cpufreq: powernv: Replacing pstate_id with frequency table index

Refactoring code to use frequency table index instead of pstate_id.
This abstraction will make the code independent of the pstate values.

- No functional changes
- The highest frequency is at frequency table index 0 and the frequency
  decreases as the index increases.
- Macros pstates_to_idx() and idx_to_pstate() can be used for conversion
  between pstate_id and index.
- powernv_pstate_info now contains frequency table index to min, max and
  nominal frequency (instead of pstate_ids)
- global_pstate_info new stores index values instead pstate ids.
- variables renamed as *_idx which now store index instead of pstate

Signed-off-by: Akshay Adiga <akshay.adiga@linux.vnet.ibm.com>
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This commit is contained in:
Akshay Adiga 2016-06-30 11:53:07 +05:30 committed by Rafael J. Wysocki
parent 5fc8f707a2
commit 09ca4c9b59
1 changed files with 102 additions and 75 deletions

View File

@ -64,12 +64,14 @@
/** /**
* struct global_pstate_info - Per policy data structure to maintain history of * struct global_pstate_info - Per policy data structure to maintain history of
* global pstates * global pstates
* @highest_lpstate: The local pstate from which we are ramping down * @highest_lpstate_idx: The local pstate index from which we are
* ramping down
* @elapsed_time: Time in ms spent in ramping down from * @elapsed_time: Time in ms spent in ramping down from
* highest_lpstate * highest_lpstate_idx
* @last_sampled_time: Time from boot in ms when global pstates were * @last_sampled_time: Time from boot in ms when global pstates were
* last set * last set
* @last_lpstate,last_gpstate: Last set values for local and global pstates * @last_lpstate_idx, Last set value of local pstate and global
* last_gpstate_idx pstate in terms of cpufreq table index
* @timer: Is used for ramping down if cpu goes idle for * @timer: Is used for ramping down if cpu goes idle for
* a long time with global pstate held high * a long time with global pstate held high
* @gpstate_lock: A spinlock to maintain synchronization between * @gpstate_lock: A spinlock to maintain synchronization between
@ -77,11 +79,11 @@
* governer's target_index calls * governer's target_index calls
*/ */
struct global_pstate_info { struct global_pstate_info {
int highest_lpstate; int highest_lpstate_idx;
unsigned int elapsed_time; unsigned int elapsed_time;
unsigned int last_sampled_time; unsigned int last_sampled_time;
int last_lpstate; int last_lpstate_idx;
int last_gpstate; int last_gpstate_idx;
spinlock_t gpstate_lock; spinlock_t gpstate_lock;
struct timer_list timer; struct timer_list timer;
}; };
@ -124,29 +126,47 @@ static int nr_chips;
static DEFINE_PER_CPU(struct chip *, chip_info); static DEFINE_PER_CPU(struct chip *, chip_info);
/* /*
* Note: The set of pstates consists of contiguous integers, the * Note:
* smallest of which is indicated by powernv_pstate_info.min, the * The set of pstates consists of contiguous integers.
* largest of which is indicated by powernv_pstate_info.max. * powernv_pstate_info stores the index of the frequency table for
* max, min and nominal frequencies. It also stores number of
* available frequencies.
* *
* The nominal pstate is the highest non-turbo pstate in this * powernv_pstate_info.nominal indicates the index to the highest
* platform. This is indicated by powernv_pstate_info.nominal. * non-turbo frequency.
