linux/sound/usb/midi.c

2418 lines
67 KiB
C
Raw Normal View History

/*
* usbmidi.c - ALSA USB MIDI driver
*
* Copyright (c) 2002-2009 Clemens Ladisch
* All rights reserved.
*
* Based on the OSS usb-midi driver by NAGANO Daisuke,
* NetBSD's umidi driver by Takuya SHIOZAKI,
* the "USB Device Class Definition for MIDI Devices" by Roland
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* Alternatively, this software may be distributed and/or modified under the
* terms of the GNU General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option) any later
* version.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/bitops.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/timer.h>
#include <linux/usb.h>
#include <linux/wait.h>
#include <linux/usb/audio.h>
#include <linux/module.h>
#include <sound/core.h>
#include <sound/control.h>
#include <sound/rawmidi.h>
#include <sound/asequencer.h>
#include "usbaudio.h"
#include "midi.h"
#include "power.h"
#include "helper.h"
/*
* define this to log all USB packets
*/
/* #define DUMP_PACKETS */
/*
* how long to wait after some USB errors, so that hub_wq can disconnect() us
* without too many spurious errors
*/
#define ERROR_DELAY_JIFFIES (HZ / 10)
#define OUTPUT_URBS 7
#define INPUT_URBS 7
MODULE_AUTHOR("Clemens Ladisch <clemens@ladisch.de>");
MODULE_DESCRIPTION("USB Audio/MIDI helper module");
MODULE_LICENSE("Dual BSD/GPL");
struct usb_ms_header_descriptor {
__u8 bLength;
__u8 bDescriptorType;
__u8 bDescriptorSubtype;
__u8 bcdMSC[2];
__le16 wTotalLength;
} __attribute__ ((packed));
struct usb_ms_endpoint_descriptor {
__u8 bLength;
__u8 bDescriptorType;
__u8 bDescriptorSubtype;
__u8 bNumEmbMIDIJack;
__u8 baAssocJackID[0];
} __attribute__ ((packed));
struct snd_usb_midi_in_endpoint;
struct snd_usb_midi_out_endpoint;
struct snd_usb_midi_endpoint;
struct usb_protocol_ops {
void (*input)(struct snd_usb_midi_in_endpoint*, uint8_t*, int);
void (*output)(struct snd_usb_midi_out_endpoint *ep, struct urb *urb);
void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t);
void (*init_out_endpoint)(struct snd_usb_midi_out_endpoint *);
void (*finish_out_endpoint)(struct snd_usb_midi_out_endpoint *);
};
struct snd_usb_midi {
struct usb_device *dev;
struct snd_card *card;
struct usb_interface *iface;
const struct snd_usb_audio_quirk *quirk;
struct snd_rawmidi *rmidi;
struct usb_protocol_ops *usb_protocol_ops;
struct list_head list;
struct timer_list error_timer;
spinlock_t disc_lock;
struct rw_semaphore disc_rwsem;
struct mutex mutex;
u32 usb_id;
int next_midi_device;
struct snd_usb_midi_endpoint {
struct snd_usb_midi_out_endpoint *out;
struct snd_usb_midi_in_endpoint *in;
} endpoints[MIDI_MAX_ENDPOINTS];
unsigned long input_triggered;
unsigned int opened[2];
unsigned char disconnected;
unsigned char input_running;
struct snd_kcontrol *roland_load_ctl;
};
struct snd_usb_midi_out_endpoint {
struct snd_usb_midi *umidi;
struct out_urb_context {
struct urb *urb;
struct snd_usb_midi_out_endpoint *ep;
} urbs[OUTPUT_URBS];
unsigned int active_urbs;
unsigned int drain_urbs;
int max_transfer; /* size of urb buffer */
struct tasklet_struct tasklet;
unsigned int next_urb;
spinlock_t buffer_lock;
struct usbmidi_out_port {
struct snd_usb_midi_out_endpoint *ep;
struct snd_rawmidi_substream *substream;
int active;
uint8_t cable; /* cable number << 4 */
uint8_t state;
#define STATE_UNKNOWN 0
#define STATE_1PARAM 1
#define STATE_2PARAM_1 2
#define STATE_2PARAM_2 3
#define STATE_SYSEX_0 4
#define STATE_SYSEX_1 5
#define STATE_SYSEX_2 6
uint8_t data[2];
} ports[0x10];
int current_port;
wait_queue_head_t drain_wait;
};
struct snd_usb_midi_in_endpoint {
struct snd_usb_midi *umidi;
struct urb *urbs[INPUT_URBS];
struct usbmidi_in_port {
struct snd_rawmidi_substream *substream;
u8 running_status_length;
} ports[0x10];
u8 seen_f5;
u8 error_resubmit;
int current_port;
};
static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint *ep);
static const uint8_t snd_usbmidi_cin_length[] = {
0, 0, 2, 3, 3, 1, 2, 3, 3, 3, 3, 3, 2, 2, 3, 1
};
/*
* Submits the URB, with error handling.
*/
static int snd_usbmidi_submit_urb(struct urb *urb, gfp_t flags)
{
int err = usb_submit_urb(urb, flags);
if (err < 0 && err != -ENODEV)
dev_err(&urb->dev->dev, "usb_submit_urb: %d\n", err);
return err;
}
/*
* Error handling for URB completion functions.
*/
static int snd_usbmidi_urb_error(const struct urb *urb)
{
switch (urb->status) {
/* manually unlinked, or device gone */
case -ENOENT:
case -ECONNRESET:
case -ESHUTDOWN:
case -ENODEV:
return -ENODEV;
/* errors that might occur during unplugging */
case -EPROTO:
case -ETIME:
case -EILSEQ:
return -EIO;
default:
dev_err(&urb->dev->dev, "urb status %d\n", urb->status);
return 0; /* continue */
}
}
/*
* Receives a chunk of MIDI data.
*/
static void snd_usbmidi_input_data(struct snd_usb_midi_in_endpoint *ep,
int portidx, uint8_t *data, int length)
{
struct usbmidi_in_port *port = &ep->ports[portidx];
if (!port->substream) {
dev_dbg(&ep->umidi->dev->dev, "unexpected port %d!\n", portidx);
return;
}
if (!test_bit(port->substream->number, &ep->umidi->input_triggered))
return;
snd_rawmidi_receive(port->substream, data, length);
}
#ifdef DUMP_PACKETS
static void dump_urb(const char *type, const u8 *data, int length)
{
snd_printk(KERN_DEBUG "%s packet: [", type);
for (; length > 0; ++data, --length)
printk(" %02x", *data);
printk(" ]\n");
}
#else
#define dump_urb(type, data, length) /* nothing */
#endif
/*
* Processes the data read from the device.
*/
static void snd_usbmidi_in_urb_complete(struct urb *urb)
{
struct snd_usb_midi_in_endpoint *ep = urb->context;
if (urb->status == 0) {
dump_urb("received", urb->transfer_buffer, urb->actual_length);
ep->umidi->usb_protocol_ops->input(ep, urb->transfer_buffer,
urb->actual_length);
} else {
int err = snd_usbmidi_urb_error(urb);
if (err < 0) {
if (err != -ENODEV) {
ep->error_resubmit = 1;
mod_timer(&ep->umidi->error_timer,
jiffies + ERROR_DELAY_JIFFIES);
}
return;
}
}
urb->dev = ep->umidi->dev;
snd_usbmidi_submit_urb(urb, GFP_ATOMIC);
}
static void snd_usbmidi_out_urb_complete(struct urb *urb)
{
struct out_urb_context *context = urb->context;
struct snd_usb_midi_out_endpoint *ep = context->ep;
unsigned int urb_index;
spin_lock(&ep->buffer_lock);
urb_index = context - ep->urbs;
ep->active_urbs &= ~(1 << urb_index);
if (unlikely(ep->drain_urbs)) {
ep->drain_urbs &= ~(1 << urb_index);
wake_up(&ep->drain_wait);
}
spin_unlock(&ep->buffer_lock);
if (urb->status < 0) {
int err = snd_usbmidi_urb_error(urb);
if (err < 0) {
if (err != -ENODEV)
mod_timer(&ep->umidi->error_timer,
jiffies + ERROR_DELAY_JIFFIES);
return;
}
}
snd_usbmidi_do_output(ep);
}
/*
* This is called when some data should be transferred to the device
* (from one or more substreams).
