linux/sound/mips/hal2.c

938 lines
25 KiB
C
Raw Normal View History

/*
* Driver for A2 audio system used in SGI machines
* Copyright (c) 2008 Thomas Bogendoerfer <tsbogend@alpha.fanken.de>
*
* Based on OSS code from Ladislav Michl <ladis@linux-mips.org>, which
* was based on code from Ulf Carlsson
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
#include <linux/io.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/module.h>
#include <asm/sgi/hpc3.h>
#include <asm/sgi/ip22.h>
#include <sound/core.h>
#include <sound/control.h>
#include <sound/pcm.h>
#include <sound/pcm-indirect.h>
#include <sound/initval.h>
#include "hal2.h"
static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */
static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */
module_param(index, int, 0444);
MODULE_PARM_DESC(index, "Index value for SGI HAL2 soundcard.");
module_param(id, charp, 0444);
MODULE_PARM_DESC(id, "ID string for SGI HAL2 soundcard.");
MODULE_DESCRIPTION("ALSA driver for SGI HAL2 audio");
MODULE_AUTHOR("Thomas Bogendoerfer");
MODULE_LICENSE("GPL");
#define H2_BLOCK_SIZE 1024
#define H2_BUF_SIZE 16384
struct hal2_pbus {
struct hpc3_pbus_dmacregs *pbus;
int pbusnr;
unsigned int ctrl; /* Current state of pbus->pbdma_ctrl */
};
struct hal2_desc {
struct hpc_dma_desc desc;
u32 pad; /* padding */
};
struct hal2_codec {
struct snd_pcm_indirect pcm_indirect;
struct snd_pcm_substream *substream;
unsigned char *buffer;
dma_addr_t buffer_dma;
struct hal2_desc *desc;
dma_addr_t desc_dma;
int desc_count;
struct hal2_pbus pbus;
int voices; /* mono/stereo */
unsigned int sample_rate;
unsigned int master; /* Master frequency */
unsigned short mod; /* MOD value */
unsigned short inc; /* INC value */
};
#define H2_MIX_OUTPUT_ATT 0
#define H2_MIX_INPUT_GAIN 1
struct snd_hal2 {
struct snd_card *card;
struct hal2_ctl_regs *ctl_regs; /* HAL2 ctl registers */
struct hal2_aes_regs *aes_regs; /* HAL2 aes registers */
struct hal2_vol_regs *vol_regs; /* HAL2 vol registers */
struct hal2_syn_regs *syn_regs; /* HAL2 syn registers */
struct hal2_codec dac;
struct hal2_codec adc;
};
#define H2_INDIRECT_WAIT(regs) while (hal2_read(&regs->isr) & H2_ISR_TSTATUS);
#define H2_READ_ADDR(addr) (addr | (1<<7))
#define H2_WRITE_ADDR(addr) (addr)
static inline u32 hal2_read(u32 *reg)
{
return __raw_readl(reg);
}
static inline void hal2_write(u32 val, u32 *reg)
{
__raw_writel(val, reg);
}
static u32 hal2_i_read32(struct snd_hal2 *hal2, u16 addr)
{
u32 ret;
struct hal2_ctl_regs *regs = hal2->ctl_regs;
hal2_write(H2_READ_ADDR(addr), &regs->iar);
H2_INDIRECT_WAIT(regs);
ret = hal2_read(&regs->idr0) & 0xffff;
hal2_write(H2_READ_ADDR(addr) | 0x1, &regs->iar);
H2_INDIRECT_WAIT(regs);
ret |= (hal2_read(&regs->idr0) & 0xffff) << 16;
return ret;
}
static void hal2_i_write16(struct snd_hal2 *hal2, u16 addr, u16 val)
{
struct hal2_ctl_regs *regs = hal2->ctl_regs;
hal2_write(val, &regs->idr0);
hal2_write(0, &regs->idr1);
hal2_write(0, &regs->idr2);
hal2_write(0, &regs->idr3);
hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
H2_INDIRECT_WAIT(regs);
}
static void hal2_i_write32(struct snd_hal2 *hal2, u16 addr, u32 val)
{
struct hal2_ctl_regs *regs = hal2->ctl_regs;
hal2_write(val & 0xffff, &regs->idr0);
hal2_write(val >> 16, &regs->idr1);
hal2_write(0, &regs->idr2);
hal2_write(0, &regs->idr3);
hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
H2_INDIRECT_WAIT(regs);
}
static void hal2_i_setbit16(struct snd_hal2 *hal2, u16 addr, u16 bit)
{
struct hal2_ctl_regs *regs = hal2->ctl_regs;
hal2_write(H2_READ_ADDR(addr), &regs->iar);
H2_INDIRECT_WAIT(regs);
hal2_write((hal2_read(&regs->idr0) & 0xffff) | bit, &regs->idr0);
hal2_write(0, &regs->idr1);
hal2_write(0, &regs->idr2);
hal2_write(0, &regs->idr3);
hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
H2_INDIRECT_WAIT(regs);
}
static void hal2_i_clearbit16(struct snd_hal2 *hal2, u16 addr, u16 bit)
{
struct hal2_ctl_regs *regs = hal2->ctl_regs;
hal2_write(H2_READ_ADDR(addr), &regs->iar);
H2_INDIRECT_WAIT(regs);
hal2_write((hal2_read(&regs->idr0) & 0xffff) & ~bit, &regs->idr0);
hal2_write(0, &regs->idr1);
hal2_write(0, &regs->idr2);
hal2_write(0, &regs->idr3);
hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
H2_INDIRECT_WAIT(regs);
}
static int hal2_gain_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 2;
uinfo->value.integer.min = 0;
switch ((int)kcontrol->private_value) {
case H2_MIX_OUTPUT_ATT:
uinfo->value.integer.max = 31;
break;
case H2_MIX_INPUT_GAIN:
uinfo->value.integer.max = 15;
break;
}
return 0;
}
static int hal2_gain_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol);
u32 tmp;
int l, r;
switch ((int)kcontrol->private_value) {
case H2_MIX_OUTPUT_ATT:
tmp = hal2_i_read32(hal2, H2I_DAC_C2);
if (tmp & H2I_C2_MUTE) {
l = 0;
r = 0;
} else {
l = 31 - ((tmp >> H2I_C2_L_ATT_SHIFT) & 31);
r = 31 - ((tmp >> H2I_C2_R_ATT_SHIFT) & 31);
}
break;
case H2_MIX_INPUT_GAIN:
tmp = hal2_i_read32(hal2, H2I_ADC_C2);
l = (tmp >> H2I_C2_L_GAIN_SHIFT) & 15;
r = (tmp >> H2I_C2_R_GAIN_SHIFT) & 15;
break;
default:
return -EINVAL;
}
ucontrol->value.integer.value[0] = l;
ucontrol->value.integer.value[1] = r;
return 0;
}
static int hal2_gain_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol);
u32 old, new;
int l, r;
l = ucontrol->value.integer.value[0];
r = ucontrol->value.integer.value[1];
switch ((int)kcontrol->private_value) {
case H2_MIX_OUTPUT_ATT:
old = hal2_i_read32(hal2, H2I_DAC_C2);
new = old & ~(H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
if (l | r) {
l = 31 - l;
r = 31 - r;
new |= (l << H2I_C2_L_ATT_SHIFT);
new |= (r << H2I_C2_R_ATT_SHIFT);
} else
new |= H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE;
hal2_i_write32(hal2, H2I_DAC_C2, new);
break;
case H2_MIX_INPUT_GAIN:
old = hal2_i_read32(hal2, H2I_ADC_C2);
new = old & ~(H2I_C2_L_GAIN_M | H2I_C2_R_GAIN_M);
