linux/arch/s390/kvm/intercept.c

394 lines
10 KiB
C
Raw Normal View History

/*
* in-kernel handling for sie intercepts
*
* Copyright IBM Corp. 2008, 2014
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License (version 2 only)
* as published by the Free Software Foundation.
*
* Author(s): Carsten Otte <cotte@de.ibm.com>
* Christian Borntraeger <borntraeger@de.ibm.com>
*/
#include <linux/kvm_host.h>
#include <linux/errno.h>
#include <linux/pagemap.h>
#include <asm/kvm_host.h>
#include <asm/asm-offsets.h>
#include <asm/irq.h>
#include "kvm-s390.h"
KVM: s390: interrupt subsystem, cpu timer, waitpsw This patch contains the s390 interrupt subsystem (similar to in kernel apic) including timer interrupts (similar to in-kernel-pit) and enabled wait (similar to in kernel hlt). In order to achieve that, this patch also introduces intercept handling for instruction intercepts, and it implements load control instructions. This patch introduces an ioctl KVM_S390_INTERRUPT which is valid for both the vm file descriptors and the vcpu file descriptors. In case this ioctl is issued against a vm file descriptor, the interrupt is considered floating. Floating interrupts may be delivered to any virtual cpu in the configuration. The following interrupts are supported: SIGP STOP - interprocessor signal that stops a remote cpu SIGP SET PREFIX - interprocessor signal that sets the prefix register of a (stopped) remote cpu INT EMERGENCY - interprocessor interrupt, usually used to signal need_reshed and for smp_call_function() in the guest. PROGRAM INT - exception during program execution such as page fault, illegal instruction and friends RESTART - interprocessor signal that starts a stopped cpu INT VIRTIO - floating interrupt for virtio signalisation INT SERVICE - floating interrupt for signalisations from the system service processor struct kvm_s390_interrupt, which is submitted as ioctl parameter when injecting an interrupt, also carrys parameter data for interrupts along with the interrupt type. Interrupts on s390 usually have a state that represents the current operation, or identifies which device has caused the interruption on s390. kvm_s390_handle_wait() does handle waitpsw in two flavors: in case of a disabled wait (that is, disabled for interrupts), we exit to userspace. In case of an enabled wait we set up a timer that equals the cpu clock comparator value and sleep on a wait queue. [christian: change virtio interrupt to 0x2603] Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Carsten Otte <cotte@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Avi Kivity <avi@qumranet.com>
2008-03-26 01:47:26 +08:00
#include "gaccess.h"
#include "trace.h"
#include "trace-s390.h"
KVM: s390: interrupt subsystem, cpu timer, waitpsw This patch contains the s390 interrupt subsystem (similar to in kernel apic) including timer interrupts (similar to in-kernel-pit) and enabled wait (similar to in kernel hlt). In order to achieve that, this patch also introduces intercept handling for instruction intercepts, and it implements load control instructions. This patch introduces an ioctl KVM_S390_INTERRUPT which is valid for both the vm file descriptors and the vcpu file descriptors. In case this ioctl is issued against a vm file descriptor, the interrupt is considered floating. Floating interrupts may be delivered to any virtual cpu in the configuration. The following interrupts are supported: SIGP STOP - interprocessor signal that stops a remote cpu SIGP SET PREFIX - interprocessor signal that sets the prefix register of a (stopped) remote cpu INT EMERGENCY - interprocessor interrupt, usually used to signal need_reshed and for smp_call_function() in the guest. PROGRAM INT - exception during program execution such as page fault, illegal instruction and friends RESTART - interprocessor signal that starts a stopped cpu INT VIRTIO - floating interrupt for virtio signalisation INT SERVICE - floating interrupt for signalisations from the system service processor struct kvm_s390_interrupt, which is submitted as ioctl parameter when injecting an interrupt, also carrys parameter data for interrupts along with the interrupt type. Interrupts on s390 usually have a state that represents the current operation, or identifies which device has caused the interruption on s390. kvm_s390_handle_wait() does handle waitpsw in two flavors: in case of a disabled wait (that is, disabled for interrupts), we exit to userspace. In case of an enabled wait we set up a timer that equals the cpu clock comparator value and sleep on a wait queue. [christian: change virtio interrupt to 0x2603] Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Carsten Otte <cotte@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Avi Kivity <avi@qumranet.com>
