2019-05-27 14:55:01 +08:00
|
|
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
2007-04-27 06:55:03 +08:00
|
|
|
/* AFS File Server client stubs
|
2005-04-17 06:20:36 +08:00
|
|
|
*
|
2007-04-27 06:55:03 +08:00
|
|
|
* Copyright (C) 2002, 2007 Red Hat, Inc. All Rights Reserved.
|
2005-04-17 06:20:36 +08:00
|
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/init.h>
|
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
|
|
|
#include <linux/slab.h>
|
2005-04-17 06:20:36 +08:00
|
|
|
#include <linux/sched.h>
|
2007-04-27 06:55:03 +08:00
|
|
|
#include <linux/circ_buf.h>
|
2017-12-11 19:35:11 +08:00
|
|
|
#include <linux/iversion.h>
|
2005-04-17 06:20:36 +08:00
|
|
|
#include "internal.h"
|
2007-04-27 06:55:03 +08:00
|
|
|
#include "afs_fs.h"
|
2018-04-06 21:17:24 +08:00
|
|
|
#include "xdr_fs.h"
|
2018-10-20 07:57:58 +08:00
|
|
|
#include "protocol_yfs.h"
|
2005-04-17 06:20:36 +08:00
|
|
|
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
static inline void afs_use_fs_server(struct afs_call *call, struct afs_cb_interest *cbi)
|
2017-11-02 23:27:49 +08:00
|
|
|
{
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
call->cbi = afs_get_cb_interest(cbi);
|
2017-11-02 23:27:49 +08:00
|
|
|
}
|
|
|
|
|
2007-04-27 06:59:35 +08:00
|
|
|
/*
|
|
|
|
* decode an AFSFid block
|
|
|
|
*/
|
|
|
|
static void xdr_decode_AFSFid(const __be32 **_bp, struct afs_fid *fid)
|
|
|
|
{
|
|
|
|
const __be32 *bp = *_bp;
|
|
|
|
|
|
|
|
fid->vid = ntohl(*bp++);
|
|
|
|
fid->vnode = ntohl(*bp++);
|
|
|
|
fid->unique = ntohl(*bp++);
|
|
|
|
*_bp = bp;
|
|
|
|
}
|
|
|
|
|
2018-04-06 21:17:24 +08:00
|
|
|
/*
|
|
|
|
* Dump a bad file status record.
|
|
|
|
*/
|
|
|
|
static void xdr_dump_bad(const __be32 *bp)
|
|
|
|
{
|
|
|
|
__be32 x[4];
|
|
|
|
int i;
|
|
|
|
|
|
|
|
pr_notice("AFS XDR: Bad status record\n");
|
|
|
|
for (i = 0; i < 5 * 4 * 4; i += 16) {
|
|
|
|
memcpy(x, bp, 16);
|
|
|
|
bp += 4;
|
|
|
|
pr_notice("%03x: %08x %08x %08x %08x\n",
|
|
|
|
i, ntohl(x[0]), ntohl(x[1]), ntohl(x[2]), ntohl(x[3]));
|
|
|
|
}
|
|
|
|
|
|
|
|
memcpy(x, bp, 4);
|
|
|
|
pr_notice("0x50: %08x\n", ntohl(x[0]));
|
|
|
|
}
|
|
|
|
|
2018-04-06 21:17:24 +08:00
|
|
|
/*
|
|
|
|
* decode an AFSFetchStatus block
|
|
|
|
*/
|
2019-05-09 22:16:10 +08:00
|
|
|
static int xdr_decode_AFSFetchStatus(const __be32 **_bp,
|
|
|
|
struct afs_call *call,
|
|
|
|
struct afs_status_cb *scb)
|
2018-04-06 21:17:24 +08:00
|
|
|
{
|
|
|
|
const struct afs_xdr_AFSFetchStatus *xdr = (const void *)*_bp;
|
2019-05-09 22:16:10 +08:00
|
|
|
struct afs_file_status *status = &scb->status;
|
2018-05-11 04:51:47 +08:00
|
|
|
bool inline_error = (call->operation_ID == afs_FS_InlineBulkStatus);
|
2007-04-27 06:59:35 +08:00
|
|
|
u64 data_version, size;
|
2018-04-06 21:17:24 +08:00
|
|
|
u32 type, abort_code;
|
2017-11-02 23:27:49 +08:00
|
|
|
|
2018-05-11 04:51:47 +08:00
|
|
|
abort_code = ntohl(xdr->abort_code);
|
|
|
|
|
2018-04-06 21:17:24 +08:00
|
|
|
if (xdr->if_version != htonl(AFS_FSTATUS_VERSION)) {
|
2018-05-11 04:51:47 +08:00
|
|
|
if (xdr->if_version == htonl(0) &&
|
|
|
|
abort_code != 0 &&
|
|
|
|
inline_error) {
|
|
|
|
/* The OpenAFS fileserver has a bug in FS.InlineBulkStatus
|
|
|
|
* whereby it doesn't set the interface version in the error
|
|
|
|
* case.
|
|
|
|
*/
|
|
|
|
status->abort_code = abort_code;
|
2019-05-14 19:29:11 +08:00
|
|
|
scb->have_error = true;
|
2018-06-03 06:08:11 +08:00
|
|
|
return 0;
|
2018-05-11 04:51:47 +08:00
|
|
|
}
|
|
|
|
|
2018-04-06 21:17:24 +08:00
|
|
|
pr_warn("Unknown AFSFetchStatus version %u\n", ntohl(xdr->if_version));
|
|
|
|
goto bad;
|
|
|
|
}
|
2007-04-27 06:55:03 +08:00
|
|
|
|
2018-05-11 04:51:47 +08:00
|
|
|
if (abort_code != 0 && inline_error) {
|
|
|
|
status->abort_code = abort_code;
|
2018-06-03 06:08:11 +08:00
|
|
|
return 0;
|
2018-05-11 04:51:47 +08:00
|
|
|
}
|
|
|
|
|
2018-04-06 21:17:24 +08:00
|
|
|
type = ntohl(xdr->type);
|
|
|
|
switch (type) {
|
2018-04-06 21:17:24 +08:00
|
|
|
case AFS_FTYPE_FILE:
|
|
|
|
case AFS_FTYPE_DIR:
|
|
|
|
case AFS_FTYPE_SYMLINK:
|
2018-04-06 21:17:24 +08:00
|
|
|
status->type = type;
|
2018-04-06 21:17:24 +08:00
|
|
|
break;
|
|
|
|
default:
|
2018-04-06 21:17:24 +08:00
|
|
|
goto bad;
|
2018-04-06 21:17:24 +08:00
|
|
|
}
|
|
|
|
|
2019-05-09 22:16:10 +08:00
|
|
|
status->nlink = ntohl(xdr->nlink);
|
|
|
|
status->author = ntohl(xdr->author);
|
|
|
|
status->owner = ntohl(xdr->owner);
|
|
|
|
status->caller_access = ntohl(xdr->caller_access); /* Ticket dependent */
|
|
|
|
status->anon_access = ntohl(xdr->anon_access);
|
|
|
|
status->mode = ntohl(xdr->mode) & S_IALLUGO;
|
|
|
|
status->group = ntohl(xdr->group);
|
|
|
|
status->lock_count = ntohl(xdr->lock_count);
|
2018-04-06 21:17:24 +08:00
|
|
|
|
2018-10-20 07:57:58 +08:00
|
|
|
status->mtime_client.tv_sec = ntohl(xdr->mtime_client);
|
|
|
|
status->mtime_client.tv_nsec = 0;
|
|
|
|
status->mtime_server.tv_sec = ntohl(xdr->mtime_server);
|
|
|
|
status->mtime_server.tv_nsec = 0;
|
2018-04-06 21:17:24 +08:00
|
|
|
|
|
|
|
size = (u64)ntohl(xdr->size_lo);
|
|
|
|
size |= (u64)ntohl(xdr->size_hi) << 32;
|
2018-04-06 21:17:25 +08:00
|
|
|
status->size = size;
|
2018-04-06 21:17:24 +08:00
|
|
|
|
|
|
|
data_version = (u64)ntohl(xdr->data_version_lo);
|
|
|
|
data_version |= (u64)ntohl(xdr->data_version_hi) << 32;
|
2019-05-09 22:16:10 +08:00
|
|
|
status->data_version = data_version;
|
2019-05-14 19:29:11 +08:00
|
|
|
scb->have_status = true;
|
2007-04-27 06:55:03 +08:00
|
|
|
|
2018-04-06 21:17:24 +08:00
|
|
|
*_bp = (const void *)*_bp + sizeof(*xdr);
|
2018-05-23 18:32:06 +08:00
|
|
|
return 0;
|
2018-04-06 21:17:24 +08:00
|
|
|
|
|
|
|
bad:
|
|
|
|
xdr_dump_bad(*_bp);
|
2018-10-20 07:57:56 +08:00
|
|
|
return afs_protocol_error(call, -EBADMSG, afs_eproto_bad_status);
|
2018-05-23 18:32:06 +08:00
|
|
|
}
|
|
|
|
|
2019-05-10 00:56:53 +08:00
|
|
|
static time64_t xdr_decode_expiry(struct afs_call *call, u32 expiry)
|
|
|
|
{
|
|
|
|
return ktime_divns(call->reply_time, NSEC_PER_SEC) + expiry;
|
|
|
|
}
|
|
|
|
|
2019-05-09 22:16:10 +08:00
|
|
|
static void xdr_decode_AFSCallBack(const __be32 **_bp,
|
|
|
|
struct afs_call *call,
|
|
|
|
struct afs_status_cb *scb)
|
2019-05-10 00:56:53 +08:00
|
|
|
{
|
2019-05-09 22:16:10 +08:00
|
|
|
struct afs_callback *cb = &scb->callback;
|
2019-05-10 00:56:53 +08:00
|
|
|
const __be32 *bp = *_bp;
|
|
|
|
|
2019-05-14 22:35:44 +08:00
|
|
|
bp++; /* version */
|
2019-05-10 00:56:53 +08:00
|
|
|
cb->expires_at = xdr_decode_expiry(call, ntohl(*bp++));
|
2019-05-14 22:35:44 +08:00
|
|
|
bp++; /* type */
|
2019-05-09 22:16:10 +08:00
|
|
|
scb->have_cb = true;
|
2019-05-10 00:56:53 +08:00
|
|
|
*_bp = bp;
|
|
|
|
}
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
/*
|
2007-04-27 06:55:03 +08:00
|
|
|
* decode an AFSVolSync block
|
2005-04-17 06:20:36 +08:00
|
|
|
*/
|
2007-04-27 06:55:03 +08:00
|
|
|
static void xdr_decode_AFSVolSync(const __be32 **_bp,
|
|
|
|
struct afs_volsync *volsync)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2007-04-27 06:55:03 +08:00
|
|
|
const __be32 *bp = *_bp;
|
2018-10-20 07:57:58 +08:00
|
|
|
u32 creation;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2018-10-20 07:57:58 +08:00
|
|
|
creation = ntohl(*bp++);
|
2007-04-27 06:55:03 +08:00
|
|
|
bp++; /* spare2 */
|
|
|
|
bp++; /* spare3 */
|
|
|
|
bp++; /* spare4 */
|
|
|
|
bp++; /* spare5 */
|
|
|
|
bp++; /* spare6 */
|
|
|
|
*_bp = bp;
|
2018-10-20 07:57:58 +08:00
|
|
|
|
|
|
|
if (volsync)
|
|
|
|
volsync->creation = creation;
|
2007-04-27 06:55:03 +08:00
|
|
|
}
|
2005-04-17 06:20:36 +08:00
|
|
|
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
/*
|
|
|
|
* encode the requested attributes into an AFSStoreStatus block
|
|
|
|
*/
|
|
|
|
static void xdr_encode_AFS_StoreStatus(__be32 **_bp, struct iattr *attr)
|
|
|
|
{
|
|
|
|
__be32 *bp = *_bp;
|
|
|
|
u32 mask = 0, mtime = 0, owner = 0, group = 0, mode = 0;
|
|
|
|
|
|
|
|
mask = 0;
|
|
|
|
if (attr->ia_valid & ATTR_MTIME) {
|
|
|
|
mask |= AFS_SET_MTIME;
|
|
|
|
mtime = attr->ia_mtime.tv_sec;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (attr->ia_valid & ATTR_UID) {
|
|
|
|
mask |= AFS_SET_OWNER;
|
2012-02-08 08:20:48 +08:00
|
|
|
owner = from_kuid(&init_user_ns, attr->ia_uid);
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
if (attr->ia_valid & ATTR_GID) {
|
|
|
|
mask |= AFS_SET_GROUP;
|
2012-02-08 08:20:48 +08:00
|
|
|
group = from_kgid(&init_user_ns, attr->ia_gid);
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
if (attr->ia_valid & ATTR_MODE) {
|
|
|
|
mask |= AFS_SET_MODE;
|
|
|
|
mode = attr->ia_mode & S_IALLUGO;
|
|
|
|
}
|
|
|
|
|
|
|
|
*bp++ = htonl(mask);
|
|
|
|
*bp++ = htonl(mtime);
|
|
|
|
*bp++ = htonl(owner);
|
|
|
|
*bp++ = htonl(group);
|
|
|
|
*bp++ = htonl(mode);
|
|
|
|
*bp++ = 0; /* segment size */
|
|
|
|
*_bp = bp;
|
|
|
|
}
|
|
|
|
|
2007-05-11 13:22:20 +08:00
|
|
|
/*
|
|
|
|
* decode an AFSFetchVolumeStatus block
|
|
|
|
*/
|
|
|
|
static void xdr_decode_AFSFetchVolumeStatus(const __be32 **_bp,
|
|
|
|
struct afs_volume_status *vs)
|
|
|
|
{
|
|
|
|
const __be32 *bp = *_bp;
|
|
|
|
|
|
|
|
vs->vid = ntohl(*bp++);
|
|
|
|
vs->parent_id = ntohl(*bp++);
|
|
|
|
vs->online = ntohl(*bp++);
|
|
|
|
vs->in_service = ntohl(*bp++);
|
|
|
|
vs->blessed = ntohl(*bp++);
|
|
|
|
vs->needs_salvage = ntohl(*bp++);
|
|
|
|
vs->type = ntohl(*bp++);
|
|
|
|
vs->min_quota = ntohl(*bp++);
|
|
|
|
vs->max_quota = ntohl(*bp++);
|
|
|
|
vs->blocks_in_use = ntohl(*bp++);
|
|
|
|
vs->part_blocks_avail = ntohl(*bp++);
|
|
|
|
vs->part_max_blocks = ntohl(*bp++);
|
2018-10-20 07:57:58 +08:00
|
|
|
vs->vol_copy_date = 0;
|
|
|
|
vs->vol_backup_date = 0;
|
2007-05-11 13:22:20 +08:00
|
|
|
*_bp = bp;
|
|
|
|
}
|
|
|
|
|
2007-04-27 06:55:03 +08:00
|
|
|
/*
|
|
|
|
* deliver reply data to an FS.FetchStatus
|
|
|
|
*/
|
2018-04-10 04:12:31 +08:00
|
|
|
static int afs_deliver_fs_fetch_status_vnode(struct afs_call *call)
|
2007-04-27 06:55:03 +08:00
|
|
|
{
|
|
|
|
const __be32 *bp;
|
rxrpc: Fix races between skb free, ACK generation and replying
Inside the kafs filesystem it is possible to occasionally have a call
processed and terminated before we've had a chance to check whether we need
to clean up the rx queue for that call because afs_send_simple_reply() ends
the call when it is done, but this is done in a workqueue item that might
happen to run to completion before afs_deliver_to_call() completes.
Further, it is possible for rxrpc_kernel_send_data() to be called to send a
reply before the last request-phase data skb is released. The rxrpc skb
destructor is where the ACK processing is done and the call state is
advanced upon release of the last skb. ACK generation is also deferred to
a work item because it's possible that the skb destructor is not called in
a context where kernel_sendmsg() can be invoked.
To this end, the following changes are made:
(1) kernel_rxrpc_data_consumed() is added. This should be called whenever
an skb is emptied so as to crank the ACK and call states. This does
not release the skb, however. kernel_rxrpc_free_skb() must now be
called to achieve that. These together replace
rxrpc_kernel_data_delivered().
(2) kernel_rxrpc_data_consumed() is wrapped by afs_data_consumed().
This makes afs_deliver_to_call() easier to work as the skb can simply
be discarded unconditionally here without trying to work out what the
return value of the ->deliver() function means.
The ->deliver() functions can, via afs_data_complete(),
afs_transfer_reply() and afs_extract_data() mark that an skb has been
consumed (thereby cranking the state) without the need to
conditionally free the skb to make sure the state is correct on an
incoming call for when the call processor tries to send the reply.
(3) rxrpc_recvmsg() now has to call kernel_rxrpc_data_consumed() when it
has finished with a packet and MSG_PEEK isn't set.
(4) rxrpc_packet_destructor() no longer calls rxrpc_hard_ACK_data().
Because of this, we no longer need to clear the destructor and put the
call before we free the skb in cases where we don't want the ACK/call
state to be cranked.
(5) The ->deliver() call-type callbacks are made to return -EAGAIN rather
than 0 if they expect more data (afs_extract_data() returns -EAGAIN to
the delivery function already), and the caller is now responsible for
producing an abort if that was the last packet.
(6) There are many bits of unmarshalling code where:
ret = afs_extract_data(call, skb, last, ...);
switch (ret) {
case 0: break;
case -EAGAIN: return 0;
default: return ret;
}
is to be found. As -EAGAIN can now be passed back to the caller, we
now just return if ret < 0:
ret = afs_extract_data(call, skb, last, ...);
if (ret < 0)
return ret;
(7) Checks for trailing data and empty final data packets has been
consolidated as afs_data_complete(). So:
if (skb->len > 0)
return -EBADMSG;
if (!last)
return 0;
becomes:
ret = afs_data_complete(call, skb, last);
if (ret < 0)
return ret;
(8) afs_transfer_reply() now checks the amount of data it has against the
amount of data desired and the amount of data in the skb and returns
an error to induce an abort if we don't get exactly what we want.
Without these changes, the following oops can occasionally be observed,
particularly if some printks are inserted into the delivery path:
general protection fault: 0000 [#1] SMP
Modules linked in: kafs(E) af_rxrpc(E) [last unloaded: af_rxrpc]
CPU: 0 PID: 1305 Comm: kworker/u8:3 Tainted: G E 4.7.0-fsdevel+ #1303
Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
Workqueue: kafsd afs_async_workfn [kafs]
task: ffff88040be041c0 ti: ffff88040c070000 task.ti: ffff88040c070000
RIP: 0010:[<ffffffff8108fd3c>] [<ffffffff8108fd3c>] __lock_acquire+0xcf/0x15a1
RSP: 0018:ffff88040c073bc0 EFLAGS: 00010002
RAX: 6b6b6b6b6b6b6b6b RBX: 0000000000000000 RCX: ffff88040d29a710
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88040d29a710
RBP: ffff88040c073c70 R08: 0000000000000001 R09: 0000000000000001
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000000 R14: ffff88040be041c0 R15: ffffffff814c928f
FS: 0000000000000000(0000) GS:ffff88041fa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa4595f4750 CR3: 0000000001c14000 CR4: 00000000001406f0
Stack:
0000000000000006 000000000be04930 0000000000000000 ffff880400000000
ffff880400000000 ffffffff8108f847 ffff88040be041c0 ffffffff81050446
ffff8803fc08a920 ffff8803fc08a958 ffff88040be041c0 ffff88040c073c38
Call Trace:
[<ffffffff8108f847>] ? mark_held_locks+0x5e/0x74
[<ffffffff81050446>] ? __local_bh_enable_ip+0x9b/0xa1
[<ffffffff8108f9ca>] ? trace_hardirqs_on_caller+0x16d/0x189
[<ffffffff810915f4>] lock_acquire+0x122/0x1b6
[<ffffffff810915f4>] ? lock_acquire+0x122/0x1b6
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff81609dbf>] _raw_spin_lock_irqsave+0x35/0x49
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff814c928f>] skb_dequeue+0x18/0x61
[<ffffffffa009aa92>] afs_deliver_to_call+0x344/0x39d [kafs]
[<ffffffffa009ab37>] afs_process_async_call+0x4c/0xd5 [kafs]
[<ffffffffa0099e9c>] afs_async_workfn+0xe/0x10 [kafs]
[<ffffffff81063a3a>] process_one_work+0x29d/0x57c
[<ffffffff81064ac2>] worker_thread+0x24a/0x385
[<ffffffff81064878>] ? rescuer_thread+0x2d0/0x2d0
[<ffffffff810696f5>] kthread+0xf3/0xfb
[<ffffffff8160a6ff>] ret_from_fork+0x1f/0x40
[<ffffffff81069602>] ? kthread_create_on_node+0x1cf/0x1cf
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-03 21:11:40 +08:00
|
|
|
int ret;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
ret = afs_transfer_reply(call);
|
rxrpc: Fix races between skb free, ACK generation and replying
Inside the kafs filesystem it is possible to occasionally have a call
processed and terminated before we've had a chance to check whether we need
to clean up the rx queue for that call because afs_send_simple_reply() ends
the call when it is done, but this is done in a workqueue item that might
happen to run to completion before afs_deliver_to_call() completes.
Further, it is possible for rxrpc_kernel_send_data() to be called to send a
reply before the last request-phase data skb is released. The rxrpc skb
destructor is where the ACK processing is done and the call state is
advanced upon release of the last skb. ACK generation is also deferred to
a work item because it's possible that the skb destructor is not called in
a context where kernel_sendmsg() can be invoked.
To this end, the following changes are made:
(1) kernel_rxrpc_data_consumed() is added. This should be called whenever
an skb is emptied so as to crank the ACK and call states. This does
not release the skb, however. kernel_rxrpc_free_skb() must now be
called to achieve that. These together replace
rxrpc_kernel_data_delivered().
(2) kernel_rxrpc_data_consumed() is wrapped by afs_data_consumed().
This makes afs_deliver_to_call() easier to work as the skb can simply
be discarded unconditionally here without trying to work out what the
return value of the ->deliver() function means.
The ->deliver() functions can, via afs_data_complete(),
afs_transfer_reply() and afs_extract_data() mark that an skb has been
consumed (thereby cranking the state) without the need to
conditionally free the skb to make sure the state is correct on an
incoming call for when the call processor tries to send the reply.
(3) rxrpc_recvmsg() now has to call kernel_rxrpc_data_consumed() when it
has finished with a packet and MSG_PEEK isn't set.
(4) rxrpc_packet_destructor() no longer calls rxrpc_hard_ACK_data().
Because of this, we no longer need to clear the destructor and put the
call before we free the skb in cases where we don't want the ACK/call
state to be cranked.
(5) The ->deliver() call-type callbacks are made to return -EAGAIN rather
than 0 if they expect more data (afs_extract_data() returns -EAGAIN to
the delivery function already), and the caller is now responsible for
producing an abort if that was the last packet.
(6) There are many bits of unmarshalling code where:
ret = afs_extract_data(call, skb, last, ...);
switch (ret) {
case 0: break;
case -EAGAIN: return 0;
default: return ret;
}
is to be found. As -EAGAIN can now be passed back to the caller, we
now just return if ret < 0:
ret = afs_extract_data(call, skb, last, ...);
if (ret < 0)
return ret;
(7) Checks for trailing data and empty final data packets has been
consolidated as afs_data_complete(). So:
if (skb->len > 0)
return -EBADMSG;
if (!last)
return 0;
becomes:
ret = afs_data_complete(call, skb, last);
if (ret < 0)
return ret;
(8) afs_transfer_reply() now checks the amount of data it has against the
amount of data desired and the amount of data in the skb and returns
an error to induce an abort if we don't get exactly what we want.
Without these changes, the following oops can occasionally be observed,
particularly if some printks are inserted into the delivery path:
general protection fault: 0000 [#1] SMP
Modules linked in: kafs(E) af_rxrpc(E) [last unloaded: af_rxrpc]
CPU: 0 PID: 1305 Comm: kworker/u8:3 Tainted: G E 4.7.0-fsdevel+ #1303
Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
Workqueue: kafsd afs_async_workfn [kafs]
task: ffff88040be041c0 ti: ffff88040c070000 task.ti: ffff88040c070000
RIP: 0010:[<ffffffff8108fd3c>] [<ffffffff8108fd3c>] __lock_acquire+0xcf/0x15a1
RSP: 0018:ffff88040c073bc0 EFLAGS: 00010002
RAX: 6b6b6b6b6b6b6b6b RBX: 0000000000000000 RCX: ffff88040d29a710
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88040d29a710
RBP: ffff88040c073c70 R08: 0000000000000001 R09: 0000000000000001
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000000 R14: ffff88040be041c0 R15: ffffffff814c928f
FS: 0000000000000000(0000) GS:ffff88041fa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa4595f4750 CR3: 0000000001c14000 CR4: 00000000001406f0
Stack:
0000000000000006 000000000be04930 0000000000000000 ffff880400000000
ffff880400000000 ffffffff8108f847 ffff88040be041c0 ffffffff81050446
ffff8803fc08a920 ffff8803fc08a958 ffff88040be041c0 ffff88040c073c38
Call Trace:
[<ffffffff8108f847>] ? mark_held_locks+0x5e/0x74
[<ffffffff81050446>] ? __local_bh_enable_ip+0x9b/0xa1
[<ffffffff8108f9ca>] ? trace_hardirqs_on_caller+0x16d/0x189
[<ffffffff810915f4>] lock_acquire+0x122/0x1b6
[<ffffffff810915f4>] ? lock_acquire+0x122/0x1b6
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff81609dbf>] _raw_spin_lock_irqsave+0x35/0x49
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff814c928f>] skb_dequeue+0x18/0x61
[<ffffffffa009aa92>] afs_deliver_to_call+0x344/0x39d [kafs]
[<ffffffffa009ab37>] afs_process_async_call+0x4c/0xd5 [kafs]
[<ffffffffa0099e9c>] afs_async_workfn+0xe/0x10 [kafs]
[<ffffffff81063a3a>] process_one_work+0x29d/0x57c
[<ffffffff81064ac2>] worker_thread+0x24a/0x385
[<ffffffff81064878>] ? rescuer_thread+0x2d0/0x2d0
[<ffffffff810696f5>] kthread+0xf3/0xfb
[<ffffffff8160a6ff>] ret_from_fork+0x1f/0x40
[<ffffffff81069602>] ? kthread_create_on_node+0x1cf/0x1cf
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-03 21:11:40 +08:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2007-04-27 06:55:03 +08:00
|
|
|
/* unmarshall the reply once we've received all of it */
|
|
|
|
bp = call->buffer;
|
2019-05-09 22:16:10 +08:00
|
|
|
ret = xdr_decode_AFSFetchStatus(&bp, call, call->out_scb);
|
2018-10-20 07:57:56 +08:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
2019-05-09 22:16:10 +08:00
|
|
|
xdr_decode_AFSCallBack(&bp, call, call->out_scb);
|
2019-05-10 05:22:50 +08:00
|
|
|
xdr_decode_AFSVolSync(&bp, call->out_volsync);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2007-04-27 06:55:03 +08:00
|
|
|
_leave(" = 0 [done]");
|
|
|
|
return 0;
|
2007-04-27 06:49:28 +08:00
|
|
|
}
|
2007-04-27 06:55:03 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* FS.FetchStatus operation type
|
|
|
|
*/
|
2018-04-10 04:12:31 +08:00
|
|
|
static const struct afs_call_type afs_RXFSFetchStatus_vnode = {
|
|
|
|
.name = "FS.FetchStatus(vnode)",
|
2017-11-02 23:27:51 +08:00
|
|
|
.op = afs_FS_FetchStatus,
|
2018-04-10 04:12:31 +08:00
|
|
|
.deliver = afs_deliver_fs_fetch_status_vnode,
|
2007-04-27 06:55:03 +08:00
|
|
|
.destructor = afs_flat_call_destructor,
|
|
|
|
};
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* fetch the status information for a file
|
|
|
|
*/
|
2019-05-09 22:16:10 +08:00
|
|
|
int afs_fs_fetch_file_status(struct afs_fs_cursor *fc, struct afs_status_cb *scb,
|
|
|
|
struct afs_volsync *volsync)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
struct afs_vnode *vnode = fc->vnode;
|
2007-04-27 06:55:03 +08:00
|
|
|
struct afs_call *call;
|
2017-11-02 23:27:45 +08:00
|
|
|
struct afs_net *net = afs_v2net(vnode);
|
2005-04-17 06:20:36 +08:00
|
|
|
__be32 *bp;
|
|
|
|
|
2018-10-20 07:57:58 +08:00
|
|
|
if (test_bit(AFS_SERVER_FL_IS_YFS, &fc->cbi->server->flags))
|
2019-05-09 22:16:10 +08:00
|
|
|
return yfs_fs_fetch_file_status(fc, scb, volsync);
|
2018-10-20 07:57:58 +08:00
|
|
|
|
2018-10-20 07:57:57 +08:00
|
|
|
_enter(",%x,{%llx:%llu},,",
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
key_serial(fc->key), vnode->fid.vid, vnode->fid.vnode);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2018-04-10 04:12:31 +08:00
|
|
|
call = afs_alloc_flat_call(net, &afs_RXFSFetchStatus_vnode,
|
|
|
|
16, (21 + 3 + 6) * 4);
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
if (!call) {
|
|
|
|
fc->ac.error = -ENOMEM;
|
2007-04-27 06:55:03 +08:00
|
|
|
return -ENOMEM;
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
}
|
2005-04-17 06:20:36 +08:00
|
|
|
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
call->key = fc->key;
|
2019-05-09 22:16:10 +08:00
|
|
|
call->out_scb = scb;
|
2019-05-10 05:22:50 +08:00
|
|
|
call->out_volsync = volsync;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
/* marshall the parameters */
|
2007-04-27 06:55:03 +08:00
|
|
|
bp = call->request;
|
2005-04-17 06:20:36 +08:00
|
|
|
bp[0] = htonl(FSFETCHSTATUS);
|
|
|
|
bp[1] = htonl(vnode->fid.vid);
|
|
|
|
bp[2] = htonl(vnode->fid.vnode);
|
|
|
|
bp[3] = htonl(vnode->fid.unique);
|
|
|
|
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
afs_use_fs_server(call, fc->cbi);
|
2017-11-02 23:27:51 +08:00
|
|
|
trace_afs_make_fs_call(call, &vnode->fid);
|
2019-04-25 21:26:50 +08:00
|
|
|
|
afs: Make some RPC operations non-interruptible
Make certain RPC operations non-interruptible, including:
(*) Set attributes
(*) Store data
We don't want to get interrupted during a flush on close, flush on
unlock, writeback or an inode update, leaving us in a state where we
still need to do the writeback or update.
(*) Extend lock
(*) Release lock
We don't want to get lock extension interrupted as the file locks on
the server are time-limited. Interruption during lock release is less
of an issue since the lock is time-limited, but it's better to
complete the release to avoid a several-minute wait to recover it.
*Setting* the lock isn't a problem if it's interrupted since we can
just return to the user and tell them they were interrupted - at
which point they can elect to retry.
(*) Silly unlink
We want to remove silly unlink files if we can, rather than leaving
them for the salvager to clear up.
Note that whilst these calls are no longer interruptible, they do have
timeouts on them, so if the server stops responding the call will fail with
something like ETIME or ECONNRESET.
Without this, the following:
kAFS: Unexpected error from FS.StoreData -512
appears in dmesg when a pending store data gets interrupted and some
processes may just hang.
Additionally, make the code that checks/updates the server record ignore
failure due to interruption if the main call is uninterruptible and if the
server has an address list. The next op will check it again since the
expiration time on the old list has past.
Fixes: d2ddc776a458 ("afs: Overhaul volume and server record caching and fileserver rotation")
Reported-by: Jonathan Billings <jsbillings@jsbillings.org>
Reported-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-08 23:16:31 +08:00
|
|
|
afs_set_fc_call(call, fc);
|
2019-04-25 21:26:50 +08:00
|
|
|
afs_make_call(&fc->ac, call, GFP_NOFS);
|
|
|
|
return afs_wait_for_call_to_complete(call, &fc->ac);
|
2007-04-27 06:49:28 +08:00
|
|
|
}
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
/*
|
2007-04-27 06:55:03 +08:00
|
|
|
* deliver reply data to an FS.FetchData
|
2005-04-17 06:20:36 +08:00
|
|
|
*/
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
static int afs_deliver_fs_fetch_data(struct afs_call *call)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
2019-05-10 05:22:50 +08:00
|
|
|
struct afs_read *req = call->read_request;
|
2007-04-27 06:55:03 +08:00
|
|
|
const __be32 *bp;
|
2017-01-05 18:38:34 +08:00
|
|
|
unsigned int size;
|
2005-04-17 06:20:36 +08:00
|
|
|
int ret;
|
|
|
|
|
2018-10-20 07:57:56 +08:00
|
|
|
_enter("{%u,%zu/%llu}",
|
|
|
|
call->unmarshall, iov_iter_count(&call->iter), req->actual_len);
|
2007-04-27 06:55:03 +08:00
|
|
|
|
|
|
|
switch (call->unmarshall) {
|
|
|
|
case 0:
|
2017-01-05 18:38:34 +08:00
|
|
|
req->actual_len = 0;
|
2018-10-20 07:57:56 +08:00
|
|
|
req->index = 0;
|
|
|
|
req->offset = req->pos & (PAGE_SIZE - 1);
|
2007-04-27 06:55:03 +08:00
|
|
|
call->unmarshall++;
|
2018-10-20 07:57:56 +08:00
|
|
|
if (call->operation_ID == FSFETCHDATA64) {
|
|
|
|
afs_extract_to_tmp64(call);
|
|
|
|
} else {
|
|
|
|
call->tmp_u = htonl(0);
|
|
|
|
afs_extract_to_tmp(call);
|
2007-05-10 18:15:21 +08:00
|
|
|
}
|
2019-05-20 07:43:53 +08:00
|
|
|
/* Fall through */
|
2007-04-27 06:55:03 +08:00
|
|
|
|
2019-05-20 07:43:53 +08:00
|
|
|
/* extract the returned data length */
|
2018-10-20 07:57:56 +08:00
|
|
|
case 1:
|
2007-04-27 06:55:03 +08:00
|
|
|
_debug("extract data length");
|
2018-10-20 07:57:56 +08:00
|
|
|
ret = afs_extract_data(call, true);
|
rxrpc: Fix races between skb free, ACK generation and replying
Inside the kafs filesystem it is possible to occasionally have a call
processed and terminated before we've had a chance to check whether we need
to clean up the rx queue for that call because afs_send_simple_reply() ends
the call when it is done, but this is done in a workqueue item that might
happen to run to completion before afs_deliver_to_call() completes.
Further, it is possible for rxrpc_kernel_send_data() to be called to send a
reply before the last request-phase data skb is released. The rxrpc skb
destructor is where the ACK processing is done and the call state is
advanced upon release of the last skb. ACK generation is also deferred to
a work item because it's possible that the skb destructor is not called in
a context where kernel_sendmsg() can be invoked.
To this end, the following changes are made:
(1) kernel_rxrpc_data_consumed() is added. This should be called whenever
an skb is emptied so as to crank the ACK and call states. This does
not release the skb, however. kernel_rxrpc_free_skb() must now be
called to achieve that. These together replace
rxrpc_kernel_data_delivered().
(2) kernel_rxrpc_data_consumed() is wrapped by afs_data_consumed().
This makes afs_deliver_to_call() easier to work as the skb can simply
be discarded unconditionally here without trying to work out what the
return value of the ->deliver() function means.
The ->deliver() functions can, via afs_data_complete(),
afs_transfer_reply() and afs_extract_data() mark that an skb has been
consumed (thereby cranking the state) without the need to
conditionally free the skb to make sure the state is correct on an
incoming call for when the call processor tries to send the reply.
(3) rxrpc_recvmsg() now has to call kernel_rxrpc_data_consumed() when it
has finished with a packet and MSG_PEEK isn't set.
(4) rxrpc_packet_destructor() no longer calls rxrpc_hard_ACK_data().
Because of this, we no longer need to clear the destructor and put the
call before we free the skb in cases where we don't want the ACK/call
state to be cranked.
(5) The ->deliver() call-type callbacks are made to return -EAGAIN rather
than 0 if they expect more data (afs_extract_data() returns -EAGAIN to
the delivery function already), and the caller is now responsible for
producing an abort if that was the last packet.
(6) There are many bits of unmarshalling code where:
ret = afs_extract_data(call, skb, last, ...);
switch (ret) {
case 0: break;
case -EAGAIN: return 0;
default: return ret;
}
is to be found. As -EAGAIN can now be passed back to the caller, we
now just return if ret < 0:
ret = afs_extract_data(call, skb, last, ...);
if (ret < 0)
return ret;
(7) Checks for trailing data and empty final data packets has been
consolidated as afs_data_complete(). So:
if (skb->len > 0)
return -EBADMSG;
if (!last)
return 0;
becomes:
ret = afs_data_complete(call, skb, last);
if (ret < 0)
return ret;
(8) afs_transfer_reply() now checks the amount of data it has against the
amount of data desired and the amount of data in the skb and returns
an error to induce an abort if we don't get exactly what we want.
