Merge master.kernel.org:/pub/scm/linux/kernel/git/jejb/scsi-misc-2.6

* master.kernel.org:/pub/scm/linux/kernel/git/jejb/scsi-misc-2.6: (39 commits)
  [SCSI] qla2xxx: Update version number to 8.02.00-k5.
  [SCSI] qla2xxx: Correct display of ISP serial-number.
  [SCSI] qla2xxx: Correct residual-count handling discrepancies during UNDERRUN handling.
  [SCSI] qla2xxx: Make driver (mostly) legacy I/O port free.
  [SCSI] qla2xxx: Fix issue where final flash-segment updates were falling into the slow-path write handler.
  [SCSI] qla2xxx: Handle unaligned sector writes during NVRAM/VPD updates.
  [SCSI] qla2xxx: Defer explicit interrupt-polling processing to init-time scenarios.
  [SCSI] qla2xxx: Resync with latest HBA SSID specification -- 2.2u.
  [SCSI] sym53c8xx: Remove sym_xpt_async_sent_bdr
  [SCSI] sym53c8xx: Remove pci_dev pointer from sym_shcb
  [SCSI] sym53c8xx: Make interrupt handler capable of returning IRQ_NONE
  [SCSI] sym53c8xx: Get rid of IRQ_FMT and IRQ_PRM
  [SCSI] sym53c8xx: Use scmd_printk where appropriate
  [SCSI] sym53c8xx: Simplify DAC DMA handling
  [SCSI] sym53c8xx: Remove tag_ctrl module parameter
  [SCSI] sym53c8xx: Remove io_ws, mmio_ws and ram_ws elements
  [SCSI] sym53c8xx: Remove ->device_id
  [SCSI] sym53c8xx: Use pdev->revision
  [SCSI] sym53c8xx: PCI Error Recovery support
  [SCSI] sym53c8xx: Stop overriding scsi_done
  ...
This commit is contained in:
Linus Torvalds 2007-10-23 16:37:29 -07:00
commit 1212663fba
60 changed files with 675 additions and 5316 deletions

View File

@ -449,25 +449,14 @@ options as above.
cmd_per_lun=#tags (#tags > 1) tagged command queuing enabled
#tags will be truncated to the max queued commands configuration parameter.
10.2.2 Detailed control of tagged commands
This option allows you to specify a command queue depth for each device
that supports tagged command queueing.
Example:
tag_ctrl=10/t2t3q16-t5q24/t1u2q32
will set devices queue depth as follow:
- controller #0 target #2 and target #3 -> 16 commands,
- controller #0 target #5 -> 24 commands,
- controller #1 target #1 logical unit #2 -> 32 commands,
- all other logical units (all targets, all controllers) -> 10 commands.
10.2.3 Burst max
10.2.2 Burst max
burst=0 burst disabled
burst=255 get burst length from initial IO register settings.
burst=#x burst enabled (1<<#x burst transfers max)
#x is an integer value which is log base 2 of the burst transfers max.
By default the driver uses the maximum value supported by the chip.
10.2.4 LED support
10.2.3 LED support
led=1 enable LED support
led=0 disable LED support
Do not enable LED support if your scsi board does not use SDMS BIOS.
@ -560,9 +549,9 @@ Previously, the sym2 driver accepted arguments of the form
sym53c8xx=tags:4,sync:10,debug:0x200
As a result of the new module parameters, this is no longer available.
Most of the options have remained the same, but tags has split into
cmd_per_lun and tag_ctrl for its two different purposes. The sample above
would be specified as:
Most of the options have remained the same, but tags has become
cmd_per_lun to reflect its different purposes. The sample above would
be specified as:
modprobe sym53c8xx cmd_per_lun=4 sync=10 debug=0x200
or on the kernel boot line as:

View File

@ -325,6 +325,12 @@ M: Juergen Fischer <fischer@norbit.de>
L: linux-scsi@vger.kernel.org
S: Maintained
AIC7XXX / AIC79XX SCSI DRIVER
P: Hannes Reinecke
M: hare@suse.de
L: linux-scsi@vger.kernel.org
S: Maintained
ALCATEL SPEEDTOUCH USB DRIVER
P: Duncan Sands
M: duncan.sands@free.fr

View File

@ -460,8 +460,6 @@ source "drivers/Kconfig"
source "drivers/sbus/char/Kconfig"
source "drivers/fc4/Kconfig"
source "fs/Kconfig"
source "kernel/Kconfig.instrumentation"

View File

@ -34,7 +34,6 @@ obj-$(CONFIG_NUBUS) += nubus/
obj-$(CONFIG_ATM) += atm/
obj-y += macintosh/
obj-$(CONFIG_IDE) += ide/
obj-$(CONFIG_FC4) += fc4/
obj-$(CONFIG_SCSI) += scsi/
obj-$(CONFIG_ATA) += ata/
obj-$(CONFIG_FUSION) += message/

View File

@ -1,81 +0,0 @@
#
# FC4 device configuration
#
menu "Fibre Channel support"
config FC4
tristate "Fibre Channel and FC4 SCSI support"
---help---
Fibre Channel is a high speed serial protocol mainly used to
connect large storage devices to the computer; it is compatible with
and intended to replace SCSI.
This is an experimental support for storage arrays connected to your
computer using optical fibre cables and the "X3.269-199X Fibre
Channel Protocol for SCSI" specification. If you want to use this,
you need to say Y here and to "SCSI support" as well as to the
drivers for the storage array itself and for the interface adapter
such as SOC or SOC+. This subsystem could even serve for IP
networking, with some code extensions.
If unsure, say N.
comment "FC4 drivers"
depends on FC4
config FC4_SOC
tristate "Sun SOC/Sbus"
depends on FC4!=n && SPARC
help
Serial Optical Channel is an interface card with one or two Fibre
Optic ports, each of which can be connected to a disk array. Note
that if you have older firmware in the card, you'll need the
microcode from the Solaris driver to make it work.
To compile this support as a module, choose M here: the module will
be called soc.
config FC4_SOCAL
tristate "Sun SOC+ (aka SOCAL)"
depends on FC4!=n && SPARC
---help---
Serial Optical Channel Plus is an interface card with up to two
Fibre Optic ports. This card supports FC Arbitrated Loop (usually
A5000 or internal FC disks in E[3-6]000 machines through the
Interface Board). You'll probably need the microcode from the
Solaris driver to make it work.
To compile this support as a module, choose M here: the module will
be called socal.
comment "FC4 targets"
depends on FC4
config SCSI_PLUTO
tristate "SparcSTORAGE Array 100 and 200 series"
depends on FC4!=n && SCSI
help
If you never bought a disk array made by Sun, go with N.
To compile this support as a module, choose M here: the module will
be called pluto.
config SCSI_FCAL
tristate "Sun Enterprise Network Array (A5000 and EX500)" if SPARC
depends on FC4!=n && SCSI
help
This driver drives FC-AL disks connected through a Fibre Channel
card using the drivers/fc4 layer (currently only SOCAL). The most
common is either A5000 array or internal disks in E[3-6]000
machines.
To compile this support as a module, choose M here: the module will
be called fcal.
config SCSI_FCAL
prompt "Generic FC-AL disk driver"
depends on FC4!=n && SCSI && !SPARC
endmenu

View File

@ -1,9 +0,0 @@
#
# Makefile for the Linux Fibre Channel device drivers.
#
fc4-objs := fc.o fc_syms.o
obj-$(CONFIG_FC4) += fc4.o
obj-$(CONFIG_FC4_SOC) += soc.o
obj-$(CONFIG_FC4_SOCAL) += socal.o

View File

@ -1,27 +0,0 @@
/* fc-al.h: Definitions for Fibre Channel Arbitrated Loop topology.
*
* Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
*
* Sources:
* Fibre Channel Arbitrated Loop (FC-AL), ANSI, Rev. 4.5, 1995
*/
#ifndef __FC_AL_H
#define __FC_AL_H
/* Loop initialization payloads */
#define FC_AL_LISM 0x11010000 /* Select Master, 12B payload */
#define FC_AL_LIFA 0x11020000 /* Fabric Assign AL_PA bitmap, 20B payload */
#define FC_AL_LIPA 0x11030000 /* Previously Acquired AL_PA bitmap, 20B payload */
#define FC_AL_LIHA 0x11040000 /* Hard Assigned AL_PA bitmap, 20B payload */
#define FC_AL_LISA 0x11050000 /* Soft Assigned AL_PA bitmap, 20B payload */
#define FC_AL_LIRP 0x11060000 /* Report AL_PA position map, 132B payload */
#define FC_AL_LILP 0x11070000 /* Loop AL_PA position map, 132B payload */
typedef struct {
u32 magic;
u8 len;
u8 alpa[127];
} fc_al_posmap;
#endif /* !(__FC_H) */

File diff suppressed because it is too large Load Diff

View File

@ -1,230 +0,0 @@
/* fc.h: Definitions for Fibre Channel Physical and Signaling Interface.
*
* Copyright (C) 1996-1997,1999 Jakub Jelinek (jj@ultra.linux.cz)
*
* Sources:
* Fibre Channel Physical & Signaling Interface (FC-PH), dpANS, 1994
* dpANS Fibre Channel Protocol for SCSI (X3.269-199X), Rev. 012, 1995
*/
#ifndef __FC_H
#define __FC_H
/* World Wide Name */
#define NAAID_IEEE 1
#define NAAID_IEEE_EXT 2
#define NAAID_LOCAL 3
#define NAAID_IP 4
#define NAAID_IEEE_REG 5
#define NAAID_IEEE_REG_EXT 6
#define NAAID_CCITT 12
#define NAAID_CCITT_GRP 14
/* This is NAAID_IEEE_EXT scheme */
typedef struct {
u32 naaid:4;
u32 nportid:12;
u32 hi:16;
u32 lo;
} fc_wwn;
/* Frame header for FC-PH frames */
/* r_ctl field */
#define R_CTL_DEVICE_DATA 0x00 /* FC4 Device_Data frame */
#define R_CTL_EXTENDED_SVC 0x20 /* Extended Link_Data frame */
#define R_CTL_FC4_SVC 0x30 /* FC4 Link_Data frame */
#define R_CTL_VIDEO 0x40 /* Video_Data frame */
#define R_CTL_BASIC_SVC 0x80 /* Basic Link_Data frame */
#define R_CTL_LINK_CTL 0xc0 /* Link_Control frame */
/* FC4 Device_Data frames */
#define R_CTL_UNCATEGORIZED 0x00
#define R_CTL_SOLICITED_DATA 0x01
#define R_CTL_UNSOL_CONTROL 0x02
#define R_CTL_SOLICITED_CONTROL 0x03
#define R_CTL_UNSOL_DATA 0x04
#define R_CTL_XFER_RDY 0x05
#define R_CTL_COMMAND 0x06
#define R_CTL_STATUS 0x07
/* Basic Link_Data frames */
#define R_CTL_LS_NOP 0x80
#define R_CTL_LS_ABTS 0x81
#define R_CTL_LS_RMC 0x82
#define R_CTL_LS_BA_ACC 0x84
#define R_CTL_LS_BA_RJT 0x85
/* Extended Link_Data frames */
#define R_CTL_ELS_REQ 0x22
#define R_CTL_ELS_RSP 0x23
/* Link_Control frames */
#define R_CTL_ACK_1 0xc0
#define R_CTL_ACK_N 0xc1
#define R_CTL_P_RJT 0xc2
#define R_CTL_F_RJT 0xc3
#define R_CTL_P_BSY 0xc4
#define R_CTL_F_BSY_DF 0xc5
#define R_CTL_F_BSY_LC 0xc6
#define R_CTL_LCR 0xc7
/* type field */
#define TYPE_BASIC_LS 0x00
#define TYPE_EXTENDED_LS 0x01
#define TYPE_IS8802 0x04
#define TYPE_IS8802_SNAP 0x05
#define TYPE_SCSI_FCP 0x08
#define TYPE_SCSI_GPP 0x09
#define TYPE_HIPP_FP 0x0a
#define TYPE_IPI3_MASTER 0x11
#define TYPE_IPI3_SLAVE 0x12
#define TYPE_IPI3_PEER 0x13
/* f_ctl field */
#define F_CTL_FILL_BYTES 0x000003
#define F_CTL_XCHG_REASSEMBLE 0x000004
#define F_CTL_RO_PRESENT 0x000008
#define F_CTL_ABORT_SEQ 0x000030
#define F_CTL_CONTINUE_SEQ 0x0000c0
#define F_CTL_INVALIDATE_XID 0x004000
#define F_CTL_XID_REASSIGNED 0x008000
#define F_CTL_SEQ_INITIATIVE 0x010000
#define F_CTL_CHAINED_SEQ 0x020000
#define F_CTL_END_CONNECT 0x040000
#define F_CTL_END_SEQ 0x080000
#define F_CTL_LAST_SEQ 0x100000
#define F_CTL_FIRST_SEQ 0x200000
#define F_CTL_SEQ_CONTEXT 0x400000
#define F_CTL_XCHG_CONTEXT 0x800000
typedef struct {
u32 r_ctl:8, did:24;
u32 xxx1:8, sid:24;
u32 type:8, f_ctl:24;
u32 seq_id:8, df_ctl:8, seq_cnt:16;
u16 ox_id, rx_id;
u32 param;
} fc_hdr;
/* The following are ugly macros to make setup of this structure faster */
#define FILL_FCHDR_RCTL_DID(fch, r_ctl, did) *(u32 *)(fch) = ((r_ctl) << 24) | (did);
#define FILL_FCHDR_SID(fch, sid) *((u32 *)(fch)+1) = (sid);
#define FILL_FCHDR_TYPE_FCTL(fch, type, f_ctl) *((u32 *)(fch)+2) = ((type) << 24) | (f_ctl);
#define FILL_FCHDR_SEQ_DF_SEQ(fch, seq_id, df_ctl, seq_cnt) *((u32 *)(fch)+3) = ((seq_id) << 24) | ((df_ctl) << 16) | (seq_cnt);
#define FILL_FCHDR_OXRX(fch, ox_id, rx_id) *((u32 *)(fch)+4) = ((ox_id) << 16) | (rx_id);
/* Well known addresses */
#define FS_GENERAL_MULTICAST 0xfffff7
#define FS_WELL_KNOWN_MULTICAST 0xfffff8
#define FS_HUNT_GROUP 0xfffff9
#define FS_MANAGEMENT_SERVER 0xfffffa
#define FS_TIME_SERVER 0xfffffb
#define FS_NAME_SERVER 0xfffffc
#define FS_FABRIC_CONTROLLER 0xfffffd
#define FS_FABRIC_F_PORT 0xfffffe
#define FS_BROADCAST 0xffffff
/* Reject frames */
/* The param field should be cast to this structure */
typedef struct {
u8 action;
u8 reason;
u8 xxx;
u8 vendor_unique;
} rjt_param;
/* Reject action codes */
#define RJT_RETRY 0x01
#define RJT_NONRETRY 0x02
/* Reject reason codes */
#define RJT_INVALID_DID 0x01
#define RJT_INVALID_SID 0x02
#define RJT_NPORT_NOT_AVAIL_TEMP 0x03
#define RJT_NPORT_NOT_AVAIL_PERM 0x04
#define RJT_CLASS_NOT_SUPPORTED 0x05
#define RJT_DELIMITER_ERROR 0x06
#define RJT_TYPE_NOT_SUPPORTED 0x07
#define RJT_INVALID_LINK_CONTROL 0x08
#define RJT_INVALID_R_CTL 0x09
#define RJT_INVALID_F_CTL 0x0a
#define RJT_INVALID_OX_ID 0x0b
#define RJT_INVALID_RX_ID 0x0c
#define RJT_INVALID_SEQ_ID 0x0d
#define RJT_INVALID_DF_CTL 0x0e
#define RJT_INVALID_SEQ_CNT 0x0f
#define RJT_INVALID_PARAMETER 0x10
#define RJT_EXCHANGE_ERROR 0x11
#define RJT_PROTOCOL_ERROR 0x12
#define RJT_INCORRECT_LENGTH 0x13
#define RJT_UNEXPECTED_ACK 0x14
#define RJT_UNEXPECTED_LINK_RESP 0x15
#define RJT_LOGIN_REQUIRED 0x16
#define RJT_EXCESSIVE_SEQUENCES 0x17
#define RJT_CANT_ESTABLISH_EXCHANGE 0x18
#define RJT_SECURITY_NOT_SUPPORTED 0x19
#define RJT_FABRIC_NA 0x1a
#define RJT_VENDOR_UNIQUE 0xff
#define SP_F_PORT_LOGIN 0x10
/* Extended SVC commands */
#define LS_RJT 0x01000000
#define LS_ACC 0x02000000
#define LS_PRLI_ACC 0x02100014
#define LS_PLOGI 0x03000000
#define LS_FLOGI 0x04000000
#define LS_LOGO 0x05000000
#define LS_ABTX 0x06000000
#define LS_RCS 0x07000000
#define LS_RES 0x08000000
#define LS_RSS 0x09000000
#define LS_RSI 0x0a000000
#define LS_ESTS 0x0b000000
#define LS_ESTC 0x0c000000
#define LS_ADVC 0x0d000000
#define LS_RTV 0x0e000000
#define LS_RLS 0x0f000000
#define LS_ECHO 0x10000000
#define LS_TEST 0x11000000
#define LS_RRQ 0x12000000
#define LS_IDENT 0x20000000
#define LS_PRLI 0x20100014
#define LS_DISPLAY 0x21000000
#define LS_PRLO 0x21100014
#define LS_PDISC 0x50000000
#define LS_ADISC 0x52000000
typedef struct {
u8 fcph_hi, fcph_lo;
u16 buf2buf_credit;
u8 common_features;
u8 xxx1;
u16 buf2buf_size;
u8 xxx2;
u8 total_concurrent;
u16 off_by_info;
u32 e_d_tov;
} common_svc_parm;
typedef struct {
u16 serv_opts;
u16 initiator_ctl;
u16 rcpt_ctl;
u16 recv_size;
u8 xxx1;
u8 concurrent_seqs;
u16 end2end_credit;
u16 open_seqs_per_xchg;
u16 xxx2;
} svc_parm;
/* Login */
typedef struct {
u32 code;
common_svc_parm common;
fc_wwn nport_wwn;
fc_wwn node_wwn;
svc_parm class1;
svc_parm class2;
svc_parm class3;
} logi;
#endif /* !(__FC_H) */