new |= (l << H2I_C2_L_GAIN_SHIFT);
new |= (r << H2I_C2_R_GAIN_SHIFT);
hal2_i_write32(hal2, H2I_ADC_C2, new);
break;
default:
return -EINVAL;
}
return old != new;
}
static const struct snd_kcontrol_new hal2_ctrl_headphone = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Headphone Playback Volume",
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.private_value = H2_MIX_OUTPUT_ATT,
.info = hal2_gain_info,
.get = hal2_gain_get,
.put = hal2_gain_put,
};
static const struct snd_kcontrol_new hal2_ctrl_mic = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Mic Capture Volume",
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.private_value = H2_MIX_INPUT_GAIN,
.info = hal2_gain_info,
.get = hal2_gain_get,
.put = hal2_gain_put,
};
static int hal2_mixer_create(struct snd_hal2 *hal2)
{
int err;
/* mute DAC */
hal2_i_write32(hal2, H2I_DAC_C2,
H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
/* mute ADC */
hal2_i_write32(hal2, H2I_ADC_C2, 0);
err = snd_ctl_add(hal2->card,
snd_ctl_new1(&hal2_ctrl_headphone, hal2));
if (err < 0)
return err;
err = snd_ctl_add(hal2->card,
snd_ctl_new1(&hal2_ctrl_mic, hal2));
if (err < 0)
return err;
return 0;
}
static irqreturn_t hal2_interrupt(int irq, void *dev_id)
{
struct snd_hal2 *hal2 = dev_id;
irqreturn_t ret = IRQ_NONE;
/* decide what caused this interrupt */
if (hal2->dac.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
snd_pcm_period_elapsed(hal2->dac.substream);
ret = IRQ_HANDLED;
}
if (hal2->adc.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
snd_pcm_period_elapsed(hal2->adc.substream);
ret = IRQ_HANDLED;
}
return ret;
}
static int hal2_compute_rate(struct hal2_codec *codec, unsigned int rate)
{
unsigned short mod;
if (44100 % rate < 48000 % rate) {
mod = 4 * 44100 / rate;
codec->master = 44100;
} else {
mod = 4 * 48000 / rate;
codec->master = 48000;
}
codec->inc = 4;
codec->mod = mod;
rate = 4 * codec->master / mod;
return rate;
}
static void hal2_set_dac_rate(struct snd_hal2 *hal2)
{
unsigned int master = hal2->dac.master;
int inc = hal2->dac.inc;
int mod = hal2->dac.mod;
hal2_i_write16(hal2, H2I_BRES1_C1, (master == 44100) ? 1 : 0);
hal2_i_write32(hal2, H2I_BRES1_C2,
((0xffff & (inc - mod - 1)) << 16) | inc);
}
static void hal2_set_adc_rate(struct snd_hal2 *hal2)
{
unsigned int master = hal2->adc.master;
int inc = hal2->adc.inc;
int mod = hal2->adc.mod;
hal2_i_write16(hal2, H2I_BRES2_C1, (master == 44100) ? 1 : 0);
hal2_i_write32(hal2, H2I_BRES2_C2,
((0xffff & (inc - mod - 1)) << 16) | inc);
}
static void hal2_setup_dac(struct snd_hal2 *hal2)
{
unsigned int fifobeg, fifoend, highwater, sample_size;
struct hal2_pbus *pbus = &hal2->dac.pbus;
/* Now we set up some PBUS information. The PBUS needs information about
* what portion of the fifo it will use. If it's receiving or
* transmitting, and finally whether the stream is little endian or big
* endian. The information is written later, on the start call.