Without these changes, the following oops can occasionally be observed,
particularly if some printks are inserted into the delivery path:
general protection fault: 0000 [#1] SMP
Modules linked in: kafs(E) af_rxrpc(E) [last unloaded: af_rxrpc]
CPU: 0 PID: 1305 Comm: kworker/u8:3 Tainted: G E 4.7.0-fsdevel+ #1303
Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
Workqueue: kafsd afs_async_workfn [kafs]
task: ffff88040be041c0 ti: ffff88040c070000 task.ti: ffff88040c070000
RIP: 0010:[<ffffffff8108fd3c>] [<ffffffff8108fd3c>] __lock_acquire+0xcf/0x15a1
RSP: 0018:ffff88040c073bc0 EFLAGS: 00010002
RAX: 6b6b6b6b6b6b6b6b RBX: 0000000000000000 RCX: ffff88040d29a710
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88040d29a710
RBP: ffff88040c073c70 R08: 0000000000000001 R09: 0000000000000001
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000000 R14: ffff88040be041c0 R15: ffffffff814c928f
FS: 0000000000000000(0000) GS:ffff88041fa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa4595f4750 CR3: 0000000001c14000 CR4: 00000000001406f0
Stack:
0000000000000006 000000000be04930 0000000000000000 ffff880400000000
ffff880400000000 ffffffff8108f847 ffff88040be041c0 ffffffff81050446
ffff8803fc08a920 ffff8803fc08a958 ffff88040be041c0 ffff88040c073c38
Call Trace:
[<ffffffff8108f847>] ? mark_held_locks+0x5e/0x74
[<ffffffff81050446>] ? __local_bh_enable_ip+0x9b/0xa1
[<ffffffff8108f9ca>] ? trace_hardirqs_on_caller+0x16d/0x189
[<ffffffff810915f4>] lock_acquire+0x122/0x1b6
[<ffffffff810915f4>] ? lock_acquire+0x122/0x1b6
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff81609dbf>] _raw_spin_lock_irqsave+0x35/0x49
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff814c928f>] skb_dequeue+0x18/0x61
[<ffffffffa009aa92>] afs_deliver_to_call+0x344/0x39d [kafs]
[<ffffffffa009ab37>] afs_process_async_call+0x4c/0xd5 [kafs]
[<ffffffffa0099e9c>] afs_async_workfn+0xe/0x10 [kafs]
[<ffffffff81063a3a>] process_one_work+0x29d/0x57c
[<ffffffff81064ac2>] worker_thread+0x24a/0x385
[<ffffffff81064878>] ? rescuer_thread+0x2d0/0x2d0
[<ffffffff810696f5>] kthread+0xf3/0xfb
[<ffffffff8160a6ff>] ret_from_fork+0x1f/0x40
[<ffffffff81069602>] ? kthread_create_on_node+0x1cf/0x1cf
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-03 21:11:40 +08:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2018-10-20 07:57:56 +08:00
|
|
|
req->actual_len = be64_to_cpu(call->tmp64);
|
2017-01-05 18:38:34 +08:00
|
|
|
_debug("DATA length: %llu", req->actual_len);
|
2018-10-20 07:57:56 +08:00
|
|
|
req->remain = min(req->len, req->actual_len);
|
|
|
|
if (req->remain == 0)
|
2017-01-05 18:38:34 +08:00
|
|
|
goto no_more_data;
|
2018-10-20 07:57:56 +08:00
|
|
|
|
2007-04-27 06:55:03 +08:00
|
|
|
call->unmarshall++;
|
|
|
|
|
2017-01-05 18:38:34 +08:00
|
|
|
begin_page:
|
2017-03-17 00:27:44 +08:00
|
|
|
ASSERTCMP(req->index, <, req->nr_pages);
|
2018-10-20 07:57:56 +08:00
|
|
|
if (req->remain > PAGE_SIZE - req->offset)
|
|
|
|
size = PAGE_SIZE - req->offset;
|
2017-01-05 18:38:34 +08:00
|
|
|
else
|
|
|
|
size = req->remain;
|
2018-10-20 07:57:56 +08:00
|
|
|
call->bvec[0].bv_len = size;
|
|
|
|
call->bvec[0].bv_offset = req->offset;
|
|
|
|
call->bvec[0].bv_page = req->pages[req->index];
|
|
|
|
iov_iter_bvec(&call->iter, READ, call->bvec, 1, size);
|
|
|
|
ASSERTCMP(size, <=, PAGE_SIZE);
|
2019-05-20 07:43:53 +08:00
|
|
|
/* Fall through */
|
2017-01-05 18:38:34 +08:00
|
|
|
|
2019-05-20 07:43:53 +08:00
|
|
|
/* extract the returned data */
|
2018-10-20 07:57:56 +08:00
|
|
|
case 2:
|
|
|
|
_debug("extract data %zu/%llu",
|
|
|
|
iov_iter_count(&call->iter), req->remain);
|
2017-01-05 18:38:34 +08:00
|
|
|
|
2018-10-20 07:57:56 +08:00
|
|
|
ret = afs_extract_data(call, true);
|
2017-01-05 18:38:34 +08:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
2018-10-20 07:57:56 +08:00
|
|
|
req->remain -= call->bvec[0].bv_len;
|
|
|
|
req->offset += call->bvec[0].bv_len;
|
|
|
|
ASSERTCMP(req->offset, <=, PAGE_SIZE);
|
|
|
|
if (req->offset == PAGE_SIZE) {
|
|
|
|
req->offset = 0;
|
2017-01-05 18:38:34 +08:00
|
|
|
if (req->page_done)
|
2019-05-09 22:16:10 +08:00
|
|
|
req->page_done(req);
|
2017-03-17 00:27:46 +08:00
|
|
|
req->index++;
|
2018-10-20 07:57:56 +08:00
|
|
|
if (req->remain > 0)
|
2017-01-05 18:38:34 +08:00
|
|
|
goto begin_page;
|
2007-04-27 06:55:03 +08:00
|
|
|
}
|
2018-10-20 07:57:56 +08:00
|
|
|
|
|
|
|
ASSERTCMP(req->remain, ==, 0);
|
|
|
|
if (req->actual_len <= req->len)
|
|
|
|
goto no_more_data;
|
2017-03-17 00:27:44 +08:00
|
|
|
|
|
|
|
/* Discard any excess data the server gave us */
|
2019-08-20 16:22:38 +08:00
|
|
|
afs_extract_discard(call, req->actual_len - req->len);
|
2018-10-20 07:57:56 +08:00
|
|
|
call->unmarshall = 3;
|
2019-01-11 05:52:25 +08:00
|
|
|
/* Fall through */
|
2019-05-20 07:43:53 +08:00
|
|
|
|
2018-10-20 07:57:56 +08:00
|
|
|
case 3:
|
|
|
|
_debug("extract discard %zu/%llu",
|
|
|
|
iov_iter_count(&call->iter), req->actual_len - req->len);
|
|
|
|
|
|
|
|
ret = afs_extract_data(call, true);
|
2017-03-17 00:27:44 +08:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2017-01-05 18:38:34 +08:00
|
|
|
no_more_data:
|
2018-10-20 07:57:56 +08:00
|
|
|
call->unmarshall = 4;
|
|
|
|
afs_extract_to_buf(call, (21 + 3 + 6) * 4);
|
2019-05-20 07:43:53 +08:00
|
|
|
/* Fall through */
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2019-05-20 07:43:53 +08:00
|
|
|
/* extract the metadata */
|
2018-10-20 07:57:56 +08:00
|
|
|
case 4:
|
|
|
|
ret = afs_extract_data(call, false);
|
rxrpc: Fix races between skb free, ACK generation and replying
Inside the kafs filesystem it is possible to occasionally have a call
processed and terminated before we've had a chance to check whether we need
to clean up the rx queue for that call because afs_send_simple_reply() ends
the call when it is done, but this is done in a workqueue item that might
happen to run to completion before afs_deliver_to_call() completes.
Further, it is possible for rxrpc_kernel_send_data() to be called to send a
reply before the last request-phase data skb is released. The rxrpc skb
destructor is where the ACK processing is done and the call state is
advanced upon release of the last skb. ACK generation is also deferred to
a work item because it's possible that the skb destructor is not called in
a context where kernel_sendmsg() can be invoked.
To this end, the following changes are made:
(1) kernel_rxrpc_data_consumed() is added. This should be called whenever
an skb is emptied so as to crank the ACK and call states. This does
not release the skb, however. kernel_rxrpc_free_skb() must now be
called to achieve that. These together replace
rxrpc_kernel_data_delivered().
(2) kernel_rxrpc_data_consumed() is wrapped by afs_data_consumed().
This makes afs_deliver_to_call() easier to work as the skb can simply
be discarded unconditionally here without trying to work out what the
return value of the ->deliver() function means.
The ->deliver() functions can, via afs_data_complete(),
afs_transfer_reply() and afs_extract_data() mark that an skb has been
consumed (thereby cranking the state) without the need to
conditionally free the skb to make sure the state is correct on an
incoming call for when the call processor tries to send the reply.
(3) rxrpc_recvmsg() now has to call kernel_rxrpc_data_consumed() when it
has finished with a packet and MSG_PEEK isn't set.
(4) rxrpc_packet_destructor() no longer calls rxrpc_hard_ACK_data().
Because of this, we no longer need to clear the destructor and put the
call before we free the skb in cases where we don't want the ACK/call
state to be cranked.
(5) The ->deliver() call-type callbacks are made to return -EAGAIN rather
than 0 if they expect more data (afs_extract_data() returns -EAGAIN to
the delivery function already), and the caller is now responsible for
producing an abort if that was the last packet.
(6) There are many bits of unmarshalling code where:
ret = afs_extract_data(call, skb, last, ...);
switch (ret) {
case 0: break;
case -EAGAIN: return 0;
default: return ret;
}
is to be found. As -EAGAIN can now be passed back to the caller, we
now just return if ret < 0:
ret = afs_extract_data(call, skb, last, ...);
if (ret < 0)
return ret;
(7) Checks for trailing data and empty final data packets has been
consolidated as afs_data_complete(). So:
if (skb->len > 0)
return -EBADMSG;
if (!last)
return 0;
becomes:
ret = afs_data_complete(call, skb, last);
if (ret < 0)
return ret;
(8) afs_transfer_reply() now checks the amount of data it has against the
amount of data desired and the amount of data in the skb and returns
an error to induce an abort if we don't get exactly what we want.
Without these changes, the following oops can occasionally be observed,
particularly if some printks are inserted into the delivery path:
general protection fault: 0000 [#1] SMP
Modules linked in: kafs(E) af_rxrpc(E) [last unloaded: af_rxrpc]
CPU: 0 PID: 1305 Comm: kworker/u8:3 Tainted: G E 4.7.0-fsdevel+ #1303
Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
Workqueue: kafsd afs_async_workfn [kafs]
task: ffff88040be041c0 ti: ffff88040c070000 task.ti: ffff88040c070000
RIP: 0010:[<ffffffff8108fd3c>] [<ffffffff8108fd3c>] __lock_acquire+0xcf/0x15a1
RSP: 0018:ffff88040c073bc0 EFLAGS: 00010002
RAX: 6b6b6b6b6b6b6b6b RBX: 0000000000000000 RCX: ffff88040d29a710
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88040d29a710
RBP: ffff88040c073c70 R08: 0000000000000001 R09: 0000000000000001
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000000 R14: ffff88040be041c0 R15: ffffffff814c928f
FS: 0000000000000000(0000) GS:ffff88041fa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa4595f4750 CR3: 0000000001c14000 CR4: 00000000001406f0
Stack:
0000000000000006 000000000be04930 0000000000000000 ffff880400000000
ffff880400000000 ffffffff8108f847 ffff88040be041c0 ffffffff81050446
ffff8803fc08a920 ffff8803fc08a958 ffff88040be041c0 ffff88040c073c38
Call Trace:
[<ffffffff8108f847>] ? mark_held_locks+0x5e/0x74
[<ffffffff81050446>] ? __local_bh_enable_ip+0x9b/0xa1
[<ffffffff8108f9ca>] ? trace_hardirqs_on_caller+0x16d/0x189
[<ffffffff810915f4>] lock_acquire+0x122/0x1b6
[<ffffffff810915f4>] ? lock_acquire+0x122/0x1b6
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff81609dbf>] _raw_spin_lock_irqsave+0x35/0x49
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff814c928f>] skb_dequeue+0x18/0x61
[<ffffffffa009aa92>] afs_deliver_to_call+0x344/0x39d [kafs]
[<ffffffffa009ab37>] afs_process_async_call+0x4c/0xd5 [kafs]
[<ffffffffa0099e9c>] afs_async_workfn+0xe/0x10 [kafs]
[<ffffffff81063a3a>] process_one_work+0x29d/0x57c
[<ffffffff81064ac2>] worker_thread+0x24a/0x385
[<ffffffff81064878>] ? rescuer_thread+0x2d0/0x2d0
[<ffffffff810696f5>] kthread+0xf3/0xfb
[<ffffffff8160a6ff>] ret_from_fork+0x1f/0x40
[<ffffffff81069602>] ? kthread_create_on_node+0x1cf/0x1cf
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-03 21:11:40 +08:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
2007-04-27 06:55:03 +08:00
|
|
|
|
|
|
|
bp = call->buffer;
|
2019-05-09 22:16:10 +08:00
|
|
|
ret = xdr_decode_AFSFetchStatus(&bp, call, call->out_scb);
|
2018-10-20 07:57:56 +08:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
2019-05-09 22:16:10 +08:00
|
|
|
xdr_decode_AFSCallBack(&bp, call, call->out_scb);
|
2019-05-10 05:22:50 +08:00
|
|
|
xdr_decode_AFSVolSync(&bp, call->out_volsync);
|
2007-04-27 06:55:03 +08:00
|
|
|
|
2019-05-09 22:16:10 +08:00
|
|
|
req->data_version = call->out_scb->status.data_version;
|
|
|
|
req->file_size = call->out_scb->status.size;
|
|
|
|
|
2007-04-27 06:55:03 +08:00
|
|
|
call->unmarshall++;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2018-10-20 07:57:56 +08:00
|
|
|
case 5:
|
2007-04-27 06:55:03 +08:00
|
|
|
break;
|
2005-04-17 06:20:36 +08:00
|
|
|
}
|
|
|
|
|
2017-03-17 00:27:44 +08:00
|
|
|
for (; req->index < req->nr_pages; req->index++) {
|
2018-10-20 07:57:56 +08:00
|
|
|
if (req->offset < PAGE_SIZE)
|
2017-03-17 00:27:44 +08:00
|
|
|
zero_user_segment(req->pages[req->index],
|
2018-10-20 07:57:56 +08:00
|
|
|
req->offset, PAGE_SIZE);
|
2017-01-05 18:38:34 +08:00
|
|
|
if (req->page_done)
|
2019-05-09 22:16:10 +08:00
|
|
|
req->page_done(req);
|
2018-10-20 07:57:56 +08:00
|
|
|
req->offset = 0;
|
2007-05-09 17:33:45 +08:00
|
|
|
}
|
|
|
|
|
2007-04-27 06:55:03 +08:00
|
|
|
_leave(" = 0 [done]");
|
|
|
|
return 0;
|
2007-04-27 06:49:28 +08:00
|
|
|
}
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2017-01-05 18:38:34 +08:00
|
|
|
static void afs_fetch_data_destructor(struct afs_call *call)
|
|
|
|
{
|
2019-05-10 05:22:50 +08:00
|
|
|
struct afs_read *req = call->read_request;
|
2017-01-05 18:38:34 +08:00
|
|
|
|
|
|
|
afs_put_read(req);
|
|
|
|
afs_flat_call_destructor(call);
|
|
|
|
}
|
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
/*
|
2007-04-27 06:55:03 +08:00
|
|
|
* FS.FetchData operation type
|
2005-04-17 06:20:36 +08:00
|
|
|
*/
|
2007-04-27 06:55:03 +08:00
|
|
|
static const struct afs_call_type afs_RXFSFetchData = {
|
2007-04-27 06:57:07 +08:00
|
|
|
.name = "FS.FetchData",
|
2017-11-02 23:27:51 +08:00
|
|
|
.op = afs_FS_FetchData,
|
2007-04-27 06:55:03 +08:00
|
|
|
.deliver = afs_deliver_fs_fetch_data,
|
2017-01-05 18:38:34 +08:00
|
|
|
.destructor = afs_fetch_data_destructor,
|
2007-04-27 06:55:03 +08:00
|
|
|
};
|
|
|
|
|
2007-05-10 18:15:21 +08:00
|
|
|
static const struct afs_call_type afs_RXFSFetchData64 = {
|
|
|
|
.name = "FS.FetchData64",
|
2017-11-02 23:27:51 +08:00
|
|
|
.op = afs_FS_FetchData64,
|
2007-05-10 18:15:21 +08:00
|
|
|
.deliver = afs_deliver_fs_fetch_data,
|
2017-01-05 18:38:34 +08:00
|
|
|
.destructor = afs_fetch_data_destructor,
|
2007-05-10 18:15:21 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* fetch data from a very large file
|
|
|
|
*/
|
2019-05-09 22:16:10 +08:00
|
|
|
static int afs_fs_fetch_data64(struct afs_fs_cursor *fc,
|
|
|
|
struct afs_status_cb *scb,
|
|
|
|
struct afs_read *req)
|
2007-05-10 18:15:21 +08:00
|
|
|
{
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
struct afs_vnode *vnode = fc->vnode;
|
2007-05-10 18:15:21 +08:00
|
|
|
struct afs_call *call;
|
2017-11-02 23:27:45 +08:00
|
|
|
struct afs_net *net = afs_v2net(vnode);
|
2007-05-10 18:15:21 +08:00
|
|
|
__be32 *bp;
|
|
|
|
|
|
|
|
_enter("");
|
|
|
|
|
2017-11-02 23:27:45 +08:00
|
|
|
call = afs_alloc_flat_call(net, &afs_RXFSFetchData64, 32, (21 + 3 + 6) * 4);
|
2007-05-10 18:15:21 +08:00
|
|
|
if (!call)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
call->key = fc->key;
|
2019-05-09 22:16:10 +08:00
|
|
|
call->out_scb = scb;
|
2019-05-10 05:22:50 +08:00
|
|
|
call->out_volsync = NULL;
|
|
|
|
call->read_request = req;
|
2007-05-10 18:15:21 +08:00
|
|
|
|
|
|
|
/* marshall the parameters */
|
|
|
|
bp = call->request;
|
|
|
|
bp[0] = htonl(FSFETCHDATA64);
|
|
|
|
bp[1] = htonl(vnode->fid.vid);
|
|
|
|
bp[2] = htonl(vnode->fid.vnode);
|
|
|
|
bp[3] = htonl(vnode->fid.unique);
|
2017-01-05 18:38:34 +08:00
|
|
|
bp[4] = htonl(upper_32_bits(req->pos));
|
|
|
|
bp[5] = htonl(lower_32_bits(req->pos));
|
2007-05-10 18:15:21 +08:00
|
|
|
bp[6] = 0;
|
2017-01-05 18:38:34 +08:00
|
|
|
bp[7] = htonl(lower_32_bits(req->len));
|
2007-05-10 18:15:21 +08:00
|
|
|
|
afs: Fix directory handling
AFS directories are structured blobs that are downloaded just like files
and then parsed by the lookup and readdir code and, as such, are currently
handled in the pagecache like any other file, with the entire directory
content being thrown away each time the directory changes.
However, since the blob is a known structure and since the data version
counter on a directory increases by exactly one for each change committed
to that directory, we can actually edit the directory locally rather than
fetching it from the server after each locally-induced change.
What we can't do, though, is mix data from the server and data from the
client since the server is technically at liberty to rearrange or compress
a directory if it sees fit, provided it updates the data version number
when it does so and breaks the callback (ie. sends a notification).
Further, lookup with lookup-ahead, readdir and, when it arrives, local
editing are likely want to scan the whole of a directory.
So directory handling needs to be improved to maintain the coherency of the
directory blob prior to permitting local directory editing.
To this end:
(1) If any directory page gets discarded, invalidate and reread the entire
directory.
(2) If readpage notes that if when it fetches a single page that the
version number has changed, the entire directory is flagged for
invalidation.
(3) Read as much of the directory in one go as we can.
Note that this removes local caching of directories in fscache for the
moment as we can't pass the pages to fscache_read_or_alloc_pages() since
page->lru is in use by the LRU.
Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-06 21:17:25 +08:00
|
|
|
refcount_inc(&req->usage);
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
afs_use_fs_server(call, fc->cbi);
|
2017-11-02 23:27:51 +08:00
|
|
|
trace_afs_make_fs_call(call, &vnode->fid);
|
afs: Make some RPC operations non-interruptible
Make certain RPC operations non-interruptible, including:
(*) Set attributes
(*) Store data
We don't want to get interrupted during a flush on close, flush on
unlock, writeback or an inode update, leaving us in a state where we
still need to do the writeback or update.
(*) Extend lock
(*) Release lock
We don't want to get lock extension interrupted as the file locks on
the server are time-limited. Interruption during lock release is less
of an issue since the lock is time-limited, but it's better to
complete the release to avoid a several-minute wait to recover it.
*Setting* the lock isn't a problem if it's interrupted since we can
just return to the user and tell them they were interrupted - at
which point they can elect to retry.
(*) Silly unlink
We want to remove silly unlink files if we can, rather than leaving
them for the salvager to clear up.
Note that whilst these calls are no longer interruptible, they do have
timeouts on them, so if the server stops responding the call will fail with
something like ETIME or ECONNRESET.
Without this, the following:
kAFS: Unexpected error from FS.StoreData -512
appears in dmesg when a pending store data gets interrupted and some
processes may just hang.
Additionally, make the code that checks/updates the server record ignore
failure due to interruption if the main call is uninterruptible and if the
server has an address list. The next op will check it again since the
expiration time on the old list has past.
Fixes: d2ddc776a458 ("afs: Overhaul volume and server record caching and fileserver rotation")
Reported-by: Jonathan Billings <jsbillings@jsbillings.org>
Reported-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-08 23:16:31 +08:00
|
|
|
afs_set_fc_call(call, fc);
|
2019-04-25 21:26:50 +08:00
|
|
|
afs_make_call(&fc->ac, call, GFP_NOFS);
|
|
|
|
return afs_wait_for_call_to_complete(call, &fc->ac);
|
2007-05-10 18:15:21 +08:00
|
|
|
}
|
|
|
|
|
2007-04-27 06:55:03 +08:00
|
|
|
/*
|
|
|
|
* fetch data from a file
|
|
|
|
*/
|
2019-05-09 22:16:10 +08:00
|
|
|
int afs_fs_fetch_data(struct afs_fs_cursor *fc,
|
|
|
|
struct afs_status_cb *scb,
|
|
|
|
struct afs_read *req)
|
2005-04-17 06:20:36 +08:00
|
|
|
{
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
struct afs_vnode *vnode = fc->vnode;
|
2007-04-27 06:55:03 +08:00
|
|
|
struct afs_call *call;
|
2017-11-02 23:27:45 +08:00
|
|
|
struct afs_net *net = afs_v2net(vnode);
|
2005-04-17 06:20:36 +08:00
|
|
|
__be32 *bp;
|
|
|
|
|
2018-10-20 07:57:58 +08:00
|
|
|
if (test_bit(AFS_SERVER_FL_IS_YFS, &fc->cbi->server->flags))
|
2019-05-09 22:16:10 +08:00
|
|
|
return yfs_fs_fetch_data(fc, scb, req);
|
2018-10-20 07:57:58 +08:00
|
|
|
|
2017-01-05 18:38:34 +08:00
|
|
|
if (upper_32_bits(req->pos) ||
|
|
|
|
upper_32_bits(req->len) ||
|
|
|
|
upper_32_bits(req->pos + req->len))
|
2019-05-09 22:16:10 +08:00
|
|
|
return afs_fs_fetch_data64(fc, scb, req);
|
2007-05-10 18:15:21 +08:00
|
|
|
|
2007-04-27 06:55:03 +08:00
|
|
|
_enter("");
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2017-11-02 23:27:45 +08:00
|
|
|
call = afs_alloc_flat_call(net, &afs_RXFSFetchData, 24, (21 + 3 + 6) * 4);
|
2007-04-27 06:55:03 +08:00
|
|
|
if (!call)
|
|
|
|
return -ENOMEM;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
call->key = fc->key;
|
2019-05-09 22:16:10 +08:00
|
|
|
call->out_scb = scb;
|
2019-05-10 05:22:50 +08:00
|
|
|
call->out_volsync = NULL;
|
|
|
|
call->read_request = req;
|
2005-04-17 06:20:36 +08:00
|
|
|
|
|
|
|
/* marshall the parameters */
|
2007-04-27 06:55:03 +08:00
|
|
|
bp = call->request;
|
|
|
|
bp[0] = htonl(FSFETCHDATA);
|
|
|
|
bp[1] = htonl(vnode->fid.vid);
|
|
|
|
bp[2] = htonl(vnode->fid.vnode);
|
|
|
|
bp[3] = htonl(vnode->fid.unique);
|
2017-01-05 18:38:34 +08:00
|
|
|
bp[4] = htonl(lower_32_bits(req->pos));
|
|
|
|
bp[5] = htonl(lower_32_bits(req->len));
|
2005-04-17 06:20:36 +08:00
|
|
|
|
afs: Fix directory handling
AFS directories are structured blobs that are downloaded just like files
and then parsed by the lookup and readdir code and, as such, are currently
handled in the pagecache like any other file, with the entire directory
content being thrown away each time the directory changes.
However, since the blob is a known structure and since the data version
counter on a directory increases by exactly one for each change committed
to that directory, we can actually edit the directory locally rather than
fetching it from the server after each locally-induced change.
What we can't do, though, is mix data from the server and data from the
client since the server is technically at liberty to rearrange or compress
a directory if it sees fit, provided it updates the data version number
when it does so and breaks the callback (ie. sends a notification).
Further, lookup with lookup-ahead, readdir and, when it arrives, local
editing are likely want to scan the whole of a directory.
So directory handling needs to be improved to maintain the coherency of the
directory blob prior to permitting local directory editing.
To this end:
(1) If any directory page gets discarded, invalidate and reread the entire
directory.
(2) If readpage notes that if when it fetches a single page that the
version number has changed, the entire directory is flagged for
invalidation.
(3) Read as much of the directory in one go as we can.
Note that this removes local caching of directories in fscache for the
moment as we can't pass the pages to fscache_read_or_alloc_pages() since
page->lru is in use by the LRU.
Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-06 21:17:25 +08:00
|
|
|
refcount_inc(&req->usage);
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
afs_use_fs_server(call, fc->cbi);
|
2017-11-02 23:27:51 +08:00
|
|
|
trace_afs_make_fs_call(call, &vnode->fid);
|
afs: Make some RPC operations non-interruptible
Make certain RPC operations non-interruptible, including:
(*) Set attributes
(*) Store data
We don't want to get interrupted during a flush on close, flush on
unlock, writeback or an inode update, leaving us in a state where we
still need to do the writeback or update.
(*) Extend lock
(*) Release lock
We don't want to get lock extension interrupted as the file locks on
the server are time-limited. Interruption during lock release is less
of an issue since the lock is time-limited, but it's better to
complete the release to avoid a several-minute wait to recover it.
*Setting* the lock isn't a problem if it's interrupted since we can
just return to the user and tell them they were interrupted - at
which point they can elect to retry.
(*) Silly unlink
We want to remove silly unlink files if we can, rather than leaving
them for the salvager to clear up.
Note that whilst these calls are no longer interruptible, they do have
timeouts on them, so if the server stops responding the call will fail with
something like ETIME or ECONNRESET.
Without this, the following:
kAFS: Unexpected error from FS.StoreData -512
appears in dmesg when a pending store data gets interrupted and some
processes may just hang.
Additionally, make the code that checks/updates the server record ignore
failure due to interruption if the main call is uninterruptible and if the
server has an address list. The next op will check it again since the
expiration time on the old list has past.
Fixes: d2ddc776a458 ("afs: Overhaul volume and server record caching and fileserver rotation")
Reported-by: Jonathan Billings <jsbillings@jsbillings.org>
Reported-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-08 23:16:31 +08:00
|
|
|
afs_set_fc_call(call, fc);
|
2019-04-25 21:26:50 +08:00
|
|
|
afs_make_call(&fc->ac, call, GFP_NOFS);
|
|
|
|
return afs_wait_for_call_to_complete(call, &fc->ac);
|
2007-04-27 06:49:28 +08:00
|
|
|
}
|
2007-04-27 06:59:35 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* deliver reply data to an FS.CreateFile or an FS.MakeDir
|
|
|
|
*/
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
static int afs_deliver_fs_create_vnode(struct afs_call *call)
|
2007-04-27 06:59:35 +08:00
|
|
|
{
|
|
|
|
const __be32 *bp;
|
rxrpc: Fix races between skb free, ACK generation and replying
Inside the kafs filesystem it is possible to occasionally have a call
processed and terminated before we've had a chance to check whether we need
to clean up the rx queue for that call because afs_send_simple_reply() ends
the call when it is done, but this is done in a workqueue item that might
happen to run to completion before afs_deliver_to_call() completes.
Further, it is possible for rxrpc_kernel_send_data() to be called to send a
reply before the last request-phase data skb is released. The rxrpc skb
destructor is where the ACK processing is done and the call state is
advanced upon release of the last skb. ACK generation is also deferred to
a work item because it's possible that the skb destructor is not called in
a context where kernel_sendmsg() can be invoked.
To this end, the following changes are made:
(1) kernel_rxrpc_data_consumed() is added. This should be called whenever
an skb is emptied so as to crank the ACK and call states. This does
not release the skb, however. kernel_rxrpc_free_skb() must now be
called to achieve that. These together replace
rxrpc_kernel_data_delivered().
(2) kernel_rxrpc_data_consumed() is wrapped by afs_data_consumed().
This makes afs_deliver_to_call() easier to work as the skb can simply
be discarded unconditionally here without trying to work out what the
return value of the ->deliver() function means.
The ->deliver() functions can, via afs_data_complete(),
afs_transfer_reply() and afs_extract_data() mark that an skb has been
consumed (thereby cranking the state) without the need to
conditionally free the skb to make sure the state is correct on an
incoming call for when the call processor tries to send the reply.
(3) rxrpc_recvmsg() now has to call kernel_rxrpc_data_consumed() when it
has finished with a packet and MSG_PEEK isn't set.
(4) rxrpc_packet_destructor() no longer calls rxrpc_hard_ACK_data().
Because of this, we no longer need to clear the destructor and put the
call before we free the skb in cases where we don't want the ACK/call
state to be cranked.
(5) The ->deliver() call-type callbacks are made to return -EAGAIN rather
than 0 if they expect more data (afs_extract_data() returns -EAGAIN to
the delivery function already), and the caller is now responsible for
producing an abort if that was the last packet.
(6) There are many bits of unmarshalling code where:
ret = afs_extract_data(call, skb, last, ...);
switch (ret) {
case 0: break;
case -EAGAIN: return 0;
default: return ret;
}
is to be found. As -EAGAIN can now be passed back to the caller, we
now just return if ret < 0:
ret = afs_extract_data(call, skb, last, ...);
if (ret < 0)
return ret;
(7) Checks for trailing data and empty final data packets has been
consolidated as afs_data_complete(). So:
if (skb->len > 0)
return -EBADMSG;
if (!last)
return 0;
becomes:
ret = afs_data_complete(call, skb, last);
if (ret < 0)
return ret;
(8) afs_transfer_reply() now checks the amount of data it has against the
amount of data desired and the amount of data in the skb and returns
an error to induce an abort if we don't get exactly what we want.
Without these changes, the following oops can occasionally be observed,
particularly if some printks are inserted into the delivery path:
general protection fault: 0000 [#1] SMP
Modules linked in: kafs(E) af_rxrpc(E) [last unloaded: af_rxrpc]
CPU: 0 PID: 1305 Comm: kworker/u8:3 Tainted: G E 4.7.0-fsdevel+ #1303
Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
Workqueue: kafsd afs_async_workfn [kafs]
task: ffff88040be041c0 ti: ffff88040c070000 task.ti: ffff88040c070000
RIP: 0010:[<ffffffff8108fd3c>] [<ffffffff8108fd3c>] __lock_acquire+0xcf/0x15a1
RSP: 0018:ffff88040c073bc0 EFLAGS: 00010002
RAX: 6b6b6b6b6b6b6b6b RBX: 0000000000000000 RCX: ffff88040d29a710
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88040d29a710
RBP: ffff88040c073c70 R08: 0000000000000001 R09: 0000000000000001
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000000 R14: ffff88040be041c0 R15: ffffffff814c928f
FS: 0000000000000000(0000) GS:ffff88041fa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa4595f4750 CR3: 0000000001c14000 CR4: 00000000001406f0
Stack:
0000000000000006 000000000be04930 0000000000000000 ffff880400000000
ffff880400000000 ffffffff8108f847 ffff88040be041c0 ffffffff81050446
ffff8803fc08a920 ffff8803fc08a958 ffff88040be041c0 ffff88040c073c38
Call Trace:
[<ffffffff8108f847>] ? mark_held_locks+0x5e/0x74
[<ffffffff81050446>] ? __local_bh_enable_ip+0x9b/0xa1
[<ffffffff8108f9ca>] ? trace_hardirqs_on_caller+0x16d/0x189
[<ffffffff810915f4>] lock_acquire+0x122/0x1b6
[<ffffffff810915f4>] ? lock_acquire+0x122/0x1b6
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff81609dbf>] _raw_spin_lock_irqsave+0x35/0x49
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff814c928f>] skb_dequeue+0x18/0x61
[<ffffffffa009aa92>] afs_deliver_to_call+0x344/0x39d [kafs]
[<ffffffffa009ab37>] afs_process_async_call+0x4c/0xd5 [kafs]
[<ffffffffa0099e9c>] afs_async_workfn+0xe/0x10 [kafs]
[<ffffffff81063a3a>] process_one_work+0x29d/0x57c
[<ffffffff81064ac2>] worker_thread+0x24a/0x385
[<ffffffff81064878>] ? rescuer_thread+0x2d0/0x2d0
[<ffffffff810696f5>] kthread+0xf3/0xfb
[<ffffffff8160a6ff>] ret_from_fork+0x1f/0x40
[<ffffffff81069602>] ? kthread_create_on_node+0x1cf/0x1cf
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-03 21:11:40 +08:00
|
|
|
int ret;
|
2007-04-27 06:59:35 +08:00
|
|
|
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
ret = afs_transfer_reply(call);
|
rxrpc: Fix races between skb free, ACK generation and replying
Inside the kafs filesystem it is possible to occasionally have a call
processed and terminated before we've had a chance to check whether we need
to clean up the rx queue for that call because afs_send_simple_reply() ends
the call when it is done, but this is done in a workqueue item that might
happen to run to completion before afs_deliver_to_call() completes.
Further, it is possible for rxrpc_kernel_send_data() to be called to send a
reply before the last request-phase data skb is released. The rxrpc skb
destructor is where the ACK processing is done and the call state is
advanced upon release of the last skb. ACK generation is also deferred to
a work item because it's possible that the skb destructor is not called in
a context where kernel_sendmsg() can be invoked.
To this end, the following changes are made:
(1) kernel_rxrpc_data_consumed() is added. This should be called whenever
an skb is emptied so as to crank the ACK and call states. This does
not release the skb, however. kernel_rxrpc_free_skb() must now be
called to achieve that. These together replace
rxrpc_kernel_data_delivered().
(2) kernel_rxrpc_data_consumed() is wrapped by afs_data_consumed().
This makes afs_deliver_to_call() easier to work as the skb can simply
be discarded unconditionally here without trying to work out what the
return value of the ->deliver() function means.
The ->deliver() functions can, via afs_data_complete(),
afs_transfer_reply() and afs_extract_data() mark that an skb has been
consumed (thereby cranking the state) without the need to
conditionally free the skb to make sure the state is correct on an
incoming call for when the call processor tries to send the reply.
(3) rxrpc_recvmsg() now has to call kernel_rxrpc_data_consumed() when it
has finished with a packet and MSG_PEEK isn't set.
(4) rxrpc_packet_destructor() no longer calls rxrpc_hard_ACK_data().
Because of this, we no longer need to clear the destructor and put the
call before we free the skb in cases where we don't want the ACK/call
state to be cranked.
(5) The ->deliver() call-type callbacks are made to return -EAGAIN rather
than 0 if they expect more data (afs_extract_data() returns -EAGAIN to
the delivery function already), and the caller is now responsible for
producing an abort if that was the last packet.
(6) There are many bits of unmarshalling code where:
ret = afs_extract_data(call, skb, last, ...);
switch (ret) {
case 0: break;
case -EAGAIN: return 0;
default: return ret;
}
is to be found. As -EAGAIN can now be passed back to the caller, we
now just return if ret < 0:
ret = afs_extract_data(call, skb, last, ...);
if (ret < 0)
return ret;
(7) Checks for trailing data and empty final data packets has been
consolidated as afs_data_complete(). So:
if (skb->len > 0)
return -EBADMSG;
if (!last)
return 0;
becomes:
ret = afs_data_complete(call, skb, last);
if (ret < 0)
return ret;
(8) afs_transfer_reply() now checks the amount of data it has against the
amount of data desired and the amount of data in the skb and returns
an error to induce an abort if we don't get exactly what we want.