View File

@ -1,30 +0,0 @@
/*
* We should not even be trying to compile this if we are not doing
* a module.
*/
#include <linux/module.h>
#ifdef CONFIG_MODULES
#include <linux/types.h>
#include <linux/string.h>
#include <linux/kernel.h>
#include "fcp_impl.h"
EXPORT_SYMBOL(fcp_init);
EXPORT_SYMBOL(fcp_release);
EXPORT_SYMBOL(fcp_queue_empty);
EXPORT_SYMBOL(fcp_receive_solicited);
EXPORT_SYMBOL(fc_channels);
EXPORT_SYMBOL(fcp_state_change);
EXPORT_SYMBOL(fc_do_plogi);
EXPORT_SYMBOL(fc_do_prli);
/* SCSI stuff */
EXPORT_SYMBOL(fcp_scsi_queuecommand);
EXPORT_SYMBOL(fcp_scsi_abort);
EXPORT_SYMBOL(fcp_scsi_dev_reset);
EXPORT_SYMBOL(fcp_scsi_host_reset);
#endif /* CONFIG_MODULES */

View File

@ -1,94 +0,0 @@
/* fcp.h: Definitions for Fibre Channel Protocol.
*
* Copyright (C) 1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
*
*/
#ifndef __FCP_H
#define __FCP_H
/* FCP addressing is hierarchical with up to 4 layers, MS first.
Exact meaning of the addresses is up to the vendor */
/* fcp_cntl field */
#define FCP_CNTL_WRITE 0x00000001 /* Initiator write */
#define FCP_CNTL_READ 0x00000002 /* Initiator read */
#define FCP_CNTL_ABORT_TSK 0x00000200 /* Abort task set */
#define FCP_CNTL_CLR_TASK 0x00000400 /* Clear task set */
#define FCP_CNTL_RESET 0x00002000 /* Reset */
#define FCP_CNTL_CLR_ACA 0x00004000 /* Clear ACA */
#define FCP_CNTL_KILL_TASK 0x00008000 /* Terminate task */
#define FCP_CNTL_QTYPE_MASK 0x00070000 /* Tagged queueing type */
#define FCP_CNTL_QTYPE_SIMPLE 0x00000000
#define FCP_CNTL_QTYPE_HEAD_OF_Q 0x00010000
#define FCP_CNTL_QTYPE_ORDERED 0x00020000
#define FCP_CNTL_QTYPE_ACA_Q_TAG 0x00040000
#define FCP_CNTL_QTYPE_UNTAGGED 0x00050000
typedef struct {
u16 fcp_addr[4];
u32 fcp_cntl;
u8 fcp_cdb[16];
u32 fcp_data_len;
} fcp_cmd;
/* fcp_status field */
#define FCP_STATUS_MASK 0x000000ff /* scsi status of command */
#define FCP_STATUS_RSP_LEN 0x00000100 /* response_len != 0 */
#define FCP_STATUS_SENSE_LEN 0x00000200 /* sense_len != 0 */
#define FCP_STATUS_RESID 0x00000400 /* resid != 0 */
typedef struct {
u32 xxx[2];
u32 fcp_status;
u32 fcp_resid;
u32 fcp_sense_len;
u32 fcp_response_len;
/* u8 fcp_sense[fcp_sense_len]; */
/* u8 fcp_response[fcp_response_len]; */
} fcp_rsp;
/* fcp errors */
/* rsp_info_type field */
#define FCP_RSP_SCSI_BUS_ERR 0x01
#define FCP_RSP_SCSI_PORT_ERR 0x02
#define FCP_RSP_CARD_ERR 0x03
/* isp_status field */
#define FCP_RSP_CMD_COMPLETE 0x0000
#define FCP_RSP_CMD_INCOMPLETE 0x0001
#define FCP_RSP_CMD_DMA_ERR 0x0002
#define FCP_RSP_CMD_TRAN_ERR 0x0003
#define FCP_RSP_CMD_RESET 0x0004
#define FCP_RSP_CMD_ABORTED 0x0005
#define FCP_RSP_CMD_TIMEOUT 0x0006
#define FCP_RSP_CMD_OVERRUN 0x0007
/* isp_state_flags field */
#define FCP_RSP_ST_GOT_BUS 0x0100
#define FCP_RSP_ST_GOT_TARGET 0x0200
#define FCP_RSP_ST_SENT_CMD 0x0400
#define FCP_RSP_ST_XFRD_DATA 0x0800
#define FCP_RSP_ST_GOT_STATUS 0x1000
#define FCP_RSP_ST_GOT_SENSE 0x2000
/* isp_stat_flags field */
#define FCP_RSP_STAT_DISC 0x0001
#define FCP_RSP_STAT_SYNC 0x0002
#define FCP_RSP_STAT_PERR 0x0004
#define FCP_RSP_STAT_BUS_RESET 0x0008
#define FCP_RSP_STAT_DEV_RESET 0x0010
#define FCP_RSP_STAT_ABORTED 0x0020
#define FCP_RSP_STAT_TIMEOUT 0x0040
#define FCP_RSP_STAT_NEGOTIATE 0x0080
typedef struct {
u8 rsp_info_type;
u8 xxx;
u16 isp_status;
u16 isp_state_flags;
u16 isp_stat_flags;
} fcp_scsi_err;
#endif /* !(__FCP_H) */

View File

@ -1,164 +0,0 @@
/* fcp_impl.h: Generic SCSI on top of FC4 - our interface defines.
*
* Copyright (C) 1997-1999 Jakub Jelinek (jj@ultra.linux.cz)
* Copyright (C) 1998 Jirka Hanika (geo@ff.cuni.cz)
*/
#ifndef _FCP_SCSI_H
#define _FCP_SCSI_H
#include <linux/types.h>
#include "../scsi/scsi.h"
#include "fc.h"
#include "fcp.h"
#include "fc-al.h"
#include <asm/io.h>
#ifdef __sparc__
#include <asm/sbus.h>
#endif
/* 0 or 1 */
#define FCP_SCSI_USE_NEW_EH_CODE 0
#define FC_CLASS_OUTBOUND 0x01
#define FC_CLASS_INBOUND 0x02
#define FC_CLASS_SIMPLE 0x03
#define FC_CLASS_IO_WRITE 0x04
#define FC_CLASS_IO_READ 0x05
#define FC_CLASS_UNSOLICITED 0x06
#define FC_CLASS_OFFLINE 0x08
#define PROTO_OFFLINE 0x02
#define PROTO_REPORT_AL_MAP 0x03
#define PROTO_FORCE_LIP 0x06
struct _fc_channel;
typedef struct fcp_cmnd {
struct fcp_cmnd *next;
struct fcp_cmnd *prev;
void (*done)(struct scsi_cmnd *);
unsigned short proto;
unsigned short token;
unsigned int did;
/* FCP SCSI stuff */
dma_addr_t data;
/* From now on this cannot be touched for proto == TYPE_SCSI_FCP */
fc_hdr fch;
dma_addr_t cmd;
dma_addr_t rsp;
int cmdlen;
int rsplen;
int class;
int datalen;
/* This is just used as a verification during login */
struct _fc_channel *fc;
void *ls;
} fcp_cmnd;
typedef struct {
unsigned int len;
unsigned char list[0];
} fcp_posmap;
typedef struct _fc_channel {
struct _fc_channel *next;
int irq;
int state;
int sid;
int did;
char name[16];
void (*fcp_register)(struct _fc_channel *, u8, int);
void (*reset)(struct _fc_channel *);
int (*hw_enque)(struct _fc_channel *, fcp_cmnd *);
fc_wwn wwn_node;
fc_wwn wwn_nport;
fc_wwn wwn_dest;
common_svc_parm *common_svc;
svc_parm *class_svcs;
#ifdef __sparc__
struct sbus_dev *dev;
#else
struct pci_dev *dev;
#endif
struct module *module;
/* FCP SCSI stuff */
short can_queue;
short abort_count;
int rsp_size;
fcp_cmd *scsi_cmd_pool;
char *scsi_rsp_pool;
dma_addr_t dma_scsi_cmd, dma_scsi_rsp;
unsigned long *scsi_bitmap;
long scsi_bitmap_end;
int scsi_free;
int (*encode_addr)(struct scsi_cmnd *, u16 *, struct _fc_channel *, fcp_cmnd *);
fcp_cmnd *scsi_que;
char scsi_name[4];
fcp_cmnd **cmd_slots;
int channels;
int targets;
long *ages;
struct scsi_cmnd *rst_pkt;
fcp_posmap *posmap;
/* LOGIN stuff */
fcp_cmnd *login;
void *ls;
} fc_channel;
extern fc_channel *fc_channels;
#define FC_STATE_UNINITED 0
#define FC_STATE_ONLINE 1
#define FC_STATE_OFFLINE 2
#define FC_STATE_RESETING 3
#define FC_STATE_FPORT_OK 4
#define FC_STATE_MAYBEOFFLINE 5
#define FC_STATUS_OK 0
#define FC_STATUS_P_RJT 2
#define FC_STATUS_F_RJT 3
#define FC_STATUS_P_BSY 4
#define FC_STATUS_F_BSY 5
#define FC_STATUS_ERR_OFFLINE 0x11
#define FC_STATUS_TIMEOUT 0x12
#define FC_STATUS_ERR_OVERRUN 0x13
#define FC_STATUS_POINTTOPOINT 0x15
#define FC_STATUS_AL 0x16
#define FC_STATUS_UNKNOWN_CQ_TYPE 0x20
#define FC_STATUS_BAD_SEG_CNT 0x21
#define FC_STATUS_MAX_XCHG_EXCEEDED 0x22
#define FC_STATUS_BAD_XID 0x23
#define FC_STATUS_XCHG_BUSY 0x24
#define FC_STATUS_BAD_POOL_ID 0x25
#define FC_STATUS_INSUFFICIENT_CQES 0x26
#define FC_STATUS_ALLOC_FAIL 0x27
#define FC_STATUS_BAD_SID 0x28
#define FC_STATUS_NO_SEQ_INIT 0x29
#define FC_STATUS_TIMED_OUT -1
#define FC_STATUS_BAD_RSP -2
void fcp_queue_empty(fc_channel *);
int fcp_init(fc_channel *);
void fcp_release(fc_channel *fc_chain, int count);
void fcp_receive_solicited(fc_channel *, int, int, int, fc_hdr *);
void fcp_state_change(fc_channel *, int);
int fc_do_plogi(fc_channel *, unsigned char, fc_wwn *, fc_wwn *);
int fc_do_prli(fc_channel *, unsigned char);
#define for_each_fc_channel(fc) \
for (fc = fc_channels; fc; fc = fc->next)
#define for_each_online_fc_channel(fc) \
for_each_fc_channel(fc) \
if (fc->state == FC_STATE_ONLINE)
int fcp_scsi_queuecommand(struct scsi_cmnd *,
void (* done) (struct scsi_cmnd *));
int fcp_scsi_abort(struct scsi_cmnd *);
int fcp_scsi_dev_reset(struct scsi_cmnd *);
int fcp_scsi_host_reset(struct scsi_cmnd *);
#endif /* !(_FCP_SCSI_H) */