2008-03-26 01:47:26 +08:00
static const intercept_handler_t instruction_handlers[256] = {
[0x01] = kvm_s390_handle_01,
[0x82] = kvm_s390_handle_lpsw,
[0x83] = kvm_s390_handle_diag,
[0xae] = kvm_s390_handle_sigp,
[0xb2] = kvm_s390_handle_b2,
[0xb6] = kvm_s390_handle_stctl,
[0xb7] = kvm_s390_handle_lctl,
[0xb9] = kvm_s390_handle_b9,
[0xe5] = kvm_s390_handle_e5,
[0xeb] = kvm_s390_handle_eb,
KVM: s390: interrupt subsystem, cpu timer, waitpsw This patch contains the s390 interrupt subsystem (similar to in kernel apic) including timer interrupts (similar to in-kernel-pit) and enabled wait (similar to in kernel hlt). In order to achieve that, this patch also introduces intercept handling for instruction intercepts, and it implements load control instructions. This patch introduces an ioctl KVM_S390_INTERRUPT which is valid for both the vm file descriptors and the vcpu file descriptors. In case this ioctl is issued against a vm file descriptor, the interrupt is considered floating. Floating interrupts may be delivered to any virtual cpu in the configuration. The following interrupts are supported: SIGP STOP - interprocessor signal that stops a remote cpu SIGP SET PREFIX - interprocessor signal that sets the prefix register of a (stopped) remote cpu INT EMERGENCY - interprocessor interrupt, usually used to signal need_reshed and for smp_call_function() in the guest. PROGRAM INT - exception during program execution such as page fault, illegal instruction and friends RESTART - interprocessor signal that starts a stopped cpu INT VIRTIO - floating interrupt for virtio signalisation INT SERVICE - floating interrupt for signalisations from the system service processor struct kvm_s390_interrupt, which is submitted as ioctl parameter when injecting an interrupt, also carrys parameter data for interrupts along with the interrupt type. Interrupts on s390 usually have a state that represents the current operation, or identifies which device has caused the interruption on s390. kvm_s390_handle_wait() does handle waitpsw in two flavors: in case of a disabled wait (that is, disabled for interrupts), we exit to userspace. In case of an enabled wait we set up a timer that equals the cpu clock comparator value and sleep on a wait queue. [christian: change virtio interrupt to 0x2603] Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Carsten Otte <cotte@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Avi Kivity <avi@qumranet.com>
2008-03-26 01:47:26 +08:00
};
u8 kvm_s390_get_ilen(struct kvm_vcpu *vcpu)
{
struct kvm_s390_sie_block *sie_block = vcpu->arch.sie_block;
u8 ilen = 0;
switch (vcpu->arch.sie_block->icptcode) {
case ICPT_INST:
case ICPT_INSTPROGI:
case ICPT_OPEREXC:
case ICPT_PARTEXEC:
case ICPT_IOINST:
/* instruction only stored for these icptcodes */
ilen = insn_length(vcpu->arch.sie_block->ipa >> 8);
/* Use the length of the EXECUTE instruction if necessary */
if (sie_block->icptstatus & 1) {
ilen = (sie_block->icptstatus >> 4) & 0x6;
if (!ilen)
ilen = 4;
}
break;
case ICPT_PROGI:
/* bit 1+2 of pgmilc are the ilc, so we directly get ilen */
ilen = vcpu->arch.sie_block->pgmilc & 0x6;
break;
}
return ilen;
}
static int handle_noop(struct kvm_vcpu *vcpu)
{
switch (vcpu->arch.sie_block->icptcode) {
case 0x10:
vcpu->stat.exit_external_request++;
break;
default:
break; /* nothing */
}
return 0;
}
static int handle_stop(struct kvm_vcpu *vcpu)
{
struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
int rc = 0;
uint8_t flags, stop_pending;
vcpu->stat.exit_stop_request++;
/* delay the stop if any non-stop irq is pending */
if (kvm_s390_vcpu_has_irq(vcpu, 1))
return 0;
/* avoid races with the injection/SIGP STOP code */
spin_lock(&li->lock);
flags = li->irq.stop.flags;