Without these changes, the following oops can occasionally be observed,
particularly if some printks are inserted into the delivery path:
general protection fault: 0000 [#1] SMP
Modules linked in: kafs(E) af_rxrpc(E) [last unloaded: af_rxrpc]
CPU: 0 PID: 1305 Comm: kworker/u8:3 Tainted: G E 4.7.0-fsdevel+ #1303
Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
Workqueue: kafsd afs_async_workfn [kafs]
task: ffff88040be041c0 ti: ffff88040c070000 task.ti: ffff88040c070000
RIP: 0010:[<ffffffff8108fd3c>] [<ffffffff8108fd3c>] __lock_acquire+0xcf/0x15a1
RSP: 0018:ffff88040c073bc0 EFLAGS: 00010002
RAX: 6b6b6b6b6b6b6b6b RBX: 0000000000000000 RCX: ffff88040d29a710
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88040d29a710
RBP: ffff88040c073c70 R08: 0000000000000001 R09: 0000000000000001
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000000 R14: ffff88040be041c0 R15: ffffffff814c928f
FS: 0000000000000000(0000) GS:ffff88041fa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa4595f4750 CR3: 0000000001c14000 CR4: 00000000001406f0
Stack:
0000000000000006 000000000be04930 0000000000000000 ffff880400000000
ffff880400000000 ffffffff8108f847 ffff88040be041c0 ffffffff81050446
ffff8803fc08a920 ffff8803fc08a958 ffff88040be041c0 ffff88040c073c38
Call Trace:
[<ffffffff8108f847>] ? mark_held_locks+0x5e/0x74
[<ffffffff81050446>] ? __local_bh_enable_ip+0x9b/0xa1
[<ffffffff8108f9ca>] ? trace_hardirqs_on_caller+0x16d/0x189
[<ffffffff810915f4>] lock_acquire+0x122/0x1b6
[<ffffffff810915f4>] ? lock_acquire+0x122/0x1b6
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff81609dbf>] _raw_spin_lock_irqsave+0x35/0x49
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff814c928f>] skb_dequeue+0x18/0x61
[<ffffffffa009aa92>] afs_deliver_to_call+0x344/0x39d [kafs]
[<ffffffffa009ab37>] afs_process_async_call+0x4c/0xd5 [kafs]
[<ffffffffa0099e9c>] afs_async_workfn+0xe/0x10 [kafs]
[<ffffffff81063a3a>] process_one_work+0x29d/0x57c
[<ffffffff81064ac2>] worker_thread+0x24a/0x385
[<ffffffff81064878>] ? rescuer_thread+0x2d0/0x2d0
[<ffffffff810696f5>] kthread+0xf3/0xfb
[<ffffffff8160a6ff>] ret_from_fork+0x1f/0x40
[<ffffffff81069602>] ? kthread_create_on_node+0x1cf/0x1cf
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-03 21:11:40 +08:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
2007-04-27 06:59:35 +08:00
|
|
|
|
|
|
|
/* unmarshall the reply once we've received all of it */
|
|
|
|
bp = call->buffer;
|
2019-05-10 05:22:50 +08:00
|
|
|
xdr_decode_AFSFid(&bp, call->out_fid);
|
2019-05-09 22:16:10 +08:00
|
|
|
ret = xdr_decode_AFSFetchStatus(&bp, call, call->out_scb);
|
2018-10-20 07:57:56 +08:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
2019-05-09 22:16:10 +08:00
|
|
|
ret = xdr_decode_AFSFetchStatus(&bp, call, call->out_dir_scb);
|
2018-10-20 07:57:56 +08:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
2019-05-09 22:16:10 +08:00
|
|
|
xdr_decode_AFSCallBack(&bp, call, call->out_scb);
|
2019-05-10 05:22:50 +08:00
|
|
|
xdr_decode_AFSVolSync(&bp, call->out_volsync);
|
2007-04-27 06:59:35 +08:00
|
|
|
|
|
|
|
_leave(" = 0 [done]");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* FS.CreateFile and FS.MakeDir operation type
|
|
|
|
*/
|
2017-11-02 23:27:51 +08:00
|
|
|
static const struct afs_call_type afs_RXFSCreateFile = {
|
|
|
|
.name = "FS.CreateFile",
|
|
|
|
.op = afs_FS_CreateFile,
|
|
|
|
.deliver = afs_deliver_fs_create_vnode,
|
|
|
|
.destructor = afs_flat_call_destructor,
|
|
|
|
};
|
|
|
|
|
|
|
|
static const struct afs_call_type afs_RXFSMakeDir = {
|
|
|
|
.name = "FS.MakeDir",
|
|
|
|
.op = afs_FS_MakeDir,
|
2007-04-27 06:59:35 +08:00
|
|
|
.deliver = afs_deliver_fs_create_vnode,
|
|
|
|
.destructor = afs_flat_call_destructor,
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* create a file or make a directory
|
|
|
|
*/
|
2017-11-02 23:27:50 +08:00
|
|
|
int afs_fs_create(struct afs_fs_cursor *fc,
|
2007-04-27 06:59:35 +08:00
|
|
|
const char *name,
|
|
|
|
umode_t mode,
|
2019-05-09 22:16:10 +08:00
|
|
|
struct afs_status_cb *dvnode_scb,
|
2007-04-27 06:59:35 +08:00
|
|
|
struct afs_fid *newfid,
|
2019-05-09 22:16:10 +08:00
|
|
|
struct afs_status_cb *new_scb)
|
2007-04-27 06:59:35 +08:00
|
|
|
{
|
2019-05-10 05:22:50 +08:00
|
|
|
struct afs_vnode *dvnode = fc->vnode;
|
2007-04-27 06:59:35 +08:00
|
|
|
struct afs_call *call;
|
2019-05-10 05:22:50 +08:00
|
|
|
struct afs_net *net = afs_v2net(dvnode);
|
2007-04-27 06:59:35 +08:00
|
|
|
size_t namesz, reqsz, padsz;
|
|
|
|
__be32 *bp;
|
|
|
|
|
2018-10-20 07:57:58 +08:00
|
|
|
if (test_bit(AFS_SERVER_FL_IS_YFS, &fc->cbi->server->flags)){
|
|
|
|
if (S_ISDIR(mode))
|
2019-05-09 22:16:10 +08:00
|
|
|
return yfs_fs_make_dir(fc, name, mode, dvnode_scb,
|
|
|
|
newfid, new_scb);
|
2018-10-20 07:57:58 +08:00
|
|
|
else
|
2019-05-09 22:16:10 +08:00
|
|
|
return yfs_fs_create_file(fc, name, mode, dvnode_scb,
|
|
|
|
newfid, new_scb);
|
2018-10-20 07:57:58 +08:00
|
|
|
}
|
|
|
|
|
2007-04-27 06:59:35 +08:00
|
|
|
_enter("");
|
|
|
|
|
|
|
|
namesz = strlen(name);
|
|
|
|
padsz = (4 - (namesz & 3)) & 3;
|
|
|
|
reqsz = (5 * 4) + namesz + padsz + (6 * 4);
|
|
|
|
|
2017-11-02 23:27:51 +08:00
|
|
|
call = afs_alloc_flat_call(
|
|
|
|
net, S_ISDIR(mode) ? &afs_RXFSMakeDir : &afs_RXFSCreateFile,
|
|
|
|
reqsz, (3 + 21 + 21 + 3 + 6) * 4);
|
2007-04-27 06:59:35 +08:00
|
|
|
if (!call)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
call->key = fc->key;
|
2019-05-09 22:16:10 +08:00
|
|
|
call->out_dir_scb = dvnode_scb;
|
2019-05-10 05:22:50 +08:00
|
|
|
call->out_fid = newfid;
|
2019-05-09 22:16:10 +08:00
|
|
|
call->out_scb = new_scb;
|
2007-04-27 06:59:35 +08:00
|
|
|
|
|
|
|
/* marshall the parameters */
|
|
|
|
bp = call->request;
|
|
|
|
*bp++ = htonl(S_ISDIR(mode) ? FSMAKEDIR : FSCREATEFILE);
|
2019-05-10 05:22:50 +08:00
|
|
|
*bp++ = htonl(dvnode->fid.vid);
|
|
|
|
*bp++ = htonl(dvnode->fid.vnode);
|
|
|
|
*bp++ = htonl(dvnode->fid.unique);
|
2007-04-27 06:59:35 +08:00
|
|
|
*bp++ = htonl(namesz);
|
|
|
|
memcpy(bp, name, namesz);
|
|
|
|
bp = (void *) bp + namesz;
|
|
|
|
if (padsz > 0) {
|
|
|
|
memset(bp, 0, padsz);
|
|
|
|
bp = (void *) bp + padsz;
|
|
|
|
}
|
2017-03-17 00:27:47 +08:00
|
|
|
*bp++ = htonl(AFS_SET_MODE | AFS_SET_MTIME);
|
2019-05-10 05:22:50 +08:00
|
|
|
*bp++ = htonl(dvnode->vfs_inode.i_mtime.tv_sec); /* mtime */
|
2007-04-27 06:59:35 +08:00
|
|
|
*bp++ = 0; /* owner */
|
|
|
|
*bp++ = 0; /* group */
|
|
|
|
*bp++ = htonl(mode & S_IALLUGO); /* unix mode */
|
|
|
|
*bp++ = 0; /* segment size */
|
|
|
|
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
afs_use_fs_server(call, fc->cbi);
|
2019-05-10 05:22:50 +08:00
|
|
|
trace_afs_make_fs_call1(call, &dvnode->fid, name);
|
afs: Make some RPC operations non-interruptible
Make certain RPC operations non-interruptible, including:
(*) Set attributes
(*) Store data
We don't want to get interrupted during a flush on close, flush on
unlock, writeback or an inode update, leaving us in a state where we
still need to do the writeback or update.
(*) Extend lock
(*) Release lock
We don't want to get lock extension interrupted as the file locks on
the server are time-limited. Interruption during lock release is less
of an issue since the lock is time-limited, but it's better to
complete the release to avoid a several-minute wait to recover it.
*Setting* the lock isn't a problem if it's interrupted since we can
just return to the user and tell them they were interrupted - at
which point they can elect to retry.
(*) Silly unlink
We want to remove silly unlink files if we can, rather than leaving
them for the salvager to clear up.
Note that whilst these calls are no longer interruptible, they do have
timeouts on them, so if the server stops responding the call will fail with
something like ETIME or ECONNRESET.
Without this, the following:
kAFS: Unexpected error from FS.StoreData -512
appears in dmesg when a pending store data gets interrupted and some
processes may just hang.
Additionally, make the code that checks/updates the server record ignore
failure due to interruption if the main call is uninterruptible and if the
server has an address list. The next op will check it again since the
expiration time on the old list has past.
Fixes: d2ddc776a458 ("afs: Overhaul volume and server record caching and fileserver rotation")
Reported-by: Jonathan Billings <jsbillings@jsbillings.org>
Reported-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-08 23:16:31 +08:00
|
|
|
afs_set_fc_call(call, fc);
|
2019-04-25 21:26:50 +08:00
|
|
|
afs_make_call(&fc->ac, call, GFP_NOFS);
|
|
|
|
return afs_wait_for_call_to_complete(call, &fc->ac);
|
2007-04-27 06:59:35 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2019-05-10 05:22:50 +08:00
|
|
|
* Deliver reply data to any operation that returns directory status and volume
|
2019-04-25 21:26:52 +08:00
|
|
|
* sync.
|
2007-04-27 06:59:35 +08:00
|
|
|
*/
|
2019-05-10 05:22:50 +08:00
|
|
|
static int afs_deliver_fs_dir_status_and_vol(struct afs_call *call)
|
2007-04-27 06:59:35 +08:00
|
|
|
{
|
|
|
|
const __be32 *bp;
|
rxrpc: Fix races between skb free, ACK generation and replying
Inside the kafs filesystem it is possible to occasionally have a call
processed and terminated before we've had a chance to check whether we need
to clean up the rx queue for that call because afs_send_simple_reply() ends
the call when it is done, but this is done in a workqueue item that might
happen to run to completion before afs_deliver_to_call() completes.
Further, it is possible for rxrpc_kernel_send_data() to be called to send a
reply before the last request-phase data skb is released. The rxrpc skb
destructor is where the ACK processing is done and the call state is
advanced upon release of the last skb. ACK generation is also deferred to
a work item because it's possible that the skb destructor is not called in
a context where kernel_sendmsg() can be invoked.
To this end, the following changes are made:
(1) kernel_rxrpc_data_consumed() is added. This should be called whenever
an skb is emptied so as to crank the ACK and call states. This does
not release the skb, however. kernel_rxrpc_free_skb() must now be
called to achieve that. These together replace
rxrpc_kernel_data_delivered().
(2) kernel_rxrpc_data_consumed() is wrapped by afs_data_consumed().
This makes afs_deliver_to_call() easier to work as the skb can simply
be discarded unconditionally here without trying to work out what the
return value of the ->deliver() function means.
The ->deliver() functions can, via afs_data_complete(),
afs_transfer_reply() and afs_extract_data() mark that an skb has been
consumed (thereby cranking the state) without the need to
conditionally free the skb to make sure the state is correct on an
incoming call for when the call processor tries to send the reply.
(3) rxrpc_recvmsg() now has to call kernel_rxrpc_data_consumed() when it
has finished with a packet and MSG_PEEK isn't set.
(4) rxrpc_packet_destructor() no longer calls rxrpc_hard_ACK_data().
Because of this, we no longer need to clear the destructor and put the
call before we free the skb in cases where we don't want the ACK/call
state to be cranked.
(5) The ->deliver() call-type callbacks are made to return -EAGAIN rather
than 0 if they expect more data (afs_extract_data() returns -EAGAIN to
the delivery function already), and the caller is now responsible for
producing an abort if that was the last packet.
(6) There are many bits of unmarshalling code where:
ret = afs_extract_data(call, skb, last, ...);
switch (ret) {
case 0: break;
case -EAGAIN: return 0;
default: return ret;
}
is to be found. As -EAGAIN can now be passed back to the caller, we
now just return if ret < 0:
ret = afs_extract_data(call, skb, last, ...);
if (ret < 0)
return ret;
(7) Checks for trailing data and empty final data packets has been
consolidated as afs_data_complete(). So:
if (skb->len > 0)
return -EBADMSG;
if (!last)
return 0;
becomes:
ret = afs_data_complete(call, skb, last);
if (ret < 0)
return ret;
(8) afs_transfer_reply() now checks the amount of data it has against the
amount of data desired and the amount of data in the skb and returns
an error to induce an abort if we don't get exactly what we want.
Without these changes, the following oops can occasionally be observed,
particularly if some printks are inserted into the delivery path:
general protection fault: 0000 [#1] SMP
Modules linked in: kafs(E) af_rxrpc(E) [last unloaded: af_rxrpc]
CPU: 0 PID: 1305 Comm: kworker/u8:3 Tainted: G E 4.7.0-fsdevel+ #1303
Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
Workqueue: kafsd afs_async_workfn [kafs]
task: ffff88040be041c0 ti: ffff88040c070000 task.ti: ffff88040c070000
RIP: 0010:[<ffffffff8108fd3c>] [<ffffffff8108fd3c>] __lock_acquire+0xcf/0x15a1
RSP: 0018:ffff88040c073bc0 EFLAGS: 00010002
RAX: 6b6b6b6b6b6b6b6b RBX: 0000000000000000 RCX: ffff88040d29a710
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88040d29a710
RBP: ffff88040c073c70 R08: 0000000000000001 R09: 0000000000000001
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000000 R14: ffff88040be041c0 R15: ffffffff814c928f
FS: 0000000000000000(0000) GS:ffff88041fa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa4595f4750 CR3: 0000000001c14000 CR4: 00000000001406f0
Stack:
0000000000000006 000000000be04930 0000000000000000 ffff880400000000
ffff880400000000 ffffffff8108f847 ffff88040be041c0 ffffffff81050446
ffff8803fc08a920 ffff8803fc08a958 ffff88040be041c0 ffff88040c073c38
Call Trace:
[<ffffffff8108f847>] ? mark_held_locks+0x5e/0x74
[<ffffffff81050446>] ? __local_bh_enable_ip+0x9b/0xa1
[<ffffffff8108f9ca>] ? trace_hardirqs_on_caller+0x16d/0x189
[<ffffffff810915f4>] lock_acquire+0x122/0x1b6
[<ffffffff810915f4>] ? lock_acquire+0x122/0x1b6
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff81609dbf>] _raw_spin_lock_irqsave+0x35/0x49
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff814c928f>] skb_dequeue+0x18/0x61
[<ffffffffa009aa92>] afs_deliver_to_call+0x344/0x39d [kafs]
[<ffffffffa009ab37>] afs_process_async_call+0x4c/0xd5 [kafs]
[<ffffffffa0099e9c>] afs_async_workfn+0xe/0x10 [kafs]
[<ffffffff81063a3a>] process_one_work+0x29d/0x57c
[<ffffffff81064ac2>] worker_thread+0x24a/0x385
[<ffffffff81064878>] ? rescuer_thread+0x2d0/0x2d0
[<ffffffff810696f5>] kthread+0xf3/0xfb
[<ffffffff8160a6ff>] ret_from_fork+0x1f/0x40
[<ffffffff81069602>] ? kthread_create_on_node+0x1cf/0x1cf
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-03 21:11:40 +08:00
|
|
|
int ret;
|
2007-04-27 06:59:35 +08:00
|
|
|
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
ret = afs_transfer_reply(call);
|
rxrpc: Fix races between skb free, ACK generation and replying
Inside the kafs filesystem it is possible to occasionally have a call
processed and terminated before we've had a chance to check whether we need
to clean up the rx queue for that call because afs_send_simple_reply() ends
the call when it is done, but this is done in a workqueue item that might
happen to run to completion before afs_deliver_to_call() completes.
Further, it is possible for rxrpc_kernel_send_data() to be called to send a
reply before the last request-phase data skb is released. The rxrpc skb
destructor is where the ACK processing is done and the call state is
advanced upon release of the last skb. ACK generation is also deferred to
a work item because it's possible that the skb destructor is not called in
a context where kernel_sendmsg() can be invoked.
To this end, the following changes are made:
(1) kernel_rxrpc_data_consumed() is added. This should be called whenever
an skb is emptied so as to crank the ACK and call states. This does
not release the skb, however. kernel_rxrpc_free_skb() must now be
called to achieve that. These together replace
rxrpc_kernel_data_delivered().
(2) kernel_rxrpc_data_consumed() is wrapped by afs_data_consumed().
This makes afs_deliver_to_call() easier to work as the skb can simply
be discarded unconditionally here without trying to work out what the
return value of the ->deliver() function means.
The ->deliver() functions can, via afs_data_complete(),
afs_transfer_reply() and afs_extract_data() mark that an skb has been
consumed (thereby cranking the state) without the need to
conditionally free the skb to make sure the state is correct on an
incoming call for when the call processor tries to send the reply.
(3) rxrpc_recvmsg() now has to call kernel_rxrpc_data_consumed() when it
has finished with a packet and MSG_PEEK isn't set.
(4) rxrpc_packet_destructor() no longer calls rxrpc_hard_ACK_data().
Because of this, we no longer need to clear the destructor and put the
call before we free the skb in cases where we don't want the ACK/call
state to be cranked.
(5) The ->deliver() call-type callbacks are made to return -EAGAIN rather
than 0 if they expect more data (afs_extract_data() returns -EAGAIN to
the delivery function already), and the caller is now responsible for
producing an abort if that was the last packet.
(6) There are many bits of unmarshalling code where:
ret = afs_extract_data(call, skb, last, ...);
switch (ret) {
case 0: break;
case -EAGAIN: return 0;
default: return ret;
}
is to be found. As -EAGAIN can now be passed back to the caller, we
now just return if ret < 0:
ret = afs_extract_data(call, skb, last, ...);
if (ret < 0)
return ret;
(7) Checks for trailing data and empty final data packets has been
consolidated as afs_data_complete(). So:
if (skb->len > 0)
return -EBADMSG;
if (!last)
return 0;
becomes:
ret = afs_data_complete(call, skb, last);
if (ret < 0)
return ret;
(8) afs_transfer_reply() now checks the amount of data it has against the
amount of data desired and the amount of data in the skb and returns
an error to induce an abort if we don't get exactly what we want.
Without these changes, the following oops can occasionally be observed,
particularly if some printks are inserted into the delivery path:
general protection fault: 0000 [#1] SMP
Modules linked in: kafs(E) af_rxrpc(E) [last unloaded: af_rxrpc]
CPU: 0 PID: 1305 Comm: kworker/u8:3 Tainted: G E 4.7.0-fsdevel+ #1303
Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
Workqueue: kafsd afs_async_workfn [kafs]
task: ffff88040be041c0 ti: ffff88040c070000 task.ti: ffff88040c070000
RIP: 0010:[<ffffffff8108fd3c>] [<ffffffff8108fd3c>] __lock_acquire+0xcf/0x15a1
RSP: 0018:ffff88040c073bc0 EFLAGS: 00010002
RAX: 6b6b6b6b6b6b6b6b RBX: 0000000000000000 RCX: ffff88040d29a710
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88040d29a710
RBP: ffff88040c073c70 R08: 0000000000000001 R09: 0000000000000001
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000000 R14: ffff88040be041c0 R15: ffffffff814c928f
FS: 0000000000000000(0000) GS:ffff88041fa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa4595f4750 CR3: 0000000001c14000 CR4: 00000000001406f0
Stack:
0000000000000006 000000000be04930 0000000000000000 ffff880400000000
ffff880400000000 ffffffff8108f847 ffff88040be041c0 ffffffff81050446
ffff8803fc08a920 ffff8803fc08a958 ffff88040be041c0 ffff88040c073c38
Call Trace:
[<ffffffff8108f847>] ? mark_held_locks+0x5e/0x74
[<ffffffff81050446>] ? __local_bh_enable_ip+0x9b/0xa1
[<ffffffff8108f9ca>] ? trace_hardirqs_on_caller+0x16d/0x189
[<ffffffff810915f4>] lock_acquire+0x122/0x1b6
[<ffffffff810915f4>] ? lock_acquire+0x122/0x1b6
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff81609dbf>] _raw_spin_lock_irqsave+0x35/0x49
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff814c928f>] skb_dequeue+0x18/0x61
[<ffffffffa009aa92>] afs_deliver_to_call+0x344/0x39d [kafs]
[<ffffffffa009ab37>] afs_process_async_call+0x4c/0xd5 [kafs]
[<ffffffffa0099e9c>] afs_async_workfn+0xe/0x10 [kafs]
[<ffffffff81063a3a>] process_one_work+0x29d/0x57c
[<ffffffff81064ac2>] worker_thread+0x24a/0x385
[<ffffffff81064878>] ? rescuer_thread+0x2d0/0x2d0
[<ffffffff810696f5>] kthread+0xf3/0xfb
[<ffffffff8160a6ff>] ret_from_fork+0x1f/0x40
[<ffffffff81069602>] ? kthread_create_on_node+0x1cf/0x1cf
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-03 21:11:40 +08:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
2007-04-27 06:59:35 +08:00
|
|
|
|
|
|
|
/* unmarshall the reply once we've received all of it */
|
|
|
|
bp = call->buffer;
|
2019-05-09 22:16:10 +08:00
|
|
|
ret = xdr_decode_AFSFetchStatus(&bp, call, call->out_dir_scb);
|
2018-10-20 07:57:56 +08:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
2019-05-10 05:22:50 +08:00
|
|
|
xdr_decode_AFSVolSync(&bp, call->out_volsync);
|
2007-04-27 06:59:35 +08:00
|
|
|
|
|
|
|
_leave(" = 0 [done]");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* FS.RemoveDir/FS.RemoveFile operation type
|
|
|
|
*/
|
2017-11-02 23:27:51 +08:00
|
|
|
static const struct afs_call_type afs_RXFSRemoveFile = {
|
|
|
|
.name = "FS.RemoveFile",
|
|
|
|
.op = afs_FS_RemoveFile,
|
2019-05-10 05:22:50 +08:00
|
|
|
.deliver = afs_deliver_fs_dir_status_and_vol,
|
2017-11-02 23:27:51 +08:00
|
|
|
.destructor = afs_flat_call_destructor,
|
|
|
|
};
|
|
|
|
|
|
|
|
static const struct afs_call_type afs_RXFSRemoveDir = {
|
|
|
|
.name = "FS.RemoveDir",
|
|
|
|
.op = afs_FS_RemoveDir,
|
2019-05-10 05:22:50 +08:00
|
|
|
.deliver = afs_deliver_fs_dir_status_and_vol,
|
2007-04-27 06:59:35 +08:00
|
|
|
.destructor = afs_flat_call_destructor,
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* remove a file or directory
|
|
|
|
*/
|
2018-10-20 07:57:58 +08:00
|
|
|
int afs_fs_remove(struct afs_fs_cursor *fc, struct afs_vnode *vnode,
|
2019-05-09 22:16:10 +08:00
|
|
|
const char *name, bool isdir, struct afs_status_cb *dvnode_scb)
|
2007-04-27 06:59:35 +08:00
|
|
|
{
|
2018-10-20 07:57:58 +08:00
|
|
|
struct afs_vnode *dvnode = fc->vnode;
|
2007-04-27 06:59:35 +08:00
|
|
|
struct afs_call *call;
|
2018-10-20 07:57:58 +08:00
|
|
|
struct afs_net *net = afs_v2net(dvnode);
|
2007-04-27 06:59:35 +08:00
|
|
|
size_t namesz, reqsz, padsz;
|
|
|
|
__be32 *bp;
|
|
|
|
|
2018-10-20 07:57:58 +08:00
|
|
|
if (test_bit(AFS_SERVER_FL_IS_YFS, &fc->cbi->server->flags))
|
2019-05-09 22:16:10 +08:00
|
|
|
return yfs_fs_remove(fc, vnode, name, isdir, dvnode_scb);
|
2018-10-20 07:57:58 +08:00
|
|
|
|
2007-04-27 06:59:35 +08:00
|
|
|
_enter("");
|
|
|
|
|
|
|
|
namesz = strlen(name);
|
|
|
|
padsz = (4 - (namesz & 3)) & 3;
|
|
|
|
reqsz = (5 * 4) + namesz + padsz;
|
|
|
|
|
2017-11-02 23:27:51 +08:00
|
|
|
call = afs_alloc_flat_call(
|
|
|
|
net, isdir ? &afs_RXFSRemoveDir : &afs_RXFSRemoveFile,
|
|
|
|
reqsz, (21 + 6) * 4);
|
2007-04-27 06:59:35 +08:00
|
|
|
if (!call)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
call->key = fc->key;
|
2019-05-09 22:16:10 +08:00
|
|
|
call->out_dir_scb = dvnode_scb;
|
2007-04-27 06:59:35 +08:00
|
|
|
|
|
|
|
/* marshall the parameters */
|
|
|
|
bp = call->request;
|
|
|
|
*bp++ = htonl(isdir ? FSREMOVEDIR : FSREMOVEFILE);
|
2018-10-20 07:57:58 +08:00
|
|
|
*bp++ = htonl(dvnode->fid.vid);
|
|
|
|
*bp++ = htonl(dvnode->fid.vnode);
|
|
|
|
*bp++ = htonl(dvnode->fid.unique);
|
2007-04-27 06:59:35 +08:00
|
|
|
*bp++ = htonl(namesz);
|
|
|
|
memcpy(bp, name, namesz);
|
|
|
|
bp = (void *) bp + namesz;
|
|
|
|
if (padsz > 0) {
|
|
|
|
memset(bp, 0, padsz);
|
|
|
|
bp = (void *) bp + padsz;
|
|
|
|
}
|
|
|
|
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
afs_use_fs_server(call, fc->cbi);
|
2019-04-25 21:26:51 +08:00
|
|
|
trace_afs_make_fs_call1(call, &dvnode->fid, name);
|
afs: Make some RPC operations non-interruptible
Make certain RPC operations non-interruptible, including:
(*) Set attributes
(*) Store data
We don't want to get interrupted during a flush on close, flush on
unlock, writeback or an inode update, leaving us in a state where we
still need to do the writeback or update.
(*) Extend lock
(*) Release lock
We don't want to get lock extension interrupted as the file locks on
the server are time-limited. Interruption during lock release is less
of an issue since the lock is time-limited, but it's better to
complete the release to avoid a several-minute wait to recover it.
*Setting* the lock isn't a problem if it's interrupted since we can
just return to the user and tell them they were interrupted - at
which point they can elect to retry.
(*) Silly unlink
We want to remove silly unlink files if we can, rather than leaving
them for the salvager to clear up.
Note that whilst these calls are no longer interruptible, they do have
timeouts on them, so if the server stops responding the call will fail with
something like ETIME or ECONNRESET.
Without this, the following:
kAFS: Unexpected error from FS.StoreData -512
appears in dmesg when a pending store data gets interrupted and some
processes may just hang.
Additionally, make the code that checks/updates the server record ignore
failure due to interruption if the main call is uninterruptible and if the
server has an address list. The next op will check it again since the
expiration time on the old list has past.
Fixes: d2ddc776a458 ("afs: Overhaul volume and server record caching and fileserver rotation")
Reported-by: Jonathan Billings <jsbillings@jsbillings.org>
Reported-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-08 23:16:31 +08:00
|
|
|
afs_set_fc_call(call, fc);
|
2019-04-25 21:26:50 +08:00
|
|
|
afs_make_call(&fc->ac, call, GFP_NOFS);
|
|
|
|
return afs_wait_for_call_to_complete(call, &fc->ac);
|
2007-04-27 06:59:35 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* deliver reply data to an FS.Link
|
|
|
|
*/
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
static int afs_deliver_fs_link(struct afs_call *call)
|
2007-04-27 06:59:35 +08:00
|
|
|
{
|
|
|
|
const __be32 *bp;
|
rxrpc: Fix races between skb free, ACK generation and replying
Inside the kafs filesystem it is possible to occasionally have a call
processed and terminated before we've had a chance to check whether we need
to clean up the rx queue for that call because afs_send_simple_reply() ends
the call when it is done, but this is done in a workqueue item that might
happen to run to completion before afs_deliver_to_call() completes.
Further, it is possible for rxrpc_kernel_send_data() to be called to send a
reply before the last request-phase data skb is released. The rxrpc skb
destructor is where the ACK processing is done and the call state is
advanced upon release of the last skb. ACK generation is also deferred to
a work item because it's possible that the skb destructor is not called in
a context where kernel_sendmsg() can be invoked.
To this end, the following changes are made:
(1) kernel_rxrpc_data_consumed() is added. This should be called whenever
an skb is emptied so as to crank the ACK and call states. This does
not release the skb, however. kernel_rxrpc_free_skb() must now be
called to achieve that. These together replace
rxrpc_kernel_data_delivered().
(2) kernel_rxrpc_data_consumed() is wrapped by afs_data_consumed().
This makes afs_deliver_to_call() easier to work as the skb can simply
be discarded unconditionally here without trying to work out what the
return value of the ->deliver() function means.
The ->deliver() functions can, via afs_data_complete(),
afs_transfer_reply() and afs_extract_data() mark that an skb has been
consumed (thereby cranking the state) without the need to
conditionally free the skb to make sure the state is correct on an
incoming call for when the call processor tries to send the reply.
(3) rxrpc_recvmsg() now has to call kernel_rxrpc_data_consumed() when it
has finished with a packet and MSG_PEEK isn't set.
(4) rxrpc_packet_destructor() no longer calls rxrpc_hard_ACK_data().
Because of this, we no longer need to clear the destructor and put the
call before we free the skb in cases where we don't want the ACK/call
state to be cranked.
(5) The ->deliver() call-type callbacks are made to return -EAGAIN rather
than 0 if they expect more data (afs_extract_data() returns -EAGAIN to
the delivery function already), and the caller is now responsible for
producing an abort if that was the last packet.
(6) There are many bits of unmarshalling code where:
ret = afs_extract_data(call, skb, last, ...);
switch (ret) {
case 0: break;
case -EAGAIN: return 0;
default: return ret;
}
is to be found. As -EAGAIN can now be passed back to the caller, we
now just return if ret < 0:
ret = afs_extract_data(call, skb, last, ...);
if (ret < 0)
return ret;
(7) Checks for trailing data and empty final data packets has been
consolidated as afs_data_complete(). So:
if (skb->len > 0)
return -EBADMSG;
if (!last)
return 0;
becomes:
ret = afs_data_complete(call, skb, last);
if (ret < 0)
return ret;
(8) afs_transfer_reply() now checks the amount of data it has against the
amount of data desired and the amount of data in the skb and returns
an error to induce an abort if we don't get exactly what we want.
Without these changes, the following oops can occasionally be observed,
particularly if some printks are inserted into the delivery path:
general protection fault: 0000 [#1] SMP
Modules linked in: kafs(E) af_rxrpc(E) [last unloaded: af_rxrpc]
CPU: 0 PID: 1305 Comm: kworker/u8:3 Tainted: G E 4.7.0-fsdevel+ #1303
Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
Workqueue: kafsd afs_async_workfn [kafs]
task: ffff88040be041c0 ti: ffff88040c070000 task.ti: ffff88040c070000
RIP: 0010:[<ffffffff8108fd3c>] [<ffffffff8108fd3c>] __lock_acquire+0xcf/0x15a1
RSP: 0018:ffff88040c073bc0 EFLAGS: 00010002
RAX: 6b6b6b6b6b6b6b6b RBX: 0000000000000000 RCX: ffff88040d29a710
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88040d29a710
RBP: ffff88040c073c70 R08: 0000000000000001 R09: 0000000000000001
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000000 R14: ffff88040be041c0 R15: ffffffff814c928f
FS: 0000000000000000(0000) GS:ffff88041fa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa4595f4750 CR3: 0000000001c14000 CR4: 00000000001406f0
Stack:
0000000000000006 000000000be04930 0000000000000000 ffff880400000000
ffff880400000000 ffffffff8108f847 ffff88040be041c0 ffffffff81050446
ffff8803fc08a920 ffff8803fc08a958 ffff88040be041c0 ffff88040c073c38
Call Trace:
[<ffffffff8108f847>] ? mark_held_locks+0x5e/0x74
[<ffffffff81050446>] ? __local_bh_enable_ip+0x9b/0xa1
[<ffffffff8108f9ca>] ? trace_hardirqs_on_caller+0x16d/0x189
[<ffffffff810915f4>] lock_acquire+0x122/0x1b6
[<ffffffff810915f4>] ? lock_acquire+0x122/0x1b6
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff81609dbf>] _raw_spin_lock_irqsave+0x35/0x49
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff814c928f>] skb_dequeue+0x18/0x61
[<ffffffffa009aa92>] afs_deliver_to_call+0x344/0x39d [kafs]
[<ffffffffa009ab37>] afs_process_async_call+0x4c/0xd5 [kafs]
[<ffffffffa0099e9c>] afs_async_workfn+0xe/0x10 [kafs]
[<ffffffff81063a3a>] process_one_work+0x29d/0x57c
[<ffffffff81064ac2>] worker_thread+0x24a/0x385
[<ffffffff81064878>] ? rescuer_thread+0x2d0/0x2d0
[<ffffffff810696f5>] kthread+0xf3/0xfb
[<ffffffff8160a6ff>] ret_from_fork+0x1f/0x40
[<ffffffff81069602>] ? kthread_create_on_node+0x1cf/0x1cf
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-03 21:11:40 +08:00
|
|
|
int ret;
|
2007-04-27 06:59:35 +08:00
|
|
|
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
_enter("{%u}", call->unmarshall);
|
2007-04-27 06:59:35 +08:00
|
|
|
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
ret = afs_transfer_reply(call);
|
rxrpc: Fix races between skb free, ACK generation and replying
Inside the kafs filesystem it is possible to occasionally have a call
processed and terminated before we've had a chance to check whether we need
to clean up the rx queue for that call because afs_send_simple_reply() ends
the call when it is done, but this is done in a workqueue item that might
happen to run to completion before afs_deliver_to_call() completes.
Further, it is possible for rxrpc_kernel_send_data() to be called to send a
reply before the last request-phase data skb is released. The rxrpc skb
destructor is where the ACK processing is done and the call state is
advanced upon release of the last skb. ACK generation is also deferred to
a work item because it's possible that the skb destructor is not called in
a context where kernel_sendmsg() can be invoked.
To this end, the following changes are made:
(1) kernel_rxrpc_data_consumed() is added. This should be called whenever
an skb is emptied so as to crank the ACK and call states. This does
not release the skb, however. kernel_rxrpc_free_skb() must now be
called to achieve that. These together replace
rxrpc_kernel_data_delivered().
(2) kernel_rxrpc_data_consumed() is wrapped by afs_data_consumed().
This makes afs_deliver_to_call() easier to work as the skb can simply
be discarded unconditionally here without trying to work out what the
return value of the ->deliver() function means.
The ->deliver() functions can, via afs_data_complete(),
afs_transfer_reply() and afs_extract_data() mark that an skb has been
consumed (thereby cranking the state) without the need to
conditionally free the skb to make sure the state is correct on an
incoming call for when the call processor tries to send the reply.
(3) rxrpc_recvmsg() now has to call kernel_rxrpc_data_consumed() when it
has finished with a packet and MSG_PEEK isn't set.
(4) rxrpc_packet_destructor() no longer calls rxrpc_hard_ACK_data().
Because of this, we no longer need to clear the destructor and put the
call before we free the skb in cases where we don't want the ACK/call
state to be cranked.
(5) The ->deliver() call-type callbacks are made to return -EAGAIN rather
than 0 if they expect more data (afs_extract_data() returns -EAGAIN to
the delivery function already), and the caller is now responsible for
producing an abort if that was the last packet.
(6) There are many bits of unmarshalling code where:
ret = afs_extract_data(call, skb, last, ...);
switch (ret) {
case 0: break;
case -EAGAIN: return 0;
default: return ret;
}
is to be found. As -EAGAIN can now be passed back to the caller, we
now just return if ret < 0:
ret = afs_extract_data(call, skb, last, ...);
if (ret < 0)
return ret;
(7) Checks for trailing data and empty final data packets has been
consolidated as afs_data_complete(). So:
if (skb->len > 0)
return -EBADMSG;
if (!last)
return 0;
becomes:
ret = afs_data_complete(call, skb, last);
if (ret < 0)
return ret;
(8) afs_transfer_reply() now checks the amount of data it has against the
amount of data desired and the amount of data in the skb and returns
an error to induce an abort if we don't get exactly what we want.