View File

@ -1,764 +0,0 @@
/* soc.c: Sparc SUNW,soc (Serial Optical Channel) Fibre Channel Sbus adapter support.
*
* Copyright (C) 1996,1997,1999 Jakub Jelinek (jj@ultra.linux.cz)
* Copyright (C) 1997,1998 Jirka Hanika (geo@ff.cuni.cz)
*
* Sources:
* Fibre Channel Physical & Signaling Interface (FC-PH), dpANS, 1994
* dpANS Fibre Channel Protocol for SCSI (X3.269-199X), Rev. 012, 1995
*
* Supported hardware:
* Tested on SOC sbus card bought with SS1000 in Linux running on SS5 and Ultra1.
* For SOC sbus cards, you have to make sure your FCode is 1.52 or later.
* If you have older FCode, you should try to upgrade or get SOC microcode from Sun
* (the microcode is present in Solaris soc driver as well). In that case you need
* to #define HAVE_SOC_UCODE and format the microcode into soc_asm.c. For the exact
* format mail me and I will tell you. I cannot offer you the actual microcode though,
* unless Sun confirms they don't mind.
*/
static char *version =
"soc.c:v1.3 9/Feb/99 Jakub Jelinek (jj@ultra.linux.cz), Jirka Hanika (geo@ff.cuni.cz)\n";
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/ptrace.h>
#include <linux/ioport.h>
#include <linux/in.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/bitops.h>
#include <asm/io.h>
#include <asm/dma.h>
#include <linux/errno.h>
#include <asm/byteorder.h>
#include <asm/openprom.h>
#include <asm/oplib.h>
#include <asm/pgtable.h>
#include <asm/irq.h>
/* #define SOCDEBUG */
/* #define HAVE_SOC_UCODE */
#include "fcp_impl.h"
#include "soc.h"
#ifdef HAVE_SOC_UCODE
#include "soc_asm.h"
#endif
#define soc_printk printk ("soc%d: ", s->soc_no); printk
#ifdef SOCDEBUG
#define SOD(x) soc_printk x;
#else
#define SOD(x)
#endif
#define for_each_soc(s) for (s = socs; s; s = s->next)
struct soc *socs = NULL;
static inline void soc_disable(struct soc *s)
{
sbus_writel(0, s->regs + IMASK);
sbus_writel(SOC_CMD_SOFT_RESET, s->regs + CMD);
}
static inline void soc_enable(struct soc *s)
{
SOD(("enable %08x\n", s->cfg))
sbus_writel(0, s->regs + SAE);
sbus_writel(s->cfg, s->regs + CFG);
sbus_writel(SOC_CMD_RSP_QALL, s->regs + CMD);
SOC_SETIMASK(s, SOC_IMASK_RSP_QALL | SOC_IMASK_SAE);
SOD(("imask %08lx %08lx\n", s->imask, sbus_readl(s->regs + IMAK)));
}
static void soc_reset(fc_channel *fc)
{
soc_port *port = (soc_port *)fc;
struct soc *s = port->s;
/* FIXME */
soc_disable(s);
s->req[0].seqno = 1;
s->req[1].seqno = 1;
s->rsp[0].seqno = 1;
s->rsp[1].seqno = 1;
s->req[0].in = 0;
s->req[1].in = 0;
s->rsp[0].in = 0;
s->rsp[1].in = 0;
s->req[0].out = 0;
s->req[1].out = 0;
s->rsp[0].out = 0;
s->rsp[1].out = 0;
/* FIXME */
soc_enable(s);
}
static inline void soc_solicited (struct soc *s)
{
fc_hdr fchdr;
soc_rsp __iomem *hwrsp;
soc_cq_rsp *sw_cq;
int token;
int status;
fc_channel *fc;
sw_cq = &s->rsp[SOC_SOLICITED_RSP_Q];
if (sw_cq->pool == NULL)
sw_cq->pool = (soc_req __iomem *)
(s->xram + xram_get_32low ((xram_p)&sw_cq->hw_cq->address));
sw_cq->in = xram_get_8 ((xram_p)&sw_cq->hw_cq->in);
SOD (("soc_solicited, %d pkts arrived\n", (sw_cq->in-sw_cq->out) & sw_cq->last))
for (;;) {
hwrsp = (soc_rsp __iomem *)sw_cq->pool + sw_cq->out;
token = xram_get_32low ((xram_p)&hwrsp->shdr.token);
status = xram_get_32low ((xram_p)&hwrsp->status);
fc = (fc_channel *)(&s->port[(token >> 11) & 1]);
if (status == SOC_OK) {
fcp_receive_solicited(fc, token >> 12,
token & ((1 << 11) - 1),
FC_STATUS_OK, NULL);
} else {
xram_copy_from(&fchdr, (xram_p)&hwrsp->fchdr, sizeof(fchdr));
/* We have intentionally defined FC_STATUS_* constants
* to match SOC_* constants, otherwise we'd have to
* translate status.
*/
fcp_receive_solicited(fc, token >> 12,
token & ((1 << 11) - 1),
status, &fchdr);
}
if (++sw_cq->out > sw_cq->last) {
sw_cq->seqno++;
sw_cq->out = 0;
}
if (sw_cq->out == sw_cq->in) {
sw_cq->in = xram_get_8 ((xram_p)&sw_cq->hw_cq->in);
if (sw_cq->out == sw_cq->in) {
/* Tell the hardware about it */
sbus_writel((sw_cq->out << 24) |
(SOC_CMD_RSP_QALL &
~(SOC_CMD_RSP_Q0 << SOC_SOLICITED_RSP_Q)),
s->regs + CMD);
/* Read it, so that we're sure it has been updated */
sbus_readl(s->regs + CMD);
sw_cq->in = xram_get_8 ((xram_p)&sw_cq->hw_cq->in);
if (sw_cq->out == sw_cq->in)
break;
}
}
}
}
static inline void soc_request (struct soc *s, u32 cmd)
{
SOC_SETIMASK(s, s->imask & ~(cmd & SOC_CMD_REQ_QALL));
SOD(("imask %08lx %08lx\n", s->imask, sbus_readl(s->regs + IMASK)));
SOD(("Queues available %08x OUT %X %X\n", cmd,
xram_get_8((xram_p)&s->req[0].hw_cq->out),
xram_get_8((xram_p)&s->req[0].hw_cq->out)))
if (s->port[s->curr_port].fc.state != FC_STATE_OFFLINE) {
fcp_queue_empty ((fc_channel *)&(s->port[s->curr_port]));
if (((s->req[1].in + 1) & s->req[1].last) != (s->req[1].out))
fcp_queue_empty ((fc_channel *)&(s->port[1 - s->curr_port]));
} else {
fcp_queue_empty ((fc_channel *)&(s->port[1 - s->curr_port]));
}
if (s->port[1 - s->curr_port].fc.state != FC_STATE_OFFLINE)
s->curr_port ^= 1;
}
static inline void soc_unsolicited (struct soc *s)
{
soc_rsp __iomem *hwrsp, *hwrspc;
soc_cq_rsp *sw_cq;
int count;
int status;
int flags;
fc_channel *fc;
sw_cq = &s->rsp[SOC_UNSOLICITED_RSP_Q];
if (sw_cq->pool == NULL)
sw_cq->pool = (soc_req __iomem *)
(s->xram + (xram_get_32low ((xram_p)&sw_cq->hw_cq->address)));
sw_cq->in = xram_get_8 ((xram_p)&sw_cq->hw_cq->in);
SOD (("soc_unsolicited, %d packets arrived\n", (sw_cq->in - sw_cq->out) & sw_cq->last))
while (sw_cq->in != sw_cq->out) {
/* ...real work per entry here... */
hwrsp = (soc_rsp __iomem *)sw_cq->pool + sw_cq->out;
hwrspc = NULL;
flags = xram_get_16 ((xram_p)&hwrsp->shdr.flags);
count = xram_get_8 ((xram_p)&hwrsp->count);
fc = (fc_channel *)&s->port[flags & SOC_PORT_B];
SOD(("FC %08lx fcp_state_change %08lx\n",
(long)fc, (long)fc->fcp_state_change))
if (count != 1) {
/* Ugh, continuation entries */
u8 in;
if (count != 2) {
printk("%s: Too many continuations entries %d\n",
fc->name, count);
goto update_out;
}
in = sw_cq->in;
if (in < sw_cq->out) in += sw_cq->last + 1;
if (in < sw_cq->out + 2) {
/* Ask the hardware if they haven't arrived yet. */
sbus_writel((sw_cq->out << 24) |
(SOC_CMD_RSP_QALL &
~(SOC_CMD_RSP_Q0 << SOC_UNSOLICITED_RSP_Q)),
s->regs + CMD);
/* Read it, so that we're sure it has been updated */
sbus_readl(s->regs + CMD);
sw_cq->in = xram_get_8 ((xram_p)&sw_cq->hw_cq->in);
in = sw_cq->in;
if (in < sw_cq->out)
in += sw_cq->last + 1;
if (in < sw_cq->out + 2) /* Nothing came, let us wait */
return;
}
if (sw_cq->out == sw_cq->last)
hwrspc = (soc_rsp __iomem *)sw_cq->pool;
else
hwrspc = hwrsp + 1;
}
switch (flags & ~SOC_PORT_B) {
case SOC_STATUS:
status = xram_get_32low ((xram_p)&hwrsp->status);
switch (status) {
case SOC_ONLINE:
SOD(("State change to ONLINE\n"));
fcp_state_change(fc, FC_STATE_ONLINE);
break;
case SOC_OFFLINE:
SOD(("State change to OFFLINE\n"));
fcp_state_change(fc, FC_STATE_OFFLINE);
break;
default:
printk ("%s: Unknown STATUS no %d\n",
fc->name, status);
break;
}
break;
case (SOC_UNSOLICITED|SOC_FC_HDR):
{
int r_ctl = xram_get_8 ((xram_p)&hwrsp->fchdr);
unsigned len;
char buf[64];
if ((r_ctl & 0xf0) == R_CTL_EXTENDED_SVC) {
len = xram_get_32 ((xram_p)&hwrsp->shdr.bytecnt);
if (len < 4 || !hwrspc) {
printk ("%s: Invalid R_CTL %02x "
"continuation entries\n",
fc->name, r_ctl);
} else {
if (len > 60)
len = 60;
xram_copy_from (buf, (xram_p)hwrspc,
(len + 3) & ~3);
if (*(u32 *)buf == LS_DISPLAY) {
int i;
for (i = 4; i < len; i++)
if (buf[i] == '\n')
buf[i] = ' ';
buf[len] = 0;
printk ("%s message: %s\n",
fc->name, buf + 4);
} else {
printk ("%s: Unknown LS_CMD "
"%02x\n", fc->name,
buf[0]);
}
}
} else {
printk ("%s: Unsolicited R_CTL %02x "
"not handled\n", fc->name, r_ctl);
}
}
break;
default:
printk ("%s: Unexpected flags %08x\n", fc->name, flags);
break;
};
update_out:
if (++sw_cq->out > sw_cq->last) {
sw_cq->seqno++;
sw_cq->out = 0;
}
if (hwrspc) {
if (++sw_cq->out > sw_cq->last) {
sw_cq->seqno++;
sw_cq->out = 0;
}
}
if (sw_cq->out == sw_cq->in) {
sw_cq->in = xram_get_8 ((xram_p)&sw_cq->hw_cq->in);
if (sw_cq->out == sw_cq->in) {
/* Tell the hardware about it */
sbus_writel((sw_cq->out << 24) |
(SOC_CMD_RSP_QALL &
~(SOC_CMD_RSP_Q0 << SOC_UNSOLICITED_RSP_Q)),
s->regs + CMD);
/* Read it, so that we're sure it has been updated */
sbus_readl(s->regs + CMD);
sw_cq->in = xram_get_8 ((xram_p)&sw_cq->hw_cq->in);
}
}
}
}
static irqreturn_t soc_intr(int irq, void *dev_id)
{
u32 cmd;
unsigned long flags;
register struct soc *s = (struct soc *)dev_id;
spin_lock_irqsave(&s->lock, flags);
cmd = sbus_readl(s->regs + CMD);
for (; (cmd = SOC_INTR (s, cmd)); cmd = sbus_readl(s->regs + CMD)) {
if (cmd & SOC_CMD_RSP_Q1) soc_unsolicited (s);
if (cmd & SOC_CMD_RSP_Q0) soc_solicited (s);
if (cmd & SOC_CMD_REQ_QALL) soc_request (s, cmd);
}
spin_unlock_irqrestore(&s->lock, flags);
return IRQ_HANDLED;
}
#define TOKEN(proto, port, token) (((proto)<<12)|(token)|(port))
static int soc_hw_enque (fc_channel *fc, fcp_cmnd *fcmd)
{
soc_port *port = (soc_port *)fc;
struct soc *s = port->s;
int qno;
soc_cq_req *sw_cq;
int cq_next_in;
soc_req *request;
fc_hdr *fch;
int i;
if (fcmd->proto == TYPE_SCSI_FCP)
qno = 1;
else
qno = 0;
SOD(("Putting a FCP packet type %d into hw queue %d\n", fcmd->proto, qno))
if (s->imask & (SOC_IMASK_REQ_Q0 << qno)) {
SOD(("EIO %08x\n", s->imask))
return -EIO;
}
sw_cq = s->req + qno;
cq_next_in = (sw_cq->in + 1) & sw_cq->last;
if (cq_next_in == sw_cq->out &&
cq_next_in == (sw_cq->out = xram_get_8((xram_p)&sw_cq->hw_cq->out))) {
SOD(("%d IN %d OUT %d LAST %d\n", qno, sw_cq->in, sw_cq->out, sw_cq->last))
SOC_SETIMASK(s, s->imask | (SOC_IMASK_REQ_Q0 << qno));
SOD(("imask %08lx %08lx\n", s->imask, sbus_readl(s->regs + IMASK)));
/* If queue is full, just say NO */
return -EBUSY;
}
request = sw_cq->pool + sw_cq->in;
fch = &request->fchdr;
switch (fcmd->proto) {
case TYPE_SCSI_FCP:
request->shdr.token = TOKEN(TYPE_SCSI_FCP, port->mask, fcmd->token);
request->data[0].base = fc->dma_scsi_cmd + fcmd->token * sizeof(fcp_cmd);
request->data[0].count = sizeof(fcp_cmd);
request->data[1].base = fc->dma_scsi_rsp + fcmd->token * fc->rsp_size;
request->data[1].count = fc->rsp_size;
if (fcmd->data) {
request->shdr.segcnt = 3;
i = fc->scsi_cmd_pool[fcmd->token].fcp_data_len;
request->shdr.bytecnt = i;
request->data[2].base = fcmd->data;
request->data[2].count = i;
request->type =
(fc->scsi_cmd_pool[fcmd->token].fcp_cntl & FCP_CNTL_WRITE) ?
SOC_CQTYPE_IO_WRITE : SOC_CQTYPE_IO_READ;
} else {
request->shdr.segcnt = 2;
request->shdr.bytecnt = 0;
request->data[2].base = 0;
request->data[2].count = 0;
request->type = SOC_CQTYPE_SIMPLE;
}
FILL_FCHDR_RCTL_DID(fch, R_CTL_COMMAND, fc->did);
FILL_FCHDR_SID(fch, fc->sid);
FILL_FCHDR_TYPE_FCTL(fch, TYPE_SCSI_FCP,
F_CTL_FIRST_SEQ | F_CTL_SEQ_INITIATIVE);
FILL_FCHDR_SEQ_DF_SEQ(fch, 0, 0, 0);
FILL_FCHDR_OXRX(fch, 0xffff, 0xffff);
fch->param = 0;
request->shdr.flags = port->flags;
request->shdr.class = 2;
break;
case PROTO_OFFLINE:
memset (request, 0, sizeof(*request));
request->shdr.token = TOKEN(PROTO_OFFLINE, port->mask, fcmd->token);
request->type = SOC_CQTYPE_OFFLINE;
FILL_FCHDR_RCTL_DID(fch, R_CTL_COMMAND, fc->did);
FILL_FCHDR_SID(fch, fc->sid);
FILL_FCHDR_TYPE_FCTL(fch, TYPE_SCSI_FCP,
F_CTL_FIRST_SEQ | F_CTL_SEQ_INITIATIVE);
FILL_FCHDR_SEQ_DF_SEQ(fch, 0, 0, 0);
FILL_FCHDR_OXRX(fch, 0xffff, 0xffff);
request->shdr.flags = port->flags;
break;
case PROTO_REPORT_AL_MAP:
/* SOC only supports Point-to-Point topology, no FC-AL, sorry... */
return -ENOSYS;
default:
request->shdr.token = TOKEN(fcmd->proto, port->mask, fcmd->token);
request->shdr.class = 2;
request->shdr.flags = port->flags;
memcpy (fch, &fcmd->fch, sizeof(fc_hdr));
request->data[0].count = fcmd->cmdlen;
request->data[1].count = fcmd->rsplen;
request->type = fcmd->class;
switch (fcmd->class) {
case FC_CLASS_OUTBOUND:
request->data[0].base = fcmd->cmd;
request->data[0].count = fcmd->cmdlen;
request->type = SOC_CQTYPE_OUTBOUND;
request->shdr.bytecnt = fcmd->cmdlen;
request->shdr.segcnt = 1;
break;
case FC_CLASS_INBOUND:
request->data[0].base = fcmd->rsp;
request->data[0].count = fcmd->rsplen;
request->type = SOC_CQTYPE_INBOUND;
request->shdr.bytecnt = 0;
request->shdr.segcnt = 1;
break;
case FC_CLASS_SIMPLE:
request->data[0].base = fcmd->cmd;
request->data[1].base = fcmd->rsp;
request->data[0].count = fcmd->cmdlen;
request->data[1].count = fcmd->rsplen;
request->type = SOC_CQTYPE_SIMPLE;
request->shdr.bytecnt = fcmd->cmdlen;
request->shdr.segcnt = 2;
break;
case FC_CLASS_IO_READ:
case FC_CLASS_IO_WRITE:
request->data[0].base = fcmd->cmd;
request->data[1].base = fcmd->rsp;
request->data[0].count = fcmd->cmdlen;
request->data[1].count = fcmd->rsplen;
request->type =
(fcmd->class == FC_CLASS_IO_READ) ?
SOC_CQTYPE_IO_READ : SOC_CQTYPE_IO_WRITE;
if (fcmd->data) {
request->data[2].base = fcmd->data;
request->data[2].count = fcmd->datalen;
request->shdr.bytecnt = fcmd->datalen;
request->shdr.segcnt = 3;
} else {
request->shdr.bytecnt = 0;
request->shdr.segcnt = 2;
}
break;
};
break;
};
request->count = 1;
request->flags = 0;
request->seqno = sw_cq->seqno;
/* And now tell the SOC about it */
if (++sw_cq->in > sw_cq->last) {
sw_cq->in = 0;
sw_cq->seqno++;
}
SOD(("Putting %08x into cmd\n",
SOC_CMD_RSP_QALL | (sw_cq->in << 24) | (SOC_CMD_REQ_Q0 << qno)))
sbus_writel(SOC_CMD_RSP_QALL | (sw_cq->in << 24) | (SOC_CMD_REQ_Q0 << qno),
s->regs + CMD);
/* Read so that command is completed. */
sbus_readl(s->regs + CMD);
return 0;
}
static inline void soc_download_fw(struct soc *s)
{
#ifdef HAVE_SOC_UCODE
xram_copy_to (s->xram, soc_ucode, sizeof(soc_ucode));
xram_bzero (s->xram + sizeof(soc_ucode), 32768 - sizeof(soc_ucode));
#endif
}
/* Check for what the best SBUS burst we can use happens
* to be on this machine.
*/
static inline void soc_init_bursts(struct soc *s, struct sbus_dev *sdev)
{
int bsizes, bsizes_more;
bsizes = (prom_getintdefault(sdev->prom_node,"burst-sizes",0xff) & 0xff);
bsizes_more = (prom_getintdefault(sdev->bus->prom_node, "burst-sizes", 0xff) & 0xff);
bsizes &= bsizes_more;
if ((bsizes & 0x7f) == 0x7f)
s->cfg = SOC_CFG_BURST_64;
else if ((bsizes & 0x3f) == 0x3f)
s->cfg = SOC_CFG_BURST_32;
else if ((bsizes & 0x1f) == 0x1f)
s->cfg = SOC_CFG_BURST_16;
else
s->cfg = SOC_CFG_BURST_4;
}
static inline void soc_init(struct sbus_dev *sdev, int no)
{
unsigned char tmp[60];
int propl;
struct soc *s;
static int version_printed = 0;
soc_hw_cq cq[8];
int size, i;
int irq;
s = kzalloc (sizeof (struct soc), GFP_KERNEL);
if (s == NULL)
return;
spin_lock_init(&s->lock);
s->soc_no = no;
SOD(("socs %08lx soc_intr %08lx soc_hw_enque %08x\n",
(long)socs, (long)soc_intr, (long)soc_hw_enque))
if (version_printed++ == 0)
printk (version);
s->port[0].fc.module = THIS_MODULE;
s->port[1].fc.module = THIS_MODULE;
s->next = socs;
socs = s;
s->port[0].fc.dev = sdev;
s->port[1].fc.dev = sdev;
s->port[0].s = s;
s->port[1].s = s;
s->port[0].fc.next = &s->port[1].fc;
/* World Wide Name of SOC */
propl = prom_getproperty (sdev->prom_node, "soc-wwn", tmp, sizeof(tmp));
if (propl != sizeof (fc_wwn)) {
s->wwn.naaid = NAAID_IEEE;
s->wwn.lo = 0x12345678;
} else
memcpy (&s->wwn, tmp, sizeof (fc_wwn));
propl = prom_getproperty (sdev->prom_node, "port-wwns", tmp, sizeof(tmp));
if (propl != 2 * sizeof (fc_wwn)) {
s->port[0].fc.wwn_nport.naaid = NAAID_IEEE_EXT;
s->port[0].fc.wwn_nport.hi = s->wwn.hi;
s->port[0].fc.wwn_nport.lo = s->wwn.lo;
s->port[1].fc.wwn_nport.naaid = NAAID_IEEE_EXT;
s->port[1].fc.wwn_nport.nportid = 1;
s->port[1].fc.wwn_nport.hi = s->wwn.hi;
s->port[1].fc.wwn_nport.lo = s->wwn.lo;
} else {
memcpy (&s->port[0].fc.wwn_nport, tmp, sizeof (fc_wwn));
memcpy (&s->port[1].fc.wwn_nport, tmp + sizeof (fc_wwn), sizeof (fc_wwn));
}
memcpy (&s->port[0].fc.wwn_node, &s->wwn, sizeof (fc_wwn));
memcpy (&s->port[1].fc.wwn_node, &s->wwn, sizeof (fc_wwn));
SOD(("Got wwns %08x%08x ports %08x%08x and %08x%08x\n",
*(u32 *)&s->port[0].fc.wwn_nport, s->port[0].fc.wwn_nport.lo,
*(u32 *)&s->port[0].fc.wwn_nport, s->port[0].fc.wwn_nport.lo,
*(u32 *)&s->port[1].fc.wwn_nport, s->port[1].fc.wwn_nport.lo))
s->port[0].fc.sid = 1;
s->port[1].fc.sid = 17;
s->port[0].fc.did = 2;
s->port[1].fc.did = 18;
s->port[0].fc.reset = soc_reset;
s->port[1].fc.reset = soc_reset;
if (sdev->num_registers == 1) {
/* Probably SunFire onboard SOC */
s->xram = sbus_ioremap(&sdev->resource[0], 0,
0x10000UL, "soc xram");
s->regs = sbus_ioremap(&sdev->resource[0], 0x10000UL,
0x10UL, "soc regs");
} else {
/* Probably SOC sbus card */
s->xram = sbus_ioremap(&sdev->resource[1], 0,
sdev->reg_addrs[1].reg_size, "soc xram");
s->regs = sbus_ioremap(&sdev->resource[2], 0,
sdev->reg_addrs[2].reg_size, "soc regs");
}
soc_init_bursts(s, sdev);
SOD(("Disabling SOC\n"))
soc_disable (s);
irq = sdev->irqs[0];
if (request_irq (irq, soc_intr, IRQF_SHARED, "SOC", (void *)s)) {
soc_printk ("Cannot order irq %d to go\n", irq);
socs = s->next;
return;
}
SOD(("SOC uses IRQ %d\n", irq))
s->port[0].fc.irq = irq;
s->port[1].fc.irq = irq;
sprintf (s->port[0].fc.name, "soc%d port A", no);
sprintf (s->port[1].fc.name, "soc%d port B", no);
s->port[0].flags = SOC_FC_HDR | SOC_PORT_A;
s->port[1].flags = SOC_FC_HDR | SOC_PORT_B;
s->port[1].mask = (1 << 11);
s->port[0].fc.hw_enque = soc_hw_enque;
s->port[1].fc.hw_enque = soc_hw_enque;
soc_download_fw (s);
SOD(("Downloaded firmware\n"))
/* Now setup xram circular queues */
memset (cq, 0, sizeof(cq));
size = (SOC_CQ_REQ0_SIZE + SOC_CQ_REQ1_SIZE) * sizeof(soc_req);
s->req_cpu = sbus_alloc_consistent(sdev, size, &s->req_dvma);
s->req[0].pool = s->req_cpu;
cq[0].address = s->req_dvma;
s->req[1].pool = s->req[0].pool + SOC_CQ_REQ0_SIZE;
s->req[0].hw_cq = (soc_hw_cq __iomem *)(s->xram + SOC_CQ_REQ_OFFSET);
s->req[1].hw_cq = (soc_hw_cq __iomem *)(s->xram + SOC_CQ_REQ_OFFSET + sizeof(soc_hw_cq));
s->rsp[0].hw_cq = (soc_hw_cq __iomem *)(s->xram + SOC_CQ_RSP_OFFSET);
s->rsp[1].hw_cq = (soc_hw_cq __iomem *)(s->xram + SOC_CQ_RSP_OFFSET + sizeof(soc_hw_cq));
cq[1].address = cq[0].address + (SOC_CQ_REQ0_SIZE * sizeof(soc_req));
cq[4].address = 1;
cq[5].address = 1;
cq[0].last = SOC_CQ_REQ0_SIZE - 1;
cq[1].last = SOC_CQ_REQ1_SIZE - 1;
cq[4].last = SOC_CQ_RSP0_SIZE - 1;
cq[5].last = SOC_CQ_RSP1_SIZE - 1;
for (i = 0; i < 8; i++)
cq[i].seqno = 1;
s->req[0].last = SOC_CQ_REQ0_SIZE - 1;
s->req[1].last = SOC_CQ_REQ1_SIZE - 1;
s->rsp[0].last = SOC_CQ_RSP0_SIZE - 1;
s->rsp[1].last = SOC_CQ_RSP1_SIZE - 1;
s->req[0].seqno = 1;
s->req[1].seqno = 1;
s->rsp[0].seqno = 1;
s->rsp[1].seqno = 1;
xram_copy_to (s->xram + SOC_CQ_REQ_OFFSET, cq, sizeof(cq));
/* Make our sw copy of SOC service parameters */
xram_copy_from (s->serv_params, s->xram + 0x140, sizeof (s->serv_params));
s->port[0].fc.common_svc = (common_svc_parm *)s->serv_params;
s->port[0].fc.class_svcs = (svc_parm *)(s->serv_params + 0x20);
s->port[1].fc.common_svc = (common_svc_parm *)&s->serv_params;
s->port[1].fc.class_svcs = (svc_parm *)(s->serv_params + 0x20);
soc_enable (s);
SOD(("Enabled SOC\n"))
}
static int __init soc_probe(void)
{
struct sbus_bus *sbus;
struct sbus_dev *sdev = NULL;
struct soc *s;
int cards = 0;
for_each_sbus(sbus) {
for_each_sbusdev(sdev, sbus) {
if(!strcmp(sdev->prom_name, "SUNW,soc")) {
soc_init(sdev, cards);
cards++;
}
}
}
if (!cards) return -EIO;
for_each_soc(s)
if (s->next)
s->port[1].fc.next = &s->next->port[0].fc;
fcp_init (&socs->port[0].fc);
return 0;
}
static void __exit soc_cleanup(void)
{
struct soc *s;
int irq;
struct sbus_dev *sdev;
for_each_soc(s) {
irq = s->port[0].fc.irq;
free_irq (irq, s);
fcp_release(&(s->port[0].fc), 2);
sdev = s->port[0].fc.dev;
if (sdev->num_registers == 1) {
sbus_iounmap(s->xram, 0x10000UL);
sbus_iounmap(s->regs, 0x10UL);
} else {
sbus_iounmap(s->xram, sdev->reg_addrs[1].reg_size);
sbus_iounmap(s->regs, sdev->reg_addrs[2].reg_size);
}
sbus_free_consistent(sdev,
(SOC_CQ_REQ0_SIZE+SOC_CQ_REQ1_SIZE)*sizeof(soc_req),
s->req_cpu, s->req_dvma);
}
}
module_init(soc_probe);
module_exit(soc_cleanup);
MODULE_LICENSE("GPL");