*/ */
static struct powernv_pstate_info { static struct powernv_pstate_info {
int min; unsigned int min;
int max; unsigned int max;
int nominal; unsigned int nominal;
int nr_pstates; unsigned int nr_pstates;
} powernv_pstate_info; } powernv_pstate_info;
/* Use following macros for conversions between pstate_id and index */
static inline int idx_to_pstate(unsigned int i)
{
return powernv_freqs[i].driver_data;
}
static inline unsigned int pstate_to_idx(int pstate)
{
/*
* abs() is deliberately used so that is works with
* both monotonically increasing and decreasing
* pstate values
*/
return abs(pstate - idx_to_pstate(powernv_pstate_info.max));
}
static inline void reset_gpstates(struct cpufreq_policy *policy) static inline void reset_gpstates(struct cpufreq_policy *policy)
{ {
struct global_pstate_info *gpstates = policy->driver_data; struct global_pstate_info *gpstates = policy->driver_data;
gpstates->highest_lpstate = 0; gpstates->highest_lpstate_idx = 0;
gpstates->elapsed_time = 0; gpstates->elapsed_time = 0;
gpstates->last_sampled_time = 0; gpstates->last_sampled_time = 0;
gpstates->last_lpstate = 0; gpstates->last_lpstate_idx = 0;
gpstates->last_gpstate = 0; gpstates->last_gpstate_idx = 0;
} }
/* /*
@ -156,9 +176,10 @@ static inline void reset_gpstates(struct cpufreq_policy *policy)
static int init_powernv_pstates(void) static int init_powernv_pstates(void)
{ {
struct device_node *power_mgt; struct device_node *power_mgt;
int i, pstate_min, pstate_max, pstate_nominal, nr_pstates = 0; int i, nr_pstates = 0;
const __be32 *pstate_ids, *pstate_freqs; const __be32 *pstate_ids, *pstate_freqs;
u32 len_ids, len_freqs; u32 len_ids, len_freqs;
u32 pstate_min, pstate_max, pstate_nominal;
power_mgt = of_find_node_by_path("/ibm,opal/power-mgt"); power_mgt = of_find_node_by_path("/ibm,opal/power-mgt");
if (!power_mgt) { if (!power_mgt) {
@ -208,6 +229,7 @@ static int init_powernv_pstates(void)
return -ENODEV; return -ENODEV;
} }
powernv_pstate_info.nr_pstates = nr_pstates;
pr_debug("NR PStates %d\n", nr_pstates); pr_debug("NR PStates %d\n", nr_pstates);
for (i = 0; i < nr_pstates; i++) { for (i = 0; i < nr_pstates; i++) {
u32 id = be32_to_cpu(pstate_ids[i]); u32 id = be32_to_cpu(pstate_ids[i]);
@ -216,15 +238,17 @@ static int init_powernv_pstates(void)
pr_debug("PState id %d freq %d MHz\n", id, freq); pr_debug("PState id %d freq %d MHz\n", id, freq);
powernv_freqs[i].frequency = freq * 1000; /* kHz */ powernv_freqs[i].frequency = freq * 1000; /* kHz */
powernv_freqs[i].driver_data = id; powernv_freqs[i].driver_data = id;
if (id == pstate_max)
powernv_pstate_info.max = i;
else if (id == pstate_nominal)
powernv_pstate_info.nominal = i;
else if (id == pstate_min)
powernv_pstate_info.min = i;
} }
/* End of list marker entry */ /* End of list marker entry */
powernv_freqs[i].frequency = CPUFREQ_TABLE_END; powernv_freqs[i].frequency = CPUFREQ_TABLE_END;
powernv_pstate_info.min = pstate_min;
powernv_pstate_info.max = pstate_max;
powernv_pstate_info.nominal = pstate_nominal;
powernv_pstate_info.nr_pstates = nr_pstates;
return 0; return 0;
} }
@ -233,12 +257,12 @@ static unsigned int pstate_id_to_freq(int pstate_id)
{ {
int i; int i;
i = powernv_pstate_info.max - pstate_id; i = pstate_to_idx(pstate_id);
if (i >= powernv_pstate_info.nr_pstates || i < 0) { if (i >= powernv_pstate_info.nr_pstates || i < 0) {
pr_warn("PState id %d outside of PState table, " pr_warn("PState id %d outside of PState table, "
"reporting nominal id %d instead\n", "reporting nominal id %d instead\n",
pstate_id, powernv_pstate_info.nominal); pstate_id, idx_to_pstate(powernv_pstate_info.nominal));
i = powernv_pstate_info.max - powernv_pstate_info.nominal; i = powernv_pstate_info.nominal;
} }
return powernv_freqs[i].frequency; return powernv_freqs[i].frequency;
@ -252,7 +276,7 @@ static ssize_t cpuinfo_nominal_freq_show(struct cpufreq_policy *policy,
char *buf) char *buf)
{ {
return sprintf(buf, "%u\n", return sprintf(buf, "%u\n",
pstate_id_to_freq(powernv_pstate_info.nominal)); powernv_freqs[powernv_pstate_info.nominal].frequency);
} }
struct freq_attr cpufreq_freq_attr_cpuinfo_nominal_freq = struct freq_attr cpufreq_freq_attr_cpuinfo_nominal_freq =
@ -426,7 +450,7 @@ static void set_pstate(void *data)
*/ */
static inline unsigned int get_nominal_index(void) static inline unsigned int get_nominal_index(void)
{ {
return powernv_pstate_info.max - powernv_pstate_info.nominal; return powernv_pstate_info.nominal;
} }
static void powernv_cpufreq_throttle_check(void *data) static void powernv_cpufreq_throttle_check(void *data)
@ -435,20 +459,22 @@ static void powernv_cpufreq_throttle_check(void *data)
unsigned int cpu = smp_processor_id(); unsigned int cpu = smp_processor_id();
unsigned long pmsr; unsigned long pmsr;
int pmsr_pmax; int pmsr_pmax;
unsigned int pmsr_pmax_idx;
pmsr = get_pmspr(SPRN_PMSR); pmsr = get_pmspr(SPRN_PMSR);
chip = this_cpu_read(chip_info); chip = this_cpu_read(chip_info);
/* Check for Pmax Capping */ /* Check for Pmax Capping */
pmsr_pmax = (s8)PMSR_MAX(pmsr); pmsr_pmax = (s8)PMSR_MAX(pmsr);
if (pmsr_pmax != powernv_pstate_info.max) { pmsr_pmax_idx = pstate_to_idx(pmsr_pmax);
if (pmsr_pmax_idx != powernv_pstate_info.max) {
if (chip->throttled) if (chip->throttled)
goto next; goto next;
chip->throttled = true; chip->throttled = true;
if (pmsr_pmax < powernv_pstate_info.nominal) { if (pmsr_pmax_idx > powernv_pstate_info.nominal) {
pr_warn_once("CPU %d on Chip %u has Pmax reduced below nominal frequency (%d < %d)\n", pr_warn_once("CPU %d on Chip %u has Pmax(%d) reduced below nominal frequency(%d)\n",
cpu, chip->id, pmsr_pmax, cpu, chip->id, pmsr_pmax,
powernv_pstate_info.nominal); idx_to_pstate(powernv_pstate_info.nominal));
chip->throttle_sub_turbo++; chip->throttle_sub_turbo++;
} else { } else {
chip->throttle_turbo++; chip->throttle_turbo++;
@ -484,34 +510,35 @@ static void powernv_cpufreq_throttle_check(void *data)
/** /**
* calc_global_pstate - Calculate global pstate * calc_global_pstate - Calculate global pstate
* @elapsed_time: Elapsed time in milliseconds * @elapsed_time: Elapsed time in milliseconds
* @local_pstate: New local pstate * @local_pstate_idx: New local pstate
* @highest_lpstate: pstate from which its ramping down * @highest_lpstate_idx: pstate from which its ramping down
* *
* Finds the appropriate global pstate based on the pstate from which its * Finds the appropriate global pstate based on the pstate from which its
* ramping down and the time elapsed in ramping down. It follows a quadratic * ramping down and the time elapsed in ramping down. It follows a quadratic
* equation which ensures that it reaches ramping down to pmin in 5sec. * equation which ensures that it reaches ramping down to pmin in 5sec.
*/ */
static inline int calc_global_pstate(unsigned int elapsed_time, static inline int calc_global_pstate(unsigned int elapsed_time,
int highest_lpstate, int local_pstate) int highest_lpstate_idx,
int local_pstate_idx)
{ {
int pstate_diff; int index_diff;
/* /*
* Using ramp_down_percent we get the percentage of rampdown * Using ramp_down_percent we get the percentage of rampdown
* that we are expecting to be dropping. Difference between * that we are expecting to be dropping. Difference between
* highest_lpstate and powernv_pstate_info.min will give a absolute * highest_lpstate_idx and powernv_pstate_info.min will give a absolute
* number of how many pstates we will drop eventually by the end of * number of how many pstates we will drop eventually by the end of
* 5 seconds, then just scale it get the number pstates to be dropped. * 5 seconds, then just scale it get the number pstates to be dropped.
*/ */
pstate_diff = ((int)ramp_down_percent(elapsed_time) * index_diff = ((int)ramp_down_percent(elapsed_time) *
(highest_lpstate - powernv_pstate_info.min)) / 100; (powernv_pstate_info.min - highest_lpstate_idx)) / 100;
/* Ensure that global pstate is >= to local pstate */ /* Ensure that global pstate is >= to local pstate */
if (highest_lpstate - pstate_diff < local_pstate) if (highest_lpstate_idx + index_diff >= local_pstate_idx)
return local_pstate; return local_pstate_idx;
else else
return highest_lpstate - pstate_diff; return highest_lpstate_idx + index_diff;
} }
static inline void queue_gpstate_timer(struct global_pstate_info *gpstates) static inline void queue_gpstate_timer(struct global_pstate_info *gpstates)
@ -547,7 +574,7 @@ void gpstate_timer_handler(unsigned long data)
{ {
struct cpufreq_policy *policy = (struct cpufreq_policy *)data; struct cpufreq_policy *policy = (struct cpufreq_policy *)data;
struct global_pstate_info *gpstates = policy->driver_data; struct global_pstate_info *gpstates = policy->driver_data;
int gpstate_id; int gpstate_idx;
unsigned int time_diff = jiffies_to_msecs(jiffies) unsigned int time_diff = jiffies_to_msecs(jiffies)
- gpstates->last_sampled_time; - gpstates->last_sampled_time;
struct powernv_smp_call_data freq_data; struct powernv_smp_call_data freq_data;
@ -557,29 +584,29 @@ void gpstate_timer_handler(unsigned long data)
gpstates->last_sampled_time += time_diff; gpstates->last_sampled_time += time_diff;
gpstates->elapsed_time += time_diff; gpstates->elapsed_time += time_diff;
freq_data.pstate_id = gpstates->last_lpstate; freq_data.pstate_id = idx_to_pstate(gpstates->last_lpstate_idx);
if ((gpstates->last_gpstate == freq_data.pstate_id) || if ((gpstates->last_gpstate_idx == gpstates->last_lpstate_idx) ||
(gpstates->elapsed_time > MAX_RAMP_DOWN_TIME)) { (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME)) {
gpstate_id = freq_data.pstate_id; gpstate_idx = pstate_to_idx(freq_data.pstate_id);
reset_gpstates(policy); reset_gpstates(policy);
gpstates->highest_lpstate = freq_data.pstate_id; gpstates->highest_lpstate_idx = gpstate_idx;
} else { } else {
gpstate_id = calc_global_pstate(gpstates->elapsed_time, gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
gpstates->highest_lpstate, gpstates->highest_lpstate_idx,
freq_data.pstate_id); freq_data.pstate_id);
} }
/* /*
* If local pstate is equal to global pstate, rampdown is over * If local pstate is equal to global pstate, rampdown is over
* So timer is not required to be queued. * So timer is not required to be queued.