Without these changes, the following oops can occasionally be observed,
particularly if some printks are inserted into the delivery path:
general protection fault: 0000 [#1] SMP
Modules linked in: kafs(E) af_rxrpc(E) [last unloaded: af_rxrpc]
CPU: 0 PID: 1305 Comm: kworker/u8:3 Tainted: G E 4.7.0-fsdevel+ #1303
Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
Workqueue: kafsd afs_async_workfn [kafs]
task: ffff88040be041c0 ti: ffff88040c070000 task.ti: ffff88040c070000
RIP: 0010:[<ffffffff8108fd3c>] [<ffffffff8108fd3c>] __lock_acquire+0xcf/0x15a1
RSP: 0018:ffff88040c073bc0 EFLAGS: 00010002
RAX: 6b6b6b6b6b6b6b6b RBX: 0000000000000000 RCX: ffff88040d29a710
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88040d29a710
RBP: ffff88040c073c70 R08: 0000000000000001 R09: 0000000000000001
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000000 R14: ffff88040be041c0 R15: ffffffff814c928f
FS: 0000000000000000(0000) GS:ffff88041fa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa4595f4750 CR3: 0000000001c14000 CR4: 00000000001406f0
Stack:
0000000000000006 000000000be04930 0000000000000000 ffff880400000000
ffff880400000000 ffffffff8108f847 ffff88040be041c0 ffffffff81050446
ffff8803fc08a920 ffff8803fc08a958 ffff88040be041c0 ffff88040c073c38
Call Trace:
[<ffffffff8108f847>] ? mark_held_locks+0x5e/0x74
[<ffffffff81050446>] ? __local_bh_enable_ip+0x9b/0xa1
[<ffffffff8108f9ca>] ? trace_hardirqs_on_caller+0x16d/0x189
[<ffffffff810915f4>] lock_acquire+0x122/0x1b6
[<ffffffff810915f4>] ? lock_acquire+0x122/0x1b6
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff81609dbf>] _raw_spin_lock_irqsave+0x35/0x49
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff814c928f>] skb_dequeue+0x18/0x61
[<ffffffffa009aa92>] afs_deliver_to_call+0x344/0x39d [kafs]
[<ffffffffa009ab37>] afs_process_async_call+0x4c/0xd5 [kafs]
[<ffffffffa0099e9c>] afs_async_workfn+0xe/0x10 [kafs]
[<ffffffff81063a3a>] process_one_work+0x29d/0x57c
[<ffffffff81064ac2>] worker_thread+0x24a/0x385
[<ffffffff81064878>] ? rescuer_thread+0x2d0/0x2d0
[<ffffffff810696f5>] kthread+0xf3/0xfb
[<ffffffff8160a6ff>] ret_from_fork+0x1f/0x40
[<ffffffff81069602>] ? kthread_create_on_node+0x1cf/0x1cf
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-03 21:11:40 +08:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
2007-04-27 06:59:35 +08:00
|
|
|
|
|
|
|
/* unmarshall the reply once we've received all of it */
|
|
|
|
bp = call->buffer;
|
2019-05-09 22:16:10 +08:00
|
|
|
ret = xdr_decode_AFSFetchStatus(&bp, call, call->out_scb);
|
2018-10-20 07:57:56 +08:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
2019-05-09 22:16:10 +08:00
|
|
|
ret = xdr_decode_AFSFetchStatus(&bp, call, call->out_dir_scb);
|
2018-10-20 07:57:56 +08:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
2019-05-10 05:22:50 +08:00
|
|
|
xdr_decode_AFSVolSync(&bp, call->out_volsync);
|
2007-04-27 06:59:35 +08:00
|
|
|
|
|
|
|
_leave(" = 0 [done]");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* FS.Link operation type
|
|
|
|
*/
|
|
|
|
static const struct afs_call_type afs_RXFSLink = {
|
|
|
|
.name = "FS.Link",
|
2017-11-02 23:27:51 +08:00
|
|
|
.op = afs_FS_Link,
|
2007-04-27 06:59:35 +08:00
|
|
|
.deliver = afs_deliver_fs_link,
|
|
|
|
.destructor = afs_flat_call_destructor,
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* make a hard link
|
|
|
|
*/
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
int afs_fs_link(struct afs_fs_cursor *fc, struct afs_vnode *vnode,
|
2019-05-09 22:16:10 +08:00
|
|
|
const char *name,
|
|
|
|
struct afs_status_cb *dvnode_scb,
|
|
|
|
struct afs_status_cb *vnode_scb)
|
2007-04-27 06:59:35 +08:00
|
|
|
{
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
struct afs_vnode *dvnode = fc->vnode;
|
2007-04-27 06:59:35 +08:00
|
|
|
struct afs_call *call;
|
2017-11-02 23:27:45 +08:00
|
|
|
struct afs_net *net = afs_v2net(vnode);
|
2007-04-27 06:59:35 +08:00
|
|
|
size_t namesz, reqsz, padsz;
|
|
|
|
__be32 *bp;
|
|
|
|
|
2018-10-20 07:57:58 +08:00
|
|
|
if (test_bit(AFS_SERVER_FL_IS_YFS, &fc->cbi->server->flags))
|
2019-05-09 22:16:10 +08:00
|
|
|
return yfs_fs_link(fc, vnode, name, dvnode_scb, vnode_scb);
|
2018-10-20 07:57:58 +08:00
|
|
|
|
2007-04-27 06:59:35 +08:00
|
|
|
_enter("");
|
|
|
|
|
|
|
|
namesz = strlen(name);
|
|
|
|
padsz = (4 - (namesz & 3)) & 3;
|
|
|
|
reqsz = (5 * 4) + namesz + padsz + (3 * 4);
|
|
|
|
|
2017-11-02 23:27:45 +08:00
|
|
|
call = afs_alloc_flat_call(net, &afs_RXFSLink, reqsz, (21 + 21 + 6) * 4);
|
2007-04-27 06:59:35 +08:00
|
|
|
if (!call)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
call->key = fc->key;
|
2019-05-09 22:16:10 +08:00
|
|
|
call->out_dir_scb = dvnode_scb;
|
|
|
|
call->out_scb = vnode_scb;
|
2007-04-27 06:59:35 +08:00
|
|
|
|
|
|
|
/* marshall the parameters */
|
|
|
|
bp = call->request;
|
|
|
|
*bp++ = htonl(FSLINK);
|
|
|
|
*bp++ = htonl(dvnode->fid.vid);
|
|
|
|
*bp++ = htonl(dvnode->fid.vnode);
|
|
|
|
*bp++ = htonl(dvnode->fid.unique);
|
|
|
|
*bp++ = htonl(namesz);
|
|
|
|
memcpy(bp, name, namesz);
|
|
|
|
bp = (void *) bp + namesz;
|
|
|
|
if (padsz > 0) {
|
|
|
|
memset(bp, 0, padsz);
|
|
|
|
bp = (void *) bp + padsz;
|
|
|
|
}
|
|
|
|
*bp++ = htonl(vnode->fid.vid);
|
|
|
|
*bp++ = htonl(vnode->fid.vnode);
|
|
|
|
*bp++ = htonl(vnode->fid.unique);
|
|
|
|
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
afs_use_fs_server(call, fc->cbi);
|
2019-04-25 21:26:51 +08:00
|
|
|
trace_afs_make_fs_call1(call, &vnode->fid, name);
|
afs: Make some RPC operations non-interruptible
Make certain RPC operations non-interruptible, including:
(*) Set attributes
(*) Store data
We don't want to get interrupted during a flush on close, flush on
unlock, writeback or an inode update, leaving us in a state where we
still need to do the writeback or update.
(*) Extend lock
(*) Release lock
We don't want to get lock extension interrupted as the file locks on
the server are time-limited. Interruption during lock release is less
of an issue since the lock is time-limited, but it's better to
complete the release to avoid a several-minute wait to recover it.
*Setting* the lock isn't a problem if it's interrupted since we can
just return to the user and tell them they were interrupted - at
which point they can elect to retry.
(*) Silly unlink
We want to remove silly unlink files if we can, rather than leaving
them for the salvager to clear up.
Note that whilst these calls are no longer interruptible, they do have
timeouts on them, so if the server stops responding the call will fail with
something like ETIME or ECONNRESET.
Without this, the following:
kAFS: Unexpected error from FS.StoreData -512
appears in dmesg when a pending store data gets interrupted and some
processes may just hang.
Additionally, make the code that checks/updates the server record ignore
failure due to interruption if the main call is uninterruptible and if the
server has an address list. The next op will check it again since the
expiration time on the old list has past.
Fixes: d2ddc776a458 ("afs: Overhaul volume and server record caching and fileserver rotation")
Reported-by: Jonathan Billings <jsbillings@jsbillings.org>
Reported-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-08 23:16:31 +08:00
|
|
|
afs_set_fc_call(call, fc);
|
2019-04-25 21:26:50 +08:00
|
|
|
afs_make_call(&fc->ac, call, GFP_NOFS);
|
|
|
|
return afs_wait_for_call_to_complete(call, &fc->ac);
|
2007-04-27 06:59:35 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* deliver reply data to an FS.Symlink
|
|
|
|
*/
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
static int afs_deliver_fs_symlink(struct afs_call *call)
|
2007-04-27 06:59:35 +08:00
|
|
|
{
|
|
|
|
const __be32 *bp;
|
rxrpc: Fix races between skb free, ACK generation and replying
Inside the kafs filesystem it is possible to occasionally have a call
processed and terminated before we've had a chance to check whether we need
to clean up the rx queue for that call because afs_send_simple_reply() ends
the call when it is done, but this is done in a workqueue item that might
happen to run to completion before afs_deliver_to_call() completes.
Further, it is possible for rxrpc_kernel_send_data() to be called to send a
reply before the last request-phase data skb is released. The rxrpc skb
destructor is where the ACK processing is done and the call state is
advanced upon release of the last skb. ACK generation is also deferred to
a work item because it's possible that the skb destructor is not called in
a context where kernel_sendmsg() can be invoked.
To this end, the following changes are made:
(1) kernel_rxrpc_data_consumed() is added. This should be called whenever
an skb is emptied so as to crank the ACK and call states. This does
not release the skb, however. kernel_rxrpc_free_skb() must now be
called to achieve that. These together replace
rxrpc_kernel_data_delivered().
(2) kernel_rxrpc_data_consumed() is wrapped by afs_data_consumed().
This makes afs_deliver_to_call() easier to work as the skb can simply
be discarded unconditionally here without trying to work out what the
return value of the ->deliver() function means.
The ->deliver() functions can, via afs_data_complete(),
afs_transfer_reply() and afs_extract_data() mark that an skb has been
consumed (thereby cranking the state) without the need to
conditionally free the skb to make sure the state is correct on an
incoming call for when the call processor tries to send the reply.
(3) rxrpc_recvmsg() now has to call kernel_rxrpc_data_consumed() when it
has finished with a packet and MSG_PEEK isn't set.
(4) rxrpc_packet_destructor() no longer calls rxrpc_hard_ACK_data().
Because of this, we no longer need to clear the destructor and put the
call before we free the skb in cases where we don't want the ACK/call
state to be cranked.
(5) The ->deliver() call-type callbacks are made to return -EAGAIN rather
than 0 if they expect more data (afs_extract_data() returns -EAGAIN to
the delivery function already), and the caller is now responsible for
producing an abort if that was the last packet.
(6) There are many bits of unmarshalling code where:
ret = afs_extract_data(call, skb, last, ...);
switch (ret) {
case 0: break;
case -EAGAIN: return 0;
default: return ret;
}
is to be found. As -EAGAIN can now be passed back to the caller, we
now just return if ret < 0:
ret = afs_extract_data(call, skb, last, ...);
if (ret < 0)
return ret;
(7) Checks for trailing data and empty final data packets has been
consolidated as afs_data_complete(). So:
if (skb->len > 0)
return -EBADMSG;
if (!last)
return 0;
becomes:
ret = afs_data_complete(call, skb, last);
if (ret < 0)
return ret;
(8) afs_transfer_reply() now checks the amount of data it has against the
amount of data desired and the amount of data in the skb and returns
an error to induce an abort if we don't get exactly what we want.
Without these changes, the following oops can occasionally be observed,
particularly if some printks are inserted into the delivery path:
general protection fault: 0000 [#1] SMP
Modules linked in: kafs(E) af_rxrpc(E) [last unloaded: af_rxrpc]
CPU: 0 PID: 1305 Comm: kworker/u8:3 Tainted: G E 4.7.0-fsdevel+ #1303
Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
Workqueue: kafsd afs_async_workfn [kafs]
task: ffff88040be041c0 ti: ffff88040c070000 task.ti: ffff88040c070000
RIP: 0010:[<ffffffff8108fd3c>] [<ffffffff8108fd3c>] __lock_acquire+0xcf/0x15a1
RSP: 0018:ffff88040c073bc0 EFLAGS: 00010002
RAX: 6b6b6b6b6b6b6b6b RBX: 0000000000000000 RCX: ffff88040d29a710
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88040d29a710
RBP: ffff88040c073c70 R08: 0000000000000001 R09: 0000000000000001
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000000 R14: ffff88040be041c0 R15: ffffffff814c928f
FS: 0000000000000000(0000) GS:ffff88041fa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa4595f4750 CR3: 0000000001c14000 CR4: 00000000001406f0
Stack:
0000000000000006 000000000be04930 0000000000000000 ffff880400000000
ffff880400000000 ffffffff8108f847 ffff88040be041c0 ffffffff81050446
ffff8803fc08a920 ffff8803fc08a958 ffff88040be041c0 ffff88040c073c38
Call Trace:
[<ffffffff8108f847>] ? mark_held_locks+0x5e/0x74
[<ffffffff81050446>] ? __local_bh_enable_ip+0x9b/0xa1
[<ffffffff8108f9ca>] ? trace_hardirqs_on_caller+0x16d/0x189
[<ffffffff810915f4>] lock_acquire+0x122/0x1b6
[<ffffffff810915f4>] ? lock_acquire+0x122/0x1b6
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff81609dbf>] _raw_spin_lock_irqsave+0x35/0x49
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff814c928f>] skb_dequeue+0x18/0x61
[<ffffffffa009aa92>] afs_deliver_to_call+0x344/0x39d [kafs]
[<ffffffffa009ab37>] afs_process_async_call+0x4c/0xd5 [kafs]
[<ffffffffa0099e9c>] afs_async_workfn+0xe/0x10 [kafs]
[<ffffffff81063a3a>] process_one_work+0x29d/0x57c
[<ffffffff81064ac2>] worker_thread+0x24a/0x385
[<ffffffff81064878>] ? rescuer_thread+0x2d0/0x2d0
[<ffffffff810696f5>] kthread+0xf3/0xfb
[<ffffffff8160a6ff>] ret_from_fork+0x1f/0x40
[<ffffffff81069602>] ? kthread_create_on_node+0x1cf/0x1cf
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-03 21:11:40 +08:00
|
|
|
int ret;
|
2007-04-27 06:59:35 +08:00
|
|
|
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
_enter("{%u}", call->unmarshall);
|
2007-04-27 06:59:35 +08:00
|
|
|
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
ret = afs_transfer_reply(call);
|
rxrpc: Fix races between skb free, ACK generation and replying
Inside the kafs filesystem it is possible to occasionally have a call
processed and terminated before we've had a chance to check whether we need
to clean up the rx queue for that call because afs_send_simple_reply() ends
the call when it is done, but this is done in a workqueue item that might
happen to run to completion before afs_deliver_to_call() completes.
Further, it is possible for rxrpc_kernel_send_data() to be called to send a
reply before the last request-phase data skb is released. The rxrpc skb
destructor is where the ACK processing is done and the call state is
advanced upon release of the last skb. ACK generation is also deferred to
a work item because it's possible that the skb destructor is not called in
a context where kernel_sendmsg() can be invoked.
To this end, the following changes are made:
(1) kernel_rxrpc_data_consumed() is added. This should be called whenever
an skb is emptied so as to crank the ACK and call states. This does
not release the skb, however. kernel_rxrpc_free_skb() must now be
called to achieve that. These together replace
rxrpc_kernel_data_delivered().
(2) kernel_rxrpc_data_consumed() is wrapped by afs_data_consumed().
This makes afs_deliver_to_call() easier to work as the skb can simply
be discarded unconditionally here without trying to work out what the
return value of the ->deliver() function means.
The ->deliver() functions can, via afs_data_complete(),
afs_transfer_reply() and afs_extract_data() mark that an skb has been
consumed (thereby cranking the state) without the need to
conditionally free the skb to make sure the state is correct on an
incoming call for when the call processor tries to send the reply.
(3) rxrpc_recvmsg() now has to call kernel_rxrpc_data_consumed() when it
has finished with a packet and MSG_PEEK isn't set.
(4) rxrpc_packet_destructor() no longer calls rxrpc_hard_ACK_data().
Because of this, we no longer need to clear the destructor and put the
call before we free the skb in cases where we don't want the ACK/call
state to be cranked.
(5) The ->deliver() call-type callbacks are made to return -EAGAIN rather
than 0 if they expect more data (afs_extract_data() returns -EAGAIN to
the delivery function already), and the caller is now responsible for
producing an abort if that was the last packet.
(6) There are many bits of unmarshalling code where:
ret = afs_extract_data(call, skb, last, ...);
switch (ret) {
case 0: break;
case -EAGAIN: return 0;
default: return ret;
}
is to be found. As -EAGAIN can now be passed back to the caller, we
now just return if ret < 0:
ret = afs_extract_data(call, skb, last, ...);
if (ret < 0)
return ret;
(7) Checks for trailing data and empty final data packets has been
consolidated as afs_data_complete(). So:
if (skb->len > 0)
return -EBADMSG;
if (!last)
return 0;
becomes:
ret = afs_data_complete(call, skb, last);
if (ret < 0)
return ret;
(8) afs_transfer_reply() now checks the amount of data it has against the
amount of data desired and the amount of data in the skb and returns
an error to induce an abort if we don't get exactly what we want.
Without these changes, the following oops can occasionally be observed,
particularly if some printks are inserted into the delivery path:
general protection fault: 0000 [#1] SMP
Modules linked in: kafs(E) af_rxrpc(E) [last unloaded: af_rxrpc]
CPU: 0 PID: 1305 Comm: kworker/u8:3 Tainted: G E 4.7.0-fsdevel+ #1303
Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
Workqueue: kafsd afs_async_workfn [kafs]
task: ffff88040be041c0 ti: ffff88040c070000 task.ti: ffff88040c070000
RIP: 0010:[<ffffffff8108fd3c>] [<ffffffff8108fd3c>] __lock_acquire+0xcf/0x15a1
RSP: 0018:ffff88040c073bc0 EFLAGS: 00010002
RAX: 6b6b6b6b6b6b6b6b RBX: 0000000000000000 RCX: ffff88040d29a710
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88040d29a710
RBP: ffff88040c073c70 R08: 0000000000000001 R09: 0000000000000001
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000000 R14: ffff88040be041c0 R15: ffffffff814c928f
FS: 0000000000000000(0000) GS:ffff88041fa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa4595f4750 CR3: 0000000001c14000 CR4: 00000000001406f0
Stack:
0000000000000006 000000000be04930 0000000000000000 ffff880400000000
ffff880400000000 ffffffff8108f847 ffff88040be041c0 ffffffff81050446
ffff8803fc08a920 ffff8803fc08a958 ffff88040be041c0 ffff88040c073c38
Call Trace:
[<ffffffff8108f847>] ? mark_held_locks+0x5e/0x74
[<ffffffff81050446>] ? __local_bh_enable_ip+0x9b/0xa1
[<ffffffff8108f9ca>] ? trace_hardirqs_on_caller+0x16d/0x189
[<ffffffff810915f4>] lock_acquire+0x122/0x1b6
[<ffffffff810915f4>] ? lock_acquire+0x122/0x1b6
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff81609dbf>] _raw_spin_lock_irqsave+0x35/0x49
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff814c928f>] skb_dequeue+0x18/0x61
[<ffffffffa009aa92>] afs_deliver_to_call+0x344/0x39d [kafs]
[<ffffffffa009ab37>] afs_process_async_call+0x4c/0xd5 [kafs]
[<ffffffffa0099e9c>] afs_async_workfn+0xe/0x10 [kafs]
[<ffffffff81063a3a>] process_one_work+0x29d/0x57c
[<ffffffff81064ac2>] worker_thread+0x24a/0x385
[<ffffffff81064878>] ? rescuer_thread+0x2d0/0x2d0
[<ffffffff810696f5>] kthread+0xf3/0xfb
[<ffffffff8160a6ff>] ret_from_fork+0x1f/0x40
[<ffffffff81069602>] ? kthread_create_on_node+0x1cf/0x1cf
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-03 21:11:40 +08:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
2007-04-27 06:59:35 +08:00
|
|
|
|
|
|
|
/* unmarshall the reply once we've received all of it */
|
|
|
|
bp = call->buffer;
|
2019-05-10 05:22:50 +08:00
|
|
|
xdr_decode_AFSFid(&bp, call->out_fid);
|
2019-05-09 22:16:10 +08:00
|
|
|
ret = xdr_decode_AFSFetchStatus(&bp, call, call->out_scb);
|
2018-10-20 07:57:56 +08:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
2019-05-09 22:16:10 +08:00
|
|
|
ret = xdr_decode_AFSFetchStatus(&bp, call, call->out_dir_scb);
|
2018-10-20 07:57:56 +08:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
2019-05-10 05:22:50 +08:00
|
|
|
xdr_decode_AFSVolSync(&bp, call->out_volsync);
|
2007-04-27 06:59:35 +08:00
|
|
|
|
|
|
|
_leave(" = 0 [done]");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* FS.Symlink operation type
|
|
|
|
*/
|
|
|
|
static const struct afs_call_type afs_RXFSSymlink = {
|
|
|
|
.name = "FS.Symlink",
|
2017-11-02 23:27:51 +08:00
|
|
|
.op = afs_FS_Symlink,
|
2007-04-27 06:59:35 +08:00
|
|
|
.deliver = afs_deliver_fs_symlink,
|
|
|
|
.destructor = afs_flat_call_destructor,
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* create a symbolic link
|
|
|
|
*/
|
2017-11-02 23:27:50 +08:00
|
|
|
int afs_fs_symlink(struct afs_fs_cursor *fc,
|
2007-04-27 06:59:35 +08:00
|
|
|
const char *name,
|
|
|
|
const char *contents,
|
2019-05-09 22:16:10 +08:00
|
|
|
struct afs_status_cb *dvnode_scb,
|
2007-04-27 06:59:35 +08:00
|
|
|
struct afs_fid *newfid,
|
2019-05-09 22:16:10 +08:00
|
|
|
struct afs_status_cb *new_scb)
|
2007-04-27 06:59:35 +08:00
|
|
|
{
|
2019-05-10 05:22:50 +08:00
|
|
|
struct afs_vnode *dvnode = fc->vnode;
|
2007-04-27 06:59:35 +08:00
|
|
|
struct afs_call *call;
|
2019-05-10 05:22:50 +08:00
|
|
|
struct afs_net *net = afs_v2net(dvnode);
|
2007-04-27 06:59:35 +08:00
|
|
|
size_t namesz, reqsz, padsz, c_namesz, c_padsz;
|
|
|
|
__be32 *bp;
|
|
|
|
|
2018-10-20 07:57:58 +08:00
|
|
|
if (test_bit(AFS_SERVER_FL_IS_YFS, &fc->cbi->server->flags))
|
2019-05-09 22:16:10 +08:00
|
|
|
return yfs_fs_symlink(fc, name, contents, dvnode_scb,
|
|
|
|
newfid, new_scb);
|
2018-10-20 07:57:58 +08:00
|
|
|
|
2007-04-27 06:59:35 +08:00
|
|
|
_enter("");
|
|
|
|
|
|
|
|
namesz = strlen(name);
|
|
|
|
padsz = (4 - (namesz & 3)) & 3;
|
|
|
|
|
|
|
|
c_namesz = strlen(contents);
|
|
|
|
c_padsz = (4 - (c_namesz & 3)) & 3;
|
|
|
|
|
|
|
|
reqsz = (6 * 4) + namesz + padsz + c_namesz + c_padsz + (6 * 4);
|
|
|
|
|
2017-11-02 23:27:45 +08:00
|
|
|
call = afs_alloc_flat_call(net, &afs_RXFSSymlink, reqsz,
|
2007-04-27 06:59:35 +08:00
|
|
|
(3 + 21 + 21 + 6) * 4);
|
|
|
|
if (!call)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
call->key = fc->key;
|
2019-05-09 22:16:10 +08:00
|
|
|
call->out_dir_scb = dvnode_scb;
|
2019-05-10 05:22:50 +08:00
|
|
|
call->out_fid = newfid;
|
2019-05-09 22:16:10 +08:00
|
|
|
call->out_scb = new_scb;
|
2007-04-27 06:59:35 +08:00
|
|
|
|
|
|
|
/* marshall the parameters */
|
|
|
|
bp = call->request;
|
|
|
|
*bp++ = htonl(FSSYMLINK);
|
2019-05-10 05:22:50 +08:00
|
|
|
*bp++ = htonl(dvnode->fid.vid);
|
|
|
|
*bp++ = htonl(dvnode->fid.vnode);
|
|
|
|
*bp++ = htonl(dvnode->fid.unique);
|
2007-04-27 06:59:35 +08:00
|
|
|
*bp++ = htonl(namesz);
|
|
|
|
memcpy(bp, name, namesz);
|
|
|
|
bp = (void *) bp + namesz;
|
|
|
|
if (padsz > 0) {
|
|
|
|
memset(bp, 0, padsz);
|
|
|
|
bp = (void *) bp + padsz;
|
|
|
|
}
|
|
|
|
*bp++ = htonl(c_namesz);
|
|
|
|
memcpy(bp, contents, c_namesz);
|
|
|
|
bp = (void *) bp + c_namesz;
|
|
|
|
if (c_padsz > 0) {
|
|
|
|
memset(bp, 0, c_padsz);
|
|
|
|
bp = (void *) bp + c_padsz;
|
|
|
|
}
|
2017-03-17 00:27:47 +08:00
|
|
|
*bp++ = htonl(AFS_SET_MODE | AFS_SET_MTIME);
|
2019-05-10 05:22:50 +08:00
|
|
|
*bp++ = htonl(dvnode->vfs_inode.i_mtime.tv_sec); /* mtime */
|
2007-04-27 06:59:35 +08:00
|
|
|
*bp++ = 0; /* owner */
|
|
|
|
*bp++ = 0; /* group */
|
|
|
|
*bp++ = htonl(S_IRWXUGO); /* unix mode */
|
|
|
|
*bp++ = 0; /* segment size */
|
|
|
|
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
afs_use_fs_server(call, fc->cbi);
|
2019-05-10 05:22:50 +08:00
|
|
|
trace_afs_make_fs_call1(call, &dvnode->fid, name);
|
afs: Make some RPC operations non-interruptible
Make certain RPC operations non-interruptible, including:
(*) Set attributes
(*) Store data
We don't want to get interrupted during a flush on close, flush on
unlock, writeback or an inode update, leaving us in a state where we
still need to do the writeback or update.
(*) Extend lock
(*) Release lock
We don't want to get lock extension interrupted as the file locks on
the server are time-limited. Interruption during lock release is less
of an issue since the lock is time-limited, but it's better to
complete the release to avoid a several-minute wait to recover it.
*Setting* the lock isn't a problem if it's interrupted since we can
just return to the user and tell them they were interrupted - at
which point they can elect to retry.
(*) Silly unlink
We want to remove silly unlink files if we can, rather than leaving
them for the salvager to clear up.
Note that whilst these calls are no longer interruptible, they do have
timeouts on them, so if the server stops responding the call will fail with
something like ETIME or ECONNRESET.
Without this, the following:
kAFS: Unexpected error from FS.StoreData -512
appears in dmesg when a pending store data gets interrupted and some
processes may just hang.
Additionally, make the code that checks/updates the server record ignore
failure due to interruption if the main call is uninterruptible and if the
server has an address list. The next op will check it again since the
expiration time on the old list has past.
Fixes: d2ddc776a458 ("afs: Overhaul volume and server record caching and fileserver rotation")
Reported-by: Jonathan Billings <jsbillings@jsbillings.org>
Reported-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-08 23:16:31 +08:00
|
|
|
afs_set_fc_call(call, fc);
|
2019-04-25 21:26:50 +08:00
|
|
|
afs_make_call(&fc->ac, call, GFP_NOFS);
|
|
|
|
return afs_wait_for_call_to_complete(call, &fc->ac);
|
2007-04-27 06:59:35 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* deliver reply data to an FS.Rename
|
|
|
|
*/
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
static int afs_deliver_fs_rename(struct afs_call *call)
|
2007-04-27 06:59:35 +08:00
|
|
|
{
|
|
|
|
const __be32 *bp;
|
rxrpc: Fix races between skb free, ACK generation and replying
Inside the kafs filesystem it is possible to occasionally have a call
processed and terminated before we've had a chance to check whether we need
to clean up the rx queue for that call because afs_send_simple_reply() ends
the call when it is done, but this is done in a workqueue item that might
happen to run to completion before afs_deliver_to_call() completes.
Further, it is possible for rxrpc_kernel_send_data() to be called to send a
reply before the last request-phase data skb is released. The rxrpc skb
destructor is where the ACK processing is done and the call state is
advanced upon release of the last skb. ACK generation is also deferred to
a work item because it's possible that the skb destructor is not called in
a context where kernel_sendmsg() can be invoked.
To this end, the following changes are made:
(1) kernel_rxrpc_data_consumed() is added. This should be called whenever
an skb is emptied so as to crank the ACK and call states. This does
not release the skb, however. kernel_rxrpc_free_skb() must now be
called to achieve that. These together replace
rxrpc_kernel_data_delivered().
(2) kernel_rxrpc_data_consumed() is wrapped by afs_data_consumed().
This makes afs_deliver_to_call() easier to work as the skb can simply
be discarded unconditionally here without trying to work out what the
return value of the ->deliver() function means.
The ->deliver() functions can, via afs_data_complete(),
afs_transfer_reply() and afs_extract_data() mark that an skb has been
consumed (thereby cranking the state) without the need to
conditionally free the skb to make sure the state is correct on an
incoming call for when the call processor tries to send the reply.
(3) rxrpc_recvmsg() now has to call kernel_rxrpc_data_consumed() when it
has finished with a packet and MSG_PEEK isn't set.
(4) rxrpc_packet_destructor() no longer calls rxrpc_hard_ACK_data().
Because of this, we no longer need to clear the destructor and put the
call before we free the skb in cases where we don't want the ACK/call
state to be cranked.
(5) The ->deliver() call-type callbacks are made to return -EAGAIN rather
than 0 if they expect more data (afs_extract_data() returns -EAGAIN to
the delivery function already), and the caller is now responsible for
producing an abort if that was the last packet.
(6) There are many bits of unmarshalling code where:
ret = afs_extract_data(call, skb, last, ...);
switch (ret) {
case 0: break;
case -EAGAIN: return 0;
default: return ret;
}
is to be found. As -EAGAIN can now be passed back to the caller, we
now just return if ret < 0:
ret = afs_extract_data(call, skb, last, ...);
if (ret < 0)
return ret;
(7) Checks for trailing data and empty final data packets has been
consolidated as afs_data_complete(). So:
if (skb->len > 0)
return -EBADMSG;
if (!last)
return 0;
becomes:
ret = afs_data_complete(call, skb, last);
if (ret < 0)
return ret;
(8) afs_transfer_reply() now checks the amount of data it has against the
amount of data desired and the amount of data in the skb and returns
an error to induce an abort if we don't get exactly what we want.
Without these changes, the following oops can occasionally be observed,
particularly if some printks are inserted into the delivery path:
general protection fault: 0000 [#1] SMP
Modules linked in: kafs(E) af_rxrpc(E) [last unloaded: af_rxrpc]
CPU: 0 PID: 1305 Comm: kworker/u8:3 Tainted: G E 4.7.0-fsdevel+ #1303
Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
Workqueue: kafsd afs_async_workfn [kafs]
task: ffff88040be041c0 ti: ffff88040c070000 task.ti: ffff88040c070000
RIP: 0010:[<ffffffff8108fd3c>] [<ffffffff8108fd3c>] __lock_acquire+0xcf/0x15a1
RSP: 0018:ffff88040c073bc0 EFLAGS: 00010002
RAX: 6b6b6b6b6b6b6b6b RBX: 0000000000000000 RCX: ffff88040d29a710
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88040d29a710
RBP: ffff88040c073c70 R08: 0000000000000001 R09: 0000000000000001
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000000 R14: ffff88040be041c0 R15: ffffffff814c928f
FS: 0000000000000000(0000) GS:ffff88041fa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa4595f4750 CR3: 0000000001c14000 CR4: 00000000001406f0
Stack:
0000000000000006 000000000be04930 0000000000000000 ffff880400000000
ffff880400000000 ffffffff8108f847 ffff88040be041c0 ffffffff81050446
ffff8803fc08a920 ffff8803fc08a958 ffff88040be041c0 ffff88040c073c38
Call Trace:
[<ffffffff8108f847>] ? mark_held_locks+0x5e/0x74
[<ffffffff81050446>] ? __local_bh_enable_ip+0x9b/0xa1
[<ffffffff8108f9ca>] ? trace_hardirqs_on_caller+0x16d/0x189
[<ffffffff810915f4>] lock_acquire+0x122/0x1b6
[<ffffffff810915f4>] ? lock_acquire+0x122/0x1b6
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff81609dbf>] _raw_spin_lock_irqsave+0x35/0x49
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff814c928f>] skb_dequeue+0x18/0x61
[<ffffffffa009aa92>] afs_deliver_to_call+0x344/0x39d [kafs]
[<ffffffffa009ab37>] afs_process_async_call+0x4c/0xd5 [kafs]
[<ffffffffa0099e9c>] afs_async_workfn+0xe/0x10 [kafs]
[<ffffffff81063a3a>] process_one_work+0x29d/0x57c
[<ffffffff81064ac2>] worker_thread+0x24a/0x385
[<ffffffff81064878>] ? rescuer_thread+0x2d0/0x2d0
[<ffffffff810696f5>] kthread+0xf3/0xfb
[<ffffffff8160a6ff>] ret_from_fork+0x1f/0x40
[<ffffffff81069602>] ? kthread_create_on_node+0x1cf/0x1cf
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-03 21:11:40 +08:00
|
|
|
int ret;
|
2007-04-27 06:59:35 +08:00
|
|
|
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
ret = afs_transfer_reply(call);
|
rxrpc: Fix races between skb free, ACK generation and replying
Inside the kafs filesystem it is possible to occasionally have a call
processed and terminated before we've had a chance to check whether we need
to clean up the rx queue for that call because afs_send_simple_reply() ends
the call when it is done, but this is done in a workqueue item that might
happen to run to completion before afs_deliver_to_call() completes.
Further, it is possible for rxrpc_kernel_send_data() to be called to send a
reply before the last request-phase data skb is released. The rxrpc skb
destructor is where the ACK processing is done and the call state is
advanced upon release of the last skb. ACK generation is also deferred to
a work item because it's possible that the skb destructor is not called in
a context where kernel_sendmsg() can be invoked.
To this end, the following changes are made:
(1) kernel_rxrpc_data_consumed() is added. This should be called whenever
an skb is emptied so as to crank the ACK and call states. This does
not release the skb, however. kernel_rxrpc_free_skb() must now be
called to achieve that. These together replace
rxrpc_kernel_data_delivered().
(2) kernel_rxrpc_data_consumed() is wrapped by afs_data_consumed().
This makes afs_deliver_to_call() easier to work as the skb can simply
be discarded unconditionally here without trying to work out what the
return value of the ->deliver() function means.
The ->deliver() functions can, via afs_data_complete(),
afs_transfer_reply() and afs_extract_data() mark that an skb has been
consumed (thereby cranking the state) without the need to
conditionally free the skb to make sure the state is correct on an
incoming call for when the call processor tries to send the reply.
(3) rxrpc_recvmsg() now has to call kernel_rxrpc_data_consumed() when it
has finished with a packet and MSG_PEEK isn't set.
(4) rxrpc_packet_destructor() no longer calls rxrpc_hard_ACK_data().
Because of this, we no longer need to clear the destructor and put the
call before we free the skb in cases where we don't want the ACK/call
state to be cranked.
(5) The ->deliver() call-type callbacks are made to return -EAGAIN rather
than 0 if they expect more data (afs_extract_data() returns -EAGAIN to
the delivery function already), and the caller is now responsible for
producing an abort if that was the last packet.
(6) There are many bits of unmarshalling code where:
ret = afs_extract_data(call, skb, last, ...);
switch (ret) {
case 0: break;
case -EAGAIN: return 0;
default: return ret;
}
is to be found. As -EAGAIN can now be passed back to the caller, we
now just return if ret < 0:
ret = afs_extract_data(call, skb, last, ...);
if (ret < 0)
return ret;
(7) Checks for trailing data and empty final data packets has been
consolidated as afs_data_complete(). So:
if (skb->len > 0)
return -EBADMSG;
if (!last)
return 0;
becomes:
ret = afs_data_complete(call, skb, last);
if (ret < 0)
return ret;
(8) afs_transfer_reply() now checks the amount of data it has against the
amount of data desired and the amount of data in the skb and returns
an error to induce an abort if we don't get exactly what we want.