View File

@ -1,301 +0,0 @@
/* soc.h: Definitions for Sparc SUNW,soc Fibre Channel Sbus driver.
*
* Copyright (C) 1996,1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
*/
#ifndef __SOC_H
#define __SOC_H
#include "fc.h"
#include "fcp.h"
#include "fcp_impl.h"
/* Hardware register offsets and constants first {{{ */
#define CFG 0x00UL /* Config Register */
#define SAE 0x04UL /* Slave Access Error Register */
#define CMD 0x08UL /* Command and Status Register */
#define IMASK 0x0cUL /* Interrupt Mask Register */
/* Config Register */
#define SOC_CFG_EXT_RAM_BANK_MASK 0x07000000
#define SOC_CFG_EEPROM_BANK_MASK 0x00030000
#define SOC_CFG_BURST64_MASK 0x00000700
#define SOC_CFG_SBUS_PARITY_TEST 0x00000020
#define SOC_CFG_SBUS_PARITY_CHECK 0x00000010
#define SOC_CFG_SBUS_ENHANCED 0x00000008
#define SOC_CFG_BURST_MASK 0x00000007
/* Bursts */
#define SOC_CFG_BURST_4 0x00000000
#define SOC_CFG_BURST_16 0x00000004
#define SOC_CFG_BURST_32 0x00000005
#define SOC_CFG_BURST_64 0x00000006
/* Slave Access Error Register */
#define SOC_SAE_ALIGNMENT 0x00000004
#define SOC_SAE_UNSUPPORTED 0x00000002
#define SOC_SAE_PARITY 0x00000001
/* Command & Status Register */
#define SOC_CMD_RSP_QALL 0x000f0000
#define SOC_CMD_RSP_Q0 0x00010000
#define SOC_CMD_RSP_Q1 0x00020000
#define SOC_CMD_RSP_Q2 0x00040000
#define SOC_CMD_RSP_Q3 0x00080000
#define SOC_CMD_REQ_QALL 0x00000f00
#define SOC_CMD_REQ_Q0 0x00000100
#define SOC_CMD_REQ_Q1 0x00000200
#define SOC_CMD_REQ_Q2 0x00000400
#define SOC_CMD_REQ_Q3 0x00000800
#define SOC_CMD_SAE 0x00000080
#define SOC_CMD_INTR_PENDING 0x00000008
#define SOC_CMD_NON_QUEUED 0x00000004
#define SOC_CMD_IDLE 0x00000002
#define SOC_CMD_SOFT_RESET 0x00000001
/* Interrupt Mask Register */
#define SOC_IMASK_RSP_QALL 0x000f0000
#define SOC_IMASK_RSP_Q0 0x00010000
#define SOC_IMASK_RSP_Q1 0x00020000
#define SOC_IMASK_RSP_Q2 0x00040000
#define SOC_IMASK_RSP_Q3 0x00080000
#define SOC_IMASK_REQ_QALL 0x00000f00
#define SOC_IMASK_REQ_Q0 0x00000100
#define SOC_IMASK_REQ_Q1 0x00000200
#define SOC_IMASK_REQ_Q2 0x00000400
#define SOC_IMASK_REQ_Q3 0x00000800
#define SOC_IMASK_SAE 0x00000080
#define SOC_IMASK_NON_QUEUED 0x00000004
#define SOC_INTR(s, cmd) \
(((cmd & SOC_CMD_RSP_QALL) | ((~cmd) & SOC_CMD_REQ_QALL)) \
& s->imask)
#define SOC_SETIMASK(s, i) \
do { (s)->imask = (i); \
sbus_writel((i), (s)->regs + IMASK); \
} while(0)
/* XRAM
*
* This is a 64KB register area. It accepts only halfword access.
* That's why here are the following inline functions...
*/
typedef void __iomem *xram_p;
/* Get 32bit number from XRAM */
static inline u32 xram_get_32(xram_p x)
{
return ((sbus_readw(x + 0x00UL) << 16) |
(sbus_readw(x + 0x02UL)));
}
/* Like the above, but when we don't care about the high 16 bits */
static inline u32 xram_get_32low(xram_p x)
{
return (u32) sbus_readw(x + 0x02UL);
}
static inline u16 xram_get_16(xram_p x)
{
return sbus_readw(x);
}
static inline u8 xram_get_8(xram_p x)
{
if ((unsigned long)x & 0x1UL) {
x = x - 1;
return (u8) sbus_readw(x);
} else {
return (u8) (sbus_readw(x) >> 8);
}
}
static inline void xram_copy_from(void *p, xram_p x, int len)
{
for (len >>= 2; len > 0; len--, x += sizeof(u32)) {
u32 val, *p32 = p;
val = ((sbus_readw(x + 0x00UL) << 16) |
(sbus_readw(x + 0x02UL)));
*p32++ = val;
p = p32;
}
}
static inline void xram_copy_to(xram_p x, void *p, int len)
{
for (len >>= 2; len > 0; len--, x += sizeof(u32)) {
u32 tmp, *p32 = p;
tmp = *p32++;
p = p32;
sbus_writew(tmp >> 16, x + 0x00UL);
sbus_writew(tmp, x + 0x02UL);
}
}
static inline void xram_bzero(xram_p x, int len)
{
for (len >>= 1; len > 0; len--, x += sizeof(u16))
sbus_writew(0, x);
}
/* Circular Queue */
#define SOC_CQ_REQ_OFFSET (0x100 * sizeof(u16))
#define SOC_CQ_RSP_OFFSET (0x110 * sizeof(u16))
typedef struct {
u32 address;
u8 in;
u8 out;
u8 last;
u8 seqno;
} soc_hw_cq;
#define SOC_PORT_A 0x0000 /* From/To Port A */
#define SOC_PORT_B 0x0001 /* From/To Port A */
#define SOC_FC_HDR 0x0002 /* Contains FC Header */
#define SOC_NORSP 0x0004 /* Don't generate response nor interrupt */
#define SOC_NOINT 0x0008 /* Generate response but not interrupt */
#define SOC_XFERRDY 0x0010 /* Generate XFERRDY */
#define SOC_IGNOREPARAM 0x0020 /* Ignore PARAM field in the FC header */
#define SOC_COMPLETE 0x0040 /* Command completed */
#define SOC_UNSOLICITED 0x0080 /* For request this is the packet to establish unsolicited pools, */
/* for rsp this is unsolicited packet */
#define SOC_STATUS 0x0100 /* State change (on/off line) */
typedef struct {
u32 token;
u16 flags;
u8 class;
u8 segcnt;
u32 bytecnt;
} soc_hdr;
typedef struct {
u32 base;
u32 count;
} soc_data;
#define SOC_CQTYPE_OUTBOUND 0x01
#define SOC_CQTYPE_INBOUND 0x02
#define SOC_CQTYPE_SIMPLE 0x03
#define SOC_CQTYPE_IO_WRITE 0x04
#define SOC_CQTYPE_IO_READ 0x05
#define SOC_CQTYPE_UNSOLICITED 0x06
#define SOC_CQTYPE_DIAG 0x07
#define SOC_CQTYPE_OFFLINE 0x08
#define SOC_CQTYPE_RESPONSE 0x10
#define SOC_CQTYPE_INLINE 0x20
#define SOC_CQFLAGS_CONT 0x01
#define SOC_CQFLAGS_FULL 0x02
#define SOC_CQFLAGS_BADHDR 0x04
#define SOC_CQFLAGS_BADPKT 0x08
typedef struct {
soc_hdr shdr;
soc_data data[3];
fc_hdr fchdr;
u8 count;
u8 type;
u8 flags;
u8 seqno;
} soc_req;
#define SOC_OK 0
#define SOC_P_RJT 2
#define SOC_F_RJT 3
#define SOC_P_BSY 4
#define SOC_F_BSY 5
#define SOC_ONLINE 0x10
#define SOC_OFFLINE 0x11
#define SOC_TIMEOUT 0x12
#define SOC_OVERRUN 0x13
#define SOC_UNKOWN_CQ_TYPE 0x20
#define SOC_BAD_SEG_CNT 0x21
#define SOC_MAX_XCHG_EXCEEDED 0x22
#define SOC_BAD_XID 0x23
#define SOC_XCHG_BUSY 0x24
#define SOC_BAD_POOL_ID 0x25
#define SOC_INSUFFICIENT_CQES 0x26
#define SOC_ALLOC_FAIL 0x27
#define SOC_BAD_SID 0x28
#define SOC_NO_SEG_INIT 0x29
typedef struct {
soc_hdr shdr;
u32 status;
soc_data data;
u8 xxx1[12];
fc_hdr fchdr;
u8 count;
u8 type;
u8 flags;
u8 seqno;
} soc_rsp;
/* }}} */
/* Now our software structures and constants we use to drive the beast {{{ */
#define SOC_CQ_REQ0_SIZE 4
#define SOC_CQ_REQ1_SIZE 64
#define SOC_CQ_RSP0_SIZE 8
#define SOC_CQ_RSP1_SIZE 4
#define SOC_SOLICITED_RSP_Q 0
#define SOC_UNSOLICITED_RSP_Q 1
struct soc;
typedef struct {
/* This must come first */
fc_channel fc;
struct soc *s;
u16 flags;
u16 mask;
} soc_port;
typedef struct {
soc_hw_cq __iomem *hw_cq; /* Related XRAM cq */
soc_req __iomem *pool;
u8 in;
u8 out;
u8 last;
u8 seqno;
} soc_cq_rsp;
typedef struct {
soc_hw_cq __iomem *hw_cq; /* Related XRAM cq */
soc_req *pool;
u8 in;
u8 out;
u8 last;
u8 seqno;
} soc_cq_req;
struct soc {
spinlock_t lock;
soc_port port[2]; /* Every SOC has one or two FC ports */
soc_cq_req req[2]; /* Request CQs */
soc_cq_rsp rsp[2]; /* Response CQs */
int soc_no;
void __iomem *regs;
xram_p xram;
fc_wwn wwn;
u32 imask; /* Our copy of regs->imask */
u32 cfg; /* Our copy of regs->cfg */
char serv_params[80];
struct soc *next;
int curr_port; /* Which port will have priority to fcp_queue_empty */
soc_req *req_cpu;
u32 req_dvma;
};
/* }}} */
#endif /* !(__SOC_H) */

View File

@ -1,904 +0,0 @@
/* socal.c: Sparc SUNW,socal (SOC+) Fibre Channel Sbus adapter support.
*
* Copyright (C) 1998,1999 Jakub Jelinek (jj@ultra.linux.cz)
*
* Sources:
* Fibre Channel Physical & Signaling Interface (FC-PH), dpANS, 1994
* dpANS Fibre Channel Protocol for SCSI (X3.269-199X), Rev. 012, 1995
* SOC+ Programming Guide 0.1
* Fibre Channel Arbitrated Loop (FC-AL), dpANS rev. 4.5, 1995
*
* Supported hardware:
* On-board SOC+ adapters of Ultra Enterprise servers and sun4d.
*/
static char *version =
"socal.c: SOC+ driver v1.1 9/Feb/99 Jakub Jelinek (jj@ultra.linux.cz)\n";
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/ptrace.h>
#include <linux/ioport.h>
#include <linux/in.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/bitops.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/dma.h>
#include <linux/errno.h>
#include <asm/byteorder.h>
#include <asm/openprom.h>
#include <asm/oplib.h>
#include <asm/pgtable.h>
#include <asm/irq.h>
/* #define SOCALDEBUG */
/* #define HAVE_SOCAL_UCODE */
/* #define USE_64BIT_MODE */
#include "fcp_impl.h"
#include "socal.h"
#ifdef HAVE_SOCAL_UCODE
#include "socal_asm.h"
#endif
#define socal_printk printk ("socal%d: ", s->socal_no); printk
#ifdef SOCALDEBUG
#define SOD(x) socal_printk x;
#else
#define SOD(x)
#endif
#define for_each_socal(s) for (s = socals; s; s = s->next)
struct socal *socals = NULL;
static void socal_copy_from_xram(void *d, void __iomem *xram, long size)
{
u32 *dp = (u32 *) d;
while (size) {
*dp++ = sbus_readl(xram);
xram += sizeof(u32);
size -= sizeof(u32);
}
}
static void socal_copy_to_xram(void __iomem *xram, void *s, long size)
{
u32 *sp = (u32 *) s;
while (size) {
u32 val = *sp++;
sbus_writel(val, xram);
xram += sizeof(u32);
size -= sizeof(u32);
}
}
#ifdef HAVE_SOCAL_UCODE
static void socal_bzero(unsigned long xram, int size)
{
while (size) {
sbus_writel(0, xram);
xram += sizeof(u32);
size -= sizeof(u32);
}
}
#endif
static inline void socal_disable(struct socal *s)
{
sbus_writel(0, s->regs + IMASK);
sbus_writel(SOCAL_CMD_SOFT_RESET, s->regs + CMD);
}
static inline void socal_enable(struct socal *s)
{
SOD(("enable %08x\n", s->cfg))
sbus_writel(0, s->regs + SAE);
sbus_writel(s->cfg, s->regs + CFG);
sbus_writel(SOCAL_CMD_RSP_QALL, s->regs + CMD);
SOCAL_SETIMASK(s, SOCAL_IMASK_RSP_QALL | SOCAL_IMASK_SAE);
SOD(("imask %08x %08x\n", s->imask, sbus_readl(s->regs + IMASK)));
}
static void socal_reset(fc_channel *fc)
{
socal_port *port = (socal_port *)fc;
struct socal *s = port->s;
/* FIXME */
socal_disable(s);
s->req[0].seqno = 1;
s->req[1].seqno = 1;
s->rsp[0].seqno = 1;
s->rsp[1].seqno = 1;
s->req[0].in = 0;
s->req[1].in = 0;
s->rsp[0].in = 0;
s->rsp[1].in = 0;
s->req[0].out = 0;
s->req[1].out = 0;
s->rsp[0].out = 0;
s->rsp[1].out = 0;
/* FIXME */
socal_enable(s);
}
static inline void socal_solicited(struct socal *s, unsigned long qno)
{
socal_rsp *hwrsp;
socal_cq *sw_cq;
int token;
int status;
fc_channel *fc;
sw_cq = &s->rsp[qno];
/* Finally an improvement against old SOC :) */
sw_cq->in = sbus_readb(s->regs + RESP + qno);
SOD (("socal_solicited, %d packets arrived\n",
(sw_cq->in - sw_cq->out) & sw_cq->last))
for (;;) {
hwrsp = (socal_rsp *)sw_cq->pool + sw_cq->out;
SOD(("hwrsp %p out %d\n", hwrsp, sw_cq->out))
#if defined(SOCALDEBUG) && 0
{
u32 *u = (u32 *)hwrsp;
SOD(("%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x\n",
u[0],u[1],u[2],u[3],u[4],u[5],u[6],u[7]))
u += 8;
SOD(("%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x\n",
u[0],u[1],u[2],u[3],u[4],u[5],u[6],u[7]))
u = (u32 *)s->xram;
while (u < ((u32 *)s->regs)) {
if (sbus_readl(&u[0]) == 0x00003000 ||
sbus_readl(&u[0]) == 0x00003801) {
SOD(("Found at %04lx\n",
(unsigned long)u - (unsigned long)s->xram))
SOD((" %08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x\n",
sbus_readl(&u[0]), sbus_readl(&u[1]),
sbus_readl(&u[2]), sbus_readl(&u[3]),
sbus_readl(&u[4]), sbus_readl(&u[5]),
sbus_readl(&u[6]), sbus_readl(&u[7])))
u += 8;
SOD((" %08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x\n",
sbus_readl(&u[0]), sbus_readl(&u[1]),
sbus_readl(&u[2]), sbus_readl(&u[3]),
sbus_readl(&u[4]), sbus_readl(&u[5]),
sbus_readl(&u[6]), sbus_readl(&u[7])))
u -= 8;
}
u++;
}
}
#endif
token = hwrsp->shdr.token;
status = hwrsp->status;
fc = (fc_channel *)(&s->port[(token >> 11) & 1]);
SOD(("Solicited token %08x status %08x\n", token, status))
if (status == SOCAL_OK) {
fcp_receive_solicited(fc, token >> 12,
token & ((1 << 11) - 1),
FC_STATUS_OK, NULL);
} else {
/* We have intentionally defined FC_STATUS_* constants
* to match SOCAL_* constants, otherwise we'd have to
* translate status.
*/
fcp_receive_solicited(fc, token >> 12,
token & ((1 << 11) - 1), status, &hwrsp->fchdr);
}
if (++sw_cq->out > sw_cq->last) {
sw_cq->seqno++;
sw_cq->out = 0;
}
if (sw_cq->out == sw_cq->in) {
sw_cq->in = sbus_readb(s->regs + RESP + qno);
if (sw_cq->out == sw_cq->in) {
/* Tell the hardware about it */
sbus_writel((sw_cq->out << 24) |
(SOCAL_CMD_RSP_QALL &
~(SOCAL_CMD_RSP_Q0 << qno)),
s->regs + CMD);
/* Read it, so that we're sure it has been updated */
sbus_readl(s->regs + CMD);
sw_cq->in = sbus_readb(s->regs + RESP + qno);
if (sw_cq->out == sw_cq->in)
break;
}
}
}
}
static inline void socal_request (struct socal *s, u32 cmd)
{
SOCAL_SETIMASK(s, s->imask & ~(cmd & SOCAL_CMD_REQ_QALL));
SOD(("imask %08x %08x\n", s->imask, sbus_readl(s->regs + IMASK)));
SOD(("Queues available %08x OUT %X\n", cmd, s->regs->reqpr[0]))
if (s->port[s->curr_port].fc.state != FC_STATE_OFFLINE) {
fcp_queue_empty ((fc_channel *)&(s->port[s->curr_port]));
if (((s->req[1].in + 1) & s->req[1].last) != (s->req[1].out))
fcp_queue_empty ((fc_channel *)&(s->port[1 - s->curr_port]));
} else {
fcp_queue_empty ((fc_channel *)&(s->port[1 - s->curr_port]));
}
if (s->port[1 - s->curr_port].fc.state != FC_STATE_OFFLINE)
s->curr_port ^= 1;
}
static inline void socal_unsolicited (struct socal *s, unsigned long qno)
{
socal_rsp *hwrsp, *hwrspc;
socal_cq *sw_cq;
int count;
int status;
int flags;
fc_channel *fc;
sw_cq = &s->rsp[qno];
sw_cq->in = sbus_readb(s->regs + RESP + qno);
SOD (("socal_unsolicited, %d packets arrived, in %d\n",
(sw_cq->in - sw_cq->out) & sw_cq->last, sw_cq->in))
while (sw_cq->in != sw_cq->out) {
/* ...real work per entry here... */
hwrsp = (socal_rsp *)sw_cq->pool + sw_cq->out;
SOD(("hwrsp %p out %d\n", hwrsp, sw_cq->out))
#if defined(SOCALDEBUG) && 0
{
u32 *u = (u32 *)hwrsp;
SOD(("%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x\n",
u[0],u[1],u[2],u[3],u[4],u[5],u[6],u[7]))
u += 8;
SOD(("%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x\n",
u[0],u[1],u[2],u[3],u[4],u[5],u[6],u[7]))
}
#endif
hwrspc = NULL;
flags = hwrsp->shdr.flags;
count = hwrsp->count;
fc = (fc_channel *)&s->port[flags & SOCAL_PORT_B];
SOD(("FC %08lx\n", (long)fc))
if (count != 1) {
/* Ugh, continuation entries */
u8 in;
if (count != 2) {
printk("%s: Too many continuations entries %d\n",
fc->name, count);
goto update_out;
}
in = sw_cq->in;
if (in < sw_cq->out)
in += sw_cq->last + 1;
if (in < sw_cq->out + 2) {
/* Ask the hardware if they haven't arrived yet. */
sbus_writel((sw_cq->out << 24) |
(SOCAL_CMD_RSP_QALL &
~(SOCAL_CMD_RSP_Q0 << qno)),
s->regs + CMD);
/* Read it, so that we're sure it has been updated */
sbus_readl(s->regs + CMD);
sw_cq->in = sbus_readb(s->regs + RESP + qno);
in = sw_cq->in;
if (in < sw_cq->out)
in += sw_cq->last + 1;
if (in < sw_cq->out + 2) /* Nothing came, let us wait */
return;
}
if (sw_cq->out == sw_cq->last)
hwrspc = (socal_rsp *)sw_cq->pool;
else
hwrspc = hwrsp + 1;
}
switch (flags & ~SOCAL_PORT_B) {
case SOCAL_STATUS:
status = hwrsp->status;
switch (status) {
case SOCAL_ONLINE:
SOD(("State change to ONLINE\n"));
fcp_state_change(fc, FC_STATE_ONLINE);
break;
case SOCAL_ONLINE_LOOP:
SOD(("State change to ONLINE_LOOP\n"));
fcp_state_change(fc, FC_STATE_ONLINE);
break;
case SOCAL_OFFLINE:
SOD(("State change to OFFLINE\n"));
fcp_state_change(fc, FC_STATE_OFFLINE);
break;
default:
printk ("%s: Unknown STATUS no %d\n",
fc->name, status);
break;
};
break;
case (SOCAL_UNSOLICITED|SOCAL_FC_HDR):
{
int r_ctl = *((u8 *)&hwrsp->fchdr);
unsigned len;
if ((r_ctl & 0xf0) == R_CTL_EXTENDED_SVC) {
len = hwrsp->shdr.bytecnt;
if (len < 4 || !hwrspc) {
printk ("%s: Invalid R_CTL %02x "
"continuation entries\n",
fc->name, r_ctl);
} else {
if (len > 60)
len = 60;
if (*(u32 *)hwrspc == LS_DISPLAY) {
int i;
for (i = 4; i < len; i++)
if (((u8 *)hwrspc)[i] == '\n')
((u8 *)hwrspc)[i] = ' ';
((u8 *)hwrspc)[len] = 0;
printk ("%s message: %s\n",
fc->name, ((u8 *)hwrspc) + 4);
} else {
printk ("%s: Unknown LS_CMD "
"%08x\n", fc->name,
*(u32 *)hwrspc);
}
}
} else {
printk ("%s: Unsolicited R_CTL %02x "
"not handled\n", fc->name, r_ctl);
}
}
break;
default:
printk ("%s: Unexpected flags %08x\n", fc->name, flags);
break;
};
update_out:
if (++sw_cq->out > sw_cq->last) {
sw_cq->seqno++;
sw_cq->out = 0;
}
if (hwrspc) {
if (++sw_cq->out > sw_cq->last) {
sw_cq->seqno++;
sw_cq->out = 0;
}
}
if (sw_cq->out == sw_cq->in) {
sw_cq->in = sbus_readb(s->regs + RESP + qno);
if (sw_cq->out == sw_cq->in) {
/* Tell the hardware about it */
sbus_writel((sw_cq->out << 24) |
(SOCAL_CMD_RSP_QALL &
~(SOCAL_CMD_RSP_Q0 << qno)),
s->regs + CMD);
/* Read it, so that we're sure it has been updated */
sbus_readl(s->regs + CMD);
sw_cq->in = sbus_readb(s->regs + RESP + qno);
}
}
}
}
static irqreturn_t socal_intr(int irq, void *dev_id)
{
u32 cmd;
unsigned long flags;
register struct socal *s = (struct socal *)dev_id;
spin_lock_irqsave(&s->lock, flags);
cmd = sbus_readl(s->regs + CMD);
for (; (cmd = SOCAL_INTR (s, cmd)); cmd = sbus_readl(s->regs + CMD)) {
#ifdef SOCALDEBUG
static int cnt = 0;
if (cnt++ < 50)
printk("soc_intr %08x\n", cmd);
#endif
if (cmd & SOCAL_CMD_RSP_Q2)
socal_unsolicited (s, SOCAL_UNSOLICITED_RSP_Q);
if (cmd & SOCAL_CMD_RSP_Q1)
socal_unsolicited (s, SOCAL_SOLICITED_BAD_RSP_Q);
if (cmd & SOCAL_CMD_RSP_Q0)
socal_solicited (s, SOCAL_SOLICITED_RSP_Q);
if (cmd & SOCAL_CMD_REQ_QALL)
socal_request (s, cmd);
}
spin_unlock_irqrestore(&s->lock, flags);
return IRQ_HANDLED;
}
#define TOKEN(proto, port, token) (((proto)<<12)|(token)|(port))
static int socal_hw_enque (fc_channel *fc, fcp_cmnd *fcmd)
{
socal_port *port = (socal_port *)fc;
struct socal *s = port->s;
unsigned long qno;
socal_cq *sw_cq;
int cq_next_in;
socal_req *request;
fc_hdr *fch;
int i;
if (fcmd->proto == TYPE_SCSI_FCP)
qno = 1;
else
qno = 0;
SOD(("Putting a FCP packet type %d into hw queue %d\n", fcmd->proto, qno))
if (s->imask & (SOCAL_IMASK_REQ_Q0 << qno)) {
SOD(("EIO %08x\n", s->imask))
return -EIO;
}
sw_cq = s->req + qno;
cq_next_in = (sw_cq->in + 1) & sw_cq->last;
if (cq_next_in == sw_cq->out &&
cq_next_in == (sw_cq->out = sbus_readb(s->regs + REQP + qno))) {
SOD(("%d IN %d OUT %d LAST %d\n",
qno, sw_cq->in,
sw_cq->out, sw_cq->last))
SOCAL_SETIMASK(s, s->imask | (SOCAL_IMASK_REQ_Q0 << qno));
SOD(("imask %08x %08x\n", s->imask, sbus_readl(s->regs + IMASK)));
/* If queue is full, just say NO. */
return -EBUSY;
}
request = sw_cq->pool + sw_cq->in;
fch = &request->fchdr;
switch (fcmd->proto) {
case TYPE_SCSI_FCP:
request->shdr.token = TOKEN(TYPE_SCSI_FCP, port->mask, fcmd->token);
request->data[0].base = fc->dma_scsi_cmd + fcmd->token * sizeof(fcp_cmd);
request->data[0].count = sizeof(fcp_cmd);
request->data[1].base = fc->dma_scsi_rsp + fcmd->token * fc->rsp_size;
request->data[1].count = fc->rsp_size;
if (fcmd->data) {
request->shdr.segcnt = 3;
i = fc->scsi_cmd_pool[fcmd->token].fcp_data_len;
request->shdr.bytecnt = i;
request->data[2].base = fcmd->data;
request->data[2].count = i;
request->type = (fc->scsi_cmd_pool[fcmd->token].fcp_cntl & FCP_CNTL_WRITE) ?