stop_pending = kvm_s390_is_stop_irq_pending(vcpu);
spin_unlock(&li->lock);
trace_kvm_s390_stop_request(stop_pending, flags);
if (!stop_pending)
return 0;
if (flags & KVM_S390_STOP_FLAG_STORE_STATUS) {
rc = kvm_s390_vcpu_store_status(vcpu,
KVM_S390_STORE_STATUS_NOADDR);
if (rc)
return rc;
}
if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
kvm_s390_vcpu_stop(vcpu);
return -EOPNOTSUPP;
}
static int handle_validity(struct kvm_vcpu *vcpu)
{
int viwhy = vcpu->arch.sie_block->ipb >> 16;
vcpu->stat.exit_validity++;
trace_kvm_s390_intercept_validity(vcpu, viwhy);
WARN_ONCE(true, "kvm: unhandled validity intercept 0x%x\n", viwhy);
return -EOPNOTSUPP;
}
KVM: s390: interrupt subsystem, cpu timer, waitpsw This patch contains the s390 interrupt subsystem (similar to in kernel apic) including timer interrupts (similar to in-kernel-pit) and enabled wait (similar to in kernel hlt). In order to achieve that, this patch also introduces intercept handling for instruction intercepts, and it implements load control instructions. This patch introduces an ioctl KVM_S390_INTERRUPT which is valid for both the vm file descriptors and the vcpu file descriptors. In case this ioctl is issued against a vm file descriptor, the interrupt is considered floating. Floating interrupts may be delivered to any virtual cpu in the configuration. The following interrupts are supported: SIGP STOP - interprocessor signal that stops a remote cpu SIGP SET PREFIX - interprocessor signal that sets the prefix register of a (stopped) remote cpu INT EMERGENCY - interprocessor interrupt, usually used to signal need_reshed and for smp_call_function() in the guest. PROGRAM INT - exception during program execution such as page fault, illegal instruction and friends RESTART - interprocessor signal that starts a stopped cpu INT VIRTIO - floating interrupt for virtio signalisation INT SERVICE - floating interrupt for signalisations from the system service processor struct kvm_s390_interrupt, which is submitted as ioctl parameter when injecting an interrupt, also carrys parameter data for interrupts along with the interrupt type. Interrupts on s390 usually have a state that represents the current operation, or identifies which device has caused the interruption on s390. kvm_s390_handle_wait() does handle waitpsw in two flavors: in case of a disabled wait (that is, disabled for interrupts), we exit to userspace. In case of an enabled wait we set up a timer that equals the cpu clock comparator value and sleep on a wait queue. [christian: change virtio interrupt to 0x2603] Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Carsten Otte <cotte@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Avi Kivity <avi@qumranet.com>
2008-03-26 01:47:26 +08:00
static int handle_instruction(struct kvm_vcpu *vcpu)
{
intercept_handler_t handler;
vcpu->stat.exit_instruction++;
trace_kvm_s390_intercept_instruction(vcpu,
vcpu->arch.sie_block->ipa,
vcpu->arch.sie_block->ipb);
KVM: s390: interrupt subsystem, cpu timer, waitpsw This patch contains the s390 interrupt subsystem (similar to in kernel apic) including timer interrupts (similar to in-kernel-pit) and enabled wait (similar to in kernel hlt). In order to achieve that, this patch also introduces intercept handling for instruction intercepts, and it implements load control instructions. This patch introduces an ioctl KVM_S390_INTERRUPT which is valid for both the vm file descriptors and the vcpu file descriptors. In case this ioctl is issued against a vm file descriptor, the interrupt is considered floating. Floating interrupts may be delivered to any virtual cpu in the configuration. The following interrupts are supported: SIGP STOP - interprocessor signal that stops a remote cpu SIGP SET PREFIX - interprocessor signal that sets the prefix register of a (stopped) remote cpu INT EMERGENCY - interprocessor interrupt, usually used to signal need_reshed and for smp_call_function() in the guest. PROGRAM INT - exception during program execution such as page fault, illegal instruction and friends RESTART - interprocessor signal that starts a stopped cpu INT VIRTIO - floating interrupt for virtio signalisation INT SERVICE - floating interrupt for signalisations from the system service