Without these changes, the following oops can occasionally be observed,
particularly if some printks are inserted into the delivery path:
general protection fault: 0000 [#1] SMP
Modules linked in: kafs(E) af_rxrpc(E) [last unloaded: af_rxrpc]
CPU: 0 PID: 1305 Comm: kworker/u8:3 Tainted: G E 4.7.0-fsdevel+ #1303
Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
Workqueue: kafsd afs_async_workfn [kafs]
task: ffff88040be041c0 ti: ffff88040c070000 task.ti: ffff88040c070000
RIP: 0010:[<ffffffff8108fd3c>] [<ffffffff8108fd3c>] __lock_acquire+0xcf/0x15a1
RSP: 0018:ffff88040c073bc0 EFLAGS: 00010002
RAX: 6b6b6b6b6b6b6b6b RBX: 0000000000000000 RCX: ffff88040d29a710
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88040d29a710
RBP: ffff88040c073c70 R08: 0000000000000001 R09: 0000000000000001
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000000 R14: ffff88040be041c0 R15: ffffffff814c928f
FS: 0000000000000000(0000) GS:ffff88041fa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa4595f4750 CR3: 0000000001c14000 CR4: 00000000001406f0
Stack:
0000000000000006 000000000be04930 0000000000000000 ffff880400000000
ffff880400000000 ffffffff8108f847 ffff88040be041c0 ffffffff81050446
ffff8803fc08a920 ffff8803fc08a958 ffff88040be041c0 ffff88040c073c38
Call Trace:
[<ffffffff8108f847>] ? mark_held_locks+0x5e/0x74
[<ffffffff81050446>] ? __local_bh_enable_ip+0x9b/0xa1
[<ffffffff8108f9ca>] ? trace_hardirqs_on_caller+0x16d/0x189
[<ffffffff810915f4>] lock_acquire+0x122/0x1b6
[<ffffffff810915f4>] ? lock_acquire+0x122/0x1b6
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff81609dbf>] _raw_spin_lock_irqsave+0x35/0x49
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff814c928f>] skb_dequeue+0x18/0x61
[<ffffffffa009aa92>] afs_deliver_to_call+0x344/0x39d [kafs]
[<ffffffffa009ab37>] afs_process_async_call+0x4c/0xd5 [kafs]
[<ffffffffa0099e9c>] afs_async_workfn+0xe/0x10 [kafs]
[<ffffffff81063a3a>] process_one_work+0x29d/0x57c
[<ffffffff81064ac2>] worker_thread+0x24a/0x385
[<ffffffff81064878>] ? rescuer_thread+0x2d0/0x2d0
[<ffffffff810696f5>] kthread+0xf3/0xfb
[<ffffffff8160a6ff>] ret_from_fork+0x1f/0x40
[<ffffffff81069602>] ? kthread_create_on_node+0x1cf/0x1cf
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-03 21:11:40 +08:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
2007-04-27 06:59:35 +08:00
|
|
|
|
|
|
|
/* unmarshall the reply once we've received all of it */
|
|
|
|
bp = call->buffer;
|
2019-05-09 22:16:10 +08:00
|
|
|
ret = xdr_decode_AFSFetchStatus(&bp, call, call->out_dir_scb);
|
2018-10-20 07:57:56 +08:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
2019-05-09 22:16:10 +08:00
|
|
|
if (call->out_dir_scb != call->out_scb) {
|
|
|
|
ret = xdr_decode_AFSFetchStatus(&bp, call, call->out_scb);
|
2018-10-20 07:57:56 +08:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
}
|
2019-05-10 05:22:50 +08:00
|
|
|
xdr_decode_AFSVolSync(&bp, call->out_volsync);
|
2007-04-27 06:59:35 +08:00
|
|
|
|
|
|
|
_leave(" = 0 [done]");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* FS.Rename operation type
|
|
|
|
*/
|
|
|
|
static const struct afs_call_type afs_RXFSRename = {
|
|
|
|
.name = "FS.Rename",
|
2017-11-02 23:27:51 +08:00
|
|
|
.op = afs_FS_Rename,
|
2007-04-27 06:59:35 +08:00
|
|
|
.deliver = afs_deliver_fs_rename,
|
|
|
|
.destructor = afs_flat_call_destructor,
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
2019-05-09 22:16:10 +08:00
|
|
|
* Rename/move a file or directory.
|
2007-04-27 06:59:35 +08:00
|
|
|
*/
|
2017-11-02 23:27:50 +08:00
|
|
|
int afs_fs_rename(struct afs_fs_cursor *fc,
|
2007-04-27 06:59:35 +08:00
|
|
|
const char *orig_name,
|
|
|
|
struct afs_vnode *new_dvnode,
|
2018-04-06 21:17:25 +08:00
|
|
|
const char *new_name,
|
2019-05-09 22:16:10 +08:00
|
|
|
struct afs_status_cb *orig_dvnode_scb,
|
|
|
|
struct afs_status_cb *new_dvnode_scb)
|
2007-04-27 06:59:35 +08:00
|
|
|
{
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
struct afs_vnode *orig_dvnode = fc->vnode;
|
2007-04-27 06:59:35 +08:00
|
|
|
struct afs_call *call;
|
2017-11-02 23:27:45 +08:00
|
|
|
struct afs_net *net = afs_v2net(orig_dvnode);
|
2007-04-27 06:59:35 +08:00
|
|
|
size_t reqsz, o_namesz, o_padsz, n_namesz, n_padsz;
|
|
|
|
__be32 *bp;
|
|
|
|
|
2018-10-20 07:57:58 +08:00
|
|
|
if (test_bit(AFS_SERVER_FL_IS_YFS, &fc->cbi->server->flags))
|
|
|
|
return yfs_fs_rename(fc, orig_name,
|
|
|
|
new_dvnode, new_name,
|
2019-05-09 22:16:10 +08:00
|
|
|
orig_dvnode_scb,
|
|
|
|
new_dvnode_scb);
|
2018-10-20 07:57:58 +08:00
|
|
|
|
2007-04-27 06:59:35 +08:00
|
|
|
_enter("");
|
|
|
|
|
|
|
|
o_namesz = strlen(orig_name);
|
|
|
|
o_padsz = (4 - (o_namesz & 3)) & 3;
|
|
|
|
|
|
|
|
n_namesz = strlen(new_name);
|
|
|
|
n_padsz = (4 - (n_namesz & 3)) & 3;
|
|
|
|
|
|
|
|
reqsz = (4 * 4) +
|
|
|
|
4 + o_namesz + o_padsz +
|
|
|
|
(3 * 4) +
|
|
|
|
4 + n_namesz + n_padsz;
|
|
|
|
|
2017-11-02 23:27:45 +08:00
|
|
|
call = afs_alloc_flat_call(net, &afs_RXFSRename, reqsz, (21 + 21 + 6) * 4);
|
2007-04-27 06:59:35 +08:00
|
|
|
if (!call)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
call->key = fc->key;
|
2019-05-09 22:16:10 +08:00
|
|
|
call->out_dir_scb = orig_dvnode_scb;
|
|
|
|
call->out_scb = new_dvnode_scb;
|
2007-04-27 06:59:35 +08:00
|
|
|
|
|
|
|
/* marshall the parameters */
|
|
|
|
bp = call->request;
|
|
|
|
*bp++ = htonl(FSRENAME);
|
|
|
|
*bp++ = htonl(orig_dvnode->fid.vid);
|
|
|
|
*bp++ = htonl(orig_dvnode->fid.vnode);
|
|
|
|
*bp++ = htonl(orig_dvnode->fid.unique);
|
|
|
|
*bp++ = htonl(o_namesz);
|
|
|
|
memcpy(bp, orig_name, o_namesz);
|
|
|
|
bp = (void *) bp + o_namesz;
|
|
|
|
if (o_padsz > 0) {
|
|
|
|
memset(bp, 0, o_padsz);
|
|
|
|
bp = (void *) bp + o_padsz;
|
|
|
|
}
|
|
|
|
|
|
|
|
*bp++ = htonl(new_dvnode->fid.vid);
|
|
|
|
*bp++ = htonl(new_dvnode->fid.vnode);
|
|
|
|
*bp++ = htonl(new_dvnode->fid.unique);
|
|
|
|
*bp++ = htonl(n_namesz);
|
|
|
|
memcpy(bp, new_name, n_namesz);
|
|
|
|
bp = (void *) bp + n_namesz;
|
|
|
|
if (n_padsz > 0) {
|
|
|
|
memset(bp, 0, n_padsz);
|
|
|
|
bp = (void *) bp + n_padsz;
|
|
|
|
}
|
|
|
|
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
afs_use_fs_server(call, fc->cbi);
|
2019-04-25 21:26:51 +08:00
|
|
|
trace_afs_make_fs_call2(call, &orig_dvnode->fid, orig_name, new_name);
|
afs: Make some RPC operations non-interruptible
Make certain RPC operations non-interruptible, including:
(*) Set attributes
(*) Store data
We don't want to get interrupted during a flush on close, flush on
unlock, writeback or an inode update, leaving us in a state where we
still need to do the writeback or update.
(*) Extend lock
(*) Release lock
We don't want to get lock extension interrupted as the file locks on
the server are time-limited. Interruption during lock release is less
of an issue since the lock is time-limited, but it's better to
complete the release to avoid a several-minute wait to recover it.
*Setting* the lock isn't a problem if it's interrupted since we can
just return to the user and tell them they were interrupted - at
which point they can elect to retry.
(*) Silly unlink
We want to remove silly unlink files if we can, rather than leaving
them for the salvager to clear up.
Note that whilst these calls are no longer interruptible, they do have
timeouts on them, so if the server stops responding the call will fail with
something like ETIME or ECONNRESET.
Without this, the following:
kAFS: Unexpected error from FS.StoreData -512
appears in dmesg when a pending store data gets interrupted and some
processes may just hang.
Additionally, make the code that checks/updates the server record ignore
failure due to interruption if the main call is uninterruptible and if the
server has an address list. The next op will check it again since the
expiration time on the old list has past.
Fixes: d2ddc776a458 ("afs: Overhaul volume and server record caching and fileserver rotation")
Reported-by: Jonathan Billings <jsbillings@jsbillings.org>
Reported-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-08 23:16:31 +08:00
|
|
|
afs_set_fc_call(call, fc);
|
2019-04-25 21:26:50 +08:00
|
|
|
afs_make_call(&fc->ac, call, GFP_NOFS);
|
|
|
|
return afs_wait_for_call_to_complete(call, &fc->ac);
|
2007-04-27 06:59:35 +08:00
|
|
|
}
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* deliver reply data to an FS.StoreData
|
|
|
|
*/
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
static int afs_deliver_fs_store_data(struct afs_call *call)
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
{
|
|
|
|
const __be32 *bp;
|
rxrpc: Fix races between skb free, ACK generation and replying
Inside the kafs filesystem it is possible to occasionally have a call
processed and terminated before we've had a chance to check whether we need
to clean up the rx queue for that call because afs_send_simple_reply() ends
the call when it is done, but this is done in a workqueue item that might
happen to run to completion before afs_deliver_to_call() completes.
Further, it is possible for rxrpc_kernel_send_data() to be called to send a
reply before the last request-phase data skb is released. The rxrpc skb
destructor is where the ACK processing is done and the call state is
advanced upon release of the last skb. ACK generation is also deferred to
a work item because it's possible that the skb destructor is not called in
a context where kernel_sendmsg() can be invoked.
To this end, the following changes are made:
(1) kernel_rxrpc_data_consumed() is added. This should be called whenever
an skb is emptied so as to crank the ACK and call states. This does
not release the skb, however. kernel_rxrpc_free_skb() must now be
called to achieve that. These together replace
rxrpc_kernel_data_delivered().
(2) kernel_rxrpc_data_consumed() is wrapped by afs_data_consumed().
This makes afs_deliver_to_call() easier to work as the skb can simply
be discarded unconditionally here without trying to work out what the
return value of the ->deliver() function means.
The ->deliver() functions can, via afs_data_complete(),
afs_transfer_reply() and afs_extract_data() mark that an skb has been
consumed (thereby cranking the state) without the need to
conditionally free the skb to make sure the state is correct on an
incoming call for when the call processor tries to send the reply.
(3) rxrpc_recvmsg() now has to call kernel_rxrpc_data_consumed() when it
has finished with a packet and MSG_PEEK isn't set.
(4) rxrpc_packet_destructor() no longer calls rxrpc_hard_ACK_data().
Because of this, we no longer need to clear the destructor and put the
call before we free the skb in cases where we don't want the ACK/call
state to be cranked.
(5) The ->deliver() call-type callbacks are made to return -EAGAIN rather
than 0 if they expect more data (afs_extract_data() returns -EAGAIN to
the delivery function already), and the caller is now responsible for
producing an abort if that was the last packet.
(6) There are many bits of unmarshalling code where:
ret = afs_extract_data(call, skb, last, ...);
switch (ret) {
case 0: break;
case -EAGAIN: return 0;
default: return ret;
}
is to be found. As -EAGAIN can now be passed back to the caller, we
now just return if ret < 0:
ret = afs_extract_data(call, skb, last, ...);
if (ret < 0)
return ret;
(7) Checks for trailing data and empty final data packets has been
consolidated as afs_data_complete(). So:
if (skb->len > 0)
return -EBADMSG;
if (!last)
return 0;
becomes:
ret = afs_data_complete(call, skb, last);
if (ret < 0)
return ret;
(8) afs_transfer_reply() now checks the amount of data it has against the
amount of data desired and the amount of data in the skb and returns
an error to induce an abort if we don't get exactly what we want.
Without these changes, the following oops can occasionally be observed,
particularly if some printks are inserted into the delivery path:
general protection fault: 0000 [#1] SMP
Modules linked in: kafs(E) af_rxrpc(E) [last unloaded: af_rxrpc]
CPU: 0 PID: 1305 Comm: kworker/u8:3 Tainted: G E 4.7.0-fsdevel+ #1303
Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
Workqueue: kafsd afs_async_workfn [kafs]
task: ffff88040be041c0 ti: ffff88040c070000 task.ti: ffff88040c070000
RIP: 0010:[<ffffffff8108fd3c>] [<ffffffff8108fd3c>] __lock_acquire+0xcf/0x15a1
RSP: 0018:ffff88040c073bc0 EFLAGS: 00010002
RAX: 6b6b6b6b6b6b6b6b RBX: 0000000000000000 RCX: ffff88040d29a710
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88040d29a710
RBP: ffff88040c073c70 R08: 0000000000000001 R09: 0000000000000001
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000000 R14: ffff88040be041c0 R15: ffffffff814c928f
FS: 0000000000000000(0000) GS:ffff88041fa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa4595f4750 CR3: 0000000001c14000 CR4: 00000000001406f0
Stack:
0000000000000006 000000000be04930 0000000000000000 ffff880400000000
ffff880400000000 ffffffff8108f847 ffff88040be041c0 ffffffff81050446
ffff8803fc08a920 ffff8803fc08a958 ffff88040be041c0 ffff88040c073c38
Call Trace:
[<ffffffff8108f847>] ? mark_held_locks+0x5e/0x74
[<ffffffff81050446>] ? __local_bh_enable_ip+0x9b/0xa1
[<ffffffff8108f9ca>] ? trace_hardirqs_on_caller+0x16d/0x189
[<ffffffff810915f4>] lock_acquire+0x122/0x1b6
[<ffffffff810915f4>] ? lock_acquire+0x122/0x1b6
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff81609dbf>] _raw_spin_lock_irqsave+0x35/0x49
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff814c928f>] skb_dequeue+0x18/0x61
[<ffffffffa009aa92>] afs_deliver_to_call+0x344/0x39d [kafs]
[<ffffffffa009ab37>] afs_process_async_call+0x4c/0xd5 [kafs]
[<ffffffffa0099e9c>] afs_async_workfn+0xe/0x10 [kafs]
[<ffffffff81063a3a>] process_one_work+0x29d/0x57c
[<ffffffff81064ac2>] worker_thread+0x24a/0x385
[<ffffffff81064878>] ? rescuer_thread+0x2d0/0x2d0
[<ffffffff810696f5>] kthread+0xf3/0xfb
[<ffffffff8160a6ff>] ret_from_fork+0x1f/0x40
[<ffffffff81069602>] ? kthread_create_on_node+0x1cf/0x1cf
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-03 21:11:40 +08:00
|
|
|
int ret;
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
_enter("");
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
ret = afs_transfer_reply(call);
|
rxrpc: Fix races between skb free, ACK generation and replying
Inside the kafs filesystem it is possible to occasionally have a call
processed and terminated before we've had a chance to check whether we need
to clean up the rx queue for that call because afs_send_simple_reply() ends
the call when it is done, but this is done in a workqueue item that might
happen to run to completion before afs_deliver_to_call() completes.
Further, it is possible for rxrpc_kernel_send_data() to be called to send a
reply before the last request-phase data skb is released. The rxrpc skb
destructor is where the ACK processing is done and the call state is
advanced upon release of the last skb. ACK generation is also deferred to
a work item because it's possible that the skb destructor is not called in
a context where kernel_sendmsg() can be invoked.
To this end, the following changes are made:
(1) kernel_rxrpc_data_consumed() is added. This should be called whenever
an skb is emptied so as to crank the ACK and call states. This does
not release the skb, however. kernel_rxrpc_free_skb() must now be
called to achieve that. These together replace
rxrpc_kernel_data_delivered().
(2) kernel_rxrpc_data_consumed() is wrapped by afs_data_consumed().
This makes afs_deliver_to_call() easier to work as the skb can simply
be discarded unconditionally here without trying to work out what the
return value of the ->deliver() function means.
The ->deliver() functions can, via afs_data_complete(),
afs_transfer_reply() and afs_extract_data() mark that an skb has been
consumed (thereby cranking the state) without the need to
conditionally free the skb to make sure the state is correct on an
incoming call for when the call processor tries to send the reply.
(3) rxrpc_recvmsg() now has to call kernel_rxrpc_data_consumed() when it
has finished with a packet and MSG_PEEK isn't set.
(4) rxrpc_packet_destructor() no longer calls rxrpc_hard_ACK_data().
Because of this, we no longer need to clear the destructor and put the
call before we free the skb in cases where we don't want the ACK/call
state to be cranked.
(5) The ->deliver() call-type callbacks are made to return -EAGAIN rather
than 0 if they expect more data (afs_extract_data() returns -EAGAIN to
the delivery function already), and the caller is now responsible for
producing an abort if that was the last packet.
(6) There are many bits of unmarshalling code where:
ret = afs_extract_data(call, skb, last, ...);
switch (ret) {
case 0: break;
case -EAGAIN: return 0;
default: return ret;
}
is to be found. As -EAGAIN can now be passed back to the caller, we
now just return if ret < 0:
ret = afs_extract_data(call, skb, last, ...);
if (ret < 0)
return ret;
(7) Checks for trailing data and empty final data packets has been
consolidated as afs_data_complete(). So:
if (skb->len > 0)
return -EBADMSG;
if (!last)
return 0;
becomes:
ret = afs_data_complete(call, skb, last);
if (ret < 0)
return ret;
(8) afs_transfer_reply() now checks the amount of data it has against the
amount of data desired and the amount of data in the skb and returns
an error to induce an abort if we don't get exactly what we want.
Without these changes, the following oops can occasionally be observed,
particularly if some printks are inserted into the delivery path:
general protection fault: 0000 [#1] SMP
Modules linked in: kafs(E) af_rxrpc(E) [last unloaded: af_rxrpc]
CPU: 0 PID: 1305 Comm: kworker/u8:3 Tainted: G E 4.7.0-fsdevel+ #1303
Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
Workqueue: kafsd afs_async_workfn [kafs]
task: ffff88040be041c0 ti: ffff88040c070000 task.ti: ffff88040c070000
RIP: 0010:[<ffffffff8108fd3c>] [<ffffffff8108fd3c>] __lock_acquire+0xcf/0x15a1
RSP: 0018:ffff88040c073bc0 EFLAGS: 00010002
RAX: 6b6b6b6b6b6b6b6b RBX: 0000000000000000 RCX: ffff88040d29a710
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88040d29a710
RBP: ffff88040c073c70 R08: 0000000000000001 R09: 0000000000000001
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000000 R14: ffff88040be041c0 R15: ffffffff814c928f
FS: 0000000000000000(0000) GS:ffff88041fa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa4595f4750 CR3: 0000000001c14000 CR4: 00000000001406f0
Stack:
0000000000000006 000000000be04930 0000000000000000 ffff880400000000
ffff880400000000 ffffffff8108f847 ffff88040be041c0 ffffffff81050446
ffff8803fc08a920 ffff8803fc08a958 ffff88040be041c0 ffff88040c073c38
Call Trace:
[<ffffffff8108f847>] ? mark_held_locks+0x5e/0x74
[<ffffffff81050446>] ? __local_bh_enable_ip+0x9b/0xa1
[<ffffffff8108f9ca>] ? trace_hardirqs_on_caller+0x16d/0x189
[<ffffffff810915f4>] lock_acquire+0x122/0x1b6
[<ffffffff810915f4>] ? lock_acquire+0x122/0x1b6
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff81609dbf>] _raw_spin_lock_irqsave+0x35/0x49
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff814c928f>] skb_dequeue+0x18/0x61
[<ffffffffa009aa92>] afs_deliver_to_call+0x344/0x39d [kafs]
[<ffffffffa009ab37>] afs_process_async_call+0x4c/0xd5 [kafs]
[<ffffffffa0099e9c>] afs_async_workfn+0xe/0x10 [kafs]
[<ffffffff81063a3a>] process_one_work+0x29d/0x57c
[<ffffffff81064ac2>] worker_thread+0x24a/0x385
[<ffffffff81064878>] ? rescuer_thread+0x2d0/0x2d0
[<ffffffff810696f5>] kthread+0xf3/0xfb
[<ffffffff8160a6ff>] ret_from_fork+0x1f/0x40
[<ffffffff81069602>] ? kthread_create_on_node+0x1cf/0x1cf
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-03 21:11:40 +08:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
|
|
|
|
/* unmarshall the reply once we've received all of it */
|
|
|
|
bp = call->buffer;
|
2019-05-09 22:16:10 +08:00
|
|
|
ret = xdr_decode_AFSFetchStatus(&bp, call, call->out_scb);
|
2018-10-20 07:57:56 +08:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
2019-05-10 05:22:50 +08:00
|
|
|
xdr_decode_AFSVolSync(&bp, call->out_volsync);
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
|
|
|
|
_leave(" = 0 [done]");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* FS.StoreData operation type
|
|
|
|
*/
|
|
|
|
static const struct afs_call_type afs_RXFSStoreData = {
|
|
|
|
.name = "FS.StoreData",
|
2017-11-02 23:27:51 +08:00
|
|
|
.op = afs_FS_StoreData,
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
.deliver = afs_deliver_fs_store_data,
|
|
|
|
.destructor = afs_flat_call_destructor,
|
|
|
|
};
|
|
|
|
|
2007-05-10 18:15:21 +08:00
|
|
|
static const struct afs_call_type afs_RXFSStoreData64 = {
|
|
|
|
.name = "FS.StoreData64",
|
2017-11-02 23:27:51 +08:00
|
|
|
.op = afs_FS_StoreData64,
|
2007-05-10 18:15:21 +08:00
|
|
|
.deliver = afs_deliver_fs_store_data,
|
|
|
|
.destructor = afs_flat_call_destructor,
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* store a set of pages to a very large file
|
|
|
|
*/
|
2017-11-02 23:27:50 +08:00
|
|
|
static int afs_fs_store_data64(struct afs_fs_cursor *fc,
|
2017-11-02 23:27:52 +08:00
|
|
|
struct address_space *mapping,
|
2007-05-10 18:15:21 +08:00
|
|
|
pgoff_t first, pgoff_t last,
|
|
|
|
unsigned offset, unsigned to,
|
2019-05-09 22:16:10 +08:00
|
|
|
loff_t size, loff_t pos, loff_t i_size,
|
|
|
|
struct afs_status_cb *scb)
|
2007-05-10 18:15:21 +08:00
|
|
|
{
|
2017-11-02 23:27:52 +08:00
|
|
|
struct afs_vnode *vnode = fc->vnode;
|
2007-05-10 18:15:21 +08:00
|
|
|
struct afs_call *call;
|
2017-11-02 23:27:45 +08:00
|
|
|
struct afs_net *net = afs_v2net(vnode);
|
2007-05-10 18:15:21 +08:00
|
|
|
__be32 *bp;
|
|
|
|
|
2018-10-20 07:57:57 +08:00
|
|
|
_enter(",%x,{%llx:%llu},,",
|
2017-11-02 23:27:52 +08:00
|
|
|
key_serial(fc->key), vnode->fid.vid, vnode->fid.vnode);
|
2007-05-10 18:15:21 +08:00
|
|
|
|
2017-11-02 23:27:45 +08:00
|
|
|
call = afs_alloc_flat_call(net, &afs_RXFSStoreData64,
|
2007-05-10 18:15:21 +08:00
|
|
|
(4 + 6 + 3 * 2) * 4,
|
|
|
|
(21 + 6) * 4);
|
|
|
|
if (!call)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
2017-11-02 23:27:52 +08:00
|
|
|
call->key = fc->key;
|
|
|
|
call->mapping = mapping;
|
2007-05-10 18:15:21 +08:00
|
|
|
call->first = first;
|
|
|
|
call->last = last;
|
|
|
|
call->first_offset = offset;
|
|
|
|
call->last_to = to;
|
|
|
|
call->send_pages = true;
|
2019-05-09 22:16:10 +08:00
|
|
|
call->out_scb = scb;
|
2007-05-10 18:15:21 +08:00
|
|
|
|
|
|
|
/* marshall the parameters */
|
|
|
|
bp = call->request;
|
|
|
|
*bp++ = htonl(FSSTOREDATA64);
|
|
|
|
*bp++ = htonl(vnode->fid.vid);
|
|
|
|
*bp++ = htonl(vnode->fid.vnode);
|
|
|
|
*bp++ = htonl(vnode->fid.unique);
|
|
|
|
|
2017-03-17 00:27:47 +08:00
|
|
|
*bp++ = htonl(AFS_SET_MTIME); /* mask */
|
|
|
|
*bp++ = htonl(vnode->vfs_inode.i_mtime.tv_sec); /* mtime */
|
2007-05-10 18:15:21 +08:00
|
|
|
*bp++ = 0; /* owner */
|
|
|
|
*bp++ = 0; /* group */
|
|
|
|
*bp++ = 0; /* unix mode */
|
|
|
|
*bp++ = 0; /* segment size */
|
|
|
|
|
|
|
|
*bp++ = htonl(pos >> 32);
|
|
|
|
*bp++ = htonl((u32) pos);
|
|
|
|
*bp++ = htonl(size >> 32);
|
|
|
|
*bp++ = htonl((u32) size);
|
|
|
|
*bp++ = htonl(i_size >> 32);
|
|
|
|
*bp++ = htonl((u32) i_size);
|
|
|
|
|
2017-11-02 23:27:51 +08:00
|
|
|
trace_afs_make_fs_call(call, &vnode->fid);
|
afs: Make some RPC operations non-interruptible
Make certain RPC operations non-interruptible, including:
(*) Set attributes
(*) Store data
We don't want to get interrupted during a flush on close, flush on
unlock, writeback or an inode update, leaving us in a state where we
still need to do the writeback or update.
(*) Extend lock
(*) Release lock
We don't want to get lock extension interrupted as the file locks on
the server are time-limited. Interruption during lock release is less
of an issue since the lock is time-limited, but it's better to
complete the release to avoid a several-minute wait to recover it.
*Setting* the lock isn't a problem if it's interrupted since we can
just return to the user and tell them they were interrupted - at
which point they can elect to retry.
(*) Silly unlink
We want to remove silly unlink files if we can, rather than leaving
them for the salvager to clear up.
Note that whilst these calls are no longer interruptible, they do have
timeouts on them, so if the server stops responding the call will fail with
something like ETIME or ECONNRESET.
Without this, the following:
kAFS: Unexpected error from FS.StoreData -512
appears in dmesg when a pending store data gets interrupted and some
processes may just hang.
Additionally, make the code that checks/updates the server record ignore
failure due to interruption if the main call is uninterruptible and if the
server has an address list. The next op will check it again since the
expiration time on the old list has past.
Fixes: d2ddc776a458 ("afs: Overhaul volume and server record caching and fileserver rotation")
Reported-by: Jonathan Billings <jsbillings@jsbillings.org>
Reported-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-08 23:16:31 +08:00
|
|
|
afs_set_fc_call(call, fc);
|
2019-04-25 21:26:50 +08:00
|
|
|
afs_make_call(&fc->ac, call, GFP_NOFS);
|
|
|
|
return afs_wait_for_call_to_complete(call, &fc->ac);
|
2007-05-10 18:15:21 +08:00
|
|
|
}
|
|
|
|
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
/*
|
|
|
|
* store a set of pages
|
|
|
|
*/
|
2017-11-02 23:27:52 +08:00
|
|
|
int afs_fs_store_data(struct afs_fs_cursor *fc, struct address_space *mapping,
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
pgoff_t first, pgoff_t last,
|
2019-05-09 22:16:10 +08:00
|
|
|
unsigned offset, unsigned to,
|
|
|
|
struct afs_status_cb *scb)
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
{
|
2017-11-02 23:27:52 +08:00
|
|
|
struct afs_vnode *vnode = fc->vnode;
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
struct afs_call *call;
|
2017-11-02 23:27:45 +08:00
|
|
|
struct afs_net *net = afs_v2net(vnode);
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
loff_t size, pos, i_size;
|
|
|
|
__be32 *bp;
|
|
|
|
|
2018-10-20 07:57:58 +08:00
|
|
|
if (test_bit(AFS_SERVER_FL_IS_YFS, &fc->cbi->server->flags))
|
2019-05-09 22:16:10 +08:00
|
|
|
return yfs_fs_store_data(fc, mapping, first, last, offset, to, scb);
|
2018-10-20 07:57:58 +08:00
|
|
|
|
2018-10-20 07:57:57 +08:00
|
|
|
_enter(",%x,{%llx:%llu},,",
|
2017-11-02 23:27:52 +08:00
|
|
|
key_serial(fc->key), vnode->fid.vid, vnode->fid.vnode);
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
|
2017-03-17 00:27:47 +08:00
|
|
|
size = (loff_t)to - (loff_t)offset;
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
if (first != last)
|
|
|
|
size += (loff_t)(last - first) << PAGE_SHIFT;
|
|
|
|
pos = (loff_t)first << PAGE_SHIFT;
|
|
|
|
pos += offset;
|
|
|
|
|
|
|
|
i_size = i_size_read(&vnode->vfs_inode);
|
|
|
|
if (pos + size > i_size)
|
|
|
|
i_size = size + pos;
|
|
|
|
|
|
|
|
_debug("size %llx, at %llx, i_size %llx",
|
|
|
|
(unsigned long long) size, (unsigned long long) pos,
|
|
|
|
(unsigned long long) i_size);
|
|
|
|
|
2007-05-10 18:15:21 +08:00
|
|
|
if (pos >> 32 || i_size >> 32 || size >> 32 || (pos + size) >> 32)
|
2017-11-02 23:27:52 +08:00
|
|
|
return afs_fs_store_data64(fc, mapping, first, last, offset, to,
|
2019-05-09 22:16:10 +08:00
|
|
|
size, pos, i_size, scb);
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
|
2017-11-02 23:27:45 +08:00
|
|
|
call = afs_alloc_flat_call(net, &afs_RXFSStoreData,
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
(4 + 6 + 3) * 4,
|
|
|
|
(21 + 6) * 4);
|
|
|
|
if (!call)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
2017-11-02 23:27:52 +08:00
|
|
|
call->key = fc->key;
|
|
|
|
call->mapping = mapping;
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
call->first = first;
|
|
|
|
call->last = last;
|
|
|
|
call->first_offset = offset;
|
|
|
|
call->last_to = to;
|
|
|
|
call->send_pages = true;
|
2019-05-09 22:16:10 +08:00
|
|
|
call->out_scb = scb;
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
|
|
|
|
/* marshall the parameters */
|
|
|
|
bp = call->request;
|
|
|
|
*bp++ = htonl(FSSTOREDATA);
|
|
|
|
*bp++ = htonl(vnode->fid.vid);
|
|
|
|
*bp++ = htonl(vnode->fid.vnode);
|
|
|
|
*bp++ = htonl(vnode->fid.unique);
|
|
|
|
|
2017-03-17 00:27:47 +08:00
|
|
|
*bp++ = htonl(AFS_SET_MTIME); /* mask */
|
|
|
|
*bp++ = htonl(vnode->vfs_inode.i_mtime.tv_sec); /* mtime */
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
*bp++ = 0; /* owner */
|
|
|
|
*bp++ = 0; /* group */
|
|
|
|
*bp++ = 0; /* unix mode */
|
|
|
|
*bp++ = 0; /* segment size */
|
|
|
|
|
|
|
|
*bp++ = htonl(pos);
|
|
|
|
*bp++ = htonl(size);
|
|
|
|
*bp++ = htonl(i_size);
|
|
|
|
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
afs_use_fs_server(call, fc->cbi);
|
2017-11-02 23:27:51 +08:00
|
|
|
trace_afs_make_fs_call(call, &vnode->fid);
|
afs: Make some RPC operations non-interruptible
Make certain RPC operations non-interruptible, including:
(*) Set attributes
(*) Store data
We don't want to get interrupted during a flush on close, flush on
unlock, writeback or an inode update, leaving us in a state where we
still need to do the writeback or update.
(*) Extend lock
(*) Release lock
We don't want to get lock extension interrupted as the file locks on
the server are time-limited. Interruption during lock release is less
of an issue since the lock is time-limited, but it's better to
complete the release to avoid a several-minute wait to recover it.
*Setting* the lock isn't a problem if it's interrupted since we can
just return to the user and tell them they were interrupted - at
which point they can elect to retry.
(*) Silly unlink
We want to remove silly unlink files if we can, rather than leaving
them for the salvager to clear up.
Note that whilst these calls are no longer interruptible, they do have
timeouts on them, so if the server stops responding the call will fail with
something like ETIME or ECONNRESET.
Without this, the following:
kAFS: Unexpected error from FS.StoreData -512
appears in dmesg when a pending store data gets interrupted and some
processes may just hang.
Additionally, make the code that checks/updates the server record ignore
failure due to interruption if the main call is uninterruptible and if the
server has an address list. The next op will check it again since the
expiration time on the old list has past.
Fixes: d2ddc776a458 ("afs: Overhaul volume and server record caching and fileserver rotation")
Reported-by: Jonathan Billings <jsbillings@jsbillings.org>
Reported-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-08 23:16:31 +08:00
|
|
|
afs_set_fc_call(call, fc);
|
2019-04-25 21:26:50 +08:00
|
|
|
afs_make_call(&fc->ac, call, GFP_NOFS);
|
|
|
|
return afs_wait_for_call_to_complete(call, &fc->ac);
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* deliver reply data to an FS.StoreStatus
|
|
|
|
*/
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
static int afs_deliver_fs_store_status(struct afs_call *call)
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
{
|
|
|
|
const __be32 *bp;
|
rxrpc: Fix races between skb free, ACK generation and replying
Inside the kafs filesystem it is possible to occasionally have a call
processed and terminated before we've had a chance to check whether we need
to clean up the rx queue for that call because afs_send_simple_reply() ends
the call when it is done, but this is done in a workqueue item that might
happen to run to completion before afs_deliver_to_call() completes.
Further, it is possible for rxrpc_kernel_send_data() to be called to send a
reply before the last request-phase data skb is released. The rxrpc skb
destructor is where the ACK processing is done and the call state is
advanced upon release of the last skb. ACK generation is also deferred to
a work item because it's possible that the skb destructor is not called in
a context where kernel_sendmsg() can be invoked.
To this end, the following changes are made:
(1) kernel_rxrpc_data_consumed() is added. This should be called whenever
an skb is emptied so as to crank the ACK and call states. This does
not release the skb, however. kernel_rxrpc_free_skb() must now be
called to achieve that. These together replace
rxrpc_kernel_data_delivered().
(2) kernel_rxrpc_data_consumed() is wrapped by afs_data_consumed().
This makes afs_deliver_to_call() easier to work as the skb can simply
be discarded unconditionally here without trying to work out what the
return value of the ->deliver() function means.
The ->deliver() functions can, via afs_data_complete(),
afs_transfer_reply() and afs_extract_data() mark that an skb has been
consumed (thereby cranking the state) without the need to
conditionally free the skb to make sure the state is correct on an
incoming call for when the call processor tries to send the reply.
(3) rxrpc_recvmsg() now has to call kernel_rxrpc_data_consumed() when it
has finished with a packet and MSG_PEEK isn't set.
(4) rxrpc_packet_destructor() no longer calls rxrpc_hard_ACK_data().
Because of this, we no longer need to clear the destructor and put the
call before we free the skb in cases where we don't want the ACK/call
state to be cranked.
(5) The ->deliver() call-type callbacks are made to return -EAGAIN rather
than 0 if they expect more data (afs_extract_data() returns -EAGAIN to
the delivery function already), and the caller is now responsible for
producing an abort if that was the last packet.
(6) There are many bits of unmarshalling code where:
ret = afs_extract_data(call, skb, last, ...);
switch (ret) {
case 0: break;
case -EAGAIN: return 0;
default: return ret;
}
is to be found. As -EAGAIN can now be passed back to the caller, we
now just return if ret < 0:
ret = afs_extract_data(call, skb, last, ...);
if (ret < 0)
return ret;
(7) Checks for trailing data and empty final data packets has been
consolidated as afs_data_complete(). So:
if (skb->len > 0)
return -EBADMSG;
if (!last)
return 0;
becomes:
ret = afs_data_complete(call, skb, last);
if (ret < 0)
return ret;
(8) afs_transfer_reply() now checks the amount of data it has against the
amount of data desired and the amount of data in the skb and returns
an error to induce an abort if we don't get exactly what we want.
Without these changes, the following oops can occasionally be observed,
particularly if some printks are inserted into the delivery path:
general protection fault: 0000 [#1] SMP
Modules linked in: kafs(E) af_rxrpc(E) [last unloaded: af_rxrpc]
CPU: 0 PID: 1305 Comm: kworker/u8:3 Tainted: G E 4.7.0-fsdevel+ #1303
Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
Workqueue: kafsd afs_async_workfn [kafs]
task: ffff88040be041c0 ti: ffff88040c070000 task.ti: ffff88040c070000
RIP: 0010:[<ffffffff8108fd3c>] [<ffffffff8108fd3c>] __lock_acquire+0xcf/0x15a1
RSP: 0018:ffff88040c073bc0 EFLAGS: 00010002
RAX: 6b6b6b6b6b6b6b6b RBX: 0000000000000000 RCX: ffff88040d29a710
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88040d29a710
RBP: ffff88040c073c70 R08: 0000000000000001 R09: 0000000000000001
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000000 R14: ffff88040be041c0 R15: ffffffff814c928f
FS: 0000000000000000(0000) GS:ffff88041fa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa4595f4750 CR3: 0000000001c14000 CR4: 00000000001406f0
Stack:
0000000000000006 000000000be04930 0000000000000000 ffff880400000000
ffff880400000000 ffffffff8108f847 ffff88040be041c0 ffffffff81050446
ffff8803fc08a920 ffff8803fc08a958 ffff88040be041c0 ffff88040c073c38
Call Trace:
[<ffffffff8108f847>] ? mark_held_locks+0x5e/0x74
[<ffffffff81050446>] ? __local_bh_enable_ip+0x9b/0xa1
[<ffffffff8108f9ca>] ? trace_hardirqs_on_caller+0x16d/0x189
[<ffffffff810915f4>] lock_acquire+0x122/0x1b6
[<ffffffff810915f4>] ? lock_acquire+0x122/0x1b6
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff81609dbf>] _raw_spin_lock_irqsave+0x35/0x49
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff814c928f>] skb_dequeue+0x18/0x61
[<ffffffffa009aa92>] afs_deliver_to_call+0x344/0x39d [kafs]
[<ffffffffa009ab37>] afs_process_async_call+0x4c/0xd5 [kafs]
[<ffffffffa0099e9c>] afs_async_workfn+0xe/0x10 [kafs]
[<ffffffff81063a3a>] process_one_work+0x29d/0x57c
[<ffffffff81064ac2>] worker_thread+0x24a/0x385
[<ffffffff81064878>] ? rescuer_thread+0x2d0/0x2d0
[<ffffffff810696f5>] kthread+0xf3/0xfb
[<ffffffff8160a6ff>] ret_from_fork+0x1f/0x40
[<ffffffff81069602>] ? kthread_create_on_node+0x1cf/0x1cf
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-03 21:11:40 +08:00
|
|
|
int ret;
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
_enter("");
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
ret = afs_transfer_reply(call);
|
rxrpc: Fix races between skb free, ACK generation and replying
Inside the kafs filesystem it is possible to occasionally have a call
processed and terminated before we've had a chance to check whether we need
to clean up the rx queue for that call because afs_send_simple_reply() ends
the call when it is done, but this is done in a workqueue item that might
happen to run to completion before afs_deliver_to_call() completes.
Further, it is possible for rxrpc_kernel_send_data() to be called to send a
reply before the last request-phase data skb is released. The rxrpc skb
destructor is where the ACK processing is done and the call state is
advanced upon release of the last skb. ACK generation is also deferred to
a work item because it's possible that the skb destructor is not called in
a context where kernel_sendmsg() can be invoked.
To this end, the following changes are made:
(1) kernel_rxrpc_data_consumed() is added. This should be called whenever
an skb is emptied so as to crank the ACK and call states. This does
not release the skb, however. kernel_rxrpc_free_skb() must now be
called to achieve that. These together replace
rxrpc_kernel_data_delivered().
(2) kernel_rxrpc_data_consumed() is wrapped by afs_data_consumed().
This makes afs_deliver_to_call() easier to work as the skb can simply
be discarded unconditionally here without trying to work out what the
return value of the ->deliver() function means.
The ->deliver() functions can, via afs_data_complete(),
afs_transfer_reply() and afs_extract_data() mark that an skb has been
consumed (thereby cranking the state) without the need to
conditionally free the skb to make sure the state is correct on an
incoming call for when the call processor tries to send the reply.
(3) rxrpc_recvmsg() now has to call kernel_rxrpc_data_consumed() when it
has finished with a packet and MSG_PEEK isn't set.
(4) rxrpc_packet_destructor() no longer calls rxrpc_hard_ACK_data().
Because of this, we no longer need to clear the destructor and put the
call before we free the skb in cases where we don't want the ACK/call
state to be cranked.
(5) The ->deliver() call-type callbacks are made to return -EAGAIN rather
than 0 if they expect more data (afs_extract_data() returns -EAGAIN to
the delivery function already), and the caller is now responsible for
producing an abort if that was the last packet.
(6) There are many bits of unmarshalling code where:
ret = afs_extract_data(call, skb, last, ...);
switch (ret) {
case 0: break;
case -EAGAIN: return 0;
default: return ret;
}
is to be found. As -EAGAIN can now be passed back to the caller, we
now just return if ret < 0:
ret = afs_extract_data(call, skb, last, ...);
if (ret < 0)
return ret;
(7) Checks for trailing data and empty final data packets has been
consolidated as afs_data_complete(). So:
if (skb->len > 0)
return -EBADMSG;
if (!last)
return 0;
becomes:
ret = afs_data_complete(call, skb, last);
if (ret < 0)
return ret;
(8) afs_transfer_reply() now checks the amount of data it has against the
amount of data desired and the amount of data in the skb and returns
an error to induce an abort if we don't get exactly what we want.
Without these changes, the following oops can occasionally be observed,
particularly if some printks are inserted into the delivery path:
general protection fault: 0000 [#1] SMP
Modules linked in: kafs(E) af_rxrpc(E) [last unloaded: af_rxrpc]
CPU: 0 PID: 1305 Comm: kworker/u8:3 Tainted: G E 4.7.0-fsdevel+ #1303
Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
Workqueue: kafsd afs_async_workfn [kafs]
task: ffff88040be041c0 ti: ffff88040c070000 task.ti: ffff88040c070000
RIP: 0010:[<ffffffff8108fd3c>] [<ffffffff8108fd3c>] __lock_acquire+0xcf/0x15a1
RSP: 0018:ffff88040c073bc0 EFLAGS: 00010002
RAX: 6b6b6b6b6b6b6b6b RBX: 0000000000000000 RCX: ffff88040d29a710
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88040d29a710
RBP: ffff88040c073c70 R08: 0000000000000001 R09: 0000000000000001
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000000 R14: ffff88040be041c0 R15: ffffffff814c928f
FS: 0000000000000000(0000) GS:ffff88041fa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa4595f4750 CR3: 0000000001c14000 CR4: 00000000001406f0
Stack:
0000000000000006 000000000be04930 0000000000000000 ffff880400000000
ffff880400000000 ffffffff8108f847 ffff88040be041c0 ffffffff81050446
ffff8803fc08a920 ffff8803fc08a958 ffff88040be041c0 ffff88040c073c38
Call Trace:
[<ffffffff8108f847>] ? mark_held_locks+0x5e/0x74
[<ffffffff81050446>] ? __local_bh_enable_ip+0x9b/0xa1
[<ffffffff8108f9ca>] ? trace_hardirqs_on_caller+0x16d/0x189
[<ffffffff810915f4>] lock_acquire+0x122/0x1b6
[<ffffffff810915f4>] ? lock_acquire+0x122/0x1b6
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff81609dbf>] _raw_spin_lock_irqsave+0x35/0x49
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff814c928f>] skb_dequeue+0x18/0x61
[<ffffffffa009aa92>] afs_deliver_to_call+0x344/0x39d [kafs]
[<ffffffffa009ab37>] afs_process_async_call+0x4c/0xd5 [kafs]
[<ffffffffa0099e9c>] afs_async_workfn+0xe/0x10 [kafs]
[<ffffffff81063a3a>] process_one_work+0x29d/0x57c
[<ffffffff81064ac2>] worker_thread+0x24a/0x385
[<ffffffff81064878>] ? rescuer_thread+0x2d0/0x2d0
[<ffffffff810696f5>] kthread+0xf3/0xfb
[<ffffffff8160a6ff>] ret_from_fork+0x1f/0x40
[<ffffffff81069602>] ? kthread_create_on_node+0x1cf/0x1cf
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-03 21:11:40 +08:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
|
|
|
|
/* unmarshall the reply once we've received all of it */
|
|
|
|
bp = call->buffer;
|
2019-05-09 22:16:10 +08:00
|
|
|
ret = xdr_decode_AFSFetchStatus(&bp, call, call->out_scb);
|
2018-10-20 07:57:56 +08:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
2019-05-10 05:22:50 +08:00
|
|
|
xdr_decode_AFSVolSync(&bp, call->out_volsync);
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
|
|
|
|
_leave(" = 0 [done]");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* FS.StoreStatus operation type
|
|
|
|
*/
|
|
|
|
static const struct afs_call_type afs_RXFSStoreStatus = {
|
|
|
|
.name = "FS.StoreStatus",
|
2017-11-02 23:27:51 +08:00
|
|
|
.op = afs_FS_StoreStatus,
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
.deliver = afs_deliver_fs_store_status,
|
|
|
|
.destructor = afs_flat_call_destructor,
|
|
|
|
};
|
|
|
|
|
|
|
|
static const struct afs_call_type afs_RXFSStoreData_as_Status = {
|
|
|
|
.name = "FS.StoreData",
|
2017-11-02 23:27:51 +08:00
|
|
|
.op = afs_FS_StoreData,
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
.deliver = afs_deliver_fs_store_status,
|
|
|
|
.destructor = afs_flat_call_destructor,
|
|
|
|
};
|
|
|
|
|
2007-05-10 18:15:21 +08:00
|
|
|
static const struct afs_call_type afs_RXFSStoreData64_as_Status = {
|
|
|
|
.name = "FS.StoreData64",
|
2017-11-02 23:27:51 +08:00
|
|
|
.op = afs_FS_StoreData64,
|
2007-05-10 18:15:21 +08:00
|
|
|
.deliver = afs_deliver_fs_store_status,
|
|
|
|
.destructor = afs_flat_call_destructor,
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* set the attributes on a very large file, using FS.StoreData rather than
|
|
|
|
* FS.StoreStatus so as to alter the file size also
|
|
|
|
*/
|
2019-05-09 22:16:10 +08:00
|
|
|
static int afs_fs_setattr_size64(struct afs_fs_cursor *fc, struct iattr *attr,
|
|
|
|
struct afs_status_cb *scb)
|
2007-05-10 18:15:21 +08:00
|
|
|
{
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
struct afs_vnode *vnode = fc->vnode;
|
2007-05-10 18:15:21 +08:00
|
|
|
struct afs_call *call;
|
2017-11-02 23:27:45 +08:00
|
|
|
struct afs_net *net = afs_v2net(vnode);
|
2007-05-10 18:15:21 +08:00
|
|
|
__be32 *bp;
|
|
|
|
|
2018-10-20 07:57:57 +08:00
|
|
|
_enter(",%x,{%llx:%llu},,",
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
key_serial(fc->key), vnode->fid.vid, vnode->fid.vnode);
|
2007-05-10 18:15:21 +08:00
|
|
|
|
|
|
|
ASSERT(attr->ia_valid & ATTR_SIZE);
|
|
|
|
|
2017-11-02 23:27:45 +08:00
|
|
|
call = afs_alloc_flat_call(net, &afs_RXFSStoreData64_as_Status,
|
2007-05-10 18:15:21 +08:00
|
|
|
(4 + 6 + 3 * 2) * 4,
|
|
|
|
(21 + 6) * 4);
|
|
|
|
if (!call)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
call->key = fc->key;
|
2019-05-09 22:16:10 +08:00
|
|
|
call->out_scb = scb;
|
2007-05-10 18:15:21 +08:00
|
|
|
|
|
|
|
/* marshall the parameters */
|
|
|
|
bp = call->request;
|
|
|
|
*bp++ = htonl(FSSTOREDATA64);
|
|
|
|
*bp++ = htonl(vnode->fid.vid);
|
|
|
|
*bp++ = htonl(vnode->fid.vnode);
|
|
|
|
*bp++ = htonl(vnode->fid.unique);
|
|
|
|
|
|
|
|
xdr_encode_AFS_StoreStatus(&bp, attr);
|
|
|
|
|
afs: Fix StoreData op marshalling
The marshalling of AFS.StoreData, AFS.StoreData64 and YFS.StoreData64 calls
generated by ->setattr() ops for the purpose of expanding a file is
incorrect due to older documentation incorrectly describing the way the RPC
'FileLength' parameter is meant to work.
The older documentation says that this is the length the file is meant to
end up at the end of the operation; however, it was never implemented this
way in any of the servers, but rather the file is truncated down to this
before the write operation is effected, and never expanded to it (and,
indeed, it was renamed to 'TruncPos' in 2014).
Fix this by setting the position parameter to the new file length and doing
a zero-lengh write there.
The bug causes Xwayland to SIGBUS due to unexpected non-expansion of a file
it then mmaps. This can be tested by giving the following test program a
filename in an AFS directory:
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/mman.h>
int main(int argc, char *argv[])
{
char *p;
int fd;
if (argc != 2) {
fprintf(stderr,
"Format: test-trunc-mmap <file>\n");
exit(2);
}
fd = open(argv[1], O_RDWR | O_CREAT | O_TRUNC);
if (fd < 0) {
perror(argv[1]);
exit(1);
}
if (ftruncate(fd, 0x140008) == -1) {
perror("ftruncate");
exit(1);
}
p = mmap(NULL, 4096, PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0);
if (p == MAP_FAILED) {
perror("mmap");
exit(1);
}
p[0] = 'a';
if (munmap(p, 4096) < 0) {
perror("munmap");
exit(1);
}
if (close(fd) < 0) {
perror("close");
exit(1);
}
exit(0);
}
Fixes: 31143d5d515e ("AFS: implement basic file write support")
Reported-by: Jonathan Billings <jsbillin@umich.edu>
Tested-by: Jonathan Billings <jsbillin@umich.edu>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-28 06:48:02 +08:00
|
|
|
*bp++ = htonl(attr->ia_size >> 32); /* position of start of write */
|
|
|
|
*bp++ = htonl((u32) attr->ia_size);
|
2007-05-10 18:15:21 +08:00
|
|
|
*bp++ = 0; /* size of write */
|
|
|
|
*bp++ = 0;
|
|
|
|
*bp++ = htonl(attr->ia_size >> 32); /* new file length */
|
|
|
|
*bp++ = htonl((u32) attr->ia_size);
|
|
|
|
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
afs_use_fs_server(call, fc->cbi);
|
2017-11-02 23:27:51 +08:00
|
|
|
trace_afs_make_fs_call(call, &vnode->fid);
|
afs: Make some RPC operations non-interruptible
Make certain RPC operations non-interruptible, including:
(*) Set attributes
(*) Store data
We don't want to get interrupted during a flush on close, flush on
unlock, writeback or an inode update, leaving us in a state where we
still need to do the writeback or update.
(*) Extend lock
(*) Release lock
We don't want to get lock extension interrupted as the file locks on
the server are time-limited. Interruption during lock release is less
of an issue since the lock is time-limited, but it's better to
complete the release to avoid a several-minute wait to recover it.
*Setting* the lock isn't a problem if it's interrupted since we can
just return to the user and tell them they were interrupted - at
which point they can elect to retry.
(*) Silly unlink
We want to remove silly unlink files if we can, rather than leaving
them for the salvager to clear up.
Note that whilst these calls are no longer interruptible, they do have
timeouts on them, so if the server stops responding the call will fail with
something like ETIME or ECONNRESET.
Without this, the following:
kAFS: Unexpected error from FS.StoreData -512
appears in dmesg when a pending store data gets interrupted and some
processes may just hang.
Additionally, make the code that checks/updates the server record ignore
failure due to interruption if the main call is uninterruptible and if the
server has an address list. The next op will check it again since the
expiration time on the old list has past.
Fixes: d2ddc776a458 ("afs: Overhaul volume and server record caching and fileserver rotation")
Reported-by: Jonathan Billings <jsbillings@jsbillings.org>
Reported-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-08 23:16:31 +08:00
|
|
|
afs_set_fc_call(call, fc);
|
2019-04-25 21:26:50 +08:00
|
|
|
afs_make_call(&fc->ac, call, GFP_NOFS);
|
|
|
|
return afs_wait_for_call_to_complete(call, &fc->ac);
|
2007-05-10 18:15:21 +08:00
|
|
|
}
|
|
|
|
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
/*
|
|
|
|
* set the attributes on a file, using FS.StoreData rather than FS.StoreStatus
|
|
|
|
* so as to alter the file size also
|
|
|
|
*/
|
2019-05-09 22:16:10 +08:00
|
|
|
static int afs_fs_setattr_size(struct afs_fs_cursor *fc, struct iattr *attr,
|
|
|
|
struct afs_status_cb *scb)
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
{
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
struct afs_vnode *vnode = fc->vnode;
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
struct afs_call *call;
|
2017-11-02 23:27:45 +08:00
|
|
|
struct afs_net *net = afs_v2net(vnode);
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
__be32 *bp;
|
|
|
|
|
2018-10-20 07:57:57 +08:00
|
|
|
_enter(",%x,{%llx:%llu},,",
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
key_serial(fc->key), vnode->fid.vid, vnode->fid.vnode);
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
|
|
|
|
ASSERT(attr->ia_valid & ATTR_SIZE);
|
2007-05-10 18:15:21 +08:00
|
|
|
if (attr->ia_size >> 32)
|
2019-05-09 22:16:10 +08:00
|
|
|
return afs_fs_setattr_size64(fc, attr, scb);
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
|
2017-11-02 23:27:45 +08:00
|
|
|
call = afs_alloc_flat_call(net, &afs_RXFSStoreData_as_Status,
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
(4 + 6 + 3) * 4,
|
|
|
|
(21 + 6) * 4);
|
|
|
|
if (!call)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
call->key = fc->key;
|
2019-05-09 22:16:10 +08:00
|
|
|
call->out_scb = scb;
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
|
|
|
|
/* marshall the parameters */
|
|
|
|
bp = call->request;
|
|
|
|
*bp++ = htonl(FSSTOREDATA);
|
|
|
|
*bp++ = htonl(vnode->fid.vid);
|
|
|
|
*bp++ = htonl(vnode->fid.vnode);
|
|
|
|
*bp++ = htonl(vnode->fid.unique);
|
|
|
|
|
|
|
|
xdr_encode_AFS_StoreStatus(&bp, attr);
|
|
|
|
|
afs: Fix StoreData op marshalling
The marshalling of AFS.StoreData, AFS.StoreData64 and YFS.StoreData64 calls
generated by ->setattr() ops for the purpose of expanding a file is
incorrect due to older documentation incorrectly describing the way the RPC
'FileLength' parameter is meant to work.
The older documentation says that this is the length the file is meant to
end up at the end of the operation; however, it was never implemented this
way in any of the servers, but rather the file is truncated down to this
before the write operation is effected, and never expanded to it (and,
indeed, it was renamed to 'TruncPos' in 2014).
Fix this by setting the position parameter to the new file length and doing
a zero-lengh write there.
The bug causes Xwayland to SIGBUS due to unexpected non-expansion of a file
it then mmaps. This can be tested by giving the following test program a
filename in an AFS directory:
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/mman.h>
int main(int argc, char *argv[])
{
char *p;
int fd;
if (argc != 2) {
fprintf(stderr,
"Format: test-trunc-mmap <file>\n");
exit(2);
}
fd = open(argv[1], O_RDWR | O_CREAT | O_TRUNC);
if (fd < 0) {
perror(argv[1]);
exit(1);
}
if (ftruncate(fd, 0x140008) == -1) {
perror("ftruncate");
exit(1);
}
p = mmap(NULL, 4096, PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0);
if (p == MAP_FAILED) {
perror("mmap");
exit(1);
}
p[0] = 'a';
if (munmap(p, 4096) < 0) {
perror("munmap");
exit(1);
}
if (close(fd) < 0) {
perror("close");
exit(1);
}
exit(0);
}
Fixes: 31143d5d515e ("AFS: implement basic file write support")
Reported-by: Jonathan Billings <jsbillin@umich.edu>
Tested-by: Jonathan Billings <jsbillin@umich.edu>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-28 06:48:02 +08:00
|
|
|
*bp++ = htonl(attr->ia_size); /* position of start of write */
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
*bp++ = 0; /* size of write */
|
|
|
|
*bp++ = htonl(attr->ia_size); /* new file length */
|
|
|
|
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
afs_use_fs_server(call, fc->cbi);
|
2017-11-02 23:27:51 +08:00
|
|
|
trace_afs_make_fs_call(call, &vnode->fid);
|
afs: Make some RPC operations non-interruptible
Make certain RPC operations non-interruptible, including:
(*) Set attributes
(*) Store data
We don't want to get interrupted during a flush on close, flush on
unlock, writeback or an inode update, leaving us in a state where we
still need to do the writeback or update.
(*) Extend lock
(*) Release lock
We don't want to get lock extension interrupted as the file locks on
the server are time-limited. Interruption during lock release is less
of an issue since the lock is time-limited, but it's better to
complete the release to avoid a several-minute wait to recover it.
*Setting* the lock isn't a problem if it's interrupted since we can
just return to the user and tell them they were interrupted - at
which point they can elect to retry.
(*) Silly unlink
We want to remove silly unlink files if we can, rather than leaving
them for the salvager to clear up.
Note that whilst these calls are no longer interruptible, they do have
timeouts on them, so if the server stops responding the call will fail with
something like ETIME or ECONNRESET.
Without this, the following:
kAFS: Unexpected error from FS.StoreData -512
appears in dmesg when a pending store data gets interrupted and some
processes may just hang.
Additionally, make the code that checks/updates the server record ignore
failure due to interruption if the main call is uninterruptible and if the
server has an address list. The next op will check it again since the
expiration time on the old list has past.
Fixes: d2ddc776a458 ("afs: Overhaul volume and server record caching and fileserver rotation")
Reported-by: Jonathan Billings <jsbillings@jsbillings.org>
Reported-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-08 23:16:31 +08:00
|
|
|
afs_set_fc_call(call, fc);
|
2019-04-25 21:26:50 +08:00
|
|
|
afs_make_call(&fc->ac, call, GFP_NOFS);
|
|
|
|
return afs_wait_for_call_to_complete(call, &fc->ac);
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* set the attributes on a file, using FS.StoreData if there's a change in file
|
|
|
|
* size, and FS.StoreStatus otherwise
|
|
|
|
*/
|
2019-05-09 22:16:10 +08:00
|
|
|
int afs_fs_setattr(struct afs_fs_cursor *fc, struct iattr *attr,
|
|
|
|
struct afs_status_cb *scb)
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
{
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
struct afs_vnode *vnode = fc->vnode;
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
struct afs_call *call;
|
2017-11-02 23:27:45 +08:00
|
|
|
struct afs_net *net = afs_v2net(vnode);
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
__be32 *bp;
|
|
|
|
|
2018-10-20 07:57:58 +08:00
|
|
|
if (test_bit(AFS_SERVER_FL_IS_YFS, &fc->cbi->server->flags))
|
2019-05-09 22:16:10 +08:00
|
|
|
return yfs_fs_setattr(fc, attr, scb);
|
2018-10-20 07:57:58 +08:00
|
|
|
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
if (attr->ia_valid & ATTR_SIZE)
|
2019-05-09 22:16:10 +08:00
|
|
|
return afs_fs_setattr_size(fc, attr, scb);
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
|
2018-10-20 07:57:57 +08:00
|
|
|
_enter(",%x,{%llx:%llu},,",
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
key_serial(fc->key), vnode->fid.vid, vnode->fid.vnode);
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
|
2017-11-02 23:27:45 +08:00
|
|
|
call = afs_alloc_flat_call(net, &afs_RXFSStoreStatus,
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
(4 + 6) * 4,
|
|
|
|
(21 + 6) * 4);
|
|
|
|
if (!call)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
call->key = fc->key;
|
2019-05-09 22:16:10 +08:00
|
|
|
call->out_scb = scb;
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
|
|
|
|
/* marshall the parameters */
|
|
|
|
bp = call->request;
|
|
|
|
*bp++ = htonl(FSSTORESTATUS);
|
|
|
|
*bp++ = htonl(vnode->fid.vid);
|
|
|
|
*bp++ = htonl(vnode->fid.vnode);
|
|
|
|
*bp++ = htonl(vnode->fid.unique);
|
|
|
|
|
|
|
|
xdr_encode_AFS_StoreStatus(&bp, attr);
|
|
|
|
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
afs_use_fs_server(call, fc->cbi);
|
2017-11-02 23:27:51 +08:00
|
|
|
trace_afs_make_fs_call(call, &vnode->fid);
|
afs: Make some RPC operations non-interruptible
Make certain RPC operations non-interruptible, including:
(*) Set attributes
(*) Store data
We don't want to get interrupted during a flush on close, flush on
unlock, writeback or an inode update, leaving us in a state where we
still need to do the writeback or update.
(*) Extend lock
(*) Release lock
We don't want to get lock extension interrupted as the file locks on
the server are time-limited. Interruption during lock release is less
of an issue since the lock is time-limited, but it's better to
complete the release to avoid a several-minute wait to recover it.
*Setting* the lock isn't a problem if it's interrupted since we can
just return to the user and tell them they were interrupted - at
which point they can elect to retry.
(*) Silly unlink
We want to remove silly unlink files if we can, rather than leaving
them for the salvager to clear up.
Note that whilst these calls are no longer interruptible, they do have
timeouts on them, so if the server stops responding the call will fail with
something like ETIME or ECONNRESET.
Without this, the following:
kAFS: Unexpected error from FS.StoreData -512
appears in dmesg when a pending store data gets interrupted and some
processes may just hang.
Additionally, make the code that checks/updates the server record ignore
failure due to interruption if the main call is uninterruptible and if the
server has an address list. The next op will check it again since the
expiration time on the old list has past.
Fixes: d2ddc776a458 ("afs: Overhaul volume and server record caching and fileserver rotation")
Reported-by: Jonathan Billings <jsbillings@jsbillings.org>
Reported-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-08 23:16:31 +08:00
|
|
|
afs_set_fc_call(call, fc);
|
2019-04-25 21:26:50 +08:00
|
|
|
afs_make_call(&fc->ac, call, GFP_NOFS);
|
|
|
|
return afs_wait_for_call_to_complete(call, &fc->ac);
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
}
|
2007-05-11 13:22:20 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* deliver reply data to an FS.GetVolumeStatus
|
|
|
|
*/
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
static int afs_deliver_fs_get_volume_status(struct afs_call *call)
|
2007-05-11 13:22:20 +08:00
|
|
|
{
|
|
|
|
const __be32 *bp;
|
|
|
|
char *p;
|
2018-10-20 07:57:56 +08:00
|
|
|
u32 size;
|
2007-05-11 13:22:20 +08:00
|
|
|
int ret;
|
|
|
|
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
_enter("{%u}", call->unmarshall);
|
2007-05-11 13:22:20 +08:00
|
|
|
|
|
|
|
switch (call->unmarshall) {
|
|
|
|
case 0:
|
|
|
|
call->unmarshall++;
|
2018-10-20 07:57:56 +08:00
|
|
|
afs_extract_to_buf(call, 12 * 4);
|
2019-05-20 07:43:53 +08:00
|
|
|
/* Fall through */
|
2007-05-11 13:22:20 +08:00
|
|
|
|
2019-05-20 07:43:53 +08:00
|
|
|
/* extract the returned status record */
|
2007-05-11 13:22:20 +08:00
|
|
|
case 1:
|
|
|
|
_debug("extract status");
|
2018-10-20 07:57:56 +08:00
|
|
|
ret = afs_extract_data(call, true);
|
rxrpc: Fix races between skb free, ACK generation and replying
Inside the kafs filesystem it is possible to occasionally have a call
processed and terminated before we've had a chance to check whether we need
to clean up the rx queue for that call because afs_send_simple_reply() ends
the call when it is done, but this is done in a workqueue item that might
happen to run to completion before afs_deliver_to_call() completes.
Further, it is possible for rxrpc_kernel_send_data() to be called to send a
reply before the last request-phase data skb is released. The rxrpc skb
destructor is where the ACK processing is done and the call state is
advanced upon release of the last skb. ACK generation is also deferred to
a work item because it's possible that the skb destructor is not called in
a context where kernel_sendmsg() can be invoked.
To this end, the following changes are made:
(1) kernel_rxrpc_data_consumed() is added. This should be called whenever
an skb is emptied so as to crank the ACK and call states. This does
not release the skb, however. kernel_rxrpc_free_skb() must now be
called to achieve that. These together replace
rxrpc_kernel_data_delivered().
(2) kernel_rxrpc_data_consumed() is wrapped by afs_data_consumed().
This makes afs_deliver_to_call() easier to work as the skb can simply
be discarded unconditionally here without trying to work out what the
return value of the ->deliver() function means.
The ->deliver() functions can, via afs_data_complete(),
afs_transfer_reply() and afs_extract_data() mark that an skb has been
consumed (thereby cranking the state) without the need to
conditionally free the skb to make sure the state is correct on an
incoming call for when the call processor tries to send the reply.
(3) rxrpc_recvmsg() now has to call kernel_rxrpc_data_consumed() when it
has finished with a packet and MSG_PEEK isn't set.
(4) rxrpc_packet_destructor() no longer calls rxrpc_hard_ACK_data().
Because of this, we no longer need to clear the destructor and put the
call before we free the skb in cases where we don't want the ACK/call
state to be cranked.
(5) The ->deliver() call-type callbacks are made to return -EAGAIN rather
than 0 if they expect more data (afs_extract_data() returns -EAGAIN to
the delivery function already), and the caller is now responsible for
producing an abort if that was the last packet.
(6) There are many bits of unmarshalling code where:
ret = afs_extract_data(call, skb, last, ...);
switch (ret) {
case 0: break;
case -EAGAIN: return 0;
default: return ret;
}
is to be found. As -EAGAIN can now be passed back to the caller, we
now just return if ret < 0:
ret = afs_extract_data(call, skb, last, ...);
if (ret < 0)
return ret;
(7) Checks for trailing data and empty final data packets has been
consolidated as afs_data_complete(). So:
if (skb->len > 0)
return -EBADMSG;
if (!last)
return 0;
becomes:
ret = afs_data_complete(call, skb, last);
if (ret < 0)
return ret;
(8) afs_transfer_reply() now checks the amount of data it has against the
amount of data desired and the amount of data in the skb and returns
an error to induce an abort if we don't get exactly what we want.
Without these changes, the following oops can occasionally be observed,
particularly if some printks are inserted into the delivery path:
general protection fault: 0000 [#1] SMP
Modules linked in: kafs(E) af_rxrpc(E) [last unloaded: af_rxrpc]
CPU: 0 PID: 1305 Comm: kworker/u8:3 Tainted: G E 4.7.0-fsdevel+ #1303
Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
Workqueue: kafsd afs_async_workfn [kafs]
task: ffff88040be041c0 ti: ffff88040c070000 task.ti: ffff88040c070000
RIP: 0010:[<ffffffff8108fd3c>] [<ffffffff8108fd3c>] __lock_acquire+0xcf/0x15a1
RSP: 0018:ffff88040c073bc0 EFLAGS: 00010002
RAX: 6b6b6b6b6b6b6b6b RBX: 0000000000000000 RCX: ffff88040d29a710
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88040d29a710
RBP: ffff88040c073c70 R08: 0000000000000001 R09: 0000000000000001
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000000 R14: ffff88040be041c0 R15: ffffffff814c928f
FS: 0000000000000000(0000) GS:ffff88041fa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa4595f4750 CR3: 0000000001c14000 CR4: 00000000001406f0
Stack:
0000000000000006 000000000be04930 0000000000000000 ffff880400000000
ffff880400000000 ffffffff8108f847 ffff88040be041c0 ffffffff81050446
ffff8803fc08a920 ffff8803fc08a958 ffff88040be041c0 ffff88040c073c38
Call Trace:
[<ffffffff8108f847>] ? mark_held_locks+0x5e/0x74
[<ffffffff81050446>] ? __local_bh_enable_ip+0x9b/0xa1
[<ffffffff8108f9ca>] ? trace_hardirqs_on_caller+0x16d/0x189
[<ffffffff810915f4>] lock_acquire+0x122/0x1b6
[<ffffffff810915f4>] ? lock_acquire+0x122/0x1b6
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff81609dbf>] _raw_spin_lock_irqsave+0x35/0x49
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff814c928f>] skb_dequeue+0x18/0x61
[<ffffffffa009aa92>] afs_deliver_to_call+0x344/0x39d [kafs]
[<ffffffffa009ab37>] afs_process_async_call+0x4c/0xd5 [kafs]
[<ffffffffa0099e9c>] afs_async_workfn+0xe/0x10 [kafs]
[<ffffffff81063a3a>] process_one_work+0x29d/0x57c
[<ffffffff81064ac2>] worker_thread+0x24a/0x385
[<ffffffff81064878>] ? rescuer_thread+0x2d0/0x2d0
[<ffffffff810696f5>] kthread+0xf3/0xfb
[<ffffffff8160a6ff>] ret_from_fork+0x1f/0x40
[<ffffffff81069602>] ? kthread_create_on_node+0x1cf/0x1cf
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-03 21:11:40 +08:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
2007-05-11 13:22:20 +08:00
|
|
|
|
|
|
|
bp = call->buffer;
|
2019-05-10 05:22:50 +08:00
|
|
|
xdr_decode_AFSFetchVolumeStatus(&bp, call->out_volstatus);
|
2007-05-11 13:22:20 +08:00
|
|
|
call->unmarshall++;
|
2018-10-20 07:57:56 +08:00
|
|
|
afs_extract_to_tmp(call);
|
2019-05-20 07:43:53 +08:00
|
|
|
/* Fall through */
|
2007-05-11 13:22:20 +08:00
|
|
|
|
2019-05-20 07:43:53 +08:00
|
|
|
/* extract the volume name length */
|
2007-05-11 13:22:20 +08:00
|
|
|
case 2:
|
2018-10-20 07:57:56 +08:00
|
|
|
ret = afs_extract_data(call, true);
|
rxrpc: Fix races between skb free, ACK generation and replying
Inside the kafs filesystem it is possible to occasionally have a call
processed and terminated before we've had a chance to check whether we need
to clean up the rx queue for that call because afs_send_simple_reply() ends
the call when it is done, but this is done in a workqueue item that might
happen to run to completion before afs_deliver_to_call() completes.
Further, it is possible for rxrpc_kernel_send_data() to be called to send a
reply before the last request-phase data skb is released. The rxrpc skb
destructor is where the ACK processing is done and the call state is
advanced upon release of the last skb. ACK generation is also deferred to
a work item because it's possible that the skb destructor is not called in
a context where kernel_sendmsg() can be invoked.
To this end, the following changes are made:
(1) kernel_rxrpc_data_consumed() is added. This should be called whenever
an skb is emptied so as to crank the ACK and call states. This does
not release the skb, however. kernel_rxrpc_free_skb() must now be
called to achieve that. These together replace
rxrpc_kernel_data_delivered().
(2) kernel_rxrpc_data_consumed() is wrapped by afs_data_consumed().
This makes afs_deliver_to_call() easier to work as the skb can simply
be discarded unconditionally here without trying to work out what the
return value of the ->deliver() function means.
The ->deliver() functions can, via afs_data_complete(),
afs_transfer_reply() and afs_extract_data() mark that an skb has been
consumed (thereby cranking the state) without the need to
conditionally free the skb to make sure the state is correct on an
incoming call for when the call processor tries to send the reply.
(3) rxrpc_recvmsg() now has to call kernel_rxrpc_data_consumed() when it
has finished with a packet and MSG_PEEK isn't set.
(4) rxrpc_packet_destructor() no longer calls rxrpc_hard_ACK_data().
Because of this, we no longer need to clear the destructor and put the
call before we free the skb in cases where we don't want the ACK/call
state to be cranked.
(5) The ->deliver() call-type callbacks are made to return -EAGAIN rather
than 0 if they expect more data (afs_extract_data() returns -EAGAIN to
the delivery function already), and the caller is now responsible for
producing an abort if that was the last packet.
(6) There are many bits of unmarshalling code where:
ret = afs_extract_data(call, skb, last, ...);
switch (ret) {
case 0: break;
case -EAGAIN: return 0;
default: return ret;
}
is to be found. As -EAGAIN can now be passed back to the caller, we
now just return if ret < 0:
ret = afs_extract_data(call, skb, last, ...);
if (ret < 0)
return ret;
(7) Checks for trailing data and empty final data packets has been
consolidated as afs_data_complete(). So:
if (skb->len > 0)
return -EBADMSG;
if (!last)
return 0;
becomes:
ret = afs_data_complete(call, skb, last);
if (ret < 0)
return ret;
(8) afs_transfer_reply() now checks the amount of data it has against the
amount of data desired and the amount of data in the skb and returns
an error to induce an abort if we don't get exactly what we want.
Without these changes, the following oops can occasionally be observed,
particularly if some printks are inserted into the delivery path:
general protection fault: 0000 [#1] SMP
Modules linked in: kafs(E) af_rxrpc(E) [last unloaded: af_rxrpc]
CPU: 0 PID: 1305 Comm: kworker/u8:3 Tainted: G E 4.7.0-fsdevel+ #1303
Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
Workqueue: kafsd afs_async_workfn [kafs]
task: ffff88040be041c0 ti: ffff88040c070000 task.ti: ffff88040c070000
RIP: 0010:[<ffffffff8108fd3c>] [<ffffffff8108fd3c>] __lock_acquire+0xcf/0x15a1
RSP: 0018:ffff88040c073bc0 EFLAGS: 00010002
RAX: 6b6b6b6b6b6b6b6b RBX: 0000000000000000 RCX: ffff88040d29a710
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88040d29a710
RBP: ffff88040c073c70 R08: 0000000000000001 R09: 0000000000000001
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000000 R14: ffff88040be041c0 R15: ffffffff814c928f
FS: 0000000000000000(0000) GS:ffff88041fa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa4595f4750 CR3: 0000000001c14000 CR4: 00000000001406f0
Stack:
0000000000000006 000000000be04930 0000000000000000 ffff880400000000
ffff880400000000 ffffffff8108f847 ffff88040be041c0 ffffffff81050446
ffff8803fc08a920 ffff8803fc08a958 ffff88040be041c0 ffff88040c073c38
Call Trace:
[<ffffffff8108f847>] ? mark_held_locks+0x5e/0x74
[<ffffffff81050446>] ? __local_bh_enable_ip+0x9b/0xa1
[<ffffffff8108f9ca>] ? trace_hardirqs_on_caller+0x16d/0x189
[<ffffffff810915f4>] lock_acquire+0x122/0x1b6
[<ffffffff810915f4>] ? lock_acquire+0x122/0x1b6
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff81609dbf>] _raw_spin_lock_irqsave+0x35/0x49
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff814c928f>] skb_dequeue+0x18/0x61
[<ffffffffa009aa92>] afs_deliver_to_call+0x344/0x39d [kafs]
[<ffffffffa009ab37>] afs_process_async_call+0x4c/0xd5 [kafs]
[<ffffffffa0099e9c>] afs_async_workfn+0xe/0x10 [kafs]
[<ffffffff81063a3a>] process_one_work+0x29d/0x57c
[<ffffffff81064ac2>] worker_thread+0x24a/0x385
[<ffffffff81064878>] ? rescuer_thread+0x2d0/0x2d0
[<ffffffff810696f5>] kthread+0xf3/0xfb
[<ffffffff8160a6ff>] ret_from_fork+0x1f/0x40
[<ffffffff81069602>] ? kthread_create_on_node+0x1cf/0x1cf
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-03 21:11:40 +08:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
2007-05-11 13:22:20 +08:00
|
|
|
|
|
|
|
call->count = ntohl(call->tmp);
|
|
|
|
_debug("volname length: %u", call->count);
|
|
|
|
if (call->count >= AFSNAMEMAX)
|
2018-10-20 07:57:56 +08:00
|
|
|
return afs_protocol_error(call, -EBADMSG,
|
|
|
|
afs_eproto_volname_len);
|
2018-10-20 07:57:56 +08:00
|
|
|
size = (call->count + 3) & ~3; /* It's padded */
|
2019-05-10 05:22:50 +08:00
|
|
|
afs_extract_to_buf(call, size);
|
2007-05-11 13:22:20 +08:00
|
|
|
call->unmarshall++;
|
2019-05-20 07:43:53 +08:00
|
|
|
/* Fall through */
|
2007-05-11 13:22:20 +08:00
|
|
|
|
2019-05-20 07:43:53 +08:00
|
|
|
/* extract the volume name */
|
2007-05-11 13:22:20 +08:00
|
|
|
case 3:
|
|
|
|
_debug("extract volname");
|
2018-10-20 07:57:56 +08:00
|
|
|
ret = afs_extract_data(call, true);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
2007-05-11 13:22:20 +08:00
|
|
|
|
2019-05-10 05:22:50 +08:00
|
|
|
p = call->buffer;
|
2007-05-11 13:22:20 +08:00
|
|
|
p[call->count] = 0;
|
|
|
|
_debug("volname '%s'", p);
|
2018-10-20 07:57:56 +08:00
|
|
|
afs_extract_to_tmp(call);
|
2007-05-11 13:22:20 +08:00
|
|
|
call->unmarshall++;
|
2019-05-20 07:43:53 +08:00
|
|
|
/* Fall through */
|
2007-05-11 13:22:20 +08:00
|
|
|
|
2019-05-20 07:43:53 +08:00
|
|
|
/* extract the offline message length */
|
2018-10-20 07:57:56 +08:00
|
|
|
case 4:
|
|
|
|
ret = afs_extract_data(call, true);
|
rxrpc: Fix races between skb free, ACK generation and replying
Inside the kafs filesystem it is possible to occasionally have a call
processed and terminated before we've had a chance to check whether we need
to clean up the rx queue for that call because afs_send_simple_reply() ends
the call when it is done, but this is done in a workqueue item that might
happen to run to completion before afs_deliver_to_call() completes.