SOCAL_CQTYPE_IO_WRITE : SOCAL_CQTYPE_IO_READ;
} else {
request->shdr.segcnt = 2;
request->shdr.bytecnt = 0;
request->data[2].base = 0;
request->data[2].count = 0;
request->type = SOCAL_CQTYPE_SIMPLE;
}
FILL_FCHDR_RCTL_DID(fch, R_CTL_COMMAND, fcmd->did);
FILL_FCHDR_SID(fch, fc->sid);
FILL_FCHDR_TYPE_FCTL(fch, TYPE_SCSI_FCP, F_CTL_FIRST_SEQ | F_CTL_SEQ_INITIATIVE);
FILL_FCHDR_SEQ_DF_SEQ(fch, 0, 0, 0);
FILL_FCHDR_OXRX(fch, 0xffff, 0xffff);
fch->param = 0;
request->shdr.flags = port->flags;
request->shdr.class = fc->posmap ? 3 : 2;
break;
case PROTO_OFFLINE:
memset (request, 0, sizeof(*request));
request->shdr.token = TOKEN(PROTO_OFFLINE, port->mask, fcmd->token);
request->type = SOCAL_CQTYPE_OFFLINE;
FILL_FCHDR_RCTL_DID(fch, R_CTL_COMMAND, fcmd->did);
FILL_FCHDR_SID(fch, fc->sid);
FILL_FCHDR_TYPE_FCTL(fch, TYPE_SCSI_FCP, F_CTL_FIRST_SEQ | F_CTL_SEQ_INITIATIVE);
FILL_FCHDR_SEQ_DF_SEQ(fch, 0, 0, 0);
FILL_FCHDR_OXRX(fch, 0xffff, 0xffff);
request->shdr.flags = port->flags;
break;
case PROTO_REPORT_AL_MAP:
memset (request, 0, sizeof(*request));
request->shdr.token = TOKEN(PROTO_REPORT_AL_MAP, port->mask, fcmd->token);
request->type = SOCAL_CQTYPE_REPORT_MAP;
request->shdr.flags = port->flags;
request->shdr.segcnt = 1;
request->shdr.bytecnt = sizeof(fc_al_posmap);
request->data[0].base = fcmd->cmd;
request->data[0].count = sizeof(fc_al_posmap);
break;
default:
request->shdr.token = TOKEN(fcmd->proto, port->mask, fcmd->token);
request->shdr.class = fc->posmap ? 3 : 2;
request->shdr.flags = port->flags;
memcpy (fch, &fcmd->fch, sizeof(fc_hdr));
request->data[0].count = fcmd->cmdlen;
request->data[1].count = fcmd->rsplen;
request->type = fcmd->class;
switch (fcmd->class) {
case FC_CLASS_OUTBOUND:
request->data[0].base = fcmd->cmd;
request->data[0].count = fcmd->cmdlen;
request->type = SOCAL_CQTYPE_OUTBOUND;
request->shdr.bytecnt = fcmd->cmdlen;
request->shdr.segcnt = 1;
break;
case FC_CLASS_INBOUND:
request->data[0].base = fcmd->rsp;
request->data[0].count = fcmd->rsplen;
request->type = SOCAL_CQTYPE_INBOUND;
request->shdr.bytecnt = 0;
request->shdr.segcnt = 1;
break;
case FC_CLASS_SIMPLE:
request->data[0].base = fcmd->cmd;
request->data[1].base = fcmd->rsp;
request->data[0].count = fcmd->cmdlen;
request->data[1].count = fcmd->rsplen;
request->type = SOCAL_CQTYPE_SIMPLE;
request->shdr.bytecnt = fcmd->cmdlen;
request->shdr.segcnt = 2;
break;
case FC_CLASS_IO_READ:
case FC_CLASS_IO_WRITE:
request->data[0].base = fcmd->cmd;
request->data[1].base = fcmd->rsp;
request->data[0].count = fcmd->cmdlen;
request->data[1].count = fcmd->rsplen;
request->type = (fcmd->class == FC_CLASS_IO_READ) ? SOCAL_CQTYPE_IO_READ : SOCAL_CQTYPE_IO_WRITE;
if (fcmd->data) {
request->data[2].base = fcmd->data;
request->data[2].count = fcmd->datalen;
request->shdr.bytecnt = fcmd->datalen;
request->shdr.segcnt = 3;
} else {
request->shdr.bytecnt = 0;
request->shdr.segcnt = 2;
}
break;
}
break;
}
request->count = 1;
request->flags = 0;
request->seqno = sw_cq->seqno;
SOD(("queueing token %08x\n", request->shdr.token))
/* And now tell the SOCAL about it */
if (++sw_cq->in > sw_cq->last) {
sw_cq->in = 0;
sw_cq->seqno++;
}
SOD(("Putting %08x into cmd\n", SOCAL_CMD_RSP_QALL | (sw_cq->in << 24) | (SOCAL_CMD_REQ_Q0 << qno)))
sbus_writel(SOCAL_CMD_RSP_QALL | (sw_cq->in << 24) | (SOCAL_CMD_REQ_Q0 << qno),
s->regs + CMD);
/* Read so that command is completed */
sbus_readl(s->regs + CMD);
return 0;
}
static inline void socal_download_fw(struct socal *s)
{
#ifdef HAVE_SOCAL_UCODE
SOD(("Loading %ld bytes from %p to %p\n", sizeof(socal_ucode), socal_ucode, s->xram))
socal_copy_to_xram(s->xram, socal_ucode, sizeof(socal_ucode));
SOD(("Clearing the rest of memory\n"))
socal_bzero (s->xram + sizeof(socal_ucode), 65536 - sizeof(socal_ucode));
SOD(("Done\n"))
#endif
}
/* Check for what the best SBUS burst we can use happens
* to be on this machine.
*/
static inline void socal_init_bursts(struct socal *s, struct sbus_dev *sdev)
{
int bsizes, bsizes_more;
u32 cfg;
bsizes = (prom_getintdefault(sdev->prom_node,"burst-sizes",0xff) & 0xff);
bsizes_more = (prom_getintdefault(sdev->bus->prom_node, "burst-sizes", 0xff) & 0xff);
bsizes &= bsizes_more;
#ifdef USE_64BIT_MODE
#ifdef __sparc_v9__
mmu_set_sbus64(sdev, bsizes >> 16);
#endif
#endif
if ((bsizes & 0x7f) == 0x7f)
cfg = SOCAL_CFG_BURST_64;
else if ((bsizes & 0x3f) == 0x3f)
cfg = SOCAL_CFG_BURST_32;
else if ((bsizes & 0x1f) == 0x1f)
cfg = SOCAL_CFG_BURST_16;
else
cfg = SOCAL_CFG_BURST_4;
#ifdef USE_64BIT_MODE
#ifdef __sparc_v9__
/* What is BURST_128? -jj */
if ((bsizes & 0x780000) == 0x780000)
cfg |= (SOCAL_CFG_BURST_64 << 8) | SOCAL_CFG_SBUS_ENHANCED;
else if ((bsizes & 0x380000) == 0x380000)
cfg |= (SOCAL_CFG_BURST_32 << 8) | SOCAL_CFG_SBUS_ENHANCED;
else if ((bsizes & 0x180000) == 0x180000)
cfg |= (SOCAL_CFG_BURST_16 << 8) | SOCAL_CFG_SBUS_ENHANCED;
else
cfg |= (SOCAL_CFG_BURST_8 << 8) | SOCAL_CFG_SBUS_ENHANCED;
#endif
#endif
s->cfg = cfg;
}
static inline void socal_init(struct sbus_dev *sdev, int no)
{
unsigned char tmp[60];
int propl;
struct socal *s;
static unsigned version_printed = 0;
socal_hw_cq cq[8];
int size, i;
int irq, node;
s = kzalloc (sizeof (struct socal), GFP_KERNEL);
if (!s) return;
spin_lock_init(&s->lock);
s->socal_no = no;
SOD(("socals %08lx socal_intr %08lx socal_hw_enque %08lx\n",
(long)socals, (long)socal_intr, (long)socal_hw_enque))
if (version_printed++ == 0)
printk (version);
s->port[0].fc.module = THIS_MODULE;
s->port[1].fc.module = THIS_MODULE;
s->next = socals;
socals = s;
s->port[0].fc.dev = sdev;
s->port[1].fc.dev = sdev;
s->port[0].s = s;
s->port[1].s = s;
s->port[0].fc.next = &s->port[1].fc;
/* World Wide Name of SOCAL */
propl = prom_getproperty (sdev->prom_node, "wwn", tmp, sizeof(tmp));
if (propl != sizeof (fc_wwn)) {
s->wwn.naaid = NAAID_IEEE_REG;
s->wwn.nportid = 0x123;
s->wwn.hi = 0x1234;
s->wwn.lo = 0x12345678;
} else
memcpy (&s->wwn, tmp, sizeof (fc_wwn));
memcpy (&s->port[0].fc.wwn_nport, &s->wwn, sizeof (fc_wwn));
s->port[0].fc.wwn_nport.lo++;
memcpy (&s->port[1].fc.wwn_nport, &s->wwn, sizeof (fc_wwn));
s->port[1].fc.wwn_nport.lo+=2;
node = prom_getchild (sdev->prom_node);
while (node && (node = prom_searchsiblings (node, "sf"))) {
int port;
port = prom_getintdefault(node, "port#", -1);
switch (port) {
case 0:
case 1:
if (prom_getproplen(node, "port-wwn") == sizeof (fc_wwn))
prom_getproperty (node, "port-wwn",
(char *)&s->port[port].fc.wwn_nport,
sizeof (fc_wwn));
break;
default:
break;
};
node = prom_getsibling(node);
}
memcpy (&s->port[0].fc.wwn_node, &s->wwn, sizeof (fc_wwn));
memcpy (&s->port[1].fc.wwn_node, &s->wwn, sizeof (fc_wwn));
SOD(("Got wwns %08x%08x ports %08x%08x and %08x%08x\n",
*(u32 *)&s->port[0].fc.wwn_node, s->port[0].fc.wwn_node.lo,
*(u32 *)&s->port[0].fc.wwn_nport, s->port[0].fc.wwn_nport.lo,
*(u32 *)&s->port[1].fc.wwn_nport, s->port[1].fc.wwn_nport.lo))
s->port[0].fc.sid = 1;
s->port[1].fc.sid = 17;
s->port[0].fc.did = 2;
s->port[1].fc.did = 18;
s->port[0].fc.reset = socal_reset;
s->port[1].fc.reset = socal_reset;
if (sdev->num_registers == 1) {
s->eeprom = sbus_ioremap(&sdev->resource[0], 0,
sdev->reg_addrs[0].reg_size, "socal xram");
if (sdev->reg_addrs[0].reg_size > 0x20000)
s->xram = s->eeprom + 0x10000UL;
else
s->xram = s->eeprom;
s->regs = (s->xram + 0x10000UL);
} else {
/* E.g. starfire presents 3 registers for SOCAL */
s->xram = sbus_ioremap(&sdev->resource[1], 0,
sdev->reg_addrs[1].reg_size, "socal xram");
s->regs = sbus_ioremap(&sdev->resource[2], 0,
sdev->reg_addrs[2].reg_size, "socal regs");
}
socal_init_bursts(s, sdev);
SOD(("Disabling SOCAL\n"))
socal_disable (s);
irq = sdev->irqs[0];
if (request_irq (irq, socal_intr, IRQF_SHARED, "SOCAL", (void *)s)) {
socal_printk ("Cannot order irq %d to go\n", irq);
socals = s->next;
return;
}
SOD(("SOCAL uses IRQ %d\n", irq))
s->port[0].fc.irq = irq;
s->port[1].fc.irq = irq;
sprintf (s->port[0].fc.name, "socal%d port A", no);
sprintf (s->port[1].fc.name, "socal%d port B", no);
s->port[0].flags = SOCAL_FC_HDR | SOCAL_PORT_A;
s->port[1].flags = SOCAL_FC_HDR | SOCAL_PORT_B;
s->port[1].mask = (1 << 11);
s->port[0].fc.hw_enque = socal_hw_enque;
s->port[1].fc.hw_enque = socal_hw_enque;
socal_download_fw (s);
SOD(("Downloaded firmware\n"))
/* Now setup xram circular queues */
memset (cq, 0, sizeof(cq));
size = (SOCAL_CQ_REQ0_SIZE + SOCAL_CQ_REQ1_SIZE +
SOCAL_CQ_RSP0_SIZE + SOCAL_CQ_RSP1_SIZE +
SOCAL_CQ_RSP2_SIZE) * sizeof(socal_req);
s->req_cpu = sbus_alloc_consistent(sdev, size, &s->req_dvma);
s->req[0].pool = s->req_cpu;
cq[0].address = s->req_dvma;
s->req[1].pool = s->req[0].pool + SOCAL_CQ_REQ0_SIZE;
s->rsp[0].pool = s->req[1].pool + SOCAL_CQ_REQ1_SIZE;
s->rsp[1].pool = s->rsp[0].pool + SOCAL_CQ_RSP0_SIZE;
s->rsp[2].pool = s->rsp[1].pool + SOCAL_CQ_RSP1_SIZE;
s->req[0].hw_cq = (socal_hw_cq __iomem *)(s->xram + SOCAL_CQ_REQ_OFFSET);
s->req[1].hw_cq = (socal_hw_cq __iomem *)(s->xram + SOCAL_CQ_REQ_OFFSET + sizeof(socal_hw_cq));
s->rsp[0].hw_cq = (socal_hw_cq __iomem *)(s->xram + SOCAL_CQ_RSP_OFFSET);
s->rsp[1].hw_cq = (socal_hw_cq __iomem *)(s->xram + SOCAL_CQ_RSP_OFFSET + sizeof(socal_hw_cq));
s->rsp[2].hw_cq = (socal_hw_cq __iomem *)(s->xram + SOCAL_CQ_RSP_OFFSET + 2 * sizeof(socal_hw_cq));
cq[1].address = cq[0].address + (SOCAL_CQ_REQ0_SIZE * sizeof(socal_req));
cq[4].address = cq[1].address + (SOCAL_CQ_REQ1_SIZE * sizeof(socal_req));
cq[5].address = cq[4].address + (SOCAL_CQ_RSP0_SIZE * sizeof(socal_req));
cq[6].address = cq[5].address + (SOCAL_CQ_RSP1_SIZE * sizeof(socal_req));
cq[0].last = SOCAL_CQ_REQ0_SIZE - 1;
cq[1].last = SOCAL_CQ_REQ1_SIZE - 1;
cq[4].last = SOCAL_CQ_RSP0_SIZE - 1;
cq[5].last = SOCAL_CQ_RSP1_SIZE - 1;
cq[6].last = SOCAL_CQ_RSP2_SIZE - 1;
for (i = 0; i < 8; i++)
cq[i].seqno = 1;
s->req[0].last = SOCAL_CQ_REQ0_SIZE - 1;
s->req[1].last = SOCAL_CQ_REQ1_SIZE - 1;
s->rsp[0].last = SOCAL_CQ_RSP0_SIZE - 1;
s->rsp[1].last = SOCAL_CQ_RSP1_SIZE - 1;
s->rsp[2].last = SOCAL_CQ_RSP2_SIZE - 1;
s->req[0].seqno = 1;
s->req[1].seqno = 1;
s->rsp[0].seqno = 1;
s->rsp[1].seqno = 1;
s->rsp[2].seqno = 1;
socal_copy_to_xram(s->xram + SOCAL_CQ_REQ_OFFSET, cq, sizeof(cq));
SOD(("Setting up params\n"))
/* Make our sw copy of SOCAL service parameters */
socal_copy_from_xram(s->serv_params, s->xram + 0x280, sizeof (s->serv_params));
s->port[0].fc.common_svc = (common_svc_parm *)s->serv_params;
s->port[0].fc.class_svcs = (svc_parm *)(s->serv_params + 0x20);
s->port[1].fc.common_svc = (common_svc_parm *)&s->serv_params;
s->port[1].fc.class_svcs = (svc_parm *)(s->serv_params + 0x20);
socal_enable (s);
SOD(("Enabled SOCAL\n"))
}
static int __init socal_probe(void)
{
struct sbus_bus *sbus;
struct sbus_dev *sdev = NULL;
struct socal *s;
int cards = 0;
for_each_sbus(sbus) {
for_each_sbusdev(sdev, sbus) {
if(!strcmp(sdev->prom_name, "SUNW,socal")) {
socal_init(sdev, cards);
cards++;
}
}
}
if (!cards)
return -EIO;
for_each_socal(s)
if (s->next)
s->port[1].fc.next = &s->next->port[0].fc;
fcp_init (&socals->port[0].fc);
return 0;
}
static void __exit socal_cleanup(void)
{
struct socal *s;
int irq;
struct sbus_dev *sdev;
for_each_socal(s) {
irq = s->port[0].fc.irq;
free_irq (irq, s);
fcp_release(&(s->port[0].fc), 2);
sdev = s->port[0].fc.dev;
if (sdev->num_registers == 1) {
sbus_iounmap(s->eeprom, sdev->reg_addrs[0].reg_size);
} else {
sbus_iounmap(s->xram, sdev->reg_addrs[1].reg_size);
sbus_iounmap(s->regs, sdev->reg_addrs[2].reg_size);
}
sbus_free_consistent(sdev,
(SOCAL_CQ_REQ0_SIZE + SOCAL_CQ_REQ1_SIZE +
SOCAL_CQ_RSP0_SIZE + SOCAL_CQ_RSP1_SIZE +
SOCAL_CQ_RSP2_SIZE) * sizeof(socal_req),
s->req_cpu, s->req_dvma);
}
}
module_init(socal_probe);
module_exit(socal_cleanup);
MODULE_LICENSE("GPL");