processor struct kvm_s390_interrupt, which is submitted as ioctl parameter when injecting an interrupt, also carrys parameter data for interrupts along with the interrupt type. Interrupts on s390 usually have a state that represents the current operation, or identifies which device has caused the interruption on s390. kvm_s390_handle_wait() does handle waitpsw in two flavors: in case of a disabled wait (that is, disabled for interrupts), we exit to userspace. In case of an enabled wait we set up a timer that equals the cpu clock comparator value and sleep on a wait queue. [christian: change virtio interrupt to 0x2603] Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Carsten Otte <cotte@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Avi Kivity <avi@qumranet.com>
2008-03-26 01:47:26 +08:00
handler = instruction_handlers[vcpu->arch.sie_block->ipa >> 8];
if (handler)
return handler(vcpu);
return -EOPNOTSUPP;
KVM: s390: interrupt subsystem, cpu timer, waitpsw This patch contains the s390 interrupt subsystem (similar to in kernel apic) including timer interrupts (similar to in-kernel-pit) and enabled wait (similar to in kernel hlt). In order to achieve that, this patch also introduces intercept handling for instruction intercepts, and it implements load control instructions. This patch introduces an ioctl KVM_S390_INTERRUPT which is valid for both the vm file descriptors and the vcpu file descriptors. In case this ioctl is issued against a vm file descriptor, the interrupt is considered floating. Floating interrupts may be delivered to any virtual cpu in the configuration. The following interrupts are supported: SIGP STOP - interprocessor signal that stops a remote cpu SIGP SET PREFIX - interprocessor signal that sets the prefix register of a (stopped) remote cpu INT EMERGENCY - interprocessor interrupt, usually used to signal need_reshed and for smp_call_function() in the guest. PROGRAM INT - exception during program execution such as page fault, illegal instruction and friends RESTART - interprocessor signal that starts a stopped cpu INT VIRTIO - floating interrupt for virtio signalisation INT SERVICE - floating interrupt for signalisations from the system service processor struct kvm_s390_interrupt, which is submitted as ioctl parameter when injecting an interrupt, also carrys parameter data for interrupts along with the interrupt type. Interrupts on s390 usually have a state that represents the current operation, or identifies which device has caused the interruption on s390. kvm_s390_handle_wait() does handle waitpsw in two flavors: in case of a disabled wait (that is, disabled for interrupts), we exit to userspace. In case of an enabled wait we set up a timer that equals the cpu clock comparator value and sleep on a wait queue. [christian: change virtio interrupt to 0x2603] Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Carsten Otte <cotte@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Avi Kivity <avi@qumranet.com>
2008-03-26 01:47:26 +08:00
}
static int inject_prog_on_prog_intercept(struct kvm_vcpu *vcpu)
{
struct kvm_s390_pgm_info pgm_info = {
.code = vcpu->arch.sie_block->iprcc,
/* the PSW has already been rewound */
.flags = KVM_S390_PGM_FLAGS_NO_REWIND,
};
switch (vcpu->arch.sie_block->iprcc & ~PGM_PER) {
case PGM_AFX_TRANSLATION:
case PGM_ASX_TRANSLATION:
case PGM_EX_TRANSLATION:
case PGM_LFX_TRANSLATION:
case PGM_LSTE_SEQUENCE:
case PGM_LSX_TRANSLATION:
case PGM_LX_TRANSLATION:
case PGM_PRIMARY_AUTHORITY:
case PGM_SECONDARY_AUTHORITY:
case PGM_SPACE_SWITCH:
pgm_info.trans_exc_code = vcpu->arch.sie_block->tecmc;
break;
case PGM_ALEN_TRANSLATION:
case PGM_ALE_SEQUENCE:
case PGM_ASTE_INSTANCE:
case PGM_ASTE_SEQUENCE:
case PGM_ASTE_VALIDITY:
case PGM_EXTENDED_AUTHORITY:
pgm_info.exc_access_id = vcpu->arch.sie_block->eai;
break;
case PGM_ASCE_TYPE:
case PGM_PAGE_TRANSLATION:
case PGM_REGION_FIRST_TRANS:
case PGM_REGION_SECOND_TRANS:
case PGM_REGION_THIRD_TRANS:
case PGM_SEGMENT_TRANSLATION:
pgm_info.trans_exc_code = vcpu->arch.sie_block->tecmc;
pgm_info.exc_access_id = vcpu->arch.sie_block->eai;
pgm_info.op_access_id = vcpu->arch.sie_block->oai;
break;
case PGM_MONITOR:
pgm_info.mon_class_nr = vcpu->arch.sie_block->mcn;