Further, it is possible for rxrpc_kernel_send_data() to be called to send a
reply before the last request-phase data skb is released. The rxrpc skb
destructor is where the ACK processing is done and the call state is
advanced upon release of the last skb. ACK generation is also deferred to
a work item because it's possible that the skb destructor is not called in
a context where kernel_sendmsg() can be invoked.
To this end, the following changes are made:
(1) kernel_rxrpc_data_consumed() is added. This should be called whenever
an skb is emptied so as to crank the ACK and call states. This does
not release the skb, however. kernel_rxrpc_free_skb() must now be
called to achieve that. These together replace
rxrpc_kernel_data_delivered().
(2) kernel_rxrpc_data_consumed() is wrapped by afs_data_consumed().
This makes afs_deliver_to_call() easier to work as the skb can simply
be discarded unconditionally here without trying to work out what the
return value of the ->deliver() function means.
The ->deliver() functions can, via afs_data_complete(),
afs_transfer_reply() and afs_extract_data() mark that an skb has been
consumed (thereby cranking the state) without the need to
conditionally free the skb to make sure the state is correct on an
incoming call for when the call processor tries to send the reply.
(3) rxrpc_recvmsg() now has to call kernel_rxrpc_data_consumed() when it
has finished with a packet and MSG_PEEK isn't set.
(4) rxrpc_packet_destructor() no longer calls rxrpc_hard_ACK_data().
Because of this, we no longer need to clear the destructor and put the
call before we free the skb in cases where we don't want the ACK/call
state to be cranked.
(5) The ->deliver() call-type callbacks are made to return -EAGAIN rather
than 0 if they expect more data (afs_extract_data() returns -EAGAIN to
the delivery function already), and the caller is now responsible for
producing an abort if that was the last packet.
(6) There are many bits of unmarshalling code where:
ret = afs_extract_data(call, skb, last, ...);
switch (ret) {
case 0: break;
case -EAGAIN: return 0;
default: return ret;
}
is to be found. As -EAGAIN can now be passed back to the caller, we
now just return if ret < 0:
ret = afs_extract_data(call, skb, last, ...);
if (ret < 0)
return ret;
(7) Checks for trailing data and empty final data packets has been
consolidated as afs_data_complete(). So:
if (skb->len > 0)
return -EBADMSG;
if (!last)
return 0;
becomes:
ret = afs_data_complete(call, skb, last);
if (ret < 0)
return ret;
(8) afs_transfer_reply() now checks the amount of data it has against the
amount of data desired and the amount of data in the skb and returns
an error to induce an abort if we don't get exactly what we want.
Without these changes, the following oops can occasionally be observed,
particularly if some printks are inserted into the delivery path:
general protection fault: 0000 [#1] SMP
Modules linked in: kafs(E) af_rxrpc(E) [last unloaded: af_rxrpc]
CPU: 0 PID: 1305 Comm: kworker/u8:3 Tainted: G E 4.7.0-fsdevel+ #1303
Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
Workqueue: kafsd afs_async_workfn [kafs]
task: ffff88040be041c0 ti: ffff88040c070000 task.ti: ffff88040c070000
RIP: 0010:[<ffffffff8108fd3c>] [<ffffffff8108fd3c>] __lock_acquire+0xcf/0x15a1
RSP: 0018:ffff88040c073bc0 EFLAGS: 00010002
RAX: 6b6b6b6b6b6b6b6b RBX: 0000000000000000 RCX: ffff88040d29a710
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88040d29a710
RBP: ffff88040c073c70 R08: 0000000000000001 R09: 0000000000000001
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000000 R14: ffff88040be041c0 R15: ffffffff814c928f
FS: 0000000000000000(0000) GS:ffff88041fa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa4595f4750 CR3: 0000000001c14000 CR4: 00000000001406f0
Stack:
0000000000000006 000000000be04930 0000000000000000 ffff880400000000
ffff880400000000 ffffffff8108f847 ffff88040be041c0 ffffffff81050446
ffff8803fc08a920 ffff8803fc08a958 ffff88040be041c0 ffff88040c073c38
Call Trace:
[<ffffffff8108f847>] ? mark_held_locks+0x5e/0x74
[<ffffffff81050446>] ? __local_bh_enable_ip+0x9b/0xa1
[<ffffffff8108f9ca>] ? trace_hardirqs_on_caller+0x16d/0x189
[<ffffffff810915f4>] lock_acquire+0x122/0x1b6
[<ffffffff810915f4>] ? lock_acquire+0x122/0x1b6
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff81609dbf>] _raw_spin_lock_irqsave+0x35/0x49
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff814c928f>] skb_dequeue+0x18/0x61
[<ffffffffa009aa92>] afs_deliver_to_call+0x344/0x39d [kafs]
[<ffffffffa009ab37>] afs_process_async_call+0x4c/0xd5 [kafs]
[<ffffffffa0099e9c>] afs_async_workfn+0xe/0x10 [kafs]
[<ffffffff81063a3a>] process_one_work+0x29d/0x57c
[<ffffffff81064ac2>] worker_thread+0x24a/0x385
[<ffffffff81064878>] ? rescuer_thread+0x2d0/0x2d0
[<ffffffff810696f5>] kthread+0xf3/0xfb
[<ffffffff8160a6ff>] ret_from_fork+0x1f/0x40
[<ffffffff81069602>] ? kthread_create_on_node+0x1cf/0x1cf
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-03 21:11:40 +08:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
2007-05-11 13:22:20 +08:00
|
|
|
|
|
|
|
call->count = ntohl(call->tmp);
|
|
|
|
_debug("offline msg length: %u", call->count);
|
|
|
|
if (call->count >= AFSNAMEMAX)
|
2018-10-20 07:57:56 +08:00
|
|
|
return afs_protocol_error(call, -EBADMSG,
|
|
|
|
afs_eproto_offline_msg_len);
|
2018-10-20 07:57:56 +08:00
|
|
|
size = (call->count + 3) & ~3; /* It's padded */
|
2019-05-10 05:22:50 +08:00
|
|
|
afs_extract_to_buf(call, size);
|
2007-05-11 13:22:20 +08:00
|
|
|
call->unmarshall++;
|
2019-05-20 07:43:53 +08:00
|
|
|
/* Fall through */
|
2007-05-11 13:22:20 +08:00
|
|
|
|
2019-05-20 07:43:53 +08:00
|
|
|
/* extract the offline message */
|
2018-10-20 07:57:56 +08:00
|
|
|
case 5:
|
2007-05-11 13:22:20 +08:00
|
|
|
_debug("extract offline");
|
2018-10-20 07:57:56 +08:00
|
|
|
ret = afs_extract_data(call, true);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
2007-05-11 13:22:20 +08:00
|
|
|
|
2019-05-10 05:22:50 +08:00
|
|
|
p = call->buffer;
|
2007-05-11 13:22:20 +08:00
|
|
|
p[call->count] = 0;
|
|
|
|
_debug("offline '%s'", p);
|
|
|
|
|
2018-10-20 07:57:56 +08:00
|
|
|
afs_extract_to_tmp(call);
|
2007-05-11 13:22:20 +08:00
|
|
|
call->unmarshall++;
|
2019-05-20 07:43:53 +08:00
|
|
|
/* Fall through */
|
2007-05-11 13:22:20 +08:00
|
|
|
|
2019-05-20 07:43:53 +08:00
|
|
|
/* extract the message of the day length */
|
2018-10-20 07:57:56 +08:00
|
|
|
case 6:
|
|
|
|
ret = afs_extract_data(call, true);
|
rxrpc: Fix races between skb free, ACK generation and replying
Inside the kafs filesystem it is possible to occasionally have a call
processed and terminated before we've had a chance to check whether we need
to clean up the rx queue for that call because afs_send_simple_reply() ends
the call when it is done, but this is done in a workqueue item that might
happen to run to completion before afs_deliver_to_call() completes.
Further, it is possible for rxrpc_kernel_send_data() to be called to send a
reply before the last request-phase data skb is released. The rxrpc skb
destructor is where the ACK processing is done and the call state is
advanced upon release of the last skb. ACK generation is also deferred to
a work item because it's possible that the skb destructor is not called in
a context where kernel_sendmsg() can be invoked.
To this end, the following changes are made:
(1) kernel_rxrpc_data_consumed() is added. This should be called whenever
an skb is emptied so as to crank the ACK and call states. This does
not release the skb, however. kernel_rxrpc_free_skb() must now be
called to achieve that. These together replace
rxrpc_kernel_data_delivered().
(2) kernel_rxrpc_data_consumed() is wrapped by afs_data_consumed().
This makes afs_deliver_to_call() easier to work as the skb can simply
be discarded unconditionally here without trying to work out what the
return value of the ->deliver() function means.
The ->deliver() functions can, via afs_data_complete(),
afs_transfer_reply() and afs_extract_data() mark that an skb has been
consumed (thereby cranking the state) without the need to
conditionally free the skb to make sure the state is correct on an
incoming call for when the call processor tries to send the reply.
(3) rxrpc_recvmsg() now has to call kernel_rxrpc_data_consumed() when it
has finished with a packet and MSG_PEEK isn't set.
(4) rxrpc_packet_destructor() no longer calls rxrpc_hard_ACK_data().
Because of this, we no longer need to clear the destructor and put the
call before we free the skb in cases where we don't want the ACK/call
state to be cranked.
(5) The ->deliver() call-type callbacks are made to return -EAGAIN rather
than 0 if they expect more data (afs_extract_data() returns -EAGAIN to
the delivery function already), and the caller is now responsible for
producing an abort if that was the last packet.
(6) There are many bits of unmarshalling code where:
ret = afs_extract_data(call, skb, last, ...);
switch (ret) {
case 0: break;
case -EAGAIN: return 0;
default: return ret;
}
is to be found. As -EAGAIN can now be passed back to the caller, we
now just return if ret < 0:
ret = afs_extract_data(call, skb, last, ...);
if (ret < 0)
return ret;
(7) Checks for trailing data and empty final data packets has been
consolidated as afs_data_complete(). So:
if (skb->len > 0)
return -EBADMSG;
if (!last)
return 0;
becomes:
ret = afs_data_complete(call, skb, last);
if (ret < 0)
return ret;
(8) afs_transfer_reply() now checks the amount of data it has against the
amount of data desired and the amount of data in the skb and returns
an error to induce an abort if we don't get exactly what we want.
Without these changes, the following oops can occasionally be observed,
particularly if some printks are inserted into the delivery path:
general protection fault: 0000 [#1] SMP
Modules linked in: kafs(E) af_rxrpc(E) [last unloaded: af_rxrpc]
CPU: 0 PID: 1305 Comm: kworker/u8:3 Tainted: G E 4.7.0-fsdevel+ #1303
Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
Workqueue: kafsd afs_async_workfn [kafs]
task: ffff88040be041c0 ti: ffff88040c070000 task.ti: ffff88040c070000
RIP: 0010:[<ffffffff8108fd3c>] [<ffffffff8108fd3c>] __lock_acquire+0xcf/0x15a1
RSP: 0018:ffff88040c073bc0 EFLAGS: 00010002
RAX: 6b6b6b6b6b6b6b6b RBX: 0000000000000000 RCX: ffff88040d29a710
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88040d29a710
RBP: ffff88040c073c70 R08: 0000000000000001 R09: 0000000000000001
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000000 R14: ffff88040be041c0 R15: ffffffff814c928f
FS: 0000000000000000(0000) GS:ffff88041fa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa4595f4750 CR3: 0000000001c14000 CR4: 00000000001406f0
Stack:
0000000000000006 000000000be04930 0000000000000000 ffff880400000000
ffff880400000000 ffffffff8108f847 ffff88040be041c0 ffffffff81050446
ffff8803fc08a920 ffff8803fc08a958 ffff88040be041c0 ffff88040c073c38
Call Trace:
[<ffffffff8108f847>] ? mark_held_locks+0x5e/0x74
[<ffffffff81050446>] ? __local_bh_enable_ip+0x9b/0xa1
[<ffffffff8108f9ca>] ? trace_hardirqs_on_caller+0x16d/0x189
[<ffffffff810915f4>] lock_acquire+0x122/0x1b6
[<ffffffff810915f4>] ? lock_acquire+0x122/0x1b6
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff81609dbf>] _raw_spin_lock_irqsave+0x35/0x49
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff814c928f>] skb_dequeue+0x18/0x61
[<ffffffffa009aa92>] afs_deliver_to_call+0x344/0x39d [kafs]
[<ffffffffa009ab37>] afs_process_async_call+0x4c/0xd5 [kafs]
[<ffffffffa0099e9c>] afs_async_workfn+0xe/0x10 [kafs]
[<ffffffff81063a3a>] process_one_work+0x29d/0x57c
[<ffffffff81064ac2>] worker_thread+0x24a/0x385
[<ffffffff81064878>] ? rescuer_thread+0x2d0/0x2d0
[<ffffffff810696f5>] kthread+0xf3/0xfb
[<ffffffff8160a6ff>] ret_from_fork+0x1f/0x40
[<ffffffff81069602>] ? kthread_create_on_node+0x1cf/0x1cf
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-03 21:11:40 +08:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
2007-05-11 13:22:20 +08:00
|
|
|
|
|
|
|
call->count = ntohl(call->tmp);
|
|
|
|
_debug("motd length: %u", call->count);
|
|
|
|
if (call->count >= AFSNAMEMAX)
|
2018-10-20 07:57:56 +08:00
|
|
|
return afs_protocol_error(call, -EBADMSG,
|
|
|
|
afs_eproto_motd_len);
|
2018-10-20 07:57:56 +08:00
|
|
|
size = (call->count + 3) & ~3; /* It's padded */
|
2019-05-10 05:22:50 +08:00
|
|
|
afs_extract_to_buf(call, size);
|
2007-05-11 13:22:20 +08:00
|
|
|
call->unmarshall++;
|
2019-05-20 07:43:53 +08:00
|
|
|
/* Fall through */
|
2007-05-11 13:22:20 +08:00
|
|
|
|
2019-05-20 07:43:53 +08:00
|
|
|
/* extract the message of the day */
|
2018-10-20 07:57:56 +08:00
|
|
|
case 7:
|
2007-05-11 13:22:20 +08:00
|
|
|
_debug("extract motd");
|
2018-10-20 07:57:56 +08:00
|
|
|
ret = afs_extract_data(call, false);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
2007-05-11 13:22:20 +08:00
|
|
|
|
2019-05-10 05:22:50 +08:00
|
|
|
p = call->buffer;
|
2007-05-11 13:22:20 +08:00
|
|
|
p[call->count] = 0;
|
|
|
|
_debug("motd '%s'", p);
|
|
|
|
|
|
|
|
call->unmarshall++;
|
|
|
|
|
2018-10-20 07:57:56 +08:00
|
|
|
case 8:
|
2007-05-11 13:22:20 +08:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
_leave(" = 0 [done]");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* FS.GetVolumeStatus operation type
|
|
|
|
*/
|
|
|
|
static const struct afs_call_type afs_RXFSGetVolumeStatus = {
|
|
|
|
.name = "FS.GetVolumeStatus",
|
2017-11-02 23:27:51 +08:00
|
|
|
.op = afs_FS_GetVolumeStatus,
|
2007-05-11 13:22:20 +08:00
|
|
|
.deliver = afs_deliver_fs_get_volume_status,
|
2019-05-10 05:22:50 +08:00
|
|
|
.destructor = afs_flat_call_destructor,
|
2007-05-11 13:22:20 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* fetch the status of a volume
|
|
|
|
*/
|
2017-11-02 23:27:50 +08:00
|
|
|
int afs_fs_get_volume_status(struct afs_fs_cursor *fc,
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
struct afs_volume_status *vs)
|
2007-05-11 13:22:20 +08:00
|
|
|
{
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
struct afs_vnode *vnode = fc->vnode;
|
2007-05-11 13:22:20 +08:00
|
|
|
struct afs_call *call;
|
2017-11-02 23:27:45 +08:00
|
|
|
struct afs_net *net = afs_v2net(vnode);
|
2007-05-11 13:22:20 +08:00
|
|
|
__be32 *bp;
|
|
|
|
|
2018-10-20 07:57:58 +08:00
|
|
|
if (test_bit(AFS_SERVER_FL_IS_YFS, &fc->cbi->server->flags))
|
|
|
|
return yfs_fs_get_volume_status(fc, vs);
|
|
|
|
|
2007-05-11 13:22:20 +08:00
|
|
|
_enter("");
|
|
|
|
|
2019-05-10 05:22:50 +08:00
|
|
|
call = afs_alloc_flat_call(net, &afs_RXFSGetVolumeStatus, 2 * 4,
|
|
|
|
max(12 * 4, AFSOPAQUEMAX + 1));
|
|
|
|
if (!call)
|
2007-05-11 13:22:20 +08:00
|
|
|
return -ENOMEM;
|
|
|
|
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
call->key = fc->key;
|
2019-05-10 05:22:50 +08:00
|
|
|
call->out_volstatus = vs;
|
2007-05-11 13:22:20 +08:00
|
|
|
|
|
|
|
/* marshall the parameters */
|
|
|
|
bp = call->request;
|
|
|
|
bp[0] = htonl(FSGETVOLUMESTATUS);
|
|
|
|
bp[1] = htonl(vnode->fid.vid);
|
|
|
|
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
afs_use_fs_server(call, fc->cbi);
|
2017-11-02 23:27:51 +08:00
|
|
|
trace_afs_make_fs_call(call, &vnode->fid);
|
afs: Make some RPC operations non-interruptible
Make certain RPC operations non-interruptible, including:
(*) Set attributes
(*) Store data
We don't want to get interrupted during a flush on close, flush on
unlock, writeback or an inode update, leaving us in a state where we
still need to do the writeback or update.
(*) Extend lock
(*) Release lock
We don't want to get lock extension interrupted as the file locks on
the server are time-limited. Interruption during lock release is less
of an issue since the lock is time-limited, but it's better to
complete the release to avoid a several-minute wait to recover it.
*Setting* the lock isn't a problem if it's interrupted since we can
just return to the user and tell them they were interrupted - at
which point they can elect to retry.
(*) Silly unlink
We want to remove silly unlink files if we can, rather than leaving
them for the salvager to clear up.
Note that whilst these calls are no longer interruptible, they do have
timeouts on them, so if the server stops responding the call will fail with
something like ETIME or ECONNRESET.
Without this, the following:
kAFS: Unexpected error from FS.StoreData -512
appears in dmesg when a pending store data gets interrupted and some
processes may just hang.
Additionally, make the code that checks/updates the server record ignore
failure due to interruption if the main call is uninterruptible and if the
server has an address list. The next op will check it again since the
expiration time on the old list has past.
Fixes: d2ddc776a458 ("afs: Overhaul volume and server record caching and fileserver rotation")
Reported-by: Jonathan Billings <jsbillings@jsbillings.org>
Reported-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-08 23:16:31 +08:00
|
|
|
afs_set_fc_call(call, fc);
|
2019-04-25 21:26:50 +08:00
|
|
|
afs_make_call(&fc->ac, call, GFP_NOFS);
|
|
|
|
return afs_wait_for_call_to_complete(call, &fc->ac);
|
2007-05-11 13:22:20 +08:00
|
|
|
}
|
2007-07-16 14:40:12 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* deliver reply data to an FS.SetLock, FS.ExtendLock or FS.ReleaseLock
|
|
|
|
*/
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
static int afs_deliver_fs_xxxx_lock(struct afs_call *call)
|
2007-07-16 14:40:12 +08:00
|
|
|
{
|
|
|
|
const __be32 *bp;
|
rxrpc: Fix races between skb free, ACK generation and replying
Inside the kafs filesystem it is possible to occasionally have a call
processed and terminated before we've had a chance to check whether we need
to clean up the rx queue for that call because afs_send_simple_reply() ends
the call when it is done, but this is done in a workqueue item that might
happen to run to completion before afs_deliver_to_call() completes.
Further, it is possible for rxrpc_kernel_send_data() to be called to send a
reply before the last request-phase data skb is released. The rxrpc skb
destructor is where the ACK processing is done and the call state is
advanced upon release of the last skb. ACK generation is also deferred to
a work item because it's possible that the skb destructor is not called in
a context where kernel_sendmsg() can be invoked.
To this end, the following changes are made:
(1) kernel_rxrpc_data_consumed() is added. This should be called whenever
an skb is emptied so as to crank the ACK and call states. This does
not release the skb, however. kernel_rxrpc_free_skb() must now be
called to achieve that. These together replace
rxrpc_kernel_data_delivered().
(2) kernel_rxrpc_data_consumed() is wrapped by afs_data_consumed().
This makes afs_deliver_to_call() easier to work as the skb can simply
be discarded unconditionally here without trying to work out what the
return value of the ->deliver() function means.
The ->deliver() functions can, via afs_data_complete(),
afs_transfer_reply() and afs_extract_data() mark that an skb has been
consumed (thereby cranking the state) without the need to
conditionally free the skb to make sure the state is correct on an
incoming call for when the call processor tries to send the reply.
(3) rxrpc_recvmsg() now has to call kernel_rxrpc_data_consumed() when it
has finished with a packet and MSG_PEEK isn't set.
(4) rxrpc_packet_destructor() no longer calls rxrpc_hard_ACK_data().
Because of this, we no longer need to clear the destructor and put the
call before we free the skb in cases where we don't want the ACK/call
state to be cranked.
(5) The ->deliver() call-type callbacks are made to return -EAGAIN rather
than 0 if they expect more data (afs_extract_data() returns -EAGAIN to
the delivery function already), and the caller is now responsible for
producing an abort if that was the last packet.
(6) There are many bits of unmarshalling code where:
ret = afs_extract_data(call, skb, last, ...);
switch (ret) {
case 0: break;
case -EAGAIN: return 0;
default: return ret;
}
is to be found. As -EAGAIN can now be passed back to the caller, we
now just return if ret < 0:
ret = afs_extract_data(call, skb, last, ...);
if (ret < 0)
return ret;
(7) Checks for trailing data and empty final data packets has been
consolidated as afs_data_complete(). So:
if (skb->len > 0)
return -EBADMSG;
if (!last)
return 0;
becomes:
ret = afs_data_complete(call, skb, last);
if (ret < 0)
return ret;
(8) afs_transfer_reply() now checks the amount of data it has against the
amount of data desired and the amount of data in the skb and returns
an error to induce an abort if we don't get exactly what we want.
Without these changes, the following oops can occasionally be observed,
particularly if some printks are inserted into the delivery path:
general protection fault: 0000 [#1] SMP
Modules linked in: kafs(E) af_rxrpc(E) [last unloaded: af_rxrpc]
CPU: 0 PID: 1305 Comm: kworker/u8:3 Tainted: G E 4.7.0-fsdevel+ #1303
Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
Workqueue: kafsd afs_async_workfn [kafs]
task: ffff88040be041c0 ti: ffff88040c070000 task.ti: ffff88040c070000
RIP: 0010:[<ffffffff8108fd3c>] [<ffffffff8108fd3c>] __lock_acquire+0xcf/0x15a1
RSP: 0018:ffff88040c073bc0 EFLAGS: 00010002
RAX: 6b6b6b6b6b6b6b6b RBX: 0000000000000000 RCX: ffff88040d29a710
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88040d29a710
RBP: ffff88040c073c70 R08: 0000000000000001 R09: 0000000000000001
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000000 R14: ffff88040be041c0 R15: ffffffff814c928f
FS: 0000000000000000(0000) GS:ffff88041fa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa4595f4750 CR3: 0000000001c14000 CR4: 00000000001406f0
Stack:
0000000000000006 000000000be04930 0000000000000000 ffff880400000000
ffff880400000000 ffffffff8108f847 ffff88040be041c0 ffffffff81050446
ffff8803fc08a920 ffff8803fc08a958 ffff88040be041c0 ffff88040c073c38
Call Trace:
[<ffffffff8108f847>] ? mark_held_locks+0x5e/0x74
[<ffffffff81050446>] ? __local_bh_enable_ip+0x9b/0xa1
[<ffffffff8108f9ca>] ? trace_hardirqs_on_caller+0x16d/0x189
[<ffffffff810915f4>] lock_acquire+0x122/0x1b6
[<ffffffff810915f4>] ? lock_acquire+0x122/0x1b6
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff81609dbf>] _raw_spin_lock_irqsave+0x35/0x49
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff814c928f>] skb_dequeue+0x18/0x61
[<ffffffffa009aa92>] afs_deliver_to_call+0x344/0x39d [kafs]
[<ffffffffa009ab37>] afs_process_async_call+0x4c/0xd5 [kafs]
[<ffffffffa0099e9c>] afs_async_workfn+0xe/0x10 [kafs]
[<ffffffff81063a3a>] process_one_work+0x29d/0x57c
[<ffffffff81064ac2>] worker_thread+0x24a/0x385
[<ffffffff81064878>] ? rescuer_thread+0x2d0/0x2d0
[<ffffffff810696f5>] kthread+0xf3/0xfb
[<ffffffff8160a6ff>] ret_from_fork+0x1f/0x40
[<ffffffff81069602>] ? kthread_create_on_node+0x1cf/0x1cf
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-03 21:11:40 +08:00
|
|
|
int ret;
|
2007-07-16 14:40:12 +08:00
|
|
|
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
_enter("{%u}", call->unmarshall);
|
2007-07-16 14:40:12 +08:00
|
|
|
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
ret = afs_transfer_reply(call);
|
rxrpc: Fix races between skb free, ACK generation and replying
Inside the kafs filesystem it is possible to occasionally have a call
processed and terminated before we've had a chance to check whether we need
to clean up the rx queue for that call because afs_send_simple_reply() ends
the call when it is done, but this is done in a workqueue item that might
happen to run to completion before afs_deliver_to_call() completes.
Further, it is possible for rxrpc_kernel_send_data() to be called to send a
reply before the last request-phase data skb is released. The rxrpc skb
destructor is where the ACK processing is done and the call state is
advanced upon release of the last skb. ACK generation is also deferred to
a work item because it's possible that the skb destructor is not called in
a context where kernel_sendmsg() can be invoked.
To this end, the following changes are made:
(1) kernel_rxrpc_data_consumed() is added. This should be called whenever
an skb is emptied so as to crank the ACK and call states. This does
not release the skb, however. kernel_rxrpc_free_skb() must now be
called to achieve that. These together replace
rxrpc_kernel_data_delivered().
(2) kernel_rxrpc_data_consumed() is wrapped by afs_data_consumed().
This makes afs_deliver_to_call() easier to work as the skb can simply
be discarded unconditionally here without trying to work out what the
return value of the ->deliver() function means.
The ->deliver() functions can, via afs_data_complete(),
afs_transfer_reply() and afs_extract_data() mark that an skb has been
consumed (thereby cranking the state) without the need to
conditionally free the skb to make sure the state is correct on an
incoming call for when the call processor tries to send the reply.
(3) rxrpc_recvmsg() now has to call kernel_rxrpc_data_consumed() when it
has finished with a packet and MSG_PEEK isn't set.
(4) rxrpc_packet_destructor() no longer calls rxrpc_hard_ACK_data().
Because of this, we no longer need to clear the destructor and put the
call before we free the skb in cases where we don't want the ACK/call
state to be cranked.
(5) The ->deliver() call-type callbacks are made to return -EAGAIN rather
than 0 if they expect more data (afs_extract_data() returns -EAGAIN to
the delivery function already), and the caller is now responsible for
producing an abort if that was the last packet.
(6) There are many bits of unmarshalling code where:
ret = afs_extract_data(call, skb, last, ...);
switch (ret) {
case 0: break;
case -EAGAIN: return 0;
default: return ret;
}
is to be found. As -EAGAIN can now be passed back to the caller, we
now just return if ret < 0:
ret = afs_extract_data(call, skb, last, ...);
if (ret < 0)
return ret;
(7) Checks for trailing data and empty final data packets has been
consolidated as afs_data_complete(). So:
if (skb->len > 0)
return -EBADMSG;
if (!last)
return 0;
becomes:
ret = afs_data_complete(call, skb, last);
if (ret < 0)
return ret;
(8) afs_transfer_reply() now checks the amount of data it has against the
amount of data desired and the amount of data in the skb and returns
an error to induce an abort if we don't get exactly what we want.
Without these changes, the following oops can occasionally be observed,
particularly if some printks are inserted into the delivery path:
general protection fault: 0000 [#1] SMP
Modules linked in: kafs(E) af_rxrpc(E) [last unloaded: af_rxrpc]
CPU: 0 PID: 1305 Comm: kworker/u8:3 Tainted: G E 4.7.0-fsdevel+ #1303
Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
Workqueue: kafsd afs_async_workfn [kafs]
task: ffff88040be041c0 ti: ffff88040c070000 task.ti: ffff88040c070000
RIP: 0010:[<ffffffff8108fd3c>] [<ffffffff8108fd3c>] __lock_acquire+0xcf/0x15a1
RSP: 0018:ffff88040c073bc0 EFLAGS: 00010002
RAX: 6b6b6b6b6b6b6b6b RBX: 0000000000000000 RCX: ffff88040d29a710
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88040d29a710
RBP: ffff88040c073c70 R08: 0000000000000001 R09: 0000000000000001
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000000 R14: ffff88040be041c0 R15: ffffffff814c928f
FS: 0000000000000000(0000) GS:ffff88041fa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa4595f4750 CR3: 0000000001c14000 CR4: 00000000001406f0
Stack:
0000000000000006 000000000be04930 0000000000000000 ffff880400000000
ffff880400000000 ffffffff8108f847 ffff88040be041c0 ffffffff81050446
ffff8803fc08a920 ffff8803fc08a958 ffff88040be041c0 ffff88040c073c38
Call Trace:
[<ffffffff8108f847>] ? mark_held_locks+0x5e/0x74
[<ffffffff81050446>] ? __local_bh_enable_ip+0x9b/0xa1
[<ffffffff8108f9ca>] ? trace_hardirqs_on_caller+0x16d/0x189
[<ffffffff810915f4>] lock_acquire+0x122/0x1b6
[<ffffffff810915f4>] ? lock_acquire+0x122/0x1b6
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff81609dbf>] _raw_spin_lock_irqsave+0x35/0x49
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff814c928f>] skb_dequeue+0x18/0x61
[<ffffffffa009aa92>] afs_deliver_to_call+0x344/0x39d [kafs]
[<ffffffffa009ab37>] afs_process_async_call+0x4c/0xd5 [kafs]
[<ffffffffa0099e9c>] afs_async_workfn+0xe/0x10 [kafs]
[<ffffffff81063a3a>] process_one_work+0x29d/0x57c
[<ffffffff81064ac2>] worker_thread+0x24a/0x385
[<ffffffff81064878>] ? rescuer_thread+0x2d0/0x2d0
[<ffffffff810696f5>] kthread+0xf3/0xfb
[<ffffffff8160a6ff>] ret_from_fork+0x1f/0x40
[<ffffffff81069602>] ? kthread_create_on_node+0x1cf/0x1cf
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-03 21:11:40 +08:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
2007-07-16 14:40:12 +08:00
|
|
|
|
|
|
|
/* unmarshall the reply once we've received all of it */
|
|
|
|
bp = call->buffer;
|
2019-05-10 05:22:50 +08:00
|
|
|
xdr_decode_AFSVolSync(&bp, call->out_volsync);
|
2007-07-16 14:40:12 +08:00
|
|
|
|
|
|
|
_leave(" = 0 [done]");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* FS.SetLock operation type
|
|
|
|
*/
|
|
|
|
static const struct afs_call_type afs_RXFSSetLock = {
|
|
|
|
.name = "FS.SetLock",
|
2017-11-02 23:27:51 +08:00
|
|
|
.op = afs_FS_SetLock,
|
2007-07-16 14:40:12 +08:00
|
|
|
.deliver = afs_deliver_fs_xxxx_lock,
|
2019-04-25 21:26:50 +08:00
|
|
|
.done = afs_lock_op_done,
|
2007-07-16 14:40:12 +08:00
|
|
|
.destructor = afs_flat_call_destructor,
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* FS.ExtendLock operation type
|
|
|
|
*/
|
|
|
|
static const struct afs_call_type afs_RXFSExtendLock = {
|
|
|
|
.name = "FS.ExtendLock",
|
2017-11-02 23:27:51 +08:00
|
|
|
.op = afs_FS_ExtendLock,
|
2007-07-16 14:40:12 +08:00
|
|
|
.deliver = afs_deliver_fs_xxxx_lock,
|
2019-04-25 21:26:50 +08:00
|
|
|
.done = afs_lock_op_done,
|
2007-07-16 14:40:12 +08:00
|
|
|
.destructor = afs_flat_call_destructor,
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* FS.ReleaseLock operation type
|
|
|
|
*/
|
|
|
|
static const struct afs_call_type afs_RXFSReleaseLock = {
|
|
|
|
.name = "FS.ReleaseLock",
|
2017-11-02 23:27:51 +08:00
|
|
|
.op = afs_FS_ReleaseLock,
|
2007-07-16 14:40:12 +08:00
|
|
|
.deliver = afs_deliver_fs_xxxx_lock,
|
|
|
|
.destructor = afs_flat_call_destructor,
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
* Set a lock on a file
|
2007-07-16 14:40:12 +08:00
|
|
|
*/
|
2019-05-09 22:16:10 +08:00
|
|
|
int afs_fs_set_lock(struct afs_fs_cursor *fc, afs_lock_type_t type,
|
|
|
|
struct afs_status_cb *scb)
|
2007-07-16 14:40:12 +08:00
|
|
|
{
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
struct afs_vnode *vnode = fc->vnode;
|
2007-07-16 14:40:12 +08:00
|
|
|
struct afs_call *call;
|
2017-11-02 23:27:45 +08:00
|
|
|
struct afs_net *net = afs_v2net(vnode);
|
2007-07-16 14:40:12 +08:00
|
|
|
__be32 *bp;
|
|
|
|
|
2018-10-20 07:57:58 +08:00
|
|
|
if (test_bit(AFS_SERVER_FL_IS_YFS, &fc->cbi->server->flags))
|
2019-05-09 22:16:10 +08:00
|
|
|
return yfs_fs_set_lock(fc, type, scb);
|
2018-10-20 07:57:58 +08:00
|
|
|
|
2007-07-16 14:40:12 +08:00
|
|
|
_enter("");
|
|
|
|
|
2017-11-02 23:27:45 +08:00
|
|
|
call = afs_alloc_flat_call(net, &afs_RXFSSetLock, 5 * 4, 6 * 4);
|
2007-07-16 14:40:12 +08:00
|
|
|
if (!call)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
call->key = fc->key;
|
2019-05-09 22:16:10 +08:00
|
|
|
call->lvnode = vnode;
|
|
|
|
call->out_scb = scb;
|
2007-07-16 14:40:12 +08:00
|
|
|
|
|
|
|
/* marshall the parameters */
|
|
|
|
bp = call->request;
|
|
|
|
*bp++ = htonl(FSSETLOCK);
|
|
|
|
*bp++ = htonl(vnode->fid.vid);
|
|
|
|
*bp++ = htonl(vnode->fid.vnode);
|
|
|
|
*bp++ = htonl(vnode->fid.unique);
|
|
|
|
*bp++ = htonl(type);
|
|
|
|
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
afs_use_fs_server(call, fc->cbi);
|
2019-04-25 21:26:52 +08:00
|
|
|
trace_afs_make_fs_calli(call, &vnode->fid, type);
|
afs: Make some RPC operations non-interruptible
Make certain RPC operations non-interruptible, including:
(*) Set attributes
(*) Store data
We don't want to get interrupted during a flush on close, flush on
unlock, writeback or an inode update, leaving us in a state where we
still need to do the writeback or update.
(*) Extend lock
(*) Release lock
We don't want to get lock extension interrupted as the file locks on
the server are time-limited. Interruption during lock release is less
of an issue since the lock is time-limited, but it's better to
complete the release to avoid a several-minute wait to recover it.
*Setting* the lock isn't a problem if it's interrupted since we can
just return to the user and tell them they were interrupted - at
which point they can elect to retry.
(*) Silly unlink
We want to remove silly unlink files if we can, rather than leaving
them for the salvager to clear up.
Note that whilst these calls are no longer interruptible, they do have
timeouts on them, so if the server stops responding the call will fail with
something like ETIME or ECONNRESET.
Without this, the following:
kAFS: Unexpected error from FS.StoreData -512
appears in dmesg when a pending store data gets interrupted and some
processes may just hang.
Additionally, make the code that checks/updates the server record ignore
failure due to interruption if the main call is uninterruptible and if the
server has an address list. The next op will check it again since the
expiration time on the old list has past.
Fixes: d2ddc776a458 ("afs: Overhaul volume and server record caching and fileserver rotation")
Reported-by: Jonathan Billings <jsbillings@jsbillings.org>
Reported-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-08 23:16:31 +08:00
|
|
|
afs_set_fc_call(call, fc);
|
2019-04-25 21:26:50 +08:00
|
|
|
afs_make_call(&fc->ac, call, GFP_NOFS);
|
|
|
|
return afs_wait_for_call_to_complete(call, &fc->ac);
|
2007-07-16 14:40:12 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* extend a lock on a file
|
|
|
|
*/
|
2019-05-09 22:16:10 +08:00
|
|
|
int afs_fs_extend_lock(struct afs_fs_cursor *fc, struct afs_status_cb *scb)
|
2007-07-16 14:40:12 +08:00
|
|
|
{
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
struct afs_vnode *vnode = fc->vnode;
|
2007-07-16 14:40:12 +08:00
|
|
|
struct afs_call *call;
|
2017-11-02 23:27:45 +08:00
|
|
|
struct afs_net *net = afs_v2net(vnode);
|
2007-07-16 14:40:12 +08:00
|
|
|
__be32 *bp;
|
|
|
|
|
2018-10-20 07:57:58 +08:00
|
|
|
if (test_bit(AFS_SERVER_FL_IS_YFS, &fc->cbi->server->flags))
|
2019-05-09 22:16:10 +08:00
|
|
|
return yfs_fs_extend_lock(fc, scb);
|
2018-10-20 07:57:58 +08:00
|
|
|
|
2007-07-16 14:40:12 +08:00
|
|
|
_enter("");
|
|
|
|
|
2017-11-02 23:27:45 +08:00
|
|
|
call = afs_alloc_flat_call(net, &afs_RXFSExtendLock, 4 * 4, 6 * 4);
|
2007-07-16 14:40:12 +08:00
|
|
|
if (!call)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
call->key = fc->key;
|
2019-05-09 22:16:10 +08:00
|
|
|
call->lvnode = vnode;
|
|
|
|
call->out_scb = scb;
|
2007-07-16 14:40:12 +08:00
|
|
|
|
|
|
|
/* marshall the parameters */
|
|
|
|
bp = call->request;
|
|
|
|
*bp++ = htonl(FSEXTENDLOCK);
|
|
|
|
*bp++ = htonl(vnode->fid.vid);
|
|
|
|
*bp++ = htonl(vnode->fid.vnode);
|
|
|
|
*bp++ = htonl(vnode->fid.unique);
|
|
|
|
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
afs_use_fs_server(call, fc->cbi);
|
2017-11-02 23:27:51 +08:00
|
|
|
trace_afs_make_fs_call(call, &vnode->fid);
|
afs: Make some RPC operations non-interruptible
Make certain RPC operations non-interruptible, including:
(*) Set attributes
(*) Store data
We don't want to get interrupted during a flush on close, flush on
unlock, writeback or an inode update, leaving us in a state where we
still need to do the writeback or update.