View File

@ -1,314 +0,0 @@
/* socal.h: Definitions for Sparc SUNW,socal (SOC+) Fibre Channel Sbus driver.
*
* Copyright (C) 1998,1999 Jakub Jelinek (jj@ultra.linux.cz)
*/
#ifndef __SOCAL_H
#define __SOCAL_H
#include "fc.h"
#include "fcp.h"
#include "fcp_impl.h"
/* Hardware register offsets and constants first {{{ */
#define CFG 0x00UL
#define SAE 0x04UL
#define CMD 0x08UL
#define IMASK 0x0cUL
#define REQP 0x10UL
#define RESP 0x14UL
/* Config Register */
#define SOCAL_CFG_EXT_RAM_BANK_MASK 0x07000000
#define SOCAL_CFG_EEPROM_BANK_MASK 0x00030000
#define SOCAL_CFG_BURST64_MASK 0x00000700
#define SOCAL_CFG_SBUS_PARITY_TEST 0x00000020
#define SOCAL_CFG_SBUS_PARITY_CHECK 0x00000010
#define SOCAL_CFG_SBUS_ENHANCED 0x00000008
#define SOCAL_CFG_BURST_MASK 0x00000007
/* Bursts */
#define SOCAL_CFG_BURST_4 0x00000000
#define SOCAL_CFG_BURST_8 0x00000003
#define SOCAL_CFG_BURST_16 0x00000004
#define SOCAL_CFG_BURST_32 0x00000005
#define SOCAL_CFG_BURST_64 0x00000006
#define SOCAL_CFG_BURST_128 0x00000007
/* Slave Access Error Register */
#define SOCAL_SAE_ALIGNMENT 0x00000004
#define SOCAL_SAE_UNSUPPORTED 0x00000002
#define SOCAL_SAE_PARITY 0x00000001
/* Command & Status Register */
#define SOCAL_CMD_RSP_QALL 0x000f0000
#define SOCAL_CMD_RSP_Q0 0x00010000
#define SOCAL_CMD_RSP_Q1 0x00020000
#define SOCAL_CMD_RSP_Q2 0x00040000
#define SOCAL_CMD_RSP_Q3 0x00080000
#define SOCAL_CMD_REQ_QALL 0x00000f00
#define SOCAL_CMD_REQ_Q0 0x00000100
#define SOCAL_CMD_REQ_Q1 0x00000200
#define SOCAL_CMD_REQ_Q2 0x00000400
#define SOCAL_CMD_REQ_Q3 0x00000800
#define SOCAL_CMD_SAE 0x00000080
#define SOCAL_CMD_INTR_PENDING 0x00000008
#define SOCAL_CMD_NON_QUEUED 0x00000004
#define SOCAL_CMD_IDLE 0x00000002
#define SOCAL_CMD_SOFT_RESET 0x00000001
/* Interrupt Mask Register */
#define SOCAL_IMASK_RSP_QALL 0x000f0000
#define SOCAL_IMASK_RSP_Q0 0x00010000
#define SOCAL_IMASK_RSP_Q1 0x00020000
#define SOCAL_IMASK_RSP_Q2 0x00040000
#define SOCAL_IMASK_RSP_Q3 0x00080000
#define SOCAL_IMASK_REQ_QALL 0x00000f00
#define SOCAL_IMASK_REQ_Q0 0x00000100
#define SOCAL_IMASK_REQ_Q1 0x00000200
#define SOCAL_IMASK_REQ_Q2 0x00000400
#define SOCAL_IMASK_REQ_Q3 0x00000800
#define SOCAL_IMASK_SAE 0x00000080
#define SOCAL_IMASK_NON_QUEUED 0x00000004
#define SOCAL_INTR(s, cmd) \
(((cmd & SOCAL_CMD_RSP_QALL) | ((~cmd) & SOCAL_CMD_REQ_QALL)) \
& s->imask)
#define SOCAL_SETIMASK(s, i) \
do { (s)->imask = (i); \
sbus_writel((i), (s)->regs + IMASK); \
} while (0)
#define SOCAL_MAX_EXCHANGES 1024
/* XRAM
*
* This is a 64KB register area.
* From the documentation, it seems like it is finally able to cope
* at least with 1,2,4 byte accesses for read and 2,4 byte accesses for write.
*/
/* Circular Queue */
#define SOCAL_CQ_REQ_OFFSET 0x200
#define SOCAL_CQ_RSP_OFFSET 0x220
typedef struct {
u32 address;
u8 in;
u8 out;
u8 last;
u8 seqno;
} socal_hw_cq;
#define SOCAL_PORT_A 0x0000 /* From/To Port A */
#define SOCAL_PORT_B 0x0001 /* From/To Port A */
#define SOCAL_FC_HDR 0x0002 /* Contains FC Header */
#define SOCAL_NORSP 0x0004 /* Don't generate response nor interrupt */
#define SOCAL_NOINT 0x0008 /* Generate response but not interrupt */
#define SOCAL_XFERRDY 0x0010 /* Generate XFERRDY */
#define SOCAL_IGNOREPARAM 0x0020 /* Ignore PARAM field in the FC header */
#define SOCAL_COMPLETE 0x0040 /* Command completed */
#define SOCAL_UNSOLICITED 0x0080 /* For request this is the packet to establish unsolicited pools, */
/* for rsp this is unsolicited packet */
#define SOCAL_STATUS 0x0100 /* State change (on/off line) */
#define SOCAL_RSP_HDR 0x0200 /* Return frame header in any case */
typedef struct {
u32 token;
u16 flags;
u8 class;
u8 segcnt;
u32 bytecnt;
} socal_hdr;
typedef struct {
u32 base;
u32 count;
} socal_data;
#define SOCAL_CQTYPE_NOP 0x00
#define SOCAL_CQTYPE_OUTBOUND 0x01
#define SOCAL_CQTYPE_INBOUND 0x02
#define SOCAL_CQTYPE_SIMPLE 0x03
#define SOCAL_CQTYPE_IO_WRITE 0x04
#define SOCAL_CQTYPE_IO_READ 0x05
#define SOCAL_CQTYPE_UNSOLICITED 0x06
#define SOCAL_CQTYPE_BYPASS_DEV 0x06
#define SOCAL_CQTYPE_DIAG 0x07
#define SOCAL_CQTYPE_OFFLINE 0x08
#define SOCAL_CQTYPE_ADD_POOL 0x09
#define SOCAL_CQTYPE_DELETE_POOL 0x0a
#define SOCAL_CQTYPE_ADD_BUFFER 0x0b
#define SOCAL_CQTYPE_ADD_POOL_BUFFER 0x0c
#define SOCAL_CQTYPE_REQUEST_ABORT 0x0d
#define SOCAL_CQTYPE_REQUEST_LIP 0x0e
#define SOCAL_CQTYPE_REPORT_MAP 0x0f
#define SOCAL_CQTYPE_RESPONSE 0x10
#define SOCAL_CQTYPE_INLINE 0x20
#define SOCAL_CQFLAGS_CONT 0x01
#define SOCAL_CQFLAGS_FULL 0x02
#define SOCAL_CQFLAGS_BADHDR 0x04
#define SOCAL_CQFLAGS_BADPKT 0x08
typedef struct {
socal_hdr shdr;
socal_data data[3];
fc_hdr fchdr;
u8 count;
u8 type;
u8 flags;
u8 seqno;
} socal_req;
#define SOCAL_OK 0
#define SOCAL_P_RJT 2
#define SOCAL_F_RJT 3
#define SOCAL_P_BSY 4
#define SOCAL_F_BSY 5
#define SOCAL_ONLINE 0x10
#define SOCAL_OFFLINE 0x11
#define SOCAL_TIMEOUT 0x12
#define SOCAL_OVERRUN 0x13
#define SOCAL_ONLINE_LOOP 0x14
#define SOCAL_OLD_PORT 0x15
#define SOCAL_AL_PORT 0x16
#define SOCAL_UNKOWN_CQ_TYPE 0x20
#define SOCAL_BAD_SEG_CNT 0x21
#define SOCAL_MAX_XCHG_EXCEEDED 0x22
#define SOCAL_BAD_XID 0x23
#define SOCAL_XCHG_BUSY 0x24
#define SOCAL_BAD_POOL_ID 0x25
#define SOCAL_INSUFFICIENT_CQES 0x26
#define SOCAL_ALLOC_FAIL 0x27
#define SOCAL_BAD_SID 0x28
#define SOCAL_NO_SEG_INIT 0x29
#define SOCAL_BAD_DID 0x2a
#define SOCAL_ABORTED 0x30
#define SOCAL_ABORT_FAILED 0x31
typedef struct {
socal_hdr shdr;
u32 status;
socal_data data;
u8 xxx1[10];
u16 ncmds;
fc_hdr fchdr;
u8 count;
u8 type;
u8 flags;
u8 seqno;
} socal_rsp;
typedef struct {
socal_hdr shdr;
u8 xxx1[48];
u8 count;
u8 type;
u8 flags;
u8 seqno;
} socal_cmdonly;
#define SOCAL_DIAG_NOP 0x00
#define SOCAL_DIAG_INT_LOOP 0x01
#define SOCAL_DIAG_EXT_LOOP 0x02
#define SOCAL_DIAG_REM_LOOP 0x03
#define SOCAL_DIAG_XRAM_TEST 0x04
#define SOCAL_DIAG_SOC_TEST 0x05
#define SOCAL_DIAG_HCB_TEST 0x06
#define SOCAL_DIAG_SOCLB_TEST 0x07
#define SOCAL_DIAG_SRDSLB_TEST 0x08
#define SOCAL_DIAG_EXTOE_TEST 0x09
typedef struct {
socal_hdr shdr;
u32 cmd;
u8 xxx1[44];
u8 count;
u8 type;
u8 flags;
u8 seqno;
} socal_diag_req;
#define SOCAL_POOL_MASK_RCTL 0x800000
#define SOCAL_POOL_MASK_DID 0x700000
#define SOCAL_POOL_MASK_SID 0x070000
#define SOCAL_POOL_MASK_TYPE 0x008000
#define SOCAL_POOL_MASK_F_CTL 0x007000
#define SOCAL_POOL_MASK_SEQ_ID 0x000800
#define SOCAL_POOL_MASK_D_CTL 0x000400
#define SOCAL_POOL_MASK_SEQ_CNT 0x000300
#define SOCAL_POOL_MASK_OX_ID 0x0000f0
#define SOCAL_POOL_MASK_PARAM 0x00000f
typedef struct {
socal_hdr shdr;
u32 pool_id;
u32 header_mask;
u32 buf_size;
u32 entries;
u8 xxx1[8];
fc_hdr fchdr;
u8 count;
u8 type;
u8 flags;
u8 seqno;
} socal_pool_req;
/* }}} */
/* Now our software structures and constants we use to drive the beast {{{ */
#define SOCAL_CQ_REQ0_SIZE 4
#define SOCAL_CQ_REQ1_SIZE 256
#define SOCAL_CQ_RSP0_SIZE 8
#define SOCAL_CQ_RSP1_SIZE 4
#define SOCAL_CQ_RSP2_SIZE 4
#define SOCAL_SOLICITED_RSP_Q 0
#define SOCAL_SOLICITED_BAD_RSP_Q 1
#define SOCAL_UNSOLICITED_RSP_Q 2
struct socal;
typedef struct {
/* This must come first */
fc_channel fc;
struct socal *s;
u16 flags;
u16 mask;
} socal_port;
typedef struct {
socal_hw_cq __iomem *hw_cq; /* Related XRAM cq */
socal_req *pool;
u8 in;
u8 out;
u8 last;
u8 seqno;
} socal_cq;
struct socal {
spinlock_t lock;
socal_port port[2]; /* Every SOCAL has one or two FC ports */
socal_cq req[4]; /* Request CQs */
socal_cq rsp[4]; /* Response CQs */
int socal_no;
void __iomem *regs;
void __iomem *xram;
void __iomem *eeprom;
fc_wwn wwn;
u32 imask; /* Our copy of regs->imask */
u32 cfg; /* Our copy of regs->cfg */
char serv_params[80];
struct socal *next;
int curr_port; /* Which port will have priority to fcp_queue_empty */
socal_req * req_cpu;
u32 req_dvma;
};
/* }}} */
#endif /* !(__SOCAL_H) */

View File

@ -115,7 +115,6 @@ obj-$(CONFIG_SCSI_QLOGICPTI) += qlogicpti.o
obj-$(CONFIG_BLK_DEV_IDESCSI) += ide-scsi.o
obj-$(CONFIG_SCSI_MESH) += mesh.o
obj-$(CONFIG_SCSI_MAC53C94) += mac53c94.o
obj-$(CONFIG_SCSI_PLUTO) += pluto.o
obj-$(CONFIG_SCSI_DECNCR) += NCR53C9x.o dec_esp.o
obj-$(CONFIG_BLK_DEV_3W_XXXX_RAID) += 3w-xxxx.o
obj-$(CONFIG_SCSI_3W_9XXX) += 3w-9xxx.o
@ -123,7 +122,6 @@ obj-$(CONFIG_SCSI_PPA) += ppa.o
obj-$(CONFIG_SCSI_IMM) += imm.o
obj-$(CONFIG_JAZZ_ESP) += esp_scsi.o jazz_esp.o
obj-$(CONFIG_SUN3X_ESP) += NCR53C9x.o sun3x_esp.o
obj-$(CONFIG_SCSI_FCAL) += fcal.o
obj-$(CONFIG_SCSI_LASI700) += 53c700.o lasi700.o
obj-$(CONFIG_SCSI_SNI_53C710) += 53c700.o sni_53c710.o
obj-$(CONFIG_SCSI_NSP32) += nsp32.o

View File

@ -60,8 +60,6 @@
#define ID_OLV_274xD 0x04907783 /* Olivetti OEM (Differential) */
static int aic7770_chip_init(struct ahc_softc *ahc);
static int aic7770_suspend(struct ahc_softc *ahc);
static int aic7770_resume(struct ahc_softc *ahc);
static int aha2840_load_seeprom(struct ahc_softc *ahc);
static ahc_device_setup_t ahc_aic7770_VL_setup;
static ahc_device_setup_t ahc_aic7770_EISA_setup;
@ -155,8 +153,6 @@ aic7770_config(struct ahc_softc *ahc, struct aic7770_identity *entry, u_int io)
return (error);
ahc->bus_chip_init = aic7770_chip_init;
ahc->bus_suspend = aic7770_suspend;
ahc->bus_resume = aic7770_resume;
error = ahc_reset(ahc, /*reinit*/FALSE);
if (error != 0)
@ -272,18 +268,6 @@ aic7770_chip_init(struct ahc_softc *ahc)
return (ahc_chip_init(ahc));
}
static int
aic7770_suspend(struct ahc_softc *ahc)
{
return (ahc_suspend(ahc));
}
static int
aic7770_resume(struct ahc_softc *ahc)
{
return (ahc_resume(ahc));
}
/*
* Read the 284x SEEPROM.
*/

View File

@ -1003,8 +1003,15 @@ struct ahd_suspend_channel_state {
uint8_t seqctl;
};
struct ahd_suspend_pci_state {
uint32_t devconfig;
uint8_t command;
uint8_t csize_lattime;
};
struct ahd_suspend_state {
struct ahd_suspend_channel_state channel[2];
struct ahd_suspend_pci_state pci_state;
uint8_t optionmode;
uint8_t dscommand0;
uint8_t dspcistatus;
@ -1333,6 +1340,8 @@ struct ahd_pci_identity *ahd_find_pci_device(ahd_dev_softc_t);
int ahd_pci_config(struct ahd_softc *,
struct ahd_pci_identity *);
int ahd_pci_test_register_access(struct ahd_softc *);
void ahd_pci_suspend(struct ahd_softc *);
void ahd_pci_resume(struct ahd_softc *);
/************************** SCB and SCB queue management **********************/
void ahd_qinfifo_requeue_tail(struct ahd_softc *ahd,
@ -1343,6 +1352,8 @@ struct ahd_softc *ahd_alloc(void *platform_arg, char *name);
int ahd_softc_init(struct ahd_softc *);
void ahd_controller_info(struct ahd_softc *ahd, char *buf);
int ahd_init(struct ahd_softc *ahd);
int ahd_suspend(struct ahd_softc *ahd);
void ahd_resume(struct ahd_softc *ahd);
int ahd_default_config(struct ahd_softc *ahd);
int ahd_parse_vpddata(struct ahd_softc *ahd,
struct vpd_config *vpd);

View File

@ -7175,7 +7175,6 @@ ahd_pause_and_flushwork(struct ahd_softc *ahd)
ahd->flags &= ~AHD_ALL_INTERRUPTS;
}
#if 0
int
ahd_suspend(struct ahd_softc *ahd)
{
@ -7189,19 +7188,15 @@ ahd_suspend(struct ahd_softc *ahd)
ahd_shutdown(ahd);
return (0);
}
#endif /* 0 */
#if 0
int
void
ahd_resume(struct ahd_softc *ahd)
{
ahd_reset(ahd, /*reinit*/TRUE);
ahd_intr_enable(ahd, TRUE);
ahd_restart(ahd);
return (0);
}
#endif /* 0 */
/************************** Busy Target Table *********************************/
/*

View File

@ -315,8 +315,8 @@ uint32_t aic79xx_slowcrc;
*/
static char *aic79xx = NULL;
MODULE_AUTHOR("Maintainer: Justin T. Gibbs <gibbs@scsiguy.com>");
MODULE_DESCRIPTION("Adaptec Aic790X U320 SCSI Host Bus Adapter driver");
MODULE_AUTHOR("Maintainer: Hannes Reinecke <hare@suse.de>");
MODULE_DESCRIPTION("Adaptec AIC790X U320 SCSI Host Bus Adapter driver");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_VERSION(AIC79XX_DRIVER_VERSION);
module_param(aic79xx, charp, 0444);

View File

@ -50,6 +50,8 @@ static int ahd_linux_pci_reserve_io_regions(struct ahd_softc *ahd,
static int ahd_linux_pci_reserve_mem_region(struct ahd_softc *ahd,
u_long *bus_addr,
uint8_t __iomem **maddr);
static int ahd_linux_pci_dev_suspend(struct pci_dev *pdev, pm_message_t mesg);
static int ahd_linux_pci_dev_resume(struct pci_dev *pdev);
static void ahd_linux_pci_dev_remove(struct pci_dev *pdev);
/* Define the macro locally since it's different for different class of chips.
@ -86,10 +88,58 @@ MODULE_DEVICE_TABLE(pci, ahd_linux_pci_id_table);
static struct pci_driver aic79xx_pci_driver = {
.name = "aic79xx",
.probe = ahd_linux_pci_dev_probe,
#ifdef CONFIG_PM
.suspend = ahd_linux_pci_dev_suspend,
.resume = ahd_linux_pci_dev_resume,
#endif
.remove = ahd_linux_pci_dev_remove,
.id_table = ahd_linux_pci_id_table
};
static int
ahd_linux_pci_dev_suspend(struct pci_dev *pdev, pm_message_t mesg)
{
struct ahd_softc *ahd = pci_get_drvdata(pdev);
int rc;
if ((rc = ahd_suspend(ahd)))
return rc;
ahd_pci_suspend(ahd);
pci_save_state(pdev);
pci_disable_device(pdev);
if (mesg.event == PM_EVENT_SUSPEND)
pci_set_power_state(pdev, PCI_D3hot);
return rc;
}
static int
ahd_linux_pci_dev_resume(struct pci_dev *pdev)
{
struct ahd_softc *ahd = pci_get_drvdata(pdev);
int rc;
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
if ((rc = pci_enable_device(pdev))) {
dev_printk(KERN_ERR, &pdev->dev,
"failed to enable device after resume (%d)\n", rc);
return rc;
}
pci_set_master(pdev);
ahd_pci_resume(ahd);
ahd_resume(ahd);
return rc;
}
static void
ahd_linux_pci_dev_remove(struct pci_dev *pdev)
{

View File

@ -389,6 +389,33 @@ ahd_pci_config(struct ahd_softc *ahd, struct ahd_pci_identity *entry)
return error;
}
void
ahd_pci_suspend(struct ahd_softc *ahd)
{
/*
* Save chip register configuration data for chip resets
* that occur during runtime and resume events.
*/
ahd->suspend_state.pci_state.devconfig =
ahd_pci_read_config(ahd->dev_softc, DEVCONFIG, /*bytes*/4);
ahd->suspend_state.pci_state.command =
ahd_pci_read_config(ahd->dev_softc, PCIR_COMMAND, /*bytes*/1);
ahd->suspend_state.pci_state.csize_lattime =
ahd_pci_read_config(ahd->dev_softc, CSIZE_LATTIME, /*bytes*/1);
}
void
ahd_pci_resume(struct ahd_softc *ahd)
{
ahd_pci_write_config(ahd->dev_softc, DEVCONFIG,
ahd->suspend_state.pci_state.devconfig, /*bytes*/4);
ahd_pci_write_config(ahd->dev_softc, PCIR_COMMAND,
ahd->suspend_state.pci_state.command, /*bytes*/1);
ahd_pci_write_config(ahd->dev_softc, CSIZE_LATTIME,
ahd->suspend_state.pci_state.csize_lattime, /*bytes*/1);
}
/*
* Perform some simple tests that should catch situations where
* our registers are invalidly mapped.