*/
static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint *ep)
{
unsigned int urb_index;
struct urb *urb;
unsigned long flags;
spin_lock_irqsave(&ep->buffer_lock, flags);
if (ep->umidi->disconnected) {
spin_unlock_irqrestore(&ep->buffer_lock, flags);
return;
}
urb_index = ep->next_urb;
for (;;) {
if (!(ep->active_urbs & (1 << urb_index))) {
urb = ep->urbs[urb_index].urb;
urb->transfer_buffer_length = 0;
ep->umidi->usb_protocol_ops->output(ep, urb);
if (urb->transfer_buffer_length == 0)
break;
dump_urb("sending", urb->transfer_buffer,
urb->transfer_buffer_length);
urb->dev = ep->umidi->dev;
if (snd_usbmidi_submit_urb(urb, GFP_ATOMIC) < 0)
break;
ep->active_urbs |= 1 << urb_index;
}
if (++urb_index >= OUTPUT_URBS)
urb_index = 0;
if (urb_index == ep->next_urb)
break;
}
ep->next_urb = urb_index;
spin_unlock_irqrestore(&ep->buffer_lock, flags);
}
static void snd_usbmidi_out_tasklet(unsigned long data)
{
struct snd_usb_midi_out_endpoint *ep =
(struct snd_usb_midi_out_endpoint *) data;
snd_usbmidi_do_output(ep);
}
/* called after transfers had been interrupted due to some USB error */
static void snd_usbmidi_error_timer(unsigned long data)
{
struct snd_usb_midi *umidi = (struct snd_usb_midi *)data;
unsigned int i, j;
spin_lock(&umidi->disc_lock);
if (umidi->disconnected) {
spin_unlock(&umidi->disc_lock);
return;
}
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
struct snd_usb_midi_in_endpoint *in = umidi->endpoints[i].in;
if (in && in->error_resubmit) {
in->error_resubmit = 0;
for (j = 0; j < INPUT_URBS; ++j) {
ALSA: usb-audio: Don't resubmit pending URBs at MIDI error recovery In snd_usbmidi_error_timer(), the driver tries to resubmit MIDI input URBs to reactivate the MIDI stream, but this causes the error when some of URBs are still pending like: WARNING: CPU: 0 PID: 0 at ../drivers/usb/core/urb.c:339 usb_submit_urb+0x5f/0x70() URB ef705c40 submitted while active CPU: 0 PID: 0 Comm: swapper/0 Not tainted 3.16.6-2-desktop #1 Hardware name: FOXCONN TPS01/TPS01, BIOS 080015 03/23/2010 c0984bfa f4009ed4 c078deaf f4009ee4 c024c884 c09a135c f4009f00 00000000 c0984bfa 00000153 c061ac4f c061ac4f 00000009 00000001 ef705c40 e854d1c0 f4009eec c024c8d3 00000009 f4009ee4 c09a135c f4009f00 f4009f04 c061ac4f Call Trace: [<c0205df6>] try_stack_unwind+0x156/0x170 [<c020482a>] dump_trace+0x5a/0x1b0 [<c0205e56>] show_trace_log_lvl+0x46/0x50 [<c02049d1>] show_stack_log_lvl+0x51/0xe0 [<c0205eb7>] show_stack+0x27/0x50 [<c078deaf>] dump_stack+0x45/0x65 [<c024c884>] warn_slowpath_common+0x84/0xa0 [<c024c8d3>] warn_slowpath_fmt+0x33/0x40 [<c061ac4f>] usb_submit_urb+0x5f/0x70 [<f7974104>] snd_usbmidi_submit_urb+0x14/0x60 [snd_usbmidi_lib] [<f797483a>] snd_usbmidi_error_timer+0x6a/0xa0 [snd_usbmidi_lib] [<c02570c0>] call_timer_fn+0x30/0x130 [<c0257442>] run_timer_softirq+0x1c2/0x260 [<c0251493>] __do_softirq+0xc3/0x270 [<c0204732>] do_softirq_own_stack+0x22/0x30 [<c025186d>] irq_exit+0x8d/0xa0 [<c0795228>] smp_apic_timer_interrupt+0x38/0x50 [<c0794a3c>] apic_timer_interrupt+0x34/0x3c [<c0673d9e>] cpuidle_enter_state+0x3e/0xd0 [<c028bb8d>] cpu_idle_loop+0x29d/0x3e0 [<c028bd23>] cpu_startup_entry+0x53/0x60 [<c0bfac1e>] start_kernel+0x415/0x41a For avoiding these errors, check the pending URBs and skip resubmitting such ones. Reported-and-tested-by: Stefan Seyfried <stefan.seyfried@googlemail.com> Acked-by: Clemens Ladisch <clemens@ladisch.de> Cc: <stable@vger.kernel.org> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2014-12-07 01:02:55 +08:00
if (atomic_read(&in->urbs[j]->use_count))
continue;
in->urbs[j]->dev = umidi->dev;
snd_usbmidi_submit_urb(in->urbs[j], GFP_ATOMIC);
}
}
if (umidi->endpoints[i].out)
snd_usbmidi_do_output(umidi->endpoints[i].out);
}
spin_unlock(&umidi->disc_lock);
}
/* helper function to send static data that may not DMA-able */
static int send_bulk_static_data(struct snd_usb_midi_out_endpoint *ep,
const void *data, int len)
{
int err = 0;
void *buf = kmemdup(data, len, GFP_KERNEL);
if (!buf)
return -ENOMEM;
dump_urb("sending", buf, len);
if (ep->urbs[0].urb)
err = usb_bulk_msg(ep->umidi->dev, ep->urbs[0].urb->pipe,
buf, len, NULL, 250);
kfree(buf);
return err;
}
/*
* Standard USB MIDI protocol: see the spec.
* Midiman protocol: like the standard protocol, but the control byte is the
* fourth byte in each packet, and uses length instead of CIN.
*/
static void snd_usbmidi_standard_input(struct snd_usb_midi_in_endpoint *ep,
uint8_t *buffer, int buffer_length)
{
int i;
for (i = 0; i + 3 < buffer_length; i += 4)
if (buffer[i] != 0) {
int cable = buffer[i] >> 4;
int length = snd_usbmidi_cin_length[buffer[i] & 0x0f];
snd_usbmidi_input_data(ep, cable, &buffer[i + 1],
length);
}
}
static void snd_usbmidi_midiman_input(struct snd_usb_midi_in_endpoint *ep,
uint8_t *buffer, int buffer_length)
{
int i;
for (i = 0; i + 3 < buffer_length; i += 4)
if (buffer[i + 3] != 0) {
int port = buffer[i + 3] >> 4;
int length = buffer[i + 3] & 3;
snd_usbmidi_input_data(ep, port, &buffer[i], length);
}
}
/*
* Buggy M-Audio device: running status on input results in a packet that has
* the data bytes but not the status byte and that is marked with CIN 4.
*/
static void snd_usbmidi_maudio_broken_running_status_input(
struct snd_usb_midi_in_endpoint *ep,
uint8_t *buffer, int buffer_length)
{
int i;
for (i = 0; i + 3 < buffer_length; i += 4)
if (buffer[i] != 0) {
int cable = buffer[i] >> 4;
u8 cin = buffer[i] & 0x0f;
struct usbmidi_in_port *port = &ep->ports[cable];
int length;
length = snd_usbmidi_cin_length[cin];
if (cin == 0xf && buffer[i + 1] >= 0xf8)
; /* realtime msg: no running status change */
else if (cin >= 0x8 && cin <= 0xe)
/* channel msg */
port->running_status_length = length - 1;
else if (cin == 0x4 &&
port->running_status_length != 0 &&
buffer[i + 1] < 0x80)
/* CIN 4 that is not a SysEx */
length = port->running_status_length;
else
/*
* All other msgs cannot begin running status.
* (A channel msg sent as two or three CIN 0xF
* packets could in theory, but this device
* doesn't use this format.)
*/
port->running_status_length = 0;
snd_usbmidi_input_data(ep, cable, &buffer[i + 1],
length);
}
}
/*
* CME protocol: like the standard protocol, but SysEx commands are sent as a
* single USB packet preceded by a 0x0F byte.
*/
static void snd_usbmidi_cme_input(struct snd_usb_midi_in_endpoint *ep,
uint8_t *buffer, int buffer_length)
{
if (buffer_length < 2 || (buffer[0] & 0x0f) != 0x0f)
snd_usbmidi_standard_input(ep, buffer, buffer_length);
else
snd_usbmidi_input_data(ep, buffer[0] >> 4,
&buffer[1], buffer_length - 1);
}
/*
* Adds one USB MIDI packet to the output buffer.
*/
static void snd_usbmidi_output_standard_packet(struct urb *urb, uint8_t p0,
uint8_t p1, uint8_t p2,
uint8_t p3)
{
uint8_t *buf =
(uint8_t *)urb->transfer_buffer + urb->transfer_buffer_length;
buf[0] = p0;
buf[1] = p1;
buf[2] = p2;
buf[3] = p3;
urb->transfer_buffer_length += 4;
}
/*
* Adds one Midiman packet to the output buffer.
*/
static void snd_usbmidi_output_midiman_packet(struct urb *urb, uint8_t p0,
uint8_t p1, uint8_t p2,
uint8_t p3)
{
uint8_t *buf =
(uint8_t *)urb->transfer_buffer + urb->transfer_buffer_length;
buf[0] = p1;
buf[1] = p2;
buf[2] = p3;
buf[3] = (p0 & 0xf0) | snd_usbmidi_cin_length[p0 & 0x0f];
urb->transfer_buffer_length += 4;
}
/*
* Converts MIDI commands to USB MIDI packets.
*/
static void snd_usbmidi_transmit_byte(struct usbmidi_out_port *port,
uint8_t b, struct urb *urb)
{
uint8_t p0 = port->cable;
void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t) =
port->ep->umidi->usb_protocol_ops->output_packet;
if (b >= 0xf8) {
output_packet(urb, p0 | 0x0f, b, 0, 0);
} else if (b >= 0xf0) {
switch (b) {
case 0xf0:
port->data[0] = b;
port->state = STATE_SYSEX_1;
break;
case 0xf1:
case 0xf3:
port->data[0] = b;
port->state = STATE_1PARAM;
break;
case 0xf2:
port->data[0] = b;
port->state = STATE_2PARAM_1;
break;
case 0xf4:
case 0xf5:
port->state = STATE_UNKNOWN;
break;
case 0xf6:
output_packet(urb, p0 | 0x05, 0xf6, 0, 0);
port->state = STATE_UNKNOWN;
break;
case 0xf7:
switch (port->state) {
case STATE_SYSEX_0:
output_packet(urb, p0 | 0x05, 0xf7, 0, 0);
break;
case STATE_SYSEX_1:
output_packet(urb, p0 | 0x06, port->data[0],
0xf7, 0);
break;
case STATE_SYSEX_2:
output_packet(urb, p0 | 0x07, port->data[0],
port->data[1], 0xf7);
break;
}
port->state = STATE_UNKNOWN;
break;
}
} else if (b >= 0x80) {
port->data[0] = b;
if (b >= 0xc0 && b <= 0xdf)
port->state = STATE_1PARAM;
else
port->state = STATE_2PARAM_1;
} else { /* b < 0x80 */
switch (port->state) {
case STATE_1PARAM:
if (port->data[0] < 0xf0) {
p0 |= port->data[0] >> 4;
} else {
p0 |= 0x02;
port->state = STATE_UNKNOWN;
}
output_packet(urb, p0, port->data[0], b, 0);
break;
case STATE_2PARAM_1:
port->data[1] = b;
port->state = STATE_2PARAM_2;
break;
case STATE_2PARAM_2:
if (port->data[0] < 0xf0) {
p0 |= port->data[0] >> 4;
port->state = STATE_2PARAM_1;
} else {
p0 |= 0x03;
port->state = STATE_UNKNOWN;
}
output_packet(urb, p0, port->data[0], port->data[1], b);
break;
case STATE_SYSEX_0:
port->data[0] = b;
port->state = STATE_SYSEX_1;
break;
case STATE_SYSEX_1:
port->data[1] = b;
port->state = STATE_SYSEX_2;
break;
case STATE_SYSEX_2:
output_packet(urb, p0 | 0x04, port->data[0],
port->data[1], b);
port->state = STATE_SYSEX_0;
break;
}
}
}
static void snd_usbmidi_standard_output(struct snd_usb_midi_out_endpoint *ep,
struct urb *urb)
{
int p;
/* FIXME: lower-numbered ports can starve higher-numbered ports */
for (p = 0; p < 0x10; ++p) {
struct usbmidi_out_port *port = &ep->ports[p];
if (!port->active)
continue;
while (urb->transfer_buffer_length + 3 < ep->max_transfer) {
uint8_t b;
if (snd_rawmidi_transmit(port->substream, &b, 1) != 1) {
port->active = 0;
break;
}
snd_usbmidi_transmit_byte(port, b, urb);
}
}
}
static struct usb_protocol_ops snd_usbmidi_standard_ops = {
.input = snd_usbmidi_standard_input,
.output = snd_usbmidi_standard_output,
.output_packet = snd_usbmidi_output_standard_packet,
};
static struct usb_protocol_ops snd_usbmidi_midiman_ops = {
.input = snd_usbmidi_midiman_input,
.output = snd_usbmidi_standard_output,
.output_packet = snd_usbmidi_output_midiman_packet,
};
static struct usb_protocol_ops snd_usbmidi_maudio_broken_running_status_ops = {
.input = snd_usbmidi_maudio_broken_running_status_input,
.output = snd_usbmidi_standard_output,
.output_packet = snd_usbmidi_output_standard_packet,
};
static struct usb_protocol_ops snd_usbmidi_cme_ops = {
.input = snd_usbmidi_cme_input,
.output = snd_usbmidi_standard_output,
.output_packet = snd_usbmidi_output_standard_packet,
};
/*
* AKAI MPD16 protocol:
*
* For control port (endpoint 1):
* ==============================
* One or more chunks consisting of first byte of (0x10 | msg_len) and then a
* SysEx message (msg_len=9 bytes long).