*/
sample_size = 2 * hal2->dac.voices;
/* Fifo should be set to hold exactly four samples. Highwater mark
* should be set to two samples. */
highwater = (sample_size * 2) >> 1; /* halfwords */
fifobeg = 0; /* playback is first */
fifoend = (sample_size * 4) >> 3; /* doublewords */
pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_LD |
(highwater << 8) | (fifobeg << 16) | (fifoend << 24);
/* We disable everything before we do anything at all */
pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
/* Setup the HAL2 for playback */
hal2_set_dac_rate(hal2);
/* Set endianess */
hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECTX);
/* Set DMA bus */
hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
/* We are using 1st Bresenham clock generator for playback */
hal2_i_write16(hal2, H2I_DAC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
| (1 << H2I_C1_CLKID_SHIFT)
| (hal2->dac.voices << H2I_C1_DATAT_SHIFT));
}
static void hal2_setup_adc(struct snd_hal2 *hal2)
{
unsigned int fifobeg, fifoend, highwater, sample_size;
struct hal2_pbus *pbus = &hal2->adc.pbus;
sample_size = 2 * hal2->adc.voices;
highwater = (sample_size * 2) >> 1; /* halfwords */
fifobeg = (4 * 4) >> 3; /* record is second */
fifoend = (4 * 4 + sample_size * 4) >> 3; /* doublewords */
pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_RCV | HPC3_PDMACTRL_LD |
(highwater << 8) | (fifobeg << 16) | (fifoend << 24);
pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
/* Setup the HAL2 for record */
hal2_set_adc_rate(hal2);
/* Set endianess */
hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECR);
/* Set DMA bus */
hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
/* We are using 2nd Bresenham clock generator for record */
hal2_i_write16(hal2, H2I_ADC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
| (2 << H2I_C1_CLKID_SHIFT)
| (hal2->adc.voices << H2I_C1_DATAT_SHIFT));
}
static void hal2_start_dac(struct snd_hal2 *hal2)
{
struct hal2_pbus *pbus = &hal2->dac.pbus;
pbus->pbus->pbdma_dptr = hal2->dac.desc_dma;
pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
/* enable DAC */
hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
}
static void hal2_start_adc(struct snd_hal2 *hal2)
{
struct hal2_pbus *pbus = &hal2->adc.pbus;
pbus->pbus->pbdma_dptr = hal2->adc.desc_dma;
pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
/* enable ADC */
hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
}
static inline void hal2_stop_dac(struct snd_hal2 *hal2)
{
hal2->dac.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
/* The HAL2 itself may remain enabled safely */
}
static inline void hal2_stop_adc(struct snd_hal2 *hal2)
{
hal2->adc.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
}
static int hal2_alloc_dmabuf(struct hal2_codec *codec)
{
struct hal2_desc *desc;
dma_addr_t desc_dma, buffer_dma;
int count = H2_BUF_SIZE / H2_BLOCK_SIZE;
int i;
codec->buffer = dma_alloc_attrs(NULL, H2_BUF_SIZE, &buffer_dma,
GFP_KERNEL, DMA_ATTR_NON_CONSISTENT);
if (!codec->buffer)
return -ENOMEM;
desc = dma_alloc_attrs(NULL, count * sizeof(struct hal2_desc),
&desc_dma, GFP_KERNEL, DMA_ATTR_NON_CONSISTENT);
if (!desc) {
dma_free_attrs(NULL, H2_BUF_SIZE, codec->buffer, buffer_dma,
DMA_ATTR_NON_CONSISTENT);
return -ENOMEM;
}
codec->buffer_dma = buffer_dma;
codec->desc_dma = desc_dma;
codec->desc = desc;
for (i = 0; i < count; i++) {
desc->desc.pbuf = buffer_dma + i * H2_BLOCK_SIZE;
desc->desc.cntinfo = HPCDMA_XIE | H2_BLOCK_SIZE;
desc->desc.pnext = (i == count - 1) ?
desc_dma : desc_dma + (i + 1) * sizeof(struct hal2_desc);
desc++;
}
dma_cache_sync(NULL, codec->desc, count * sizeof(struct hal2_desc),
DMA_TO_DEVICE);
codec->desc_count = count;
return 0;
}
static void hal2_free_dmabuf(struct hal2_codec *codec)
{
dma_free_attrs(NULL, codec->desc_count * sizeof(struct hal2_desc),
codec->desc, codec->desc_dma, DMA_ATTR_NON_CONSISTENT);
dma_free_attrs(NULL, H2_BUF_SIZE, codec->buffer, codec->buffer_dma,
DMA_ATTR_NON_CONSISTENT);
}
static struct snd_pcm_hardware hal2_pcm_hw = {
.info = (SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER),
.formats = SNDRV_PCM_FMTBIT_S16_BE,
.rates = SNDRV_PCM_RATE_8000_48000,
.rate_min = 8000,
.rate_max = 48000,
.channels_min = 2,
.channels_max = 2,
.buffer_bytes_max = 65536,
.period_bytes_min = 1024,
.period_bytes_max = 65536,
.periods_min = 2,
.periods_max = 1024,
};
static int hal2_pcm_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params)
{
int err;
err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(params));
if (err < 0)
return err;
return 0;
}
static int hal2_pcm_hw_free(struct snd_pcm_substream *substream)
{
return snd_pcm_lib_free_pages(substream);
}
static int hal2_playback_open(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
int err;
runtime->hw = hal2_pcm_hw;
err = hal2_alloc_dmabuf(&hal2->dac);
if (err)
return err;
return 0;
}
static int hal2_playback_close(struct snd_pcm_substream *substream)
{
struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
hal2_free_dmabuf(&hal2->dac);
return 0;
}
static int hal2_playback_prepare(struct snd_pcm_substream *substream)
{
struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct hal2_codec *dac = &hal2->dac;
dac->voices = runtime->channels;
dac->sample_rate = hal2_compute_rate(dac, runtime->rate);
memset(&dac->pcm_indirect, 0, sizeof(dac->pcm_indirect));
dac->pcm_indirect.hw_buffer_size = H2_BUF_SIZE;
dac->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
dac->substream = substream;
hal2_setup_dac(hal2);
return 0;
}
static int hal2_playback_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
hal2->dac.pcm_indirect.hw_io = hal2->dac.buffer_dma;
hal2->dac.pcm_indirect.hw_data = 0;
substream->ops->ack(substream);
hal2_start_dac(hal2);
break;
case SNDRV_PCM_TRIGGER_STOP:
hal2_stop_dac(hal2);
break;
default:
return -EINVAL;
}
return 0;
}
static snd_pcm_uframes_t
hal2_playback_pointer(struct snd_pcm_substream *substream)
{
struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
struct hal2_codec *dac = &hal2->dac;
return snd_pcm_indirect_playback_pointer(substream, &dac->pcm_indirect,
dac->pbus.pbus->pbdma_bptr);
}
static void hal2_playback_transfer(struct snd_pcm_substream *substream,
struct snd_pcm_indirect *rec, size_t bytes)
{
struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
unsigned char *buf = hal2->dac.buffer + rec->hw_data;
memcpy(buf, substream->runtime->dma_area + rec->sw_data, bytes);
dma_cache_sync(NULL, buf, bytes, DMA_TO_DEVICE);
}
static int hal2_playback_ack(struct snd_pcm_substream *substream)
{
struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
struct hal2_codec *dac = &hal2->dac;
dac->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2;
return snd_pcm_indirect_playback_transfer(substream,
&dac->pcm_indirect,
hal2_playback_transfer);
}
static int hal2_capture_open(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
struct hal2_codec *adc = &hal2->adc;
int err;
runtime->hw = hal2_pcm_hw;
err = hal2_alloc_dmabuf(adc);
if (err)
return err;
return 0;
}
static int hal2_capture_close(struct snd_pcm_substream *substream)
