mirror of https://gitee.com/openkylin/linux.git
KVM: arm/arm64: vgic-new: Add IRQ sync/flush framework
Implement the framework for syncing IRQs between our emulation and the list registers, which represent the guest's view of IRQs. This is done in kvm_vgic_flush_hwstate and kvm_vgic_sync_hwstate, which gets called on guest entry and exit. The code talking to the actual GICv2/v3 hardware is added in the following patches. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Eric Auger <eric.auger@linaro.org> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Eric Auger <eric.auger@linaro.org> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
This commit is contained in:
parent
8e44474579
commit
0919e84c0f
|
@ -190,6 +190,10 @@ int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int intid,
|
|||
#define vgic_valid_spi(k, i) (((i) >= VGIC_NR_PRIVATE_IRQS) && \
|
||||
((i) < (k)->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS))
|
||||
|
||||
bool kvm_vcpu_has_pending_irqs(struct kvm_vcpu *vcpu);
|
||||
void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu);
|
||||
void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu);
|
||||
|
||||
/**
|
||||
* kvm_vgic_get_max_vcpus - Get the maximum number of VCPUs allowed by HW
|
||||
*
|
||||
|
|
|
@ -307,3 +307,195 @@ int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int intid,
|
|||
{
|
||||
return vgic_update_irq_pending(kvm, cpuid, intid, level, false);
|
||||
}
|
||||
|
||||
/**
|
||||
* vgic_prune_ap_list - Remove non-relevant interrupts from the list
|
||||
*
|
||||
* @vcpu: The VCPU pointer
|
||||
*
|
||||
* Go over the list of "interesting" interrupts, and prune those that we
|
||||
* won't have to consider in the near future.
|
||||
*/
|
||||
static void vgic_prune_ap_list(struct kvm_vcpu *vcpu)
|
||||
{
|
||||
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
||||
struct vgic_irq *irq, *tmp;
|
||||
|
||||
retry:
|
||||
spin_lock(&vgic_cpu->ap_list_lock);
|
||||
|
||||
list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
|
||||
struct kvm_vcpu *target_vcpu, *vcpuA, *vcpuB;
|
||||
|
||||
spin_lock(&irq->irq_lock);
|
||||
|
||||
BUG_ON(vcpu != irq->vcpu);
|
||||
|
||||
target_vcpu = vgic_target_oracle(irq);
|
||||
|
||||
if (!target_vcpu) {
|
||||
/*
|
||||
* We don't need to process this interrupt any
|
||||
* further, move it off the list.
|
||||
*/
|
||||
list_del(&irq->ap_list);
|
||||
irq->vcpu = NULL;
|
||||
spin_unlock(&irq->irq_lock);
|
||||
continue;
|
||||
}
|
||||
|
||||
if (target_vcpu == vcpu) {
|
||||
/* We're on the right CPU */
|
||||
spin_unlock(&irq->irq_lock);
|
||||
continue;
|
||||
}
|
||||
|
||||
/* This interrupt looks like it has to be migrated. */
|
||||
|
||||
spin_unlock(&irq->irq_lock);
|
||||
spin_unlock(&vgic_cpu->ap_list_lock);
|
||||
|
||||
/*
|
||||
* Ensure locking order by always locking the smallest
|
||||
* ID first.
|
||||
*/
|
||||
if (vcpu->vcpu_id < target_vcpu->vcpu_id) {
|
||||
vcpuA = vcpu;
|
||||
vcpuB = target_vcpu;
|
||||
} else {
|
||||
vcpuA = target_vcpu;
|
||||
vcpuB = vcpu;
|
||||
}
|
||||
|
||||
spin_lock(&vcpuA->arch.vgic_cpu.ap_list_lock);
|
||||
spin_lock_nested(&vcpuB->arch.vgic_cpu.ap_list_lock,
|
||||
SINGLE_DEPTH_NESTING);
|
||||
spin_lock(&irq->irq_lock);
|
||||
|
||||
/*
|
||||
* If the affinity has been preserved, move the
|
||||
* interrupt around. Otherwise, it means things have
|
||||
* changed while the interrupt was unlocked, and we
|
||||
* need to replay this.
|
||||
*
|
||||
* In all cases, we cannot trust the list not to have
|
||||
* changed, so we restart from the beginning.