*
* For data port (endpoint 2):
* ===========================
* One or more chunks consisting of first byte of (0x20 | msg_len) and then a
* MIDI message (msg_len bytes long)
*
* Messages sent: Active Sense, Note On, Poly Pressure, Control Change.
*/
static void snd_usbmidi_akai_input(struct snd_usb_midi_in_endpoint *ep,
uint8_t *buffer, int buffer_length)
{
unsigned int pos = 0;
unsigned int len = (unsigned int)buffer_length;
while (pos < len) {
unsigned int port = (buffer[pos] >> 4) - 1;
unsigned int msg_len = buffer[pos] & 0x0f;
pos++;
if (pos + msg_len <= len && port < 2)
snd_usbmidi_input_data(ep, 0, &buffer[pos], msg_len);
pos += msg_len;
}
}
#define MAX_AKAI_SYSEX_LEN 9
static void snd_usbmidi_akai_output(struct snd_usb_midi_out_endpoint *ep,
struct urb *urb)
{
uint8_t *msg;
int pos, end, count, buf_end;
uint8_t tmp[MAX_AKAI_SYSEX_LEN];
struct snd_rawmidi_substream *substream = ep->ports[0].substream;
if (!ep->ports[0].active)
return;
msg = urb->transfer_buffer + urb->transfer_buffer_length;
buf_end = ep->max_transfer - MAX_AKAI_SYSEX_LEN - 1;
/* only try adding more data when there's space for at least 1 SysEx */
while (urb->transfer_buffer_length < buf_end) {
count = snd_rawmidi_transmit_peek(substream,
tmp, MAX_AKAI_SYSEX_LEN);
if (!count) {
ep->ports[0].active = 0;
return;
}
/* try to skip non-SysEx data */
for (pos = 0; pos < count && tmp[pos] != 0xF0; pos++)
;
if (pos > 0) {
snd_rawmidi_transmit_ack(substream, pos);
continue;
}
/* look for the start or end marker */
for (end = 1; end < count && tmp[end] < 0xF0; end++)
;
/* next SysEx started before the end of current one */
if (end < count && tmp[end] == 0xF0) {
/* it's incomplete - drop it */
snd_rawmidi_transmit_ack(substream, end);
continue;
}
/* SysEx complete */
if (end < count && tmp[end] == 0xF7) {
/* queue it, ack it, and get the next one */
count = end + 1;
msg[0] = 0x10 | count;
memcpy(&msg[1], tmp, count);
snd_rawmidi_transmit_ack(substream, count);
urb->transfer_buffer_length += count + 1;
msg += count + 1;
continue;
}
/* less than 9 bytes and no end byte - wait for more */
if (count < MAX_AKAI_SYSEX_LEN) {
ep->ports[0].active = 0;
return;
}
/* 9 bytes and no end marker in sight - malformed, skip it */
snd_rawmidi_transmit_ack(substream, count);
}
}
static struct usb_protocol_ops snd_usbmidi_akai_ops = {
.input = snd_usbmidi_akai_input,
.output = snd_usbmidi_akai_output,
};
/*
* Novation USB MIDI protocol: number of data bytes is in the first byte
* (when receiving) (+1!) or in the second byte (when sending); data begins
* at the third byte.
*/
static void snd_usbmidi_novation_input(struct snd_usb_midi_in_endpoint *ep,
uint8_t *buffer, int buffer_length)
{
if (buffer_length < 2 || !buffer[0] || buffer_length < buffer[0] + 1)
return;
snd_usbmidi_input_data(ep, 0, &buffer[2], buffer[0] - 1);
}
static void snd_usbmidi_novation_output(struct snd_usb_midi_out_endpoint *ep,
struct urb *urb)
{
uint8_t *transfer_buffer;
int count;
if (!ep->ports[0].active)
return;
transfer_buffer = urb->transfer_buffer;
count = snd_rawmidi_transmit(ep->ports[0].substream,
&transfer_buffer[2],
ep->max_transfer - 2);
if (count < 1) {
ep->ports[0].active = 0;
return;
}
transfer_buffer[0] = 0;
transfer_buffer[1] = count;
urb->transfer_buffer_length = 2 + count;
}
static struct usb_protocol_ops snd_usbmidi_novation_ops = {
.input = snd_usbmidi_novation_input,
.output = snd_usbmidi_novation_output,
};
/*
* "raw" protocol: just move raw MIDI bytes from/to the endpoint
*/
static void snd_usbmidi_raw_input(struct snd_usb_midi_in_endpoint *ep,
uint8_t *buffer, int buffer_length)
{
snd_usbmidi_input_data(ep, 0, buffer, buffer_length);
}
static void snd_usbmidi_raw_output(struct snd_usb_midi_out_endpoint *ep,
struct urb *urb)
{
int count;
if (!ep->ports[0].active)
return;
count = snd_rawmidi_transmit(ep->ports[0].substream,
urb->transfer_buffer,
ep->max_transfer);
if (count < 1) {
ep->ports[0].active = 0;
return;
}
urb->transfer_buffer_length = count;
}
static struct usb_protocol_ops snd_usbmidi_raw_ops = {
.input = snd_usbmidi_raw_input,
.output = snd_usbmidi_raw_output,
};
/*
* FTDI protocol: raw MIDI bytes, but input packets have two modem status bytes.
*/
static void snd_usbmidi_ftdi_input(struct snd_usb_midi_in_endpoint *ep,
uint8_t *buffer, int buffer_length)
{
if (buffer_length > 2)
snd_usbmidi_input_data(ep, 0, buffer + 2, buffer_length - 2);
}
static struct usb_protocol_ops snd_usbmidi_ftdi_ops = {
.input = snd_usbmidi_ftdi_input,
.output = snd_usbmidi_raw_output,
};
static void snd_usbmidi_us122l_input(struct snd_usb_midi_in_endpoint *ep,
uint8_t *buffer, int buffer_length)
{
if (buffer_length != 9)
return;
buffer_length = 8;
while (buffer_length && buffer[buffer_length - 1] == 0xFD)
buffer_length--;
if (buffer_length)
snd_usbmidi_input_data(ep, 0, buffer, buffer_length);
}
static void snd_usbmidi_us122l_output(struct snd_usb_midi_out_endpoint *ep,
struct urb *urb)
{
int count;
if (!ep->ports[0].active)
return;
switch (snd_usb_get_speed(ep->umidi->dev)) {
case USB_SPEED_HIGH:
case USB_SPEED_SUPER:
count = 1;
break;
default:
count = 2;
}
count = snd_rawmidi_transmit(ep->ports[0].substream,
urb->transfer_buffer,
count);
if (count < 1) {
ep->ports[0].active = 0;
return;
}
memset(urb->transfer_buffer + count, 0xFD, ep->max_transfer - count);
urb->transfer_buffer_length = ep->max_transfer;
}
static struct usb_protocol_ops snd_usbmidi_122l_ops = {
.input = snd_usbmidi_us122l_input,
.output = snd_usbmidi_us122l_output,
};
/*
* Emagic USB MIDI protocol: raw MIDI with "F5 xx" port switching.