{
struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
hal2_free_dmabuf(&hal2->adc);
return 0;
}
static int hal2_capture_prepare(struct snd_pcm_substream *substream)
{
struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct hal2_codec *adc = &hal2->adc;
adc->voices = runtime->channels;
adc->sample_rate = hal2_compute_rate(adc, runtime->rate);
memset(&adc->pcm_indirect, 0, sizeof(adc->pcm_indirect));
adc->pcm_indirect.hw_buffer_size = H2_BUF_SIZE;
adc->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2;
adc->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
adc->substream = substream;
hal2_setup_adc(hal2);
return 0;
}
static int hal2_capture_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
hal2->adc.pcm_indirect.hw_io = hal2->adc.buffer_dma;
hal2->adc.pcm_indirect.hw_data = 0;
printk(KERN_DEBUG "buffer_dma %x\n", hal2->adc.buffer_dma);
hal2_start_adc(hal2);
break;
case SNDRV_PCM_TRIGGER_STOP:
hal2_stop_adc(hal2);
break;
default:
return -EINVAL;
}
return 0;
}
static snd_pcm_uframes_t
hal2_capture_pointer(struct snd_pcm_substream *substream)
{
struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
struct hal2_codec *adc = &hal2->adc;
return snd_pcm_indirect_capture_pointer(substream, &adc->pcm_indirect,
adc->pbus.pbus->pbdma_bptr);
}
static void hal2_capture_transfer(struct snd_pcm_substream *substream,
struct snd_pcm_indirect *rec, size_t bytes)
{
struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
unsigned char *buf = hal2->adc.buffer + rec->hw_data;
dma_cache_sync(NULL, buf, bytes, DMA_FROM_DEVICE);
memcpy(substream->runtime->dma_area + rec->sw_data, buf, bytes);
}
static int hal2_capture_ack(struct snd_pcm_substream *substream)
{
struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
struct hal2_codec *adc = &hal2->adc;
return snd_pcm_indirect_capture_transfer(substream,
&adc->pcm_indirect,
hal2_capture_transfer);
}
static struct snd_pcm_ops hal2_playback_ops = {
.open = hal2_playback_open,
.close = hal2_playback_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = hal2_pcm_hw_params,
.hw_free = hal2_pcm_hw_free,
.prepare = hal2_playback_prepare,
.trigger = hal2_playback_trigger,
.pointer = hal2_playback_pointer,
.ack = hal2_playback_ack,
};
static struct snd_pcm_ops hal2_capture_ops = {
.open = hal2_capture_open,
.close = hal2_capture_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = hal2_pcm_hw_params,
.hw_free = hal2_pcm_hw_free,
.prepare = hal2_capture_prepare,
.trigger = hal2_capture_trigger,
.pointer = hal2_capture_pointer,
.ack = hal2_capture_ack,
};
static int hal2_pcm_create(struct snd_hal2 *hal2)
{
struct snd_pcm *pcm;
int err;
/* create first pcm device with one outputs and one input */
err = snd_pcm_new(hal2->card, "SGI HAL2 Audio", 0, 1, 1, &pcm);
if (err < 0)
return err;
pcm->private_data = hal2;
strcpy(pcm->name, "SGI HAL2");
/* set operators */
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
&hal2_playback_ops);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
&hal2_capture_ops);
snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
snd_dma_continuous_data(GFP_KERNEL),
0, 1024 * 1024);
return 0;
}
static int hal2_dev_free(struct snd_device *device)
{
struct snd_hal2 *hal2 = device->device_data;
free_irq(SGI_HPCDMA_IRQ, hal2);
kfree(hal2);
return 0;
}
static struct snd_device_ops hal2_ops = {
.dev_free = hal2_dev_free,
};
static void hal2_init_codec(struct hal2_codec *codec, struct hpc3_regs *hpc3,
int index)
{
codec->pbus.pbusnr = index;
codec->pbus.pbus = &hpc3->pbdma[index];
}