(*) Extend lock
(*) Release lock
We don't want to get lock extension interrupted as the file locks on
the server are time-limited. Interruption during lock release is less
of an issue since the lock is time-limited, but it's better to
complete the release to avoid a several-minute wait to recover it.
*Setting* the lock isn't a problem if it's interrupted since we can
just return to the user and tell them they were interrupted - at
which point they can elect to retry.
(*) Silly unlink
We want to remove silly unlink files if we can, rather than leaving
them for the salvager to clear up.
Note that whilst these calls are no longer interruptible, they do have
timeouts on them, so if the server stops responding the call will fail with
something like ETIME or ECONNRESET.
Without this, the following:
kAFS: Unexpected error from FS.StoreData -512
appears in dmesg when a pending store data gets interrupted and some
processes may just hang.
Additionally, make the code that checks/updates the server record ignore
failure due to interruption if the main call is uninterruptible and if the
server has an address list. The next op will check it again since the
expiration time on the old list has past.
Fixes: d2ddc776a458 ("afs: Overhaul volume and server record caching and fileserver rotation")
Reported-by: Jonathan Billings <jsbillings@jsbillings.org>
Reported-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-08 23:16:31 +08:00
|
|
|
afs_set_fc_call(call, fc);
|
2019-04-25 21:26:50 +08:00
|
|
|
afs_make_call(&fc->ac, call, GFP_NOFS);
|
|
|
|
return afs_wait_for_call_to_complete(call, &fc->ac);
|
2007-07-16 14:40:12 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* release a lock on a file
|
|
|
|
*/
|
2019-05-09 22:16:10 +08:00
|
|
|
int afs_fs_release_lock(struct afs_fs_cursor *fc, struct afs_status_cb *scb)
|
2007-07-16 14:40:12 +08:00
|
|
|
{
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
struct afs_vnode *vnode = fc->vnode;
|
2007-07-16 14:40:12 +08:00
|
|
|
struct afs_call *call;
|
2017-11-02 23:27:45 +08:00
|
|
|
struct afs_net *net = afs_v2net(vnode);
|
2007-07-16 14:40:12 +08:00
|
|
|
__be32 *bp;
|
|
|
|
|
2018-10-20 07:57:58 +08:00
|
|
|
if (test_bit(AFS_SERVER_FL_IS_YFS, &fc->cbi->server->flags))
|
2019-05-09 22:16:10 +08:00
|
|
|
return yfs_fs_release_lock(fc, scb);
|
2018-10-20 07:57:58 +08:00
|
|
|
|
2007-07-16 14:40:12 +08:00
|
|
|
_enter("");
|
|
|
|
|
2017-11-02 23:27:45 +08:00
|
|
|
call = afs_alloc_flat_call(net, &afs_RXFSReleaseLock, 4 * 4, 6 * 4);
|
2007-07-16 14:40:12 +08:00
|
|
|
if (!call)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
call->key = fc->key;
|
2019-05-09 22:16:10 +08:00
|
|
|
call->lvnode = vnode;
|
|
|
|
call->out_scb = scb;
|
2007-07-16 14:40:12 +08:00
|
|
|
|
|
|
|
/* marshall the parameters */
|
|
|
|
bp = call->request;
|
|
|
|
*bp++ = htonl(FSRELEASELOCK);
|
|
|
|
*bp++ = htonl(vnode->fid.vid);
|
|
|
|
*bp++ = htonl(vnode->fid.vnode);
|
|
|
|
*bp++ = htonl(vnode->fid.unique);
|
|
|
|
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
afs_use_fs_server(call, fc->cbi);
|
2017-11-02 23:27:51 +08:00
|
|
|
trace_afs_make_fs_call(call, &vnode->fid);
|
afs: Make some RPC operations non-interruptible
Make certain RPC operations non-interruptible, including:
(*) Set attributes
(*) Store data
We don't want to get interrupted during a flush on close, flush on
unlock, writeback or an inode update, leaving us in a state where we
still need to do the writeback or update.
(*) Extend lock
(*) Release lock
We don't want to get lock extension interrupted as the file locks on
the server are time-limited. Interruption during lock release is less
of an issue since the lock is time-limited, but it's better to
complete the release to avoid a several-minute wait to recover it.
*Setting* the lock isn't a problem if it's interrupted since we can
just return to the user and tell them they were interrupted - at
which point they can elect to retry.
(*) Silly unlink
We want to remove silly unlink files if we can, rather than leaving
them for the salvager to clear up.
Note that whilst these calls are no longer interruptible, they do have
timeouts on them, so if the server stops responding the call will fail with
something like ETIME or ECONNRESET.
Without this, the following:
kAFS: Unexpected error from FS.StoreData -512
appears in dmesg when a pending store data gets interrupted and some
processes may just hang.
Additionally, make the code that checks/updates the server record ignore
failure due to interruption if the main call is uninterruptible and if the
server has an address list. The next op will check it again since the
expiration time on the old list has past.
Fixes: d2ddc776a458 ("afs: Overhaul volume and server record caching and fileserver rotation")
Reported-by: Jonathan Billings <jsbillings@jsbillings.org>
Reported-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-08 23:16:31 +08:00
|
|
|
afs_set_fc_call(call, fc);
|
2019-04-25 21:26:50 +08:00
|
|
|
afs_make_call(&fc->ac, call, GFP_NOFS);
|
|
|
|
return afs_wait_for_call_to_complete(call, &fc->ac);
|
2017-11-02 23:27:49 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Deliver reply data to an FS.GiveUpAllCallBacks operation.
|
|
|
|
*/
|
|
|
|
static int afs_deliver_fs_give_up_all_callbacks(struct afs_call *call)
|
|
|
|
{
|
|
|
|
return afs_transfer_reply(call);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* FS.GiveUpAllCallBacks operation type
|
|
|
|
*/
|
|
|
|
static const struct afs_call_type afs_RXFSGiveUpAllCallBacks = {
|
|
|
|
.name = "FS.GiveUpAllCallBacks",
|
2017-11-02 23:27:51 +08:00
|
|
|
.op = afs_FS_GiveUpAllCallBacks,
|
2017-11-02 23:27:49 +08:00
|
|
|
.deliver = afs_deliver_fs_give_up_all_callbacks,
|
|
|
|
.destructor = afs_flat_call_destructor,
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Flush all the callbacks we have on a server.
|
|
|
|
*/
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
int afs_fs_give_up_all_callbacks(struct afs_net *net,
|
|
|
|
struct afs_server *server,
|
2017-11-02 23:27:50 +08:00
|
|
|
struct afs_addr_cursor *ac,
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
struct key *key)
|
2017-11-02 23:27:49 +08:00
|
|
|
{
|
|
|
|
struct afs_call *call;
|
|
|
|
__be32 *bp;
|
|
|
|
|
|
|
|
_enter("");
|
|
|
|
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
call = afs_alloc_flat_call(net, &afs_RXFSGiveUpAllCallBacks, 1 * 4, 0);
|
2017-11-02 23:27:49 +08:00
|
|
|
if (!call)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
call->key = key;
|
|
|
|
|
|
|
|
/* marshall the parameters */
|
|
|
|
bp = call->request;
|
|
|
|
*bp++ = htonl(FSGIVEUPALLCALLBACKS);
|
|
|
|
|
|
|
|
/* Can't take a ref on server */
|
2019-04-25 21:26:50 +08:00
|
|
|
afs_make_call(ac, call, GFP_NOFS);
|
|
|
|
return afs_wait_for_call_to_complete(call, ac);
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Deliver reply data to an FS.GetCapabilities operation.
|
|
|
|
*/
|
|
|
|
static int afs_deliver_fs_get_capabilities(struct afs_call *call)
|
|
|
|
{
|
|
|
|
u32 count;
|
|
|
|
int ret;
|
|
|
|
|
2018-10-20 07:57:56 +08:00
|
|
|
_enter("{%u,%zu}", call->unmarshall, iov_iter_count(&call->iter));
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
|
|
|
|
switch (call->unmarshall) {
|
|
|
|
case 0:
|
2018-10-20 07:57:56 +08:00
|
|
|
afs_extract_to_tmp(call);
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
call->unmarshall++;
|
2019-05-20 07:43:53 +08:00
|
|
|
/* Fall through */
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
|
2019-05-20 07:43:53 +08:00
|
|
|
/* Extract the capabilities word count */
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
case 1:
|
2018-10-20 07:57:56 +08:00
|
|
|
ret = afs_extract_data(call, true);
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
count = ntohl(call->tmp);
|
|
|
|
|
|
|
|
call->count = count;
|
|
|
|
call->count2 = count;
|
2019-08-20 16:22:38 +08:00
|
|
|
afs_extract_discard(call, count * sizeof(__be32));
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
call->unmarshall++;
|
2019-05-20 07:43:53 +08:00
|
|
|
/* Fall through */
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
|
2019-05-20 07:43:53 +08:00
|
|
|
/* Extract capabilities words */
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
case 2:
|
2018-10-20 07:57:56 +08:00
|
|
|
ret = afs_extract_data(call, false);
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
/* TODO: Examine capabilities */
|
|
|
|
|
|
|
|
call->unmarshall++;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
_leave(" = 0 [done]");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* FS.GetCapabilities operation type
|
|
|
|
*/
|
|
|
|
static const struct afs_call_type afs_RXFSGetCapabilities = {
|
|
|
|
.name = "FS.GetCapabilities",
|
2017-11-02 23:27:51 +08:00
|
|
|
.op = afs_FS_GetCapabilities,
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
.deliver = afs_deliver_fs_get_capabilities,
|
2018-10-20 07:57:59 +08:00
|
|
|
.done = afs_fileserver_probe_result,
|
2019-05-10 05:22:50 +08:00
|
|
|
.destructor = afs_flat_call_destructor,
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Probe a fileserver for the capabilities that it supports. This can
|
|
|
|
* return up to 196 words.
|
|
|
|
*/
|
2019-04-25 21:26:50 +08:00
|
|
|
struct afs_call *afs_fs_get_capabilities(struct afs_net *net,
|
|
|
|
struct afs_server *server,
|
|
|
|
struct afs_addr_cursor *ac,
|
|
|
|
struct key *key,
|
|
|
|
unsigned int server_index)
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
{
|
|
|
|
struct afs_call *call;
|
|
|
|
__be32 *bp;
|
|
|
|
|
|
|
|
_enter("");
|
|
|
|
|
|
|
|
call = afs_alloc_flat_call(net, &afs_RXFSGetCapabilities, 1 * 4, 16 * 4);
|
|
|
|
if (!call)
|
2019-04-25 21:26:50 +08:00
|
|
|
return ERR_PTR(-ENOMEM);
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
|
|
|
|
call->key = key;
|
2019-06-21 01:12:17 +08:00
|
|
|
call->server = afs_get_server(server, afs_server_trace_get_caps);
|
2019-05-10 05:22:50 +08:00
|
|
|
call->server_index = server_index;
|
2018-10-20 07:57:58 +08:00
|
|
|
call->upgrade = true;
|
2019-04-25 21:26:50 +08:00
|
|
|
call->async = true;
|
2019-05-16 20:21:59 +08:00
|
|
|
call->max_lifespan = AFS_PROBE_MAX_LIFESPAN;
|
afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 23:27:50 +08:00
|
|
|
|
|
|
|
/* marshall the parameters */
|
|
|
|
bp = call->request;
|
|
|
|
*bp++ = htonl(FSGETCAPABILITIES);
|
|
|
|
|
|
|
|
/* Can't take a ref on server */
|
2017-11-02 23:27:51 +08:00
|
|
|
trace_afs_make_fs_call(call, NULL);
|
2019-04-25 21:26:50 +08:00
|
|
|
afs_make_call(ac, call, GFP_NOFS);
|
|
|
|
return call;
|
2007-07-16 14:40:12 +08:00
|
|
|
}
|
2018-04-10 04:12:31 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Deliver reply data to an FS.FetchStatus with no vnode.
|
|
|
|
*/
|
|
|
|
static int afs_deliver_fs_fetch_status(struct afs_call *call)
|
|
|
|
{
|
|
|
|
const __be32 *bp;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = afs_transfer_reply(call);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
/* unmarshall the reply once we've received all of it */
|
|
|
|
bp = call->buffer;
|
2019-05-09 22:16:10 +08:00
|
|
|
ret = xdr_decode_AFSFetchStatus(&bp, call, call->out_scb);
|
2018-10-20 07:57:56 +08:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
2019-05-09 22:16:10 +08:00
|
|
|
xdr_decode_AFSCallBack(&bp, call, call->out_scb);
|
|
|
|
xdr_decode_AFSVolSync(&bp, call->out_volsync);
|
2018-04-10 04:12:31 +08:00
|
|
|
|
|
|
|
_leave(" = 0 [done]");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* FS.FetchStatus operation type
|
|
|
|
*/
|
|
|
|
static const struct afs_call_type afs_RXFSFetchStatus = {
|
|
|
|
.name = "FS.FetchStatus",
|
|
|
|
.op = afs_FS_FetchStatus,
|
|
|
|
.deliver = afs_deliver_fs_fetch_status,
|
|
|
|
.destructor = afs_flat_call_destructor,
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Fetch the status information for a fid without needing a vnode handle.
|
|
|
|
*/
|
|
|
|
int afs_fs_fetch_status(struct afs_fs_cursor *fc,
|
|
|
|
struct afs_net *net,
|
|
|
|
struct afs_fid *fid,
|
2019-05-09 22:16:10 +08:00
|
|
|
struct afs_status_cb *scb,
|
2018-04-10 04:12:31 +08:00
|
|
|
struct afs_volsync *volsync)
|
|
|
|
{
|
|
|
|
struct afs_call *call;
|
|
|
|
__be32 *bp;
|
|
|
|
|
2018-10-20 07:57:58 +08:00
|
|
|
if (test_bit(AFS_SERVER_FL_IS_YFS, &fc->cbi->server->flags))
|
2019-05-09 22:16:10 +08:00
|
|
|
return yfs_fs_fetch_status(fc, net, fid, scb, volsync);
|
2018-10-20 07:57:58 +08:00
|
|
|
|
2018-10-20 07:57:57 +08:00
|
|
|
_enter(",%x,{%llx:%llu},,",
|
2018-04-10 04:12:31 +08:00
|
|
|
key_serial(fc->key), fid->vid, fid->vnode);
|
|
|
|
|
|
|
|
call = afs_alloc_flat_call(net, &afs_RXFSFetchStatus, 16, (21 + 3 + 6) * 4);
|
|
|
|
if (!call) {
|
|
|
|
fc->ac.error = -ENOMEM;
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
call->key = fc->key;
|
2019-05-10 05:22:50 +08:00
|
|
|
call->out_fid = fid;
|
2019-05-09 22:16:10 +08:00
|
|
|
call->out_scb = scb;
|
2019-05-10 05:22:50 +08:00
|
|
|
call->out_volsync = volsync;
|
2018-04-10 04:12:31 +08:00
|
|
|
|
|
|
|
/* marshall the parameters */
|
|
|
|
bp = call->request;
|
|
|
|
bp[0] = htonl(FSFETCHSTATUS);
|
|
|
|
bp[1] = htonl(fid->vid);
|
|
|
|
bp[2] = htonl(fid->vnode);
|
|
|
|
bp[3] = htonl(fid->unique);
|
|
|
|
|
|
|
|
afs_use_fs_server(call, fc->cbi);
|
|
|
|
trace_afs_make_fs_call(call, fid);
|
afs: Make some RPC operations non-interruptible
Make certain RPC operations non-interruptible, including:
(*) Set attributes
(*) Store data
We don't want to get interrupted during a flush on close, flush on
unlock, writeback or an inode update, leaving us in a state where we
still need to do the writeback or update.
(*) Extend lock
(*) Release lock
We don't want to get lock extension interrupted as the file locks on
the server are time-limited. Interruption during lock release is less
of an issue since the lock is time-limited, but it's better to
complete the release to avoid a several-minute wait to recover it.
*Setting* the lock isn't a problem if it's interrupted since we can
just return to the user and tell them they were interrupted - at
which point they can elect to retry.
(*) Silly unlink
We want to remove silly unlink files if we can, rather than leaving
them for the salvager to clear up.
Note that whilst these calls are no longer interruptible, they do have
timeouts on them, so if the server stops responding the call will fail with
something like ETIME or ECONNRESET.
Without this, the following:
kAFS: Unexpected error from FS.StoreData -512
appears in dmesg when a pending store data gets interrupted and some
processes may just hang.
Additionally, make the code that checks/updates the server record ignore
failure due to interruption if the main call is uninterruptible and if the
server has an address list. The next op will check it again since the
expiration time on the old list has past.
Fixes: d2ddc776a458 ("afs: Overhaul volume and server record caching and fileserver rotation")
Reported-by: Jonathan Billings <jsbillings@jsbillings.org>
Reported-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-08 23:16:31 +08:00
|
|
|
afs_set_fc_call(call, fc);
|
2019-04-25 21:26:50 +08:00
|
|
|
afs_make_call(&fc->ac, call, GFP_NOFS);
|
|
|
|
return afs_wait_for_call_to_complete(call, &fc->ac);
|
2018-04-10 04:12:31 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Deliver reply data to an FS.InlineBulkStatus call
|
|
|
|
*/
|
|
|
|
static int afs_deliver_fs_inline_bulk_status(struct afs_call *call)
|
|
|
|
{
|
2019-05-09 23:17:05 +08:00
|
|
|
struct afs_status_cb *scb;
|
2018-04-10 04:12:31 +08:00
|
|
|
const __be32 *bp;
|
|
|
|
u32 tmp;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
_enter("{%u}", call->unmarshall);
|
|
|
|
|
|
|
|
switch (call->unmarshall) {
|
|
|
|
case 0:
|
2018-10-20 07:57:56 +08:00
|
|
|
afs_extract_to_tmp(call);
|
2018-04-10 04:12:31 +08:00
|
|
|
call->unmarshall++;
|
2019-05-20 07:43:53 +08:00
|
|
|
/* Fall through */
|
2018-04-10 04:12:31 +08:00
|
|
|
|
|
|
|
/* Extract the file status count and array in two steps */
|
|
|
|
case 1:
|
|
|
|
_debug("extract status count");
|
2018-10-20 07:57:56 +08:00
|
|
|
ret = afs_extract_data(call, true);
|
2018-04-10 04:12:31 +08:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
tmp = ntohl(call->tmp);
|
|
|
|
_debug("status count: %u/%u", tmp, call->count2);
|
|
|
|
if (tmp != call->count2)
|
2018-10-20 07:57:56 +08:00
|
|
|
return afs_protocol_error(call, -EBADMSG,
|
|
|
|
afs_eproto_ibulkst_count);
|
2018-04-10 04:12:31 +08:00
|
|
|
|
|
|
|
call->count = 0;
|
|
|
|
call->unmarshall++;
|
|
|
|
more_counts:
|
2018-10-20 07:57:56 +08:00
|
|
|
afs_extract_to_buf(call, 21 * sizeof(__be32));
|
2019-01-11 05:52:25 +08:00
|
|
|
/* Fall through */
|
2019-05-20 07:43:53 +08:00
|
|
|
|
2018-04-10 04:12:31 +08:00
|
|
|
case 2:
|
|
|
|
_debug("extract status array %u", call->count);
|
2018-10-20 07:57:56 +08:00
|
|
|
ret = afs_extract_data(call, true);
|
2018-04-10 04:12:31 +08:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
bp = call->buffer;
|
2019-05-09 23:17:05 +08:00
|
|
|
scb = &call->out_scb[call->count];
|
2019-05-09 22:16:10 +08:00
|
|
|
ret = xdr_decode_AFSFetchStatus(&bp, call, scb);
|
2018-10-20 07:57:56 +08:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
2018-04-10 04:12:31 +08:00
|
|
|
|
|
|
|
call->count++;
|
|
|
|
if (call->count < call->count2)
|
|
|
|
goto more_counts;
|
|
|
|
|
|
|
|
call->count = 0;
|
|
|
|
call->unmarshall++;
|
2018-10-20 07:57:56 +08:00
|
|
|
afs_extract_to_tmp(call);
|
2019-05-20 07:43:53 +08:00
|
|
|
/* Fall through */
|
2018-04-10 04:12:31 +08:00
|
|
|
|
|
|
|
/* Extract the callback count and array in two steps */
|
|
|
|
case 3:
|
|
|
|
_debug("extract CB count");
|
2018-10-20 07:57:56 +08:00
|
|
|
ret = afs_extract_data(call, true);
|
2018-04-10 04:12:31 +08:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
tmp = ntohl(call->tmp);
|
|
|
|
_debug("CB count: %u", tmp);
|
|
|
|
if (tmp != call->count2)
|
2018-10-20 07:57:56 +08:00
|
|
|
return afs_protocol_error(call, -EBADMSG,
|
|
|
|
afs_eproto_ibulkst_cb_count);
|
2018-04-10 04:12:31 +08:00
|
|
|
call->count = 0;
|
|
|
|
call->unmarshall++;
|
|
|
|
more_cbs:
|
2018-10-20 07:57:56 +08:00
|
|
|
afs_extract_to_buf(call, 3 * sizeof(__be32));
|
2019-01-11 05:52:25 +08:00
|
|
|
/* Fall through */
|
2019-05-20 07:43:53 +08:00
|
|
|
|
2018-04-10 04:12:31 +08:00
|
|
|
case 4:
|
|
|
|
_debug("extract CB array");
|
2018-10-20 07:57:56 +08:00
|
|
|
ret = afs_extract_data(call, true);
|
2018-04-10 04:12:31 +08:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
_debug("unmarshall CB array");
|
|
|
|
bp = call->buffer;
|
2019-05-09 23:17:05 +08:00
|
|
|
scb = &call->out_scb[call->count];
|
2019-05-09 22:16:10 +08:00
|
|
|
xdr_decode_AFSCallBack(&bp, call, scb);
|
2018-04-10 04:12:31 +08:00
|
|
|
call->count++;
|
|
|
|
if (call->count < call->count2)
|
|
|
|
goto more_cbs;
|
|
|
|
|
2018-10-20 07:57:56 +08:00
|
|
|
afs_extract_to_buf(call, 6 * sizeof(__be32));
|
2018-04-10 04:12:31 +08:00
|
|
|
call->unmarshall++;
|
2019-01-11 05:52:25 +08:00
|
|
|
/* Fall through */
|
2019-05-20 07:43:53 +08:00
|
|
|
|
2018-04-10 04:12:31 +08:00
|
|
|
case 5:
|
2018-10-20 07:57:56 +08:00
|
|
|
ret = afs_extract_data(call, false);
|
2018-04-10 04:12:31 +08:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
bp = call->buffer;
|
2019-05-10 05:22:50 +08:00
|
|
|
xdr_decode_AFSVolSync(&bp, call->out_volsync);
|
2018-04-10 04:12:31 +08:00
|
|
|
|
|
|
|
call->unmarshall++;
|
|
|
|
|
|
|
|
case 6:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
_leave(" = 0 [done]");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* FS.InlineBulkStatus operation type
|
|
|
|
*/
|
|
|
|
static const struct afs_call_type afs_RXFSInlineBulkStatus = {
|
|
|
|
.name = "FS.InlineBulkStatus",
|
|
|
|
.op = afs_FS_InlineBulkStatus,
|
|
|
|
.deliver = afs_deliver_fs_inline_bulk_status,
|
|
|
|
.destructor = afs_flat_call_destructor,
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Fetch the status information for up to 50 files
|
|
|
|
*/
|
|
|
|
int afs_fs_inline_bulk_status(struct afs_fs_cursor *fc,
|
|
|
|
struct afs_net *net,
|
|
|
|
struct afs_fid *fids,
|
2019-05-09 23:17:05 +08:00
|
|
|
struct afs_status_cb *statuses,
|
2018-04-10 04:12:31 +08:00
|
|
|
unsigned int nr_fids,
|
|
|
|
struct afs_volsync *volsync)
|
|
|
|
{
|
|
|
|
struct afs_call *call;
|
|
|
|
__be32 *bp;
|
|
|
|
int i;
|
|
|
|
|
2018-10-20 07:57:58 +08:00
|
|
|
if (test_bit(AFS_SERVER_FL_IS_YFS, &fc->cbi->server->flags))
|
2019-05-09 23:17:05 +08:00
|
|
|
return yfs_fs_inline_bulk_status(fc, net, fids, statuses,
|
2018-10-20 07:57:58 +08:00
|
|
|
nr_fids, volsync);
|
|
|
|
|
2018-10-20 07:57:57 +08:00
|
|
|
_enter(",%x,{%llx:%llu},%u",
|
2018-04-10 04:12:31 +08:00
|
|
|
key_serial(fc->key), fids[0].vid, fids[1].vnode, nr_fids);
|
|
|
|
|
|
|
|
call = afs_alloc_flat_call(net, &afs_RXFSInlineBulkStatus,
|
|
|
|
(2 + nr_fids * 3) * 4,
|
|
|
|
21 * 4);
|
|
|
|
if (!call) {
|
|
|
|
fc->ac.error = -ENOMEM;
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
call->key = fc->key;
|
2019-05-09 23:17:05 +08:00
|
|
|
call->out_scb = statuses;
|
2019-05-10 05:22:50 +08:00
|
|
|
call->out_volsync = volsync;
|
2018-04-10 04:12:31 +08:00
|
|
|
call->count2 = nr_fids;
|
|
|
|
|
|
|
|
/* marshall the parameters */
|
|
|
|
bp = call->request;
|
|
|
|
*bp++ = htonl(FSINLINEBULKSTATUS);
|
|
|
|
*bp++ = htonl(nr_fids);
|
|
|
|
for (i = 0; i < nr_fids; i++) {
|
|
|
|
*bp++ = htonl(fids[i].vid);
|
|
|
|
*bp++ = htonl(fids[i].vnode);
|
|
|
|
*bp++ = htonl(fids[i].unique);
|
|
|
|
}
|
|
|
|
|
|
|
|
afs_use_fs_server(call, fc->cbi);
|
|
|
|
trace_afs_make_fs_call(call, &fids[0]);
|
afs: Make some RPC operations non-interruptible
Make certain RPC operations non-interruptible, including:
(*) Set attributes
(*) Store data
We don't want to get interrupted during a flush on close, flush on
unlock, writeback or an inode update, leaving us in a state where we
still need to do the writeback or update.
(*) Extend lock
(*) Release lock
We don't want to get lock extension interrupted as the file locks on
the server are time-limited. Interruption during lock release is less
of an issue since the lock is time-limited, but it's better to
complete the release to avoid a several-minute wait to recover it.
*Setting* the lock isn't a problem if it's interrupted since we can
just return to the user and tell them they were interrupted - at
which point they can elect to retry.
(*) Silly unlink
We want to remove silly unlink files if we can, rather than leaving
them for the salvager to clear up.
Note that whilst these calls are no longer interruptible, they do have
timeouts on them, so if the server stops responding the call will fail with
something like ETIME or ECONNRESET.
Without this, the following:
kAFS: Unexpected error from FS.StoreData -512
appears in dmesg when a pending store data gets interrupted and some
processes may just hang.
Additionally, make the code that checks/updates the server record ignore
failure due to interruption if the main call is uninterruptible and if the
server has an address list. The next op will check it again since the
expiration time on the old list has past.
Fixes: d2ddc776a458 ("afs: Overhaul volume and server record caching and fileserver rotation")
Reported-by: Jonathan Billings <jsbillings@jsbillings.org>
Reported-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-08 23:16:31 +08:00
|
|
|
afs_set_fc_call(call, fc);
|
2019-04-25 21:26:50 +08:00
|
|
|
afs_make_call(&fc->ac, call, GFP_NOFS);
|
|
|
|
return afs_wait_for_call_to_complete(call, &fc->ac);
|
2018-04-10 04:12:31 +08:00
|
|
|
}
|
2019-04-25 21:26:52 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* deliver reply data to an FS.FetchACL
|
|
|
|
*/
|
|
|
|
static int afs_deliver_fs_fetch_acl(struct afs_call *call)
|
|
|
|
{
|
|
|
|
struct afs_acl *acl;
|
|
|
|
const __be32 *bp;
|
|
|
|
unsigned int size;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
_enter("{%u}", call->unmarshall);
|
|
|
|
|
|
|
|
switch (call->unmarshall) {
|
|
|
|
case 0:
|
|
|
|
afs_extract_to_tmp(call);
|
|
|
|
call->unmarshall++;
|
2019-05-20 07:43:53 +08:00
|
|
|
/* Fall through */
|
2019-04-25 21:26:52 +08:00
|
|
|
|
|
|
|
/* extract the returned data length */
|
|
|
|
case 1:
|
|
|
|
ret = afs_extract_data(call, true);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
size = call->count2 = ntohl(call->tmp);
|
|
|
|
size = round_up(size, 4);
|
|
|
|
|
|
|
|
acl = kmalloc(struct_size(acl, data, size), GFP_KERNEL);
|
|
|
|
if (!acl)
|
|
|
|
return -ENOMEM;
|
2019-05-10 05:22:50 +08:00
|
|
|
call->ret_acl = acl;
|
2019-04-25 21:26:52 +08:00
|
|
|
acl->size = call->count2;
|
|
|
|
afs_extract_begin(call, acl->data, size);
|
|
|
|
call->unmarshall++;
|
2019-05-20 07:43:53 +08:00
|
|
|
/* Fall through */
|
2019-04-25 21:26:52 +08:00
|
|
|
|
|
|
|
/* extract the returned data */
|
|
|
|
case 2:
|
|
|
|
ret = afs_extract_data(call, true);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
afs_extract_to_buf(call, (21 + 6) * 4);
|
|
|
|
call->unmarshall++;
|
2019-05-20 07:43:53 +08:00
|
|
|
/* Fall through */
|
2019-04-25 21:26:52 +08:00
|
|
|
|
|
|
|
/* extract the metadata */
|
|
|
|
case 3:
|
|
|
|
ret = afs_extract_data(call, false);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
bp = call->buffer;
|
2019-05-09 22:16:10 +08:00
|
|
|
ret = xdr_decode_AFSFetchStatus(&bp, call, call->out_scb);
|
2019-04-25 21:26:52 +08:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
2019-05-10 05:22:50 +08:00
|
|
|
xdr_decode_AFSVolSync(&bp, call->out_volsync);
|
2019-04-25 21:26:52 +08:00
|
|
|
|
|
|
|
call->unmarshall++;
|
|
|
|
|
|
|
|
case 4:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
_leave(" = 0 [done]");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void afs_destroy_fs_fetch_acl(struct afs_call *call)
|
|
|
|
{
|
2019-05-10 05:22:50 +08:00
|
|
|
kfree(call->ret_acl);
|
2019-04-25 21:26:52 +08:00
|
|
|
afs_flat_call_destructor(call);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* FS.FetchACL operation type
|
|
|
|
*/
|
|
|
|
static const struct afs_call_type afs_RXFSFetchACL = {
|
|
|
|
.name = "FS.FetchACL",
|
|
|
|
.op = afs_FS_FetchACL,
|
|
|
|
.deliver = afs_deliver_fs_fetch_acl,
|
|
|
|
.destructor = afs_destroy_fs_fetch_acl,
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Fetch the ACL for a file.
|
|
|
|
*/
|
2019-05-09 22:16:10 +08:00
|
|
|
struct afs_acl *afs_fs_fetch_acl(struct afs_fs_cursor *fc,
|
|
|
|
struct afs_status_cb *scb)
|
2019-04-25 21:26:52 +08:00
|
|
|
{
|
|
|
|
struct afs_vnode *vnode = fc->vnode;
|
|
|
|
struct afs_call *call;
|
|
|
|
struct afs_net *net = afs_v2net(vnode);
|
|
|
|
__be32 *bp;
|
|
|
|
|
|
|
|
_enter(",%x,{%llx:%llu},,",
|
|
|
|
key_serial(fc->key), vnode->fid.vid, vnode->fid.vnode);
|
|
|
|
|
|
|
|
call = afs_alloc_flat_call(net, &afs_RXFSFetchACL, 16, (21 + 6) * 4);
|
|
|
|
if (!call) {
|
|
|
|
fc->ac.error = -ENOMEM;
|
|
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
}
|
|
|
|
|
|
|
|
call->key = fc->key;
|
2019-05-10 05:22:50 +08:00
|
|
|
call->ret_acl = NULL;
|
2019-05-09 22:16:10 +08:00
|
|
|
call->out_scb = scb;
|
2019-05-10 05:22:50 +08:00
|
|
|
call->out_volsync = NULL;
|
2019-04-25 21:26:52 +08:00
|
|
|
|
|
|
|
/* marshall the parameters */
|
|
|
|
bp = call->request;
|
|
|
|
bp[0] = htonl(FSFETCHACL);
|
|
|
|
bp[1] = htonl(vnode->fid.vid);
|
|
|
|
bp[2] = htonl(vnode->fid.vnode);
|
|
|
|
bp[3] = htonl(vnode->fid.unique);
|
|
|
|
|
|
|
|
afs_use_fs_server(call, fc->cbi);
|
|
|
|
trace_afs_make_fs_call(call, &vnode->fid);
|
|
|
|
afs_make_call(&fc->ac, call, GFP_KERNEL);
|
|
|
|
return (struct afs_acl *)afs_wait_for_call_to_complete(call, &fc->ac);
|
|
|
|
}
|
2019-04-25 21:26:52 +08:00
|
|
|
|
2019-05-10 05:22:50 +08:00
|
|
|
/*
|
|
|
|
* Deliver reply data to any operation that returns file status and volume
|
|
|
|
* sync.
|
|
|
|
*/
|
|
|
|
static int afs_deliver_fs_file_status_and_vol(struct afs_call *call)
|
|
|
|
{
|
|
|
|
const __be32 *bp;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = afs_transfer_reply(call);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
bp = call->buffer;
|
2019-05-09 22:16:10 +08:00
|
|
|
ret = xdr_decode_AFSFetchStatus(&bp, call, call->out_scb);
|
2019-05-10 05:22:50 +08:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
xdr_decode_AFSVolSync(&bp, call->out_volsync);
|
|
|
|
|
|
|
|
_leave(" = 0 [done]");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2019-04-25 21:26:52 +08:00
|
|
|
/*
|
|
|
|
* FS.StoreACL operation type
|
|
|
|
*/
|
|
|
|
static const struct afs_call_type afs_RXFSStoreACL = {
|
|
|
|
.name = "FS.StoreACL",
|
|
|
|
.op = afs_FS_StoreACL,
|
2019-05-10 05:22:50 +08:00
|
|
|
.deliver = afs_deliver_fs_file_status_and_vol,
|
2019-04-25 21:26:52 +08:00
|
|
|
.destructor = afs_flat_call_destructor,
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Fetch the ACL for a file.
|
|
|
|
*/
|
2019-05-09 22:16:10 +08:00
|
|
|
int afs_fs_store_acl(struct afs_fs_cursor *fc, const struct afs_acl *acl,
|
|
|
|
struct afs_status_cb *scb)
|
2019-04-25 21:26:52 +08:00
|
|
|
{
|
|
|
|
struct afs_vnode *vnode = fc->vnode;
|
|
|
|
struct afs_call *call;
|
|
|
|
struct afs_net *net = afs_v2net(vnode);
|
|
|
|
size_t size;
|
|
|
|
__be32 *bp;
|
|
|
|
|
|
|
|
_enter(",%x,{%llx:%llu},,",
|
|
|
|
key_serial(fc->key), vnode->fid.vid, vnode->fid.vnode);
|
|
|
|
|
|
|
|
size = round_up(acl->size, 4);
|
|
|
|
call = afs_alloc_flat_call(net, &afs_RXFSStoreACL,
|
|
|
|
5 * 4 + size, (21 + 6) * 4);
|
|
|
|
if (!call) {
|
|
|
|
fc->ac.error = -ENOMEM;
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
call->key = fc->key;
|
2019-05-09 22:16:10 +08:00
|
|
|
call->out_scb = scb;
|
2019-05-10 05:22:50 +08:00
|
|
|
call->out_volsync = NULL;
|
2019-04-25 21:26:52 +08:00
|
|
|
|
|
|
|
/* marshall the parameters */
|
|
|
|
bp = call->request;
|
|
|
|
bp[0] = htonl(FSSTOREACL);
|
|
|
|
bp[1] = htonl(vnode->fid.vid);
|
|
|
|
bp[2] = htonl(vnode->fid.vnode);
|
|
|
|
bp[3] = htonl(vnode->fid.unique);
|
|
|
|
bp[4] = htonl(acl->size);
|
|
|
|
memcpy(&bp[5], acl->data, acl->size);
|
|
|
|
if (acl->size != size)
|
|
|
|
memset((void *)&bp[5] + acl->size, 0, size - acl->size);
|
|
|
|
|
|
|
|
trace_afs_make_fs_call(call, &vnode->fid);
|
|
|
|
afs_make_call(&fc->ac, call, GFP_KERNEL);
|
|
|
|
return afs_wait_for_call_to_complete(call, &fc->ac);
|
2018-04-10 04:12:31 +08:00
|
|
|
}
|