pgm_info.mon_code = vcpu->arch.sie_block->tecmc;
break;
case PGM_VECTOR_PROCESSING:
case PGM_DATA:
pgm_info.data_exc_code = vcpu->arch.sie_block->dxc;
break;
case PGM_PROTECTION:
pgm_info.trans_exc_code = vcpu->arch.sie_block->tecmc;
pgm_info.exc_access_id = vcpu->arch.sie_block->eai;
break;
default:
break;
}
if (vcpu->arch.sie_block->iprcc & PGM_PER) {
pgm_info.per_code = vcpu->arch.sie_block->perc;
pgm_info.per_atmid = vcpu->arch.sie_block->peratmid;
pgm_info.per_address = vcpu->arch.sie_block->peraddr;
pgm_info.per_access_id = vcpu->arch.sie_block->peraid;
}
return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
}
/*
* restore ITDB to program-interruption TDB in guest lowcore
* and set TX abort indication if required
*/
static int handle_itdb(struct kvm_vcpu *vcpu)
{
struct kvm_s390_itdb *itdb;
int rc;
if (!IS_TE_ENABLED(vcpu) || !IS_ITDB_VALID(vcpu))
return 0;
if (current->thread.per_flags & PER_FLAG_NO_TE)
return 0;
itdb = (struct kvm_s390_itdb *)vcpu->arch.sie_block->itdba;
rc = write_guest_lc(vcpu, __LC_PGM_TDB, itdb, sizeof(*itdb));
if (rc)
return rc;
memset(itdb, 0, sizeof(*itdb));
return 0;
}
#define per_event(vcpu) (vcpu->arch.sie_block->iprcc & PGM_PER)
KVM: s390: interrupt subsystem, cpu timer, waitpsw This patch contains the s390 interrupt subsystem (similar to in kernel apic) including timer interrupts (similar to in-kernel-pit) and enabled wait (similar to in kernel hlt). In order to achieve that, this patch also introduces intercept handling for instruction intercepts, and it implements load control instructions. This patch introduces an ioctl KVM_S390_INTERRUPT which is valid for both the vm file descriptors and the vcpu file descriptors. In case this ioctl is issued against a vm file descriptor, the interrupt is considered floating. Floating interrupts may be delivered to any virtual cpu in the configuration. The following interrupts are supported: SIGP STOP - interprocessor signal that stops a remote cpu SIGP SET PREFIX - interprocessor signal that sets the prefix register of a (stopped) remote cpu INT EMERGENCY - interprocessor interrupt, usually used to signal need_reshed and for smp_call_function() in the guest. PROGRAM INT - exception during program execution such as page fault, illegal instruction and friends RESTART - interprocessor signal that starts a stopped cpu INT VIRTIO - floating interrupt for virtio signalisation INT SERVICE - floating interrupt for signalisations from the system service processor struct kvm_s390_interrupt, which is submitted as ioctl parameter when injecting an interrupt, also carrys parameter data for interrupts along with the interrupt type. Interrupts on s390 usually have a state that represents the current operation, or identifies which device has caused the interruption on s390. kvm_s390_handle_wait() does handle waitpsw in two flavors: in case of a disabled wait (that is, disabled for interrupts), we exit to userspace. In case of an enabled wait we set up a timer that equals the cpu clock comparator value and sleep on a wait queue. [christian: change virtio interrupt to 0x2603] Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Carsten Otte <cotte@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Avi Kivity <avi@qumranet.com>
2008-03-26 01:47:26 +08:00
static int handle_prog(struct kvm_vcpu *vcpu)
{
psw_t psw;
int rc;
KVM: s390: interrupt subsystem, cpu timer, waitpsw This patch contains the s390 interrupt subsystem (similar to in kernel apic) including timer interrupts (similar to in-kernel-pit) and enabled wait (similar to in kernel hlt). In order to achieve that, this patch also introduces intercept handling for instruction intercepts, and it implements load control instructions. This patch introduces an ioctl KVM_S390_INTERRUPT which is valid for both the vm file descriptors and the vcpu file descriptors. In case this ioctl is issued against a vm file descriptor, the interrupt is considered floating. Floating interrupts may be delivered to any virtual cpu in the configuration. The following interrupts are supported: SIGP STOP - interprocessor signal that stops a remote cpu SIGP SET PREFIX - interprocessor signal that sets the prefix register of a (stopped) remote cpu INT EMERGENCY - interprocessor interrupt, usually