*/ */
if (gpstate_id != freq_data.pstate_id) if (gpstate_idx != gpstates->last_lpstate_idx)
queue_gpstate_timer(gpstates); queue_gpstate_timer(gpstates);
freq_data.gpstate_id = gpstate_id; freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
gpstates->last_gpstate = freq_data.gpstate_id; gpstates->last_gpstate_idx = pstate_to_idx(freq_data.gpstate_id);
gpstates->last_lpstate = freq_data.pstate_id; gpstates->last_lpstate_idx = pstate_to_idx(freq_data.pstate_id);
spin_unlock(&gpstates->gpstate_lock); spin_unlock(&gpstates->gpstate_lock);
@ -596,7 +623,7 @@ static int powernv_cpufreq_target_index(struct cpufreq_policy *policy,
unsigned int new_index) unsigned int new_index)
{ {
struct powernv_smp_call_data freq_data; struct powernv_smp_call_data freq_data;
unsigned int cur_msec, gpstate_id; unsigned int cur_msec, gpstate_idx;
struct global_pstate_info *gpstates = policy->driver_data; struct global_pstate_info *gpstates = policy->driver_data;
if (unlikely(rebooting) && new_index != get_nominal_index()) if (unlikely(rebooting) && new_index != get_nominal_index())
@ -608,15 +635,15 @@ static int powernv_cpufreq_target_index(struct cpufreq_policy *policy,
cur_msec = jiffies_to_msecs(get_jiffies_64()); cur_msec = jiffies_to_msecs(get_jiffies_64());
spin_lock(&gpstates->gpstate_lock); spin_lock(&gpstates->gpstate_lock);
freq_data.pstate_id = powernv_freqs[new_index].driver_data; freq_data.pstate_id = idx_to_pstate(new_index);
if (!gpstates->last_sampled_time) { if (!gpstates->last_sampled_time) {
gpstate_id = freq_data.pstate_id; gpstate_idx = new_index;
gpstates->highest_lpstate = freq_data.pstate_id; gpstates->highest_lpstate_idx = new_index;
goto gpstates_done; goto gpstates_done;
} }
if (gpstates->last_gpstate > freq_data.pstate_id) { if (gpstates->last_gpstate_idx < new_index) {
gpstates->elapsed_time += cur_msec - gpstates->elapsed_time += cur_msec -
gpstates->last_sampled_time; gpstates->last_sampled_time;
@ -627,34 +654,34 @@ static int powernv_cpufreq_target_index(struct cpufreq_policy *policy,
*/ */
if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) { if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
reset_gpstates(policy); reset_gpstates(policy);
gpstates->highest_lpstate = freq_data.pstate_id; gpstates->highest_lpstate_idx = new_index;
gpstate_id = freq_data.pstate_id; gpstate_idx = new_index;
} else { } else {
/* Elaspsed_time is less than 5 seconds, continue to rampdown */ /* Elaspsed_time is less than 5 seconds, continue to rampdown */
gpstate_id = calc_global_pstate(gpstates->elapsed_time, gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
gpstates->highest_lpstate, gpstates->highest_lpstate_idx,
freq_data.pstate_id); new_index);
} }
} else { } else {
reset_gpstates(policy); reset_gpstates(policy);
gpstates->highest_lpstate = freq_data.pstate_id; gpstates->highest_lpstate_idx = new_index;
gpstate_id = freq_data.pstate_id; gpstate_idx = new_index;
} }
/* /*
* If local pstate is equal to global pstate, rampdown is over * If local pstate is equal to global pstate, rampdown is over
* So timer is not required to be queued. * So timer is not required to be queued.
*/ */
if (gpstate_id != freq_data.pstate_id) if (gpstate_idx != new_index)
queue_gpstate_timer(gpstates); queue_gpstate_timer(gpstates);
else else
del_timer_sync(&gpstates->timer); del_timer_sync(&gpstates->timer);
gpstates_done: gpstates_done:
freq_data.gpstate_id = gpstate_id; freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
gpstates->last_sampled_time = cur_msec; gpstates->last_sampled_time = cur_msec;
gpstates->last_gpstate = freq_data.gpstate_id; gpstates->last_gpstate_idx = gpstate_idx;
gpstates->last_lpstate = freq_data.pstate_id; gpstates->last_lpstate_idx = new_index;
spin_unlock(&gpstates->gpstate_lock); spin_unlock(&gpstates->gpstate_lock);
@ -846,8 +873,8 @@ static void powernv_cpufreq_stop_cpu(struct cpufreq_policy *policy)
struct powernv_smp_call_data freq_data; struct powernv_smp_call_data freq_data;
struct global_pstate_info *gpstates = policy->driver_data; struct global_pstate_info *gpstates = policy->driver_data;
freq_data.pstate_id = powernv_pstate_info.min; freq_data.pstate_id = idx_to_pstate(powernv_pstate_info.min);
freq_data.gpstate_id = powernv_pstate_info.min; freq_data.gpstate_id = idx_to_pstate(powernv_pstate_info.min);
smp_call_function_single(policy->cpu, set_pstate, &freq_data, 1); smp_call_function_single(policy->cpu, set_pstate, &freq_data, 1);
del_timer_sync(&gpstates->timer); del_timer_sync(&gpstates->timer);
} }