*/
static void snd_usbmidi_emagic_init_out(struct snd_usb_midi_out_endpoint *ep)
{
static const u8 init_data[] = {
/* initialization magic: "get version" */
0xf0,
0x00, 0x20, 0x31, /* Emagic */
0x64, /* Unitor8 */
0x0b, /* version number request */
0x00, /* command version */
0x00, /* EEPROM, box 0 */
0xf7
};
send_bulk_static_data(ep, init_data, sizeof(init_data));
/* while we're at it, pour on more magic */
send_bulk_static_data(ep, init_data, sizeof(init_data));
}
static void snd_usbmidi_emagic_finish_out(struct snd_usb_midi_out_endpoint *ep)
{
static const u8 finish_data[] = {
/* switch to patch mode with last preset */
0xf0,
0x00, 0x20, 0x31, /* Emagic */
0x64, /* Unitor8 */
0x10, /* patch switch command */
0x00, /* command version */
0x7f, /* to all boxes */
0x40, /* last preset in EEPROM */
0xf7
};
send_bulk_static_data(ep, finish_data, sizeof(finish_data));
}
static void snd_usbmidi_emagic_input(struct snd_usb_midi_in_endpoint *ep,
uint8_t *buffer, int buffer_length)
{
int i;
/* FF indicates end of valid data */
for (i = 0; i < buffer_length; ++i)
if (buffer[i] == 0xff) {
buffer_length = i;
break;
}
/* handle F5 at end of last buffer */
if (ep->seen_f5)
goto switch_port;
while (buffer_length > 0) {
/* determine size of data until next F5 */
for (i = 0; i < buffer_length; ++i)
if (buffer[i] == 0xf5)
break;
snd_usbmidi_input_data(ep, ep->current_port, buffer, i);
buffer += i;
buffer_length -= i;
if (buffer_length <= 0)
break;
/* assert(buffer[0] == 0xf5); */
ep->seen_f5 = 1;
++buffer;
--buffer_length;
switch_port:
if (buffer_length <= 0)
break;
if (buffer[0] < 0x80) {
ep->current_port = (buffer[0] - 1) & 15;
++buffer;
--buffer_length;
}
ep->seen_f5 = 0;
}
}
static void snd_usbmidi_emagic_output(struct snd_usb_midi_out_endpoint *ep,
struct urb *urb)
{
int port0 = ep->current_port;
uint8_t *buf = urb->transfer_buffer;
int buf_free = ep->max_transfer;
int length, i;
for (i = 0; i < 0x10; ++i) {
/* round-robin, starting at the last current port */
int portnum = (port0 + i) & 15;
struct usbmidi_out_port *port = &ep->ports[portnum];
if (!port->active)
continue;
if (snd_rawmidi_transmit_peek(port->substream, buf, 1) != 1) {
port->active = 0;
continue;
}
if (portnum != ep->current_port) {
if (buf_free < 2)
break;
ep->current_port = portnum;
buf[0] = 0xf5;
buf[1] = (portnum + 1) & 15;
buf += 2;
buf_free -= 2;
}
if (buf_free < 1)
break;
length = snd_rawmidi_transmit(port->substream, buf, buf_free);
if (length > 0) {
buf += length;
buf_free -= length;
if (buf_free < 1)
break;
}
}
if (buf_free < ep->max_transfer && buf_free > 0) {
*buf = 0xff;
--buf_free;
}
urb->transfer_buffer_length = ep->max_transfer - buf_free;
}
static struct usb_protocol_ops snd_usbmidi_emagic_ops = {
.input = snd_usbmidi_emagic_input,
.output = snd_usbmidi_emagic_output,
.init_out_endpoint = snd_usbmidi_emagic_init_out,
.finish_out_endpoint = snd_usbmidi_emagic_finish_out,
};
static void update_roland_altsetting(struct snd_usb_midi *umidi)
{
struct usb_interface *intf;
struct usb_host_interface *hostif;
struct usb_interface_descriptor *intfd;
int is_light_load;
intf = umidi->iface;
is_light_load = intf->cur_altsetting != intf->altsetting;
if (umidi->roland_load_ctl->private_value == is_light_load)
return;
hostif = &intf->altsetting[umidi->roland_load_ctl->private_value];
intfd = get_iface_desc(hostif);
snd_usbmidi_input_stop(&umidi->list);
usb_set_interface(umidi->dev, intfd->bInterfaceNumber,
intfd->bAlternateSetting);
snd_usbmidi_input_start(&umidi->list);
}
static int substream_open(struct snd_rawmidi_substream *substream, int dir,
int open)
{
struct snd_usb_midi *umidi = substream->rmidi->private_data;
struct snd_kcontrol *ctl;
down_read(&umidi->disc_rwsem);
if (umidi->disconnected) {
up_read(&umidi->disc_rwsem);
return open ? -ENODEV : 0;
}
mutex_lock(&umidi->mutex);
if (open) {
if (!umidi->opened[0] && !umidi->opened[1]) {
if (umidi->roland_load_ctl) {
ctl = umidi->roland_load_ctl;
ctl->vd[0].access |=
SNDRV_CTL_ELEM_ACCESS_INACTIVE;
snd_ctl_notify(umidi->card,
SNDRV_CTL_EVENT_MASK_INFO, &ctl->id);
update_roland_altsetting(umidi);
}
}
umidi->opened[dir]++;
if (umidi->opened[1])
snd_usbmidi_input_start(&umidi->list);
} else {
umidi->opened[dir]--;
if (!umidi->opened[1])
snd_usbmidi_input_stop(&umidi->list);
if (!umidi->opened[0] && !umidi->opened[1]) {
if (umidi->roland_load_ctl) {
ctl = umidi->roland_load_ctl;
ctl->vd[0].access &=
~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
snd_ctl_notify(umidi->card,
SNDRV_CTL_EVENT_MASK_INFO, &ctl->id);
}
}
}
mutex_unlock(&umidi->mutex);
up_read(&umidi->disc_rwsem);
return 0;
}
static int snd_usbmidi_output_open(struct snd_rawmidi_substream *substream)
{
struct snd_usb_midi *umidi = substream->rmidi->private_data;
struct usbmidi_out_port *port = NULL;
int i, j;
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
if (umidi->endpoints[i].out)
for (j = 0; j < 0x10; ++j)
if (umidi->endpoints[i].out->ports[j].substream == substream) {
port = &umidi->endpoints[i].out->ports[j];
break;
}
if (!port) {
snd_BUG();
return -ENXIO;
}
substream->runtime->private_data = port;
port->state = STATE_UNKNOWN;
return substream_open(substream, 0, 1);
}
static int snd_usbmidi_output_close(struct snd_rawmidi_substream *substream)
{
return substream_open(substream, 0, 0);
}
static void snd_usbmidi_output_trigger(struct snd_rawmidi_substream *substream,
int up)
{
struct usbmidi_out_port *port =
(struct usbmidi_out_port *)substream->runtime->private_data;
port->active = up;
if (up) {
if (port->ep->umidi->disconnected) {
/* gobble up remaining bytes to prevent wait in
* snd_rawmidi_drain_output */
while (!snd_rawmidi_transmit_empty(substream))
snd_rawmidi_transmit_ack(substream, 1);
return;
}
tasklet_schedule(&port->ep->tasklet);
}
}
static void snd_usbmidi_output_drain(struct snd_rawmidi_substream *substream)
{
struct usbmidi_out_port *port = substream->runtime->private_data;
struct snd_usb_midi_out_endpoint *ep = port->ep;
unsigned int drain_urbs;
DEFINE_WAIT(wait);
long timeout = msecs_to_jiffies(50);
if (ep->umidi->disconnected)
return;
/*
* The substream buffer is empty, but some data might still be in the
* currently active URBs, so we have to wait for those to complete.
*/
spin_lock_irq(&ep->buffer_lock);
drain_urbs = ep->active_urbs;
if (drain_urbs) {
ep->drain_urbs |= drain_urbs;
do {
prepare_to_wait(&ep->drain_wait, &wait,
TASK_UNINTERRUPTIBLE);
spin_unlock_irq(&ep->buffer_lock);
timeout = schedule_timeout(timeout);
spin_lock_irq(&ep->buffer_lock);
drain_urbs &= ep->drain_urbs;
} while (drain_urbs && timeout);
finish_wait(&ep->drain_wait, &wait);
}
spin_unlock_irq(&ep->buffer_lock);
}
static int snd_usbmidi_input_open(struct snd_rawmidi_substream *substream)
{
return substream_open(substream, 1, 1);
}
static int snd_usbmidi_input_close(struct snd_rawmidi_substream *substream)
{
return substream_open(substream, 1, 0);
}
static void snd_usbmidi_input_trigger(struct snd_rawmidi_substream *substream,
int up)
{
struct snd_usb_midi *umidi = substream->rmidi->private_data;
if (up)
set_bit(substream->number, &umidi->input_triggered);
else
clear_bit(substream->number, &umidi->input_triggered);
}
static struct snd_rawmidi_ops snd_usbmidi_output_ops = {
.open = snd_usbmidi_output_open,
.close = snd_usbmidi_output_close,
.trigger = snd_usbmidi_output_trigger,
.drain = snd_usbmidi_output_drain,
};
static struct snd_rawmidi_ops snd_usbmidi_input_ops = {
.open = snd_usbmidi_input_open,
.close = snd_usbmidi_input_close,
.trigger = snd_usbmidi_input_trigger
};
static void free_urb_and_buffer(struct snd_usb_midi *umidi, struct urb *urb,
unsigned int buffer_length)
{
usb_free_coherent(umidi->dev, buffer_length,
urb->transfer_buffer, urb->transfer_dma);
usb_free_urb(urb);
}
/*
* Frees an input endpoint.
* May be called when ep hasn't been initialized completely.
*/
static void snd_usbmidi_in_endpoint_delete(struct snd_usb_midi_in_endpoint *ep)
{
unsigned int i;
for (i = 0; i < INPUT_URBS; ++i)
if (ep->urbs[i])
free_urb_and_buffer(ep->umidi, ep->urbs[i],
ep->urbs[i]->transfer_buffer_length);
kfree(ep);
}
/*
* Creates an input endpoint.
*/
static int snd_usbmidi_in_endpoint_create(struct snd_usb_midi *umidi,
struct snd_usb_midi_endpoint_info *ep_info,
struct snd_usb_midi_endpoint *rep)
{
struct snd_usb_midi_in_endpoint *ep;
void *buffer;
unsigned int pipe;
int length;
unsigned int i;
rep->in = NULL;
ep = kzalloc(sizeof(*ep), GFP_KERNEL);
if (!ep)
return -ENOMEM;
ep->umidi = umidi;
for (i = 0; i < INPUT_URBS; ++i) {
ep->urbs[i] = usb_alloc_urb(0, GFP_KERNEL);
if (!ep->urbs[i]) {
snd_usbmidi_in_endpoint_delete(ep);
return -ENOMEM;
}
}
if (ep_info->in_interval)
pipe = usb_rcvintpipe(umidi->dev, ep_info->in_ep);
else
pipe = usb_rcvbulkpipe(umidi->dev, ep_info->in_ep);
length = usb_maxpacket(umidi->dev, pipe, 0);
for (i = 0; i < INPUT_URBS; ++i) {
buffer = usb_alloc_coherent(umidi->dev, length, GFP_KERNEL,
&ep->urbs[i]->transfer_dma);
if (!buffer) {
snd_usbmidi_in_endpoint_delete(ep);
return -ENOMEM;
}
if (ep_info->in_interval)
usb_fill_int_urb(ep->urbs[i], umidi->dev,
pipe, buffer, length,
snd_usbmidi_in_urb_complete,
ep, ep_info->in_interval);
else
usb_fill_bulk_urb(ep->urbs[i], umidi->dev,
pipe, buffer, length,
snd_usbmidi_in_urb_complete, ep);
ep->urbs[i]->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
}
rep->in = ep;
return 0;
}
/*
* Frees an output endpoint.
* May be called when ep hasn't been initialized completely.
*/
static void snd_usbmidi_out_endpoint_clear(struct snd_usb_midi_out_endpoint *ep)
{
unsigned int i;
for (i = 0; i < OUTPUT_URBS; ++i)
if (ep->urbs[i].urb) {
free_urb_and_buffer(ep->umidi, ep->urbs[i].urb,
ep->max_transfer);
ep->urbs[i].urb = NULL;
}
}
static void snd_usbmidi_out_endpoint_delete(struct snd_usb_midi_out_endpoint *ep)
{
snd_usbmidi_out_endpoint_clear(ep);
kfree(ep);
}
/*
* Creates an output endpoint, and initializes output ports.
*/
static int snd_usbmidi_out_endpoint_create(struct snd_usb_midi *umidi,
struct snd_usb_midi_endpoint_info *ep_info,
struct snd_usb_midi_endpoint *rep)
{
struct snd_usb_midi_out_endpoint *ep;
unsigned int i;
unsigned int pipe;
void *buffer;
rep->out = NULL;
ep = kzalloc(sizeof(*ep), GFP_KERNEL);
if (!ep)
return -ENOMEM;
ep->umidi = umidi;
for (i = 0; i < OUTPUT_URBS; ++i) {
ep->urbs[i].urb = usb_alloc_urb(0, GFP_KERNEL);
if (!ep->urbs[i].urb) {
snd_usbmidi_out_endpoint_delete(ep);
return -ENOMEM;
}
ep->urbs[i].ep = ep;
}
if (ep_info->out_interval)
pipe = usb_sndintpipe(umidi->dev, ep_info->out_ep);
else
pipe = usb_sndbulkpipe(umidi->dev, ep_info->out_ep);
switch (umidi->usb_id) {
default:
ep->max_transfer = usb_maxpacket(umidi->dev, pipe, 1);
break;
/*
* Various chips declare a packet size larger than 4 bytes, but
* do not actually work with larger packets:
*/
case USB_ID(0x0a92, 0x1020): /* ESI M4U */
case USB_ID(0x1430, 0x474b): /* RedOctane GH MIDI INTERFACE */
case USB_ID(0x15ca, 0x0101): /* Textech USB Midi Cable */
case USB_ID(0x15ca, 0x1806): /* Textech USB Midi Cable */
case USB_ID(0x1a86, 0x752d): /* QinHeng CH345 "USB2.0-MIDI" */
case USB_ID(0xfc08, 0x0101): /* Unknown vendor Cable */
ep->max_transfer = 4;
break;
/*
* Some devices only work with 9 bytes packet size:
*/
case USB_ID(0x0644, 0x800E): /* Tascam US-122L */
case USB_ID(0x0644, 0x800F): /* Tascam US-144 */
ep->max_transfer = 9;
break;
}
for (i = 0; i < OUTPUT_URBS; ++i) {
buffer = usb_alloc_coherent(umidi->dev,
ep->max_transfer, GFP_KERNEL,
&ep->urbs[i].urb->transfer_dma);
if (!buffer) {
snd_usbmidi_out_endpoint_delete(ep);
return -ENOMEM;
}
if (ep_info->out_interval)
usb_fill_int_urb(ep->urbs[i].urb, umidi->dev,
pipe, buffer, ep->max_transfer,
snd_usbmidi_out_urb_complete,
&ep->urbs[i], ep_info->out_interval);
else
usb_fill_bulk_urb(ep->urbs[i].urb, umidi->dev,
pipe, buffer, ep->max_transfer,
snd_usbmidi_out_urb_complete,
&ep->urbs[i]);
ep->urbs[i].urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
}
spin_lock_init(&ep->buffer_lock);
tasklet_init(&ep->tasklet, snd_usbmidi_out_tasklet, (unsigned long)ep);
init_waitqueue_head(&ep->drain_wait);
for (i = 0; i < 0x10; ++i)
if (ep_info->out_cables & (1 << i)) {
ep->ports[i].ep = ep;
ep->ports[i].cable = i << 4;
}
if (umidi->usb_protocol_ops->init_out_endpoint)
umidi->usb_protocol_ops->init_out_endpoint(ep);
rep->out = ep;
return 0;
}
/*
* Frees everything.
*/
static void snd_usbmidi_free(struct snd_usb_midi *umidi)
{
int i;
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
struct snd_usb_midi_endpoint *ep = &umidi->endpoints[i];
if (ep->out)
snd_usbmidi_out_endpoint_delete(ep->out);
if (ep->in)
snd_usbmidi_in_endpoint_delete(ep->in);
}
mutex_destroy(&umidi->mutex);
kfree(umidi);
}
/*
* Unlinks all URBs (must be done before the usb_device is deleted).
*/
void snd_usbmidi_disconnect(struct list_head *p)
{
struct snd_usb_midi *umidi;
unsigned int i, j;
umidi = list_entry(p, struct snd_usb_midi, list);
/*
* an URB's completion handler may start the timer and
* a timer may submit an URB. To reliably break the cycle
* a flag under lock must be used
*/
down_write(&umidi->disc_rwsem);
spin_lock_irq(&umidi->disc_lock);
umidi->disconnected = 1;
spin_unlock_irq(&umidi->disc_lock);
up_write(&umidi->disc_rwsem);
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
struct snd_usb_midi_endpoint *ep = &umidi->endpoints[i];
if (ep->out)
tasklet_kill(&ep->out->tasklet);
if (ep->out) {
for (j = 0; j < OUTPUT_URBS; ++j)
usb_kill_urb(ep->out->urbs[j].urb);
if (umidi->usb_protocol_ops->finish_out_endpoint)
umidi->usb_protocol_ops->finish_out_endpoint(ep->out);
ep->out->active_urbs = 0;
if (ep->out->drain_urbs) {
ep->out->drain_urbs = 0;
wake_up(&ep->out->drain_wait);
}
}
if (ep->in)
for (j = 0; j < INPUT_URBS; ++j)
usb_kill_urb(ep->in->urbs[j]);
/* free endpoints here; later call can result in Oops */
if (ep->out)
snd_usbmidi_out_endpoint_clear(ep->out);
if (ep->in) {
snd_usbmidi_in_endpoint_delete(ep->in);
ep->in = NULL;
}
}
del_timer_sync(&umidi->error_timer);
}
EXPORT_SYMBOL(snd_usbmidi_disconnect);
static void snd_usbmidi_rawmidi_free(struct snd_rawmidi *rmidi)
{
struct snd_usb_midi *umidi = rmidi->private_data;
snd_usbmidi_free(umidi);
}
static struct snd_rawmidi_substream *snd_usbmidi_find_substream(struct snd_usb_midi *umidi,
int stream,
int number)
{
struct snd_rawmidi_substream *substream;
list_for_each_entry(substream, &umidi->rmidi->streams[stream].substreams,
list) {
if (substream->number == number)
return substream;
}
return NULL;
}
/*
* This list specifies names for ports that do not fit into the standard
* "(product) MIDI (n)" schema because they aren't external MIDI ports,
* such as internal control or synthesizer ports.
*/
static struct port_info {
u32 id;
short int port;
short int voices;
const char *name;
unsigned int seq_flags;
} snd_usbmidi_port_info[] = {
#define PORT_INFO(vendor, product, num, name_, voices_, flags) \
{ .id = USB_ID(vendor, product), \
.port = num, .voices = voices_, \
.name = name_, .seq_flags = flags }
#define EXTERNAL_PORT(vendor, product, num, name) \
PORT_INFO(vendor, product, num, name, 0, \
SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
SNDRV_SEQ_PORT_TYPE_HARDWARE | \
SNDRV_SEQ_PORT_TYPE_PORT)
#define CONTROL_PORT(vendor, product, num, name) \
PORT_INFO(vendor, product, num, name, 0, \
SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
SNDRV_SEQ_PORT_TYPE_HARDWARE)
#define GM_SYNTH_PORT(vendor, product, num, name, voices) \
PORT_INFO(vendor, product, num, name, voices, \
SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
SNDRV_SEQ_PORT_TYPE_MIDI_GM | \
SNDRV_SEQ_PORT_TYPE_HARDWARE | \
SNDRV_SEQ_PORT_TYPE_SYNTHESIZER)
#define ROLAND_SYNTH_PORT(vendor, product, num, name, voices) \
PORT_INFO(vendor, product, num, name, voices, \
SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
SNDRV_SEQ_PORT_TYPE_MIDI_GM | \
SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \
SNDRV_SEQ_PORT_TYPE_MIDI_GS | \
SNDRV_SEQ_PORT_TYPE_MIDI_XG | \
SNDRV_SEQ_PORT_TYPE_HARDWARE | \
SNDRV_SEQ_PORT_TYPE_SYNTHESIZER)
#define SOUNDCANVAS_PORT(vendor, product, num, name, voices) \
PORT_INFO(vendor, product, num, name, voices, \
SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
SNDRV_SEQ_PORT_TYPE_MIDI_GM | \
SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \
SNDRV_SEQ_PORT_TYPE_MIDI_GS | \
SNDRV_SEQ_PORT_TYPE_MIDI_XG | \
SNDRV_SEQ_PORT_TYPE_MIDI_MT32 | \
SNDRV_SEQ_PORT_TYPE_HARDWARE | \
SNDRV_SEQ_PORT_TYPE_SYNTHESIZER)
/* Yamaha MOTIF XF */
GM_SYNTH_PORT(0x0499, 0x105c, 0, "%s Tone Generator", 128),
CONTROL_PORT(0x0499, 0x105c, 1, "%s Remote Control"),
EXTERNAL_PORT(0x0499, 0x105c, 2, "%s Thru"),
CONTROL_PORT(0x0499, 0x105c, 3, "%s Editor"),
/* Roland UA-100 */
CONTROL_PORT(0x0582, 0x0000, 2, "%s Control"),
/* Roland SC-8850 */
SOUNDCANVAS_PORT(0x0582, 0x0003, 0, "%s Part A", 128),
SOUNDCANVAS_PORT(0x0582, 0x0003, 1, "%s Part B", 128),
SOUNDCANVAS_PORT(0x0582, 0x0003, 2, "%s Part C", 128),
SOUNDCANVAS_PORT(0x0582, 0x0003, 3, "%s Part D", 128),
EXTERNAL_PORT(0x0582, 0x0003, 4, "%s MIDI 1"),
EXTERNAL_PORT(0x0582, 0x0003, 5, "%s MIDI 2"),
/* Roland U-8 */
EXTERNAL_PORT(0x0582, 0x0004, 0, "%s MIDI"),
CONTROL_PORT(0x0582, 0x0004, 1, "%s Control"),
/* Roland SC-8820 */
SOUNDCANVAS_PORT(0x0582, 0x0007, 0, "%s Part A", 64),
SOUNDCANVAS_PORT(0x0582, 0x0007, 1, "%s Part B", 64),
EXTERNAL_PORT(0x0582, 0x0007, 2, "%s MIDI"),
/* Roland SK-500 */
SOUNDCANVAS_PORT(0x0582, 0x000b, 0, "%s Part A", 64),
SOUNDCANVAS_PORT(0x0582, 0x000b, 1, "%s Part B", 64),
EXTERNAL_PORT(0x0582, 0x000b, 2, "%s MIDI"),
/* Roland SC-D70 */
SOUNDCANVAS_PORT(0x0582, 0x000c, 0, "%s Part A", 64),
SOUNDCANVAS_PORT(0x0582, 0x000c, 1, "%s Part B", 64),
EXTERNAL_PORT(0x0582, 0x000c, 2, "%s MIDI"),
/* Edirol UM-880 */
CONTROL_PORT(0x0582, 0x0014, 8, "%s Control"),
/* Edirol SD-90 */
ROLAND_SYNTH_PORT(0x0582, 0x0016, 0, "%s Part A", 128),
ROLAND_SYNTH_PORT(0x0582, 0x0016, 1, "%s Part B", 128),