used to signal need_reshed and for smp_call_function() in the guest. PROGRAM INT - exception during program execution such as page fault, illegal instruction and friends RESTART - interprocessor signal that starts a stopped cpu INT VIRTIO - floating interrupt for virtio signalisation INT SERVICE - floating interrupt for signalisations from the system service processor struct kvm_s390_interrupt, which is submitted as ioctl parameter when injecting an interrupt, also carrys parameter data for interrupts along with the interrupt type. Interrupts on s390 usually have a state that represents the current operation, or identifies which device has caused the interruption on s390. kvm_s390_handle_wait() does handle waitpsw in two flavors: in case of a disabled wait (that is, disabled for interrupts), we exit to userspace. In case of an enabled wait we set up a timer that equals the cpu clock comparator value and sleep on a wait queue. [christian: change virtio interrupt to 0x2603] Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Carsten Otte <cotte@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Avi Kivity <avi@qumranet.com>
2008-03-26 01:47:26 +08:00
vcpu->stat.exit_program_interruption++;
if (guestdbg_enabled(vcpu) && per_event(vcpu)) {
kvm_s390_handle_per_event(vcpu);
/* the interrupt might have been filtered out completely */
if (vcpu->arch.sie_block->iprcc == 0)
return 0;
}
trace_kvm_s390_intercept_prog(vcpu, vcpu->arch.sie_block->iprcc);
if (vcpu->arch.sie_block->iprcc == PGM_SPECIFICATION) {
rc = read_guest_lc(vcpu, __LC_PGM_NEW_PSW, &psw, sizeof(psw_t));
if (rc)
return rc;
/* Avoid endless loops of specification exceptions */
if (!is_valid_psw(&psw))
return -EOPNOTSUPP;
}
rc = handle_itdb(vcpu);
if (rc)
return rc;
return inject_prog_on_prog_intercept(vcpu);
KVM: s390: interrupt subsystem, cpu timer, waitpsw This patch contains the s390 interrupt subsystem (similar to in kernel apic) including timer interrupts (similar to in-kernel-pit) and enabled wait (similar to in kernel hlt). In order to achieve that, this patch also introduces intercept handling for instruction intercepts, and it implements load control instructions. This patch introduces an ioctl KVM_S390_INTERRUPT which is valid for both the vm file descriptors and the vcpu file descriptors. In case this ioctl is issued against a vm file descriptor, the interrupt is considered floating. Floating interrupts may be delivered to any virtual cpu in the configuration. The following interrupts are supported: SIGP STOP - interprocessor signal that stops a remote cpu SIGP SET PREFIX - interprocessor signal that sets the prefix register of a (stopped) remote cpu INT EMERGENCY - interprocessor interrupt, usually used to signal need_reshed and for smp_call_function() in the guest. PROGRAM INT - exception during program execution such as page fault, illegal instruction and friends RESTART - interprocessor signal that starts a stopped cpu INT VIRTIO - floating interrupt for virtio signalisation INT SERVICE - floating interrupt for signalisations from the system service processor struct kvm_s390_interrupt, which is submitted as ioctl parameter when injecting an interrupt, also carrys parameter data for interrupts along with the interrupt type. Interrupts on s390 usually have a state that represents the current operation, or identifies which device has caused the interruption on s390. kvm_s390_handle_wait() does handle waitpsw in two flavors: in case of a disabled wait (that is, disabled for interrupts), we exit to userspace. In case of an enabled wait we set up a timer that equals the cpu clock comparator value and sleep on a wait queue. [christian: change virtio interrupt to 0x2603] Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Carsten Otte <cotte@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Avi Kivity <avi@qumranet.com>
2008-03-26 01:47:26 +08:00
}
/**
* handle_external_interrupt - used for external interruption interceptions
*
* This interception only occurs if the CPUSTAT_EXT_INT bit was set, or if
* the new PSW does not have external interrupts disabled. In the first case,
* we've got to deliver the interrupt manually, and in the second case, we
* drop to userspace to handle the situation there.