|
||||
*/
|
||||
if (target_vcpu == vgic_target_oracle(irq)) {
|
||||
struct vgic_cpu *new_cpu = &target_vcpu->arch.vgic_cpu;
|
||||
|
||||
list_del(&irq->ap_list);
|
||||
irq->vcpu = target_vcpu;
|
||||
list_add_tail(&irq->ap_list, &new_cpu->ap_list_head);
|
||||
}
|
||||
|
||||
spin_unlock(&irq->irq_lock);
|
||||
spin_unlock(&vcpuB->arch.vgic_cpu.ap_list_lock);
|
||||
spin_unlock(&vcpuA->arch.vgic_cpu.ap_list_lock);
|
||||
goto retry;
|
||||
}
|
||||
|
||||
spin_unlock(&vgic_cpu->ap_list_lock);
|
||||
}
|
||||
|
||||
static inline void vgic_process_maintenance_interrupt(struct kvm_vcpu *vcpu)
|
||||
{
|
||||
}
|
||||
|
||||
static inline void vgic_fold_lr_state(struct kvm_vcpu *vcpu)
|
||||
{
|
||||
}
|
||||
|
||||
/* Requires the irq_lock to be held. */
|
||||
static inline void vgic_populate_lr(struct kvm_vcpu *vcpu,
|
||||
struct vgic_irq *irq, int lr)
|
||||
{
|
||||
DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&irq->irq_lock));
|
||||
}
|
||||
|
||||
static inline void vgic_clear_lr(struct kvm_vcpu *vcpu, int lr)
|
||||
{
|
||||
}
|
||||
|
||||
static inline void vgic_set_underflow(struct kvm_vcpu *vcpu)
|
||||
{
|
||||
}
|
||||
|
||||
/* Requires the ap_list_lock to be held. */
|
||||
static int compute_ap_list_depth(struct kvm_vcpu *vcpu)
|
||||
{
|
||||
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
||||
struct vgic_irq *irq;
|
||||
int count = 0;
|
||||
|
||||
DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&vgic_cpu->ap_list_lock));
|
||||
|
||||
list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
|
||||
spin_lock(&irq->irq_lock);
|
||||
/* GICv2 SGIs can count for more than one... */
|
||||
if (vgic_irq_is_sgi(irq->intid) && irq->source)
|
||||
count += hweight8(irq->source);
|
||||
else
|
||||
count++;
|
||||
spin_unlock(&irq->irq_lock);
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
/* Requires the VCPU's ap_list_lock to be held. */
|
||||
static void vgic_flush_lr_state(struct kvm_vcpu *vcpu)
|
||||
{
|
||||
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
||||
struct vgic_irq *irq;
|
||||
int count = 0;
|
||||
|
||||
DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&vgic_cpu->ap_list_lock));
|
||||
|
||||
if (compute_ap_list_depth(vcpu) > kvm_vgic_global_state.nr_lr) {
|
||||
vgic_set_underflow(vcpu);
|
||||
vgic_sort_ap_list(vcpu);
|
||||
}
|
||||
|
||||
list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
|
||||
spin_lock(&irq->irq_lock);
|
||||
|
||||
if (unlikely(vgic_target_oracle(irq) != vcpu))
|
||||
goto next;
|
||||
|
||||
/*
|
||||
* If we get an SGI with multiple sources, try to get
|
||||
* them in all at once.
|
||||
*/
|
||||
do {
|
||||
vgic_populate_lr(vcpu, irq, count++);
|
||||
} while (irq->source && count < kvm_vgic_global_state.nr_lr);
|
||||
|
||||
next:
|
||||
spin_unlock(&irq->irq_lock);
|
||||
|
||||
if (count == kvm_vgic_global_state.nr_lr)
|
||||
break;
|
||||
}
|
||||
|
||||
vcpu->arch.vgic_cpu.used_lrs = count;
|
||||
|
||||
/* Nuke remaining LRs */
|
||||
for ( ; count < kvm_vgic_global_state.nr_lr; count++)
|
||||
vgic_clear_lr(vcpu, count);
|
||||
}
|
||||
|
||||
/* Sync back the hardware VGIC state into our emulation after a guest's run. */
|
||||
void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
|
||||
{
|
||||
vgic_process_maintenance_interrupt(vcpu);
|
||||
vgic_fold_lr_state(vcpu);
|
||||
vgic_prune_ap_list(vcpu);
|
||||
}
|
||||
|
||||
/* Flush our emulation state into the GIC hardware before entering the guest. */
|
||||
void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
|
||||
{
|
||||
spin_lock(&vcpu->arch.vgic_cpu.ap_list_lock);
|
||||
vgic_flush_lr_state(vcpu);
|
||||
spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock);
|
||||
}
|
||||
|
|
|
@ -16,6 +16,8 @@
|
|||
#ifndef __KVM_ARM_VGIC_NEW_H__
|
||||
#define __KVM_ARM_VGIC_NEW_H__
|
||||
|
||||
#define vgic_irq_is_sgi(intid) ((intid) < VGIC_NR_SGIS)
|
||||
|
||||
struct vgic_irq *vgic_get_irq(struct kvm *kvm, struct kvm_vcpu *vcpu,
|
||||
u32 intid);
|
||||
bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq);
|
||||
|
|
Loading…
Reference in New Issue