mirror of https://gitee.com/openkylin/linux.git
drm/i915/icl: Add Multi-segmented gamma support
ICL introduces a new gamma correction mode in display engine, called multi-segmented-gamma mode. This mode allows users to program the darker region of the gamma curve with sueprfine precision. An example use case for this is HDR curves (like PQ ST-2084). If we plot a gamma correction curve from value range between 0.0 to 1.0, ICL's multi-segment has 3 different sections: - superfine segment: 9 values, ranges between 0 - 1/(128 * 256) - fine segment: 257 values, ranges between 0 - 1/(128) - corase segment: 257 values, ranges between 0 - 1 This patch: - Changes gamma LUTs size for ICL/GEN11 to 262144 entries (8 * 128 * 256), so that userspace can program with highest precision supported. - Changes default gamma mode (non-legacy) to multi-segmented-gamma mode. - Adds functions to program/detect multi-segment gamma. V2: Addressed review comments from Ville - separate function for superfine and fine segments. - remove enum for segments. - reuse last entry of the LUT as gc_max value. - replace if() ....cond with switch...case in icl_load_luts. - add an entry variable, instead of 'word' V3: Addressed review comments from Ville - extra newline - s/entry/color/ - remove LUT size checks - program ilk_lut_12p4_ldw value before ilk_lut_12p4_udw - Change the comments in description of fine and coarse segments, and try to make more sense. - use 8 * 128 instead of 1024 - add 1 entry in LUT for GCMAX V4: Addressed review comments from Ville - Remove unused macro - missing shift entry in blue - pick correct entry for GCMAX - Added Ville's R-B Note: Tested and confirmed the programming sequence of odd/even registers in the HW. The correct sequence should be: ilk_lut_12p4_udw ilk_lut_12p4_ldw v5: Addressed Ville's review comments and renamed odd/even register helpers to be more consistent with the values. Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Suggested-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Shashank Sharma <shashank.sharma@intel.com> Signed-off-by: Uma Shankar <uma.shankar@intel.com> Signed-off-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/1560321900-18318-5-git-send-email-uma.shankar@intel.com
This commit is contained in:
parent
eec0778ec4
commit
02ae8ba966
|
@ -747,7 +747,7 @@ static const struct intel_device_info intel_cannonlake_info = {
|
|||
GEN(11), \
|
||||
.ddb_size = 2048, \
|
||||
.has_logical_ring_elsq = 1, \
|
||||
.color = { .degamma_lut_size = 33, .gamma_lut_size = 1024 }
|
||||
.color = { .degamma_lut_size = 33, .gamma_lut_size = 262145 }
|
||||
|
||||
static const struct intel_device_info intel_icelake_11_info = {
|
||||
GEN11_FEATURES,
|
||||
|
|
|
@ -41,6 +41,7 @@
|
|||
#define CTM_COEFF_ABS(coeff) ((coeff) & (CTM_COEFF_SIGN - 1))
|
||||
|
||||
#define LEGACY_LUT_LENGTH 256
|
||||
|
||||
/*
|
||||
* Extract the CSC coefficient from a CTM coefficient (in U32.32 fixed point
|
||||
* format). This macro takes the coefficient we want transformed and the
|
||||
|
@ -767,6 +768,116 @@ static void glk_load_luts(const struct intel_crtc_state *crtc_state)
|
|||
}
|
||||
}
|
||||
|
||||
/* ilk+ "12.4" interpolated format (high 10 bits) */
|
||||
static u32 ilk_lut_12p4_udw(const struct drm_color_lut *color)
|
||||
{
|
||||
return (color->red >> 6) << 20 | (color->green >> 6) << 10 |
|
||||
(color->blue >> 6);
|
||||
}
|
||||
|
||||
/* ilk+ "12.4" interpolated format (low 6 bits) */
|
||||
static u32 ilk_lut_12p4_ldw(const struct drm_color_lut *color)
|
||||
{
|
||||
return (color->red & 0x3f) << 24 | (color->green & 0x3f) << 14 |
|
||||
(color->blue & 0x3f) << 4;
|
||||
}
|
||||
|
||||
static void
|
||||
icl_load_gcmax(const struct intel_crtc_state *crtc_state,
|
||||
const struct drm_color_lut *color)
|
||||
{
|
||||
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
|
||||
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
|
||||
enum pipe pipe = crtc->pipe;
|
||||
|
||||
/* Fixme: LUT entries are 16 bit only, so we can prog 0xFFFF max */
|
||||
I915_WRITE(PREC_PAL_GC_MAX(pipe, 0), color->red);
|
||||
I915_WRITE(PREC_PAL_GC_MAX(pipe, 1), color->green);
|
||||
I915_WRITE(PREC_PAL_GC_MAX(pipe, 2), color->blue);
|
||||
}
|
||||
|
||||
static void
|
||||
icl_program_gamma_superfine_segment(const struct intel_crtc_state *crtc_state)
|
||||
{
|
||||
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
|
||||
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
|
||||
const struct drm_property_blob *blob = crtc_state->base.gamma_lut;
|
||||
const struct drm_color_lut *lut = blob->data;
|
||||
enum pipe pipe = crtc->pipe;
|
||||
u32 i;
|
||||
|
||||
/*
|
||||
* Every entry in the multi-segment LUT is corresponding to a superfine
|
||||
* segment step which is 1/(8 * 128 * 256).
|
||||
*
|
||||
* Superfine segment has 9 entries, corresponding to values
|
||||
* 0, 1/(8 * 128 * 256), 2/(8 * 128 * 256) .... 8/(8 * 128 * 256).