EXTERNAL_PORT(0x0582, 0x0016, 2, "%s MIDI 1"),
EXTERNAL_PORT(0x0582, 0x0016, 3, "%s MIDI 2"),
/* Edirol UM-550 */
CONTROL_PORT(0x0582, 0x0023, 5, "%s Control"),
/* Edirol SD-20 */
ROLAND_SYNTH_PORT(0x0582, 0x0027, 0, "%s Part A", 64),
ROLAND_SYNTH_PORT(0x0582, 0x0027, 1, "%s Part B", 64),
EXTERNAL_PORT(0x0582, 0x0027, 2, "%s MIDI"),
/* Edirol SD-80 */
ROLAND_SYNTH_PORT(0x0582, 0x0029, 0, "%s Part A", 128),
ROLAND_SYNTH_PORT(0x0582, 0x0029, 1, "%s Part B", 128),
EXTERNAL_PORT(0x0582, 0x0029, 2, "%s MIDI 1"),
EXTERNAL_PORT(0x0582, 0x0029, 3, "%s MIDI 2"),
/* Edirol UA-700 */
EXTERNAL_PORT(0x0582, 0x002b, 0, "%s MIDI"),
CONTROL_PORT(0x0582, 0x002b, 1, "%s Control"),
/* Roland VariOS */
EXTERNAL_PORT(0x0582, 0x002f, 0, "%s MIDI"),
EXTERNAL_PORT(0x0582, 0x002f, 1, "%s External MIDI"),
EXTERNAL_PORT(0x0582, 0x002f, 2, "%s Sync"),
/* Edirol PCR */
EXTERNAL_PORT(0x0582, 0x0033, 0, "%s MIDI"),
EXTERNAL_PORT(0x0582, 0x0033, 1, "%s 1"),
EXTERNAL_PORT(0x0582, 0x0033, 2, "%s 2"),
/* BOSS GS-10 */
EXTERNAL_PORT(0x0582, 0x003b, 0, "%s MIDI"),
CONTROL_PORT(0x0582, 0x003b, 1, "%s Control"),
/* Edirol UA-1000 */
EXTERNAL_PORT(0x0582, 0x0044, 0, "%s MIDI"),
CONTROL_PORT(0x0582, 0x0044, 1, "%s Control"),
/* Edirol UR-80 */
EXTERNAL_PORT(0x0582, 0x0048, 0, "%s MIDI"),
EXTERNAL_PORT(0x0582, 0x0048, 1, "%s 1"),
EXTERNAL_PORT(0x0582, 0x0048, 2, "%s 2"),
/* Edirol PCR-A */
EXTERNAL_PORT(0x0582, 0x004d, 0, "%s MIDI"),
EXTERNAL_PORT(0x0582, 0x004d, 1, "%s 1"),
EXTERNAL_PORT(0x0582, 0x004d, 2, "%s 2"),
/* BOSS GT-PRO */
CONTROL_PORT(0x0582, 0x0089, 0, "%s Control"),
/* Edirol UM-3EX */
CONTROL_PORT(0x0582, 0x009a, 3, "%s Control"),
/* Roland VG-99 */
CONTROL_PORT(0x0582, 0x00b2, 0, "%s Control"),
EXTERNAL_PORT(0x0582, 0x00b2, 1, "%s MIDI"),
/* Cakewalk Sonar V-Studio 100 */
EXTERNAL_PORT(0x0582, 0x00eb, 0, "%s MIDI"),
CONTROL_PORT(0x0582, 0x00eb, 1, "%s Control"),
/* Roland VB-99 */
CONTROL_PORT(0x0582, 0x0102, 0, "%s Control"),
EXTERNAL_PORT(0x0582, 0x0102, 1, "%s MIDI"),
/* Roland A-PRO */
EXTERNAL_PORT(0x0582, 0x010f, 0, "%s MIDI"),
CONTROL_PORT(0x0582, 0x010f, 1, "%s 1"),
CONTROL_PORT(0x0582, 0x010f, 2, "%s 2"),
/* Roland SD-50 */
ROLAND_SYNTH_PORT(0x0582, 0x0114, 0, "%s Synth", 128),
EXTERNAL_PORT(0x0582, 0x0114, 1, "%s MIDI"),
CONTROL_PORT(0x0582, 0x0114, 2, "%s Control"),
/* Roland OCTA-CAPTURE */
EXTERNAL_PORT(0x0582, 0x0120, 0, "%s MIDI"),
CONTROL_PORT(0x0582, 0x0120, 1, "%s Control"),
EXTERNAL_PORT(0x0582, 0x0121, 0, "%s MIDI"),
CONTROL_PORT(0x0582, 0x0121, 1, "%s Control"),
/* Roland SPD-SX */
CONTROL_PORT(0x0582, 0x0145, 0, "%s Control"),
EXTERNAL_PORT(0x0582, 0x0145, 1, "%s MIDI"),
/* Roland A-Series */
CONTROL_PORT(0x0582, 0x0156, 0, "%s Keyboard"),
EXTERNAL_PORT(0x0582, 0x0156, 1, "%s MIDI"),
/* Roland INTEGRA-7 */
ROLAND_SYNTH_PORT(0x0582, 0x015b, 0, "%s Synth", 128),
CONTROL_PORT(0x0582, 0x015b, 1, "%s Control"),
/* M-Audio MidiSport 8x8 */
CONTROL_PORT(0x0763, 0x1031, 8, "%s Control"),
CONTROL_PORT(0x0763, 0x1033, 8, "%s Control"),
/* MOTU Fastlane */
EXTERNAL_PORT(0x07fd, 0x0001, 0, "%s MIDI A"),
EXTERNAL_PORT(0x07fd, 0x0001, 1, "%s MIDI B"),
/* Emagic Unitor8/AMT8/MT4 */
EXTERNAL_PORT(0x086a, 0x0001, 8, "%s Broadcast"),
EXTERNAL_PORT(0x086a, 0x0002, 8, "%s Broadcast"),
EXTERNAL_PORT(0x086a, 0x0003, 4, "%s Broadcast"),
/* Akai MPD16 */
CONTROL_PORT(0x09e8, 0x0062, 0, "%s Control"),
PORT_INFO(0x09e8, 0x0062, 1, "%s MIDI", 0,
SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC |
SNDRV_SEQ_PORT_TYPE_HARDWARE),
/* Access Music Virus TI */
EXTERNAL_PORT(0x133e, 0x0815, 0, "%s MIDI"),
PORT_INFO(0x133e, 0x0815, 1, "%s Synth", 0,
SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC |
SNDRV_SEQ_PORT_TYPE_HARDWARE |
SNDRV_SEQ_PORT_TYPE_SYNTHESIZER),
};
static struct port_info *find_port_info(struct snd_usb_midi *umidi, int number)
{
int i;
for (i = 0; i < ARRAY_SIZE(snd_usbmidi_port_info); ++i) {
if (snd_usbmidi_port_info[i].id == umidi->usb_id &&
snd_usbmidi_port_info[i].port == number)
return &snd_usbmidi_port_info[i];
}
return NULL;
}
static void snd_usbmidi_get_port_info(struct snd_rawmidi *rmidi, int number,
struct snd_seq_port_info *seq_port_info)
{
struct snd_usb_midi *umidi = rmidi->private_data;
struct port_info *port_info;
/* TODO: read port flags from descriptors */
port_info = find_port_info(umidi, number);
if (port_info) {
seq_port_info->type = port_info->seq_flags;
seq_port_info->midi_voices = port_info->voices;
}
}
static void snd_usbmidi_init_substream(struct snd_usb_midi *umidi,
int stream, int number,
struct snd_rawmidi_substream **rsubstream)
{
struct port_info *port_info;
const char *name_format;
struct snd_rawmidi_substream *substream =
snd_usbmidi_find_substream(umidi, stream, number);
if (!substream) {
dev_err(&umidi->dev->dev, "substream %d:%d not found\n", stream,
number);
return;
}
/* TODO: read port name from jack descriptor */
port_info = find_port_info(umidi, number);
name_format = port_info ? port_info->name : "%s MIDI %d";
snprintf(substream->name, sizeof(substream->name),
name_format, umidi->card->shortname, number + 1);
*rsubstream = substream;
}
/*
* Creates the endpoints and their ports.
*/
static int snd_usbmidi_create_endpoints(struct snd_usb_midi *umidi,
struct snd_usb_midi_endpoint_info *endpoints)
{
int i, j, err;
int out_ports = 0, in_ports = 0;
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
if (endpoints[i].out_cables) {
err = snd_usbmidi_out_endpoint_create(umidi,
&endpoints[i],
&umidi->endpoints[i]);
if (err < 0)
return err;
}
if (endpoints[i].in_cables) {
err = snd_usbmidi_in_endpoint_create(umidi,
&endpoints[i],
&umidi->endpoints[i]);
if (err < 0)
return err;
}
for (j = 0; j < 0x10; ++j) {
if (endpoints[i].out_cables & (1 << j)) {
snd_usbmidi_init_substream(umidi,
SNDRV_RAWMIDI_STREAM_OUTPUT,
out_ports,
&umidi->endpoints[i].out->ports[j].substream);
++out_ports;
}
if (endpoints[i].in_cables & (1 << j)) {
snd_usbmidi_init_substream(umidi,
SNDRV_RAWMIDI_STREAM_INPUT,
in_ports,
&umidi->endpoints[i].in->ports[j].substream);
++in_ports;
}
}
}
dev_dbg(&umidi->dev->dev, "created %d output and %d input ports\n",
out_ports, in_ports);
return 0;
}
/*
* Returns MIDIStreaming device capabilities.
*/
static int snd_usbmidi_get_ms_info(struct snd_usb_midi *umidi,
struct snd_usb_midi_endpoint_info *endpoints)
{
struct usb_interface *intf;
struct usb_host_interface *hostif;
struct usb_interface_descriptor *intfd;
struct usb_ms_header_descriptor *ms_header;
struct usb_host_endpoint *hostep;
struct usb_endpoint_descriptor *ep;
struct usb_ms_endpoint_descriptor *ms_ep;
int i, epidx;
intf = umidi->iface;
if (!intf)
return -ENXIO;
hostif = &intf->altsetting[0];
intfd = get_iface_desc(hostif);
ms_header = (struct usb_ms_header_descriptor *)hostif->extra;
if (hostif->extralen >= 7 &&
ms_header->bLength >= 7 &&
ms_header->bDescriptorType == USB_DT_CS_INTERFACE &&
ms_header->bDescriptorSubtype == UAC_HEADER)
dev_dbg(&umidi->dev->dev, "MIDIStreaming version %02x.%02x\n",
ms_header->bcdMSC[1], ms_header->bcdMSC[0]);
else
dev_warn(&umidi->dev->dev,
"MIDIStreaming interface descriptor not found\n");
epidx = 0;
for (i = 0; i < intfd->bNumEndpoints; ++i) {
hostep = &hostif->endpoint[i];
ep = get_ep_desc(hostep);
if (!usb_endpoint_xfer_bulk(ep) && !usb_endpoint_xfer_int(ep))
continue;
ms_ep = (struct usb_ms_endpoint_descriptor *)hostep->extra;
if (hostep->extralen < 4 ||
ms_ep->bLength < 4 ||
ms_ep->bDescriptorType != USB_DT_CS_ENDPOINT ||
ms_ep->bDescriptorSubtype != UAC_MS_GENERAL)
continue;
if (usb_endpoint_dir_out(ep)) {
if (endpoints[epidx].out_ep) {
if (++epidx >= MIDI_MAX_ENDPOINTS) {
dev_warn(&umidi->dev->dev,
"too many endpoints\n");
break;
}
}
endpoints[epidx].out_ep = usb_endpoint_num(ep);
if (usb_endpoint_xfer_int(ep))
endpoints[epidx].out_interval = ep->bInterval;
else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW)
/*
* Low speed bulk transfers don't exist, so
* force interrupt transfers for devices like
* ESI MIDI Mate that try to use them anyway.
*/
endpoints[epidx].out_interval = 1;
endpoints[epidx].out_cables =
(1 << ms_ep->bNumEmbMIDIJack) - 1;
dev_dbg(&umidi->dev->dev, "EP %02X: %d jack(s)\n",
ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack);
} else {
if (endpoints[epidx].in_ep) {
if (++epidx >= MIDI_MAX_ENDPOINTS) {
dev_warn(&umidi->dev->dev,
"too many endpoints\n");
break;
}
}
endpoints[epidx].in_ep = usb_endpoint_num(ep);
if (usb_endpoint_xfer_int(ep))
endpoints[epidx].in_interval = ep->bInterval;
else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW)
endpoints[epidx].in_interval = 1;
endpoints[epidx].in_cables =
(1 << ms_ep->bNumEmbMIDIJack) - 1;
dev_dbg(&umidi->dev->dev, "EP %02X: %d jack(s)\n",
ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack);
}
}
return 0;
}
static int roland_load_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *info)
{
static const char *const names[] = { "High Load", "Light Load" };
return snd_ctl_enum_info(info, 1, 2, names);
}
static int roland_load_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *value)
{
value->value.enumerated.item[0] = kcontrol->private_value;
return 0;
}
static int roland_load_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *value)
{
struct snd_usb_midi *umidi = kcontrol->private_data;
int changed;
if (value->value.enumerated.item[0] > 1)
return -EINVAL;
mutex_lock(&umidi->mutex);
changed = value->value.enumerated.item[0] != kcontrol->private_value;
if (changed)
kcontrol->private_value = value->value.enumerated.item[0];
mutex_unlock(&umidi->mutex);
return changed;
}
static struct snd_kcontrol_new roland_load_ctl = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "MIDI Input Mode",
.info = roland_load_info,
.get = roland_load_get,
.put = roland_load_put,
.private_value = 1,
};
/*
* On Roland devices, use the second alternate setting to be able to use
* the interrupt input endpoint.
*/
static void snd_usbmidi_switch_roland_altsetting(struct snd_usb_midi *umidi)
{
struct usb_interface *intf;
struct usb_host_interface *hostif;
struct usb_interface_descriptor *intfd;
intf = umidi->iface;
if (!intf || intf->num_altsetting != 2)
return;
hostif = &intf->altsetting[1];
intfd = get_iface_desc(hostif);
if (intfd->bNumEndpoints != 2 ||
(get_endpoint(hostif, 0)->bmAttributes &
USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK ||
(get_endpoint(hostif, 1)->bmAttributes &
USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_INT)
return;
dev_dbg(&umidi->dev->dev, "switching to altsetting %d with int ep\n",
intfd->bAlternateSetting);
usb_set_interface(umidi->dev, intfd->bInterfaceNumber,
intfd->bAlternateSetting);
umidi->roland_load_ctl = snd_ctl_new1(&roland_load_ctl, umidi);
if (snd_ctl_add(umidi->card, umidi->roland_load_ctl) < 0)
umidi->roland_load_ctl = NULL;
}
/*
* Try to find any usable endpoints in the interface.
*/
static int snd_usbmidi_detect_endpoints(struct snd_usb_midi *umidi,
struct snd_usb_midi_endpoint_info *endpoint,
int max_endpoints)
{
struct usb_interface *intf;
struct usb_host_interface *hostif;
struct usb_interface_descriptor *intfd;
struct usb_endpoint_descriptor *epd;
int i, out_eps = 0, in_eps = 0;
if (USB_ID_VENDOR(umidi->usb_id) == 0x0582)
snd_usbmidi_switch_roland_altsetting(umidi);
if (endpoint[0].out_ep || endpoint[0].in_ep)
return 0;
intf = umidi->iface;
if (!intf || intf->num_altsetting < 1)
return -ENOENT;
hostif = intf->cur_altsetting;
intfd = get_iface_desc(hostif);
for (i = 0; i < intfd->bNumEndpoints; ++i) {
epd = get_endpoint(hostif, i);
if (!usb_endpoint_xfer_bulk(epd) &&
!usb_endpoint_xfer_int(epd))
continue;
if (out_eps < max_endpoints &&
usb_endpoint_dir_out(epd)) {
endpoint[out_eps].out_ep = usb_endpoint_num(epd);
if (usb_endpoint_xfer_int(epd))
endpoint[out_eps].out_interval = epd->bInterval;
++out_eps;
}
if (in_eps < max_endpoints &&
usb_endpoint_dir_in(epd)) {
endpoint[in_eps].in_ep = usb_endpoint_num(epd);
if (usb_endpoint_xfer_int(epd))
endpoint[in_eps].in_interval = epd->bInterval;
++in_eps;
}
}
return (out_eps || in_eps) ? 0 : -ENOENT;
}
/*
* Detects the endpoints for one-port-per-endpoint protocols.
*/
static int snd_usbmidi_detect_per_port_endpoints(struct snd_usb_midi *umidi,
struct snd_usb_midi_endpoint_info *endpoints)
{
int err, i;
err = snd_usbmidi_detect_endpoints(umidi, endpoints, MIDI_MAX_ENDPOINTS);
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
if (endpoints[i].out_ep)
endpoints[i].out_cables = 0x0001;
if (endpoints[i].in_ep)
endpoints[i].in_cables = 0x0001;
}
return err;
}
/*
* Detects the endpoints and ports of Yamaha devices.
*/
static int snd_usbmidi_detect_yamaha(struct snd_usb_midi *umidi,
struct snd_usb_midi_endpoint_info *endpoint)
{
struct usb_interface *intf;
struct usb_host_interface *hostif;
struct usb_interface_descriptor *intfd;
uint8_t *cs_desc;
intf = umidi->iface;
if (!intf)
return -ENOENT;
hostif = intf->altsetting;
intfd = get_iface_desc(hostif);
if (intfd->bNumEndpoints < 1)
return -ENOENT;
/*
* For each port there is one MIDI_IN/OUT_JACK descriptor, not
* necessarily with any useful contents. So simply count 'em.
*/
for (cs_desc = hostif->extra;
cs_desc < hostif->extra + hostif->extralen && cs_desc[0] >= 2;
cs_desc += cs_desc[0]) {
if (cs_desc[1] == USB_DT_CS_INTERFACE) {
if (cs_desc[2] == UAC_MIDI_IN_JACK)
endpoint->in_cables =
(endpoint->in_cables << 1) | 1;
else if (cs_desc[2] == UAC_MIDI_OUT_JACK)
endpoint->out_cables =
(endpoint->out_cables << 1) | 1;
}
}
if (!endpoint->in_cables && !endpoint->out_cables)
return -ENOENT;
return snd_usbmidi_detect_endpoints(umidi, endpoint, 1);
}
/*
* Detects the endpoints and ports of Roland devices.
*/
static int snd_usbmidi_detect_roland(struct snd_usb_midi *umidi,
struct snd_usb_midi_endpoint_info *endpoint)
{
struct usb_interface *intf;
struct usb_host_interface *hostif;
u8 *cs_desc;
intf = umidi->iface;
if (!intf)
return -ENOENT;
hostif = intf->altsetting;
/*
* Some devices have a descriptor <06 24 F1 02 <inputs> <outputs>>,
* some have standard class descriptors, or both kinds, or neither.
*/
for (cs_desc = hostif->extra;
cs_desc < hostif->extra + hostif->extralen && cs_desc[0] >= 2;
cs_desc += cs_desc[0]) {
if (cs_desc[0] >= 6 &&
cs_desc[1] == USB_DT_CS_INTERFACE &&
cs_desc[2] == 0xf1 &&
cs_desc[3] == 0x02) {
endpoint->in_cables = (1 << cs_desc[4]) - 1;
endpoint->out_cables = (1 << cs_desc[5]) - 1;
return snd_usbmidi_detect_endpoints(umidi, endpoint, 1);
} else if (cs_desc[0] >= 7 &&
cs_desc[1] == USB_DT_CS_INTERFACE &&
cs_desc[2] == UAC_HEADER) {
return snd_usbmidi_get_ms_info(umidi, endpoint);
}
}
return -ENODEV;
}
/*
* Creates the endpoints and their ports for Midiman devices.
*/
static int snd_usbmidi_create_endpoints_midiman(struct snd_usb_midi *umidi,
struct snd_usb_midi_endpoint_info *endpoint)
{
struct snd_usb_midi_endpoint_info ep_info;
struct usb_interface *intf;
struct usb_host_interface *hostif;
struct usb_interface_descriptor *intfd;
struct usb_endpoint_descriptor *epd;
int cable, err;
intf = umidi->iface;
if (!intf)
return -ENOENT;
hostif = intf->altsetting;
intfd = get_iface_desc(hostif);
/*
* The various MidiSport devices have more or less random endpoint
* numbers, so we have to identify the endpoints by their index in
* the descriptor array, like the driver for that other OS does.
*
* There is one interrupt input endpoint for all input ports, one
* bulk output endpoint for even-numbered ports, and one for odd-
* numbered ports. Both bulk output endpoints have corresponding
* input bulk endpoints (at indices 1 and 3) which aren't used.