static int hal2_detect(struct snd_hal2 *hal2)
{
unsigned short board, major, minor;
unsigned short rev;
/* reset HAL2 */
hal2_write(0, &hal2->ctl_regs->isr);
/* release reset */
hal2_write(H2_ISR_GLOBAL_RESET_N | H2_ISR_CODEC_RESET_N,
&hal2->ctl_regs->isr);
hal2_i_write16(hal2, H2I_RELAY_C, H2I_RELAY_C_STATE);
rev = hal2_read(&hal2->ctl_regs->rev);
if (rev & H2_REV_AUDIO_PRESENT)
return -ENODEV;
board = (rev & H2_REV_BOARD_M) >> 12;
major = (rev & H2_REV_MAJOR_CHIP_M) >> 4;
minor = (rev & H2_REV_MINOR_CHIP_M);
printk(KERN_INFO "SGI HAL2 revision %i.%i.%i\n",
board, major, minor);
return 0;
}
static int hal2_create(struct snd_card *card, struct snd_hal2 **rchip)
{
struct snd_hal2 *hal2;
struct hpc3_regs *hpc3 = hpc3c0;
int err;
hal2 = kzalloc(sizeof(struct snd_hal2), GFP_KERNEL);
if (!hal2)
return -ENOMEM;
hal2->card = card;
if (request_irq(SGI_HPCDMA_IRQ, hal2_interrupt, IRQF_SHARED,
"SGI HAL2", hal2)) {
printk(KERN_ERR "HAL2: Can't get irq %d\n", SGI_HPCDMA_IRQ);
kfree(hal2);
return -EAGAIN;
}
hal2->ctl_regs = (struct hal2_ctl_regs *)hpc3->pbus_extregs[0];
hal2->aes_regs = (struct hal2_aes_regs *)hpc3->pbus_extregs[1];
hal2->vol_regs = (struct hal2_vol_regs *)hpc3->pbus_extregs[2];
hal2->syn_regs = (struct hal2_syn_regs *)hpc3->pbus_extregs[3];
if (hal2_detect(hal2) < 0) {
kfree(hal2);
return -ENODEV;
}
hal2_init_codec(&hal2->dac, hpc3, 0);
hal2_init_codec(&hal2->adc, hpc3, 1);
/*
* All DMA channel interfaces in HAL2 are designed to operate with
* PBUS programmed for 2 cycles in D3, 2 cycles in D4 and 2 cycles
* in D5. HAL2 is a 16-bit device which can accept both big and little
* endian format. It assumes that even address bytes are on high
* portion of PBUS (15:8) and assumes that HPC3 is programmed to
* accept a live (unsynchronized) version of P_DREQ_N from HAL2.
*/
#define HAL2_PBUS_DMACFG ((0 << HPC3_DMACFG_D3R_SHIFT) | \
(2 << HPC3_DMACFG_D4R_SHIFT) | \
(2 << HPC3_DMACFG_D5R_SHIFT) | \
(0 << HPC3_DMACFG_D3W_SHIFT) | \
(2 << HPC3_DMACFG_D4W_SHIFT) | \
(2 << HPC3_DMACFG_D5W_SHIFT) | \
HPC3_DMACFG_DS16 | \
HPC3_DMACFG_EVENHI | \
HPC3_DMACFG_RTIME | \
(8 << HPC3_DMACFG_BURST_SHIFT) | \
HPC3_DMACFG_DRQLIVE)
/*
* Ignore what's mentioned in the specification and write value which
* works in The Real World (TM)
*/
hpc3->pbus_dmacfg[hal2->dac.pbus.pbusnr][0] = 0x8208844;
hpc3->pbus_dmacfg[hal2->adc.pbus.pbusnr][0] = 0x8208844;
err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, hal2, &hal2_ops);
if (err < 0) {
free_irq(SGI_HPCDMA_IRQ, hal2);
kfree(hal2);
return err;
}
*rchip = hal2;
return 0;
}
static int hal2_probe(struct platform_device *pdev)
{
struct snd_card *card;
struct snd_hal2 *chip;
int err;
err = snd_card_new(&pdev->dev, index, id, THIS_MODULE, 0, &card);
if (err < 0)
return err;
err = hal2_create(card, &chip);
if (err < 0) {
snd_card_free(card);
return err;
}
err = hal2_pcm_create(chip);
if (err < 0) {
snd_card_free(card);
return err;
}
err = hal2_mixer_create(chip);
if (err < 0) {
snd_card_free(card);
return err;
}
strcpy(card->driver, "SGI HAL2 Audio");
strcpy(card->shortname, "SGI HAL2 Audio");
sprintf(card->longname, "%s irq %i",
card->shortname,
SGI_HPCDMA_IRQ);
err = snd_card_register(card);
if (err < 0) {
snd_card_free(card);
return err;
}
platform_set_drvdata(pdev, card);
return 0;
}
static int hal2_remove(struct platform_device *pdev)
{
struct snd_card *card = platform_get_drvdata(pdev);
snd_card_free(card);
return 0;
}
static struct platform_driver hal2_driver = {
.probe = hal2_probe,
.remove = hal2_remove,
.driver = {
.name = "sgihal2",
}
};
module_platform_driver(hal2_driver);