|
||||
*/
|
||||
I915_WRITE(PREC_PAL_MULTI_SEG_INDEX(pipe), PAL_PREC_AUTO_INCREMENT);
|
||||
|
||||
for (i = 0; i < 9; i++) {
|
||||
const struct drm_color_lut *entry = &lut[i];
|
||||
|
||||
I915_WRITE(PREC_PAL_MULTI_SEG_DATA(pipe),
|
||||
ilk_lut_12p4_ldw(entry));
|
||||
I915_WRITE(PREC_PAL_MULTI_SEG_DATA(pipe),
|
||||
ilk_lut_12p4_udw(entry));
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
icl_program_gamma_multi_segment(const struct intel_crtc_state *crtc_state)
|
||||
{
|
||||
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
|
||||
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
|
||||
const struct drm_property_blob *blob = crtc_state->base.gamma_lut;
|
||||
const struct drm_color_lut *lut = blob->data;
|
||||
const struct drm_color_lut *entry;
|
||||
enum pipe pipe = crtc->pipe;
|
||||
u32 i;
|
||||
|
||||
/*
|
||||
*
|
||||
* Program Fine segment (let's call it seg2)...
|
||||
*
|
||||
* Fine segment's step is 1/(128 * 256) ie 1/(128 * 256), 2/(128*256)
|
||||
* ... 256/(128*256). So in order to program fine segment of LUT we
|
||||
* need to pick every 8'th entry in LUT, and program 256 indexes.
|
||||
*
|
||||
* PAL_PREC_INDEX[0] and PAL_PREC_INDEX[1] map to seg2[1],
|
||||
* with seg2[0] being unused by the hardware.
|
||||
*/
|
||||
I915_WRITE(PREC_PAL_INDEX(pipe), PAL_PREC_AUTO_INCREMENT);
|
||||
for (i = 1; i < 257; i++) {
|
||||
entry = &lut[i * 8];
|
||||
I915_WRITE(PREC_PAL_DATA(pipe), ilk_lut_12p4_ldw(entry));
|
||||
I915_WRITE(PREC_PAL_DATA(pipe), ilk_lut_12p4_udw(entry));
|
||||
}
|
||||
|
||||
/*
|
||||
* Program Coarse segment (let's call it seg3)...
|
||||
*
|
||||
* Coarse segment's starts from index 0 and it's step is 1/256 ie 0,
|
||||
* 1/256, 2/256 ...256/256. As per the description of each entry in LUT
|
||||
* above, we need to pick every (8 * 128)th entry in LUT, and
|
||||
* program 256 of those.
|
||||
*
|
||||
* Spec is not very clear about if entries seg3[0] and seg3[1] are
|
||||
* being used or not, but we still need to program these to advance
|
||||
* the index.
|
||||
*/
|
||||
for (i = 0; i < 256; i++) {
|
||||
entry = &lut[i * 8 * 128];
|
||||
I915_WRITE(PREC_PAL_DATA(pipe), ilk_lut_12p4_ldw(entry));
|
||||
I915_WRITE(PREC_PAL_DATA(pipe), ilk_lut_12p4_udw(entry));
|
||||
}
|
||||
|
||||
/* The last entry in the LUT is to be programmed in GCMAX */
|
||||
entry = &lut[256 * 8 * 128];
|
||||
icl_load_gcmax(crtc_state, entry);
|
||||
ivb_load_lut_ext_max(crtc);
|
||||
}
|
||||
|
||||
static void icl_load_luts(const struct intel_crtc_state *crtc_state)
|
||||
{
|
||||
const struct drm_property_blob *gamma_lut = crtc_state->base.gamma_lut;
|
||||
|
@ -775,10 +886,17 @@ static void icl_load_luts(const struct intel_crtc_state *crtc_state)
|
|||
if (crtc_state->base.degamma_lut)
|
||||
glk_load_degamma_lut(crtc_state);
|
||||
|
||||
if ((crtc_state->gamma_mode & GAMMA_MODE_MODE_MASK) ==
|
||||
GAMMA_MODE_MODE_8BIT) {
|
||||
switch (crtc_state->gamma_mode & GAMMA_MODE_MODE_MASK) {
|
||||
case GAMMA_MODE_MODE_8BIT:
|
||||
i9xx_load_luts(crtc_state);
|
||||
} else {
|
||||
break;
|
||||
|
||||
case GAMMA_MODE_MODE_12BIT_MULTI_SEGMENTED:
|
||||
icl_program_gamma_superfine_segment(crtc_state);
|
||||
icl_program_gamma_multi_segment(crtc_state);
|
||||
break;
|
||||
|
||||
default:
|
||||
bdw_load_lut_10(crtc, gamma_lut, PAL_PREC_INDEX_VALUE(0));
|
||||
ivb_load_lut_ext_max(crtc);
|
||||
}
|
||||
|
@ -1219,7 +1337,7 @@ static u32 icl_gamma_mode(const struct intel_crtc_state *crtc_state)
|
|||
crtc_state_is_legacy_gamma(crtc_state))
|
||||
gamma_mode |= GAMMA_MODE_MODE_8BIT;
|
||||
else
|
||||
gamma_mode |= GAMMA_MODE_MODE_10BIT;
|
||||
gamma_mode |= GAMMA_MODE_MODE_12BIT_MULTI_SEGMENTED;
|
||||
|
||||
return gamma_mode;
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue