i++) {
page = mem->pages[i];
#ifndef CONFIG_X86
unmap_page_from_agp(page);
#endif
put_page(page);
__free_page(page);
atomic_dec(&agp_bridge->current_memory_agp);
mem->pages[i] = NULL;
}
}
EXPORT_SYMBOL(agp_generic_destroy_pages);
void agp_generic_destroy_page(struct page *page, int flags)
{
if (page == NULL)
return;
if (flags & AGP_PAGE_DESTROY_UNMAP)
unmap_page_from_agp(page);
if (flags & AGP_PAGE_DESTROY_FREE) {
put_page(page);
__free_page(page);
atomic_dec(&agp_bridge->current_memory_agp);
}
}
EXPORT_SYMBOL(agp_generic_destroy_page);
/* End Basic Page Allocation Routines */
/**
* agp_enable - initialise the agp point-to-point connection.
*
* @mode: agp mode register value to configure with.
*/
void agp_enable(struct agp_bridge_data *bridge, u32 mode)
{
if (!bridge)
return;
bridge->driver->agp_enable(bridge, mode);
}
EXPORT_SYMBOL(agp_enable);
/* When we remove the global variable agp_bridge from all drivers
* then agp_alloc_bridge and agp_generic_find_bridge need to be updated
*/
struct agp_bridge_data *agp_generic_find_bridge(struct pci_dev *pdev)
{
if (list_empty(&agp_bridges))
return NULL;
return agp_bridge;
}
static void ipi_handler(void *null)
{
flush_agp_cache();
}
void global_cache_flush(void)
{
if (on_each_cpu(ipi_handler, NULL, 1) != 0)
panic(PFX "timed out waiting for the other CPUs!\n");
}
EXPORT_SYMBOL(global_cache_flush);
unsigned long agp_generic_mask_memory(struct agp_bridge_data *bridge,
dma_addr_t addr, int type)
{
/* memory type is ignored in the generic routine */
if (bridge->driver->masks)
return addr | bridge->driver->masks[0].mask;
else
return addr;
}
EXPORT_SYMBOL(agp_generic_mask_memory);
int agp_generic_type_to_mask_type(struct agp_bridge_data *bridge,
int type)
{
if (type >= AGP_USER_TYPES)
return 0;
return type;
}
EXPORT_SYMBOL(agp_generic_type_to_mask_type);
/*
* These functions are implemented according to the AGPv3 spec,
* which covers implementation details that had previously been
* left open.
*/
int agp3_generic_fetch_size(void)
{
u16 temp_size;
int i;
struct aper_size_info_16 *values;
pci_read_config_word(agp_bridge->dev, agp_bridge->capndx+AGPAPSIZE, &temp_size);
values = A_SIZE_16(agp_bridge->driver->aperture_sizes);
for (i = 0; i < agp_bridge->driver->num_aperture_sizes; i++) {
if (temp_size == values[i].size_value) {
agp_bridge->previous_size =
agp_bridge->current_size = (void *) (values + i);
agp_bridge->aperture_size_idx = i;
return values[i].size;
}
}
return 0;
}
EXPORT_SYMBOL(agp3_generic_fetch_size);
void agp3_generic_tlbflush(struct agp_memory *mem)
{
u32 ctrl;
pci_read_config_dword(agp_bridge->dev, agp_bridge->capndx+AGPCTRL, &ctrl);
pci_write_config_dword(agp_bridge->dev, agp_bridge->capndx+AGPCTRL, ctrl & ~AGPCTRL_GTLBEN);
pci_write_config_dword(agp_bridge->dev, agp_bridge->capndx+AGPCTRL, ctrl);
}
EXPORT_SYMBOL(agp3_generic_tlbflush);
int agp3_generic_configure(void)
{
u32 temp;
struct aper_size_info_16 *current_size;
current_size = A_SIZE_16(agp_bridge->current_size);
agp_bridge->gart_bus_addr = pci_bus_address(agp_bridge->dev,
AGP_APERTURE_BAR);
/* set aperture size */
pci_write_config_word(agp_bridge->dev, agp_bridge->capndx+AGPAPSIZE, current_size->size_value);
/* set gart pointer */
pci_write_config_dword(agp_bridge->dev, agp_bridge->capndx+AGPGARTLO, agp_bridge->gatt_bus_addr);
/* enable aperture and GTLB */
pci_read_config_dword(agp_bridge->dev, agp_bridge->capndx+AGPCTRL, &temp);
pci_write_config_dword(agp_bridge->dev, agp_bridge->capndx+AGPCTRL, temp | AGPCTRL_APERENB | AGPCTRL_GTLBEN);
return 0;
}
EXPORT_SYMBOL(agp3_generic_configure);
void agp3_generic_cleanup(void)
{
u32 ctrl;
pci_read_config_dword(agp_bridge->dev, agp_bridge->capndx+AGPCTRL, &ctrl);
pci_write_config_dword(agp_bridge->dev, agp_bridge->capndx+AGPCTRL, ctrl & ~AGPCTRL_APERENB);
}
EXPORT_SYMBOL(agp3_generic_cleanup);
const struct aper_size_info_16 agp3_generic_sizes[AGP_GENERIC_SIZES_ENTRIES] =
{
{4096, 1048576, 10,0x000},
{2048, 524288, 9, 0x800},
{1024, 262144, 8, 0xc00},
{ 512, 131072, 7, 0xe00},
{ 256, 65536, 6, 0xf00},
{ 128, 32768, 5, 0xf20},
{ 64, 16384, 4, 0xf30},
{ 32, 8192, 3, 0xf38},
{ 16, 4096, 2, 0xf3c},
{ 8, 2048, 1, 0xf3e},
{ 4, 1024, 0, 0xf3f}
};
EXPORT_SYMBOL(agp3_generic_sizes);