*/
if (intfd->bNumEndpoints < (endpoint->out_cables > 0x0001 ? 5 : 3)) {
dev_dbg(&umidi->dev->dev, "not enough endpoints\n");
return -ENOENT;
}
epd = get_endpoint(hostif, 0);
if (!usb_endpoint_dir_in(epd) || !usb_endpoint_xfer_int(epd)) {
dev_dbg(&umidi->dev->dev, "endpoint[0] isn't interrupt\n");
return -ENXIO;
}
epd = get_endpoint(hostif, 2);
if (!usb_endpoint_dir_out(epd) || !usb_endpoint_xfer_bulk(epd)) {
dev_dbg(&umidi->dev->dev, "endpoint[2] isn't bulk output\n");
return -ENXIO;
}
if (endpoint->out_cables > 0x0001) {
epd = get_endpoint(hostif, 4);
if (!usb_endpoint_dir_out(epd) ||
!usb_endpoint_xfer_bulk(epd)) {
dev_dbg(&umidi->dev->dev,
"endpoint[4] isn't bulk output\n");
return -ENXIO;
}
}
ep_info.out_ep = get_endpoint(hostif, 2)->bEndpointAddress &
USB_ENDPOINT_NUMBER_MASK;
ep_info.out_interval = 0;
ep_info.out_cables = endpoint->out_cables & 0x5555;
err = snd_usbmidi_out_endpoint_create(umidi, &ep_info,
&umidi->endpoints[0]);
if (err < 0)
return err;
ep_info.in_ep = get_endpoint(hostif, 0)->bEndpointAddress &
USB_ENDPOINT_NUMBER_MASK;
ep_info.in_interval = get_endpoint(hostif, 0)->bInterval;
ep_info.in_cables = endpoint->in_cables;
err = snd_usbmidi_in_endpoint_create(umidi, &ep_info,
&umidi->endpoints[0]);
if (err < 0)
return err;
if (endpoint->out_cables > 0x0001) {
ep_info.out_ep = get_endpoint(hostif, 4)->bEndpointAddress &
USB_ENDPOINT_NUMBER_MASK;
ep_info.out_cables = endpoint->out_cables & 0xaaaa;
err = snd_usbmidi_out_endpoint_create(umidi, &ep_info,
&umidi->endpoints[1]);
if (err < 0)
return err;
}
for (cable = 0; cable < 0x10; ++cable) {
if (endpoint->out_cables & (1 << cable))
snd_usbmidi_init_substream(umidi,
SNDRV_RAWMIDI_STREAM_OUTPUT,
cable,
&umidi->endpoints[cable & 1].out->ports[cable].substream);
if (endpoint->in_cables & (1 << cable))
snd_usbmidi_init_substream(umidi,
SNDRV_RAWMIDI_STREAM_INPUT,
cable,
&umidi->endpoints[0].in->ports[cable].substream);
}
return 0;
}
static struct snd_rawmidi_global_ops snd_usbmidi_ops = {
.get_port_info = snd_usbmidi_get_port_info,
};
static int snd_usbmidi_create_rawmidi(struct snd_usb_midi *umidi,
int out_ports, int in_ports)
{
struct snd_rawmidi *rmidi;
int err;
err = snd_rawmidi_new(umidi->card, "USB MIDI",
umidi->next_midi_device++,
out_ports, in_ports, &rmidi);
if (err < 0)
return err;
strcpy(rmidi->name, umidi->card->shortname);
rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |
SNDRV_RAWMIDI_INFO_INPUT |
SNDRV_RAWMIDI_INFO_DUPLEX;
rmidi->ops = &snd_usbmidi_ops;
rmidi->private_data = umidi;
rmidi->private_free = snd_usbmidi_rawmidi_free;
snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT,
&snd_usbmidi_output_ops);
snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT,
&snd_usbmidi_input_ops);
umidi->rmidi = rmidi;
return 0;
}
/*
* Temporarily stop input.
*/
void snd_usbmidi_input_stop(struct list_head *p)
{
struct snd_usb_midi *umidi;
unsigned int i, j;
umidi = list_entry(p, struct snd_usb_midi, list);
if (!umidi->input_running)
return;
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
struct snd_usb_midi_endpoint *ep = &umidi->endpoints[i];
if (ep->in)
for (j = 0; j < INPUT_URBS; ++j)
usb_kill_urb(ep->in->urbs[j]);
}
umidi->input_running = 0;
}
EXPORT_SYMBOL(snd_usbmidi_input_stop);
static void snd_usbmidi_input_start_ep(struct snd_usb_midi_in_endpoint *ep)
{
unsigned int i;
if (!ep)
return;
for (i = 0; i < INPUT_URBS; ++i) {
struct urb *urb = ep->urbs[i];
urb->dev = ep->umidi->dev;
snd_usbmidi_submit_urb(urb, GFP_KERNEL);
}
}
/*
* Resume input after a call to snd_usbmidi_input_stop().
*/
void snd_usbmidi_input_start(struct list_head *p)
{
struct snd_usb_midi *umidi;
int i;
umidi = list_entry(p, struct snd_usb_midi, list);
if (umidi->input_running || !umidi->opened[1])
return;
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
snd_usbmidi_input_start_ep(umidi->endpoints[i].in);
umidi->input_running = 1;
}
EXPORT_SYMBOL(snd_usbmidi_input_start);
/*
* Prepare for suspend. Typically called from the USB suspend callback.
*/
void snd_usbmidi_suspend(struct list_head *p)
{
struct snd_usb_midi *umidi;
umidi = list_entry(p, struct snd_usb_midi, list);
mutex_lock(&umidi->mutex);
snd_usbmidi_input_stop(p);
mutex_unlock(&umidi->mutex);
}
EXPORT_SYMBOL(snd_usbmidi_suspend);
/*
* Resume. Typically called from the USB resume callback.
*/
void snd_usbmidi_resume(struct list_head *p)
{
struct snd_usb_midi *umidi;
umidi = list_entry(p, struct snd_usb_midi, list);
mutex_lock(&umidi->mutex);
snd_usbmidi_input_start(p);
mutex_unlock(&umidi->mutex);
}
EXPORT_SYMBOL(snd_usbmidi_resume);
/*
* Creates and registers everything needed for a MIDI streaming interface.
*/
int snd_usbmidi_create(struct snd_card *card,
struct usb_interface *iface,
struct list_head *midi_list,
const struct snd_usb_audio_quirk *quirk)
{
struct snd_usb_midi *umidi;
struct snd_usb_midi_endpoint_info endpoints[MIDI_MAX_ENDPOINTS];
int out_ports, in_ports;
int i, err;
umidi = kzalloc(sizeof(*umidi), GFP_KERNEL);
if (!umidi)
return -ENOMEM;
umidi->dev = interface_to_usbdev(iface);
umidi->card = card;
umidi->iface = iface;
umidi->quirk = quirk;
umidi->usb_protocol_ops = &snd_usbmidi_standard_ops;
spin_lock_init(&umidi->disc_lock);
init_rwsem(&umidi->disc_rwsem);
mutex_init(&umidi->mutex);
umidi->usb_id = USB_ID(le16_to_cpu(umidi->dev->descriptor.idVendor),
le16_to_cpu(umidi->dev->descriptor.idProduct));
setup_timer(&umidi->error_timer, snd_usbmidi_error_timer,
(unsigned long)umidi);
/* detect the endpoint(s) to use */
memset(endpoints, 0, sizeof(endpoints));
switch (quirk ? quirk->type : QUIRK_MIDI_STANDARD_INTERFACE) {
case QUIRK_MIDI_STANDARD_INTERFACE:
err = snd_usbmidi_get_ms_info(umidi, endpoints);
if (umidi->usb_id == USB_ID(0x0763, 0x0150)) /* M-Audio Uno */
umidi->usb_protocol_ops =
&snd_usbmidi_maudio_broken_running_status_ops;
break;
case QUIRK_MIDI_US122L:
umidi->usb_protocol_ops = &snd_usbmidi_122l_ops;
/* fall through */
case QUIRK_MIDI_FIXED_ENDPOINT:
memcpy(&endpoints[0], quirk->data,
sizeof(struct snd_usb_midi_endpoint_info));
err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1);
break;
case QUIRK_MIDI_YAMAHA:
err = snd_usbmidi_detect_yamaha(umidi, &endpoints[0]);
break;
case QUIRK_MIDI_ROLAND:
err = snd_usbmidi_detect_roland(umidi, &endpoints[0]);
break;
case QUIRK_MIDI_MIDIMAN:
umidi->usb_protocol_ops = &snd_usbmidi_midiman_ops;
memcpy(&endpoints[0], quirk->data,
sizeof(struct snd_usb_midi_endpoint_info));
err = 0;
break;
case QUIRK_MIDI_NOVATION:
umidi->usb_protocol_ops = &snd_usbmidi_novation_ops;
err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
break;
case QUIRK_MIDI_RAW_BYTES:
umidi->usb_protocol_ops = &snd_usbmidi_raw_ops;
/*
* Interface 1 contains isochronous endpoints, but with the same
* numbers as in interface 0. Since it is interface 1 that the
* USB core has most recently seen, these descriptors are now
* associated with the endpoint numbers. This will foul up our
* attempts to submit bulk/interrupt URBs to the endpoints in
* interface 0, so we have to make sure that the USB core looks
* again at interface 0 by calling usb_set_interface() on it.
*/
if (umidi->usb_id == USB_ID(0x07fd, 0x0001)) /* MOTU Fastlane */
usb_set_interface(umidi->dev, 0, 0);
err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
break;
case QUIRK_MIDI_EMAGIC:
umidi->usb_protocol_ops = &snd_usbmidi_emagic_ops;
memcpy(&endpoints[0], quirk->data,
sizeof(struct snd_usb_midi_endpoint_info));
err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1);
break;
case QUIRK_MIDI_CME:
umidi->usb_protocol_ops = &snd_usbmidi_cme_ops;
err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
break;
case QUIRK_MIDI_AKAI:
umidi->usb_protocol_ops = &snd_usbmidi_akai_ops;
err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
/* endpoint 1 is input-only */
endpoints[1].out_cables = 0;
break;
case QUIRK_MIDI_FTDI:
umidi->usb_protocol_ops = &snd_usbmidi_ftdi_ops;
/* set baud rate to 31250 (48 MHz / 16 / 96) */
err = usb_control_msg(umidi->dev, usb_sndctrlpipe(umidi->dev, 0),
3, 0x40, 0x60, 0, NULL, 0, 1000);
if (err < 0)
break;
err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
break;
default:
dev_err(&umidi->dev->dev, "invalid quirk type %d\n",
quirk->type);
err = -ENXIO;
break;
}
if (err < 0) {
kfree(umidi);
return err;
}
/* create rawmidi device */
out_ports = 0;
in_ports = 0;
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
out_ports += hweight16(endpoints[i].out_cables);
in_ports += hweight16(endpoints[i].in_cables);
}
err = snd_usbmidi_create_rawmidi(umidi, out_ports, in_ports);
if (err < 0) {
kfree(umidi);
return err;
}
/* create endpoint/port structures */
if (quirk && quirk->type == QUIRK_MIDI_MIDIMAN)
err = snd_usbmidi_create_endpoints_midiman(umidi, &endpoints[0]);
else
err = snd_usbmidi_create_endpoints(umidi, endpoints);
if (err < 0) {
snd_usbmidi_free(umidi);
return err;
}
usb_autopm_get_interface_no_resume(umidi->iface);
list_add_tail(&umidi->list, midi_list);
return 0;
}
EXPORT_SYMBOL(snd_usbmidi_create);