*/
static int handle_external_interrupt(struct kvm_vcpu *vcpu)
{
u16 eic = vcpu->arch.sie_block->eic;
struct kvm_s390_irq irq;
psw_t newpsw;
int rc;
vcpu->stat.exit_external_interrupt++;
rc = read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &newpsw, sizeof(psw_t));
if (rc)
return rc;
/* We can not handle clock comparator or timer interrupt with bad PSW */
if ((eic == EXT_IRQ_CLK_COMP || eic == EXT_IRQ_CPU_TIMER) &&
(newpsw.mask & PSW_MASK_EXT))
return -EOPNOTSUPP;
switch (eic) {
case EXT_IRQ_CLK_COMP:
irq.type = KVM_S390_INT_CLOCK_COMP;
break;
case EXT_IRQ_CPU_TIMER:
irq.type = KVM_S390_INT_CPU_TIMER;
break;
case EXT_IRQ_EXTERNAL_CALL:
irq.type = KVM_S390_INT_EXTERNAL_CALL;
irq.u.extcall.code = vcpu->arch.sie_block->extcpuaddr;
rc = kvm_s390_inject_vcpu(vcpu, &irq);
/* ignore if another external call is already pending */
if (rc == -EBUSY)
return 0;
return rc;
default:
return -EOPNOTSUPP;
}
return kvm_s390_inject_vcpu(vcpu, &irq);
}
/**
* Handle MOVE PAGE partial execution interception.
*
* This interception can only happen for guests with DAT disabled and
* addresses that are currently not mapped in the host. Thus we try to
* set up the mappings for the corresponding user pages here (or throw
* addressing exceptions in case of illegal guest addresses).
*/
static int handle_mvpg_pei(struct kvm_vcpu *vcpu)
{
unsigned long srcaddr, dstaddr;
int reg1, reg2, rc;
kvm_s390_get_regs_rre(vcpu, &reg1, &reg2);
/* Make sure that the source is paged-in */
rc = guest_translate_address(vcpu, vcpu->run->s.regs.gprs[reg2],
reg2, &srcaddr, GACC_FETCH);
if (rc)
return kvm_s390_inject_prog_cond(vcpu, rc);
rc = kvm_arch_fault_in_page(vcpu, srcaddr, 0);
if (rc != 0)
return rc;
/* Make sure that the destination is paged-in */
rc = guest_translate_address(vcpu, vcpu->run->s.regs.gprs[reg1],
reg1, &dstaddr, GACC_STORE);
if (rc)
return kvm_s390_inject_prog_cond(vcpu, rc);
rc = kvm_arch_fault_in_page(vcpu, dstaddr, 1);
if (rc != 0)
return rc;
kvm_s390_retry_instr(vcpu);
return 0;
}
static int handle_partial_execution(struct kvm_vcpu *vcpu)
{
if (vcpu->arch.sie_block->ipa == 0xb254) /* MVPG */
return handle_mvpg_pei(vcpu);
if (vcpu->arch.sie_block->ipa >> 8 == 0xae) /* SIGP */
return kvm_s390_handle_sigp_pei(vcpu);
return -EOPNOTSUPP;
}
static int handle_operexc(struct kvm_vcpu *vcpu)
{
vcpu->stat.exit_operation_exception++;
trace_kvm_s390_handle_operexc(vcpu, vcpu->arch.sie_block->ipa,
vcpu->arch.sie_block->ipb);
if (vcpu->arch.sie_block->ipa == 0xb256 &&
test_kvm_facility(vcpu->kvm, 74))
return handle_sthyi(vcpu);
return kvm_s390_inject_program_int(vcpu, PGM_OPERATION);
}
int kvm_handle_sie_intercept(struct kvm_vcpu *vcpu)
{
if (kvm_is_ucontrol(vcpu->kvm))
return -EOPNOTSUPP;
switch (vcpu->arch.sie_block->icptcode) {
case 0x10:
case 0x18:
return handle_noop(vcpu);
case 0x04:
return handle_instruction(vcpu);
case 0x08:
return handle_prog(vcpu);
case 0x14:
return handle_external_interrupt(vcpu);
case 0x1c:
return kvm_s390_handle_wait(vcpu);
case 0x20:
return handle_validity(vcpu);
case 0x28:
return handle_stop(vcpu);
case 0x2c:
return handle_operexc(vcpu);
case 0x38:
return handle_partial_execution(vcpu);
default:
return -EOPNOTSUPP;
}
}