View File

@ -961,16 +961,6 @@ struct ahc_softc {
*/
ahc_bus_chip_init_t bus_chip_init;
/*
* Bus specific suspend routine.
*/
ahc_bus_suspend_t bus_suspend;
/*
* Bus specific resume routine.
*/
ahc_bus_resume_t bus_resume;
/*
* Target mode related state kept on a per enabled lun basis.
* Targets that are not enabled will have null entries.
@ -1153,6 +1143,7 @@ struct ahc_pci_identity *ahc_find_pci_device(ahc_dev_softc_t);
int ahc_pci_config(struct ahc_softc *,
struct ahc_pci_identity *);
int ahc_pci_test_register_access(struct ahc_softc *);
void ahc_pci_resume(struct ahc_softc *ahc);
/*************************** EISA/VL Front End ********************************/
struct aic7770_identity *aic7770_find_device(uint32_t);

View File

@ -335,8 +335,8 @@ static uint32_t aic7xxx_periodic_otag;
*/
static char *aic7xxx = NULL;
MODULE_AUTHOR("Maintainer: Justin T. Gibbs <gibbs@scsiguy.com>");
MODULE_DESCRIPTION("Adaptec Aic77XX/78XX SCSI Host Bus Adapter driver");
MODULE_AUTHOR("Maintainer: Hannes Reinecke <hare@suse.de>");
MODULE_DESCRIPTION("Adaptec AIC77XX/78XX SCSI Host Bus Adapter driver");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_VERSION(AIC7XXX_DRIVER_VERSION);
module_param(aic7xxx, charp, 0444);

View File

@ -49,6 +49,8 @@ static int ahc_linux_pci_reserve_io_region(struct ahc_softc *ahc,
static int ahc_linux_pci_reserve_mem_region(struct ahc_softc *ahc,
u_long *bus_addr,
uint8_t __iomem **maddr);
static int ahc_linux_pci_dev_suspend(struct pci_dev *pdev, pm_message_t mesg);
static int ahc_linux_pci_dev_resume(struct pci_dev *pdev);
static void ahc_linux_pci_dev_remove(struct pci_dev *pdev);
/* Define the macro locally since it's different for different class of chips.
@ -133,10 +135,54 @@ MODULE_DEVICE_TABLE(pci, ahc_linux_pci_id_table);
static struct pci_driver aic7xxx_pci_driver = {
.name = "aic7xxx",
.probe = ahc_linux_pci_dev_probe,
#ifdef CONFIG_PM
.suspend = ahc_linux_pci_dev_suspend,
.resume = ahc_linux_pci_dev_resume,
#endif
.remove = ahc_linux_pci_dev_remove,
.id_table = ahc_linux_pci_id_table
};
static int
ahc_linux_pci_dev_suspend(struct pci_dev *pdev, pm_message_t mesg)
{
struct ahc_softc *ahc = pci_get_drvdata(pdev);
int rc;
if ((rc = ahc_suspend(ahc)))
return rc;
pci_save_state(pdev);
pci_disable_device(pdev);
if (mesg.event == PM_EVENT_SUSPEND)
pci_set_power_state(pdev, PCI_D3hot);
return rc;
}
static int
ahc_linux_pci_dev_resume(struct pci_dev *pdev)
{
struct ahc_softc *ahc = pci_get_drvdata(pdev);
int rc;
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
if ((rc = pci_enable_device(pdev))) {
dev_printk(KERN_ERR, &pdev->dev,
"failed to enable device after resume (%d)\n", rc);
return rc;
}
pci_set_master(pdev);
ahc_pci_resume(ahc);
return (ahc_resume(ahc));
}
static void
ahc_linux_pci_dev_remove(struct pci_dev *pdev)
{

View File

@ -633,8 +633,6 @@ static void write_brdctl(struct ahc_softc *ahc, uint8_t value);
static uint8_t read_brdctl(struct ahc_softc *ahc);
static void ahc_pci_intr(struct ahc_softc *ahc);
static int ahc_pci_chip_init(struct ahc_softc *ahc);
static int ahc_pci_suspend(struct ahc_softc *ahc);
static int ahc_pci_resume(struct ahc_softc *ahc);
static int
ahc_9005_subdevinfo_valid(uint16_t device, uint16_t vendor,
@ -791,8 +789,6 @@ ahc_pci_config(struct ahc_softc *ahc, struct ahc_pci_identity *entry)
ahc->bus_intr = ahc_pci_intr;
ahc->bus_chip_init = ahc_pci_chip_init;
ahc->bus_suspend = ahc_pci_suspend;
ahc->bus_resume = ahc_pci_resume;
/* Remeber how the card was setup in case there is no SEEPROM */
if ((ahc_inb(ahc, HCNTRL) & POWRDN) == 0) {
@ -2024,18 +2020,9 @@ ahc_pci_chip_init(struct ahc_softc *ahc)
return (ahc_chip_init(ahc));
}
static int
ahc_pci_suspend(struct ahc_softc *ahc)
{
return (ahc_suspend(ahc));
}
static int
void
ahc_pci_resume(struct ahc_softc *ahc)
{
pci_set_power_state(ahc->dev_softc, AHC_POWER_STATE_D0);
/*
* We assume that the OS has restored our register
* mappings, etc. Just update the config space registers
@ -2063,7 +2050,6 @@ ahc_pci_resume(struct ahc_softc *ahc)
&sxfrctl1);
ahc_release_seeprom(&sd);
}
return (ahc_resume(ahc));
}
static int

View File

@ -66,6 +66,7 @@ static char string_buf[MAX_STR_CONST];
static char *string_buf_ptr;
static int parren_count;
static char buf[255];
int mmlineno;
%}
WORD [A-Za-z_][-A-Za-z_0-9]*
@ -76,7 +77,7 @@ MCARG [^(), \t]+
%%
\n {
++yylineno;
++mmlineno;
}
\r ;
<ARGLIST>{SPACE} ;

View File

@ -8417,7 +8417,7 @@ aic7xxx_alloc(struct scsi_host_template *sht, struct aic7xxx_host *temp)
p->host = host;
p->scb_data = kzalloc(sizeof(scb_data_type), GFP_ATOMIC);
if (!p->scb_data)
if (p->scb_data)
{
scbq_init (&p->scb_data->free_scbs);
}

View File

@ -1,317 +0,0 @@
/* fcal.c: Fibre Channel Arbitrated Loop SCSI host adapter driver.
*
* Copyright (C) 1998,1999 Jakub Jelinek (jj@ultra.linux.cz)
*
*/
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/proc_fs.h>
#include <linux/stat.h>
#include <linux/init.h>
#ifdef CONFIG_KMOD
#include <linux/kmod.h>
#endif
#include <asm/irq.h>
#include "scsi.h"
#include <scsi/scsi_host.h>
#include "../fc4/fcp_impl.h"
#include "fcal.h"
#include <linux/module.h>
/* #define FCAL_DEBUG */
#define fcal_printk printk ("FCAL %s: ", fc->name); printk
#ifdef FCAL_DEBUG
#define FCALD(x) fcal_printk x;
#define FCALND(x) printk ("FCAL: "); printk x;
#else
#define FCALD(x)
#define FCALND(x)
#endif
static unsigned char alpa2target[] = {
0x7e, 0x7d, 0x7c, 0xff, 0x7b, 0xff, 0xff, 0xff, 0x7a, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x79,
0x78, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x77, 0x76, 0xff, 0xff, 0x75, 0xff, 0x74, 0x73, 0x72,
0xff, 0xff, 0xff, 0x71, 0xff, 0x70, 0x6f, 0x6e, 0xff, 0x6d, 0x6c, 0x6b, 0x6a, 0x69, 0x68, 0xff,
0xff, 0x67, 0x66, 0x65, 0x64, 0x63, 0x62, 0xff, 0xff, 0x61, 0x60, 0xff, 0x5f, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0x5e, 0xff, 0x5d, 0x5c, 0x5b, 0xff, 0x5a, 0x59, 0x58, 0x57, 0x56, 0x55, 0xff,
0xff, 0x54, 0x53, 0x52, 0x51, 0x50, 0x4f, 0xff, 0xff, 0x4e, 0x4d, 0xff, 0x4c, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0x4b, 0xff, 0x4a, 0x49, 0x48, 0xff, 0x47, 0x46, 0x45, 0x44, 0x43, 0x42, 0xff,
0xff, 0x41, 0x40, 0x3f, 0x3e, 0x3d, 0x3c, 0xff, 0xff, 0x3b, 0x3a, 0xff, 0x39, 0xff, 0xff, 0xff,
0x38, 0x37, 0x36, 0xff, 0x35, 0xff, 0xff, 0xff, 0x34, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x33,
0x32, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x31, 0x30, 0xff, 0xff, 0x2f, 0xff, 0x2e, 0x2d, 0x2c,
0xff, 0xff, 0xff, 0x2b, 0xff, 0x2a, 0x29, 0x28, 0xff, 0x27, 0x26, 0x25, 0x24, 0x23, 0x22, 0xff,
0xff, 0x21, 0x20, 0x1f, 0x1e, 0x1d, 0x1c, 0xff, 0xff, 0x1b, 0x1a, 0xff, 0x19, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0x18, 0xff, 0x17, 0x16, 0x15, 0xff, 0x14, 0x13, 0x12, 0x11, 0x10, 0x0f, 0xff,
0xff, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0xff, 0xff, 0x08, 0x07, 0xff, 0x06, 0xff, 0xff, 0xff,
0x05, 0x04, 0x03, 0xff, 0x02, 0xff, 0xff, 0xff, 0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
};
static unsigned char target2alpa[] = {
0xef, 0xe8, 0xe4, 0xe2, 0xe1, 0xe0, 0xdc, 0xda, 0xd9, 0xd6, 0xd5, 0xd4, 0xd3, 0xd2, 0xd1, 0xce,
0xcd, 0xcc, 0xcb, 0xca, 0xc9, 0xc7, 0xc6, 0xc5, 0xc3, 0xbc, 0xba, 0xb9, 0xb6, 0xb5, 0xb4, 0xb3,
0xb2, 0xb1, 0xae, 0xad, 0xac, 0xab, 0xaa, 0xa9, 0xa7, 0xa6, 0xa5, 0xa3, 0x9f, 0x9e, 0x9d, 0x9b,
0x98, 0x97, 0x90, 0x8f, 0x88, 0x84, 0x82, 0x81, 0x80, 0x7c, 0x7a, 0x79, 0x76, 0x75, 0x74, 0x73,
0x72, 0x71, 0x6e, 0x6d, 0x6c, 0x6b, 0x6a, 0x69, 0x67, 0x66, 0x65, 0x63, 0x5c, 0x5a, 0x59, 0x56,
0x55, 0x54, 0x53, 0x52, 0x51, 0x4e, 0x4d, 0x4c, 0x4b, 0x4a, 0x49, 0x47, 0x46, 0x45, 0x43, 0x3c,
0x3a, 0x39, 0x36, 0x35, 0x34, 0x33, 0x32, 0x31, 0x2e, 0x2d, 0x2c, 0x2b, 0x2a, 0x29, 0x27, 0x26,
0x25, 0x23, 0x1f, 0x1e, 0x1d, 0x1b, 0x18, 0x17, 0x10, 0x0f, 0x08, 0x04, 0x02, 0x01, 0x00
};
static int fcal_encode_addr(Scsi_Cmnd *SCpnt, u16 *addr, fc_channel *fc, fcp_cmnd *fcmd);
int fcal_slave_configure(struct scsi_device *device)
{
int depth_to_use;
if (device->tagged_supported)
depth_to_use = /* 254 */ 8;
else
depth_to_use = 2;
scsi_adjust_queue_depth(device,
(device->tagged_supported ?
MSG_SIMPLE_TAG : 0),
depth_to_use);
return 0;
}
/* Detect all FC Arbitrated Loops attached to the machine.
fc4 module has done all the work for us... */
int __init fcal_detect(struct scsi_host_template *tpnt)
{
int nfcals = 0;
fc_channel *fc;
int fcalcount;
int i;
tpnt->proc_name = "fcal";
fcalcount = 0;
for_each_online_fc_channel(fc)
if (fc->posmap)
fcalcount++;
FCALND(("%d channels online\n", fcalcount))
if (!fcalcount) {
#if defined(MODULE) && defined(CONFIG_FC4_SOCAL_MODULE) && defined(CONFIG_KMOD)
request_module("socal");
for_each_online_fc_channel(fc)
if (fc->posmap)
fcalcount++;
if (!fcalcount)
#endif
return 0;
}
for_each_online_fc_channel(fc) {
struct Scsi_Host *host;
long *ages;
struct fcal *fcal;
if (!fc->posmap) continue;
/* Strange, this is already registered to some other SCSI host, then it cannot be fcal */
if (fc->scsi_name[0]) continue;
memcpy (fc->scsi_name, "FCAL", 4);
fc->can_queue = FCAL_CAN_QUEUE;
fc->rsp_size = 64;
fc->encode_addr = fcal_encode_addr;
ages = kmalloc (128 * sizeof(long), GFP_KERNEL);
if (!ages) continue;
host = scsi_register (tpnt, sizeof (struct fcal));
if (!host)
{
kfree(ages);
continue;
}
if (!try_module_get(fc->module)) {
kfree(ages);
scsi_unregister(host);
continue;
}
nfcals++;
fcal = (struct fcal *)host->hostdata;
fc->fcp_register(fc, TYPE_SCSI_FCP, 0);
for (i = 0; i < fc->posmap->len; i++) {
int status, target, alpa;
alpa = fc->posmap->list[i];
FCALD(("Sending PLOGI to %02x\n", alpa))
target = alpa2target[alpa];
status = fc_do_plogi(fc, alpa, fcal->node_wwn + target,
fcal->nport_wwn + target);
FCALD(("PLOGI returned with status %d\n", status))
if (status != FC_STATUS_OK)
continue;
FCALD(("Sending PRLI to %02x\n", alpa))
status = fc_do_prli(fc, alpa);
FCALD(("PRLI returned with status %d\n", status))
if (status == FC_STATUS_OK)
fcal->map[target] = 1;
}
host->max_id = 127;
host->irq = fc->irq;
#ifdef __sparc_v9__
host->unchecked_isa_dma = 1;
#endif
fc->channels = 1;
fc->targets = 127;
fc->ages = ages;
memset (ages, 0, 128 * sizeof(long));
fcal->fc = fc;
FCALD(("Found FCAL\n"))
}
if (nfcals)
#ifdef __sparc__
printk ("FCAL: Total of %d Sun Enterprise Network Array (A5000 or EX500) channels found\n", nfcals);
#else
printk ("FCAL: Total of %d Fibre Channel Arbitrated Loops found\n", nfcals);
#endif
return nfcals;
}
int fcal_release(struct Scsi_Host *host)
{
struct fcal *fcal = (struct fcal *)host->hostdata;
fc_channel *fc = fcal->fc;
module_put(fc->module);
fc->fcp_register(fc, TYPE_SCSI_FCP, 1);
FCALND((" releasing fcal.\n"));
kfree (fc->ages);
FCALND(("released fcal!\n"));
return 0;
}
#undef SPRINTF
#define SPRINTF(args...) { if (pos < (buffer + length)) pos += sprintf (pos, ## args); }
int fcal_proc_info (struct Scsi_Host *host, char *buffer, char **start, off_t offset, int length, int inout)
{
struct fcal *fcal;
fc_channel *fc;
char *pos = buffer;
int i, j;
if (inout) return length;
fcal = (struct fcal *)host->hostdata;
fc = fcal->fc;
#ifdef __sparc__
SPRINTF ("Sun Enterprise Network Array (A5000 or E?500) on %s PROM node %x\n", fc->name, fc->dev->prom_node);
#else
SPRINTF ("Fibre Channel Arbitrated Loop on %s\n", fc->name);
#endif
SPRINTF ("Initiator AL-PA: %02x\n", fc->sid);
SPRINTF ("\nAttached devices:\n");
for (i = 0; i < fc->posmap->len; i++) {
unsigned char alpa = fc->posmap->list[i];
unsigned char target;
u32 *u1, *u2;
target = alpa2target[alpa];
u1 = (u32 *)&fcal->nport_wwn[target];
u2 = (u32 *)&fcal->node_wwn[target];
if (!u1[0] && !u1[1]) {
SPRINTF (" [AL-PA: %02x] Not responded to PLOGI\n", alpa);
} else if (!fcal->map[target]) {
SPRINTF (" [AL-PA: %02x, Port WWN: %08x%08x, Node WWN: %08x%08x] Not responded to PRLI\n",
alpa, u1[0], u1[1], u2[0], u2[1]);
} else {
struct scsi_device *scd;
shost_for_each_device(scd, host)
if (scd->id == target) {
SPRINTF (" [AL-PA: %02x, Id: %02d, Port WWN: %08x%08x, Node WWN: %08x%08x] ",
alpa, target, u1[0], u1[1], u2[0], u2[1]);
SPRINTF ("%s ", scsi_device_type(scd->type));
for (j = 0; (j < 8) && (scd->vendor[j] >= 0x20); j++)
SPRINTF ("%c", scd->vendor[j]);
SPRINTF (" ");
for (j = 0; (j < 16) && (scd->model[j] >= 0x20); j++)
SPRINTF ("%c", scd->model[j]);
SPRINTF ("\n");
}
}
}
SPRINTF ("\n");
*start = buffer + offset;
if ((pos - buffer) < offset)
return 0;
else if (pos - buffer - offset < length)
return pos - buffer - offset;
else
return length;
}
/*
For FC-AL, we use a simple addressing: we have just one channel 0,
and all AL-PAs are mapped to targets 0..0x7e
*/
static int fcal_encode_addr(Scsi_Cmnd *SCpnt, u16 *addr, fc_channel *fc, fcp_cmnd *fcmd)
{
struct fcal *f;
/* We don't support LUNs yet - I'm not sure if LUN should be in SCSI fcp_cdb, or in second byte of addr[0] */
if (SCpnt->cmnd[1] & 0xe0) return -EINVAL;
/* FC-PLDA tells us... */
memset(addr, 0, 8);
f = (struct fcal *)SCpnt->device->host->hostdata;
if (!f->map[SCpnt->device->id])
return -EINVAL;
/* Now, determine DID: It will be Native Identifier, so we zero upper
2 bytes of the 3 byte DID, lowest byte will be AL-PA */
fcmd->did = target2alpa[SCpnt->device->id];
FCALD(("trying DID %06x\n", fcmd->did))
return 0;
}
static struct scsi_host_template driver_template = {
.name = "Fibre Channel Arbitrated Loop",
.detect = fcal_detect,
.release = fcal_release,
.proc_info = fcal_proc_info,
.queuecommand = fcp_scsi_queuecommand,
.slave_configure = fcal_slave_configure,
.can_queue = FCAL_CAN_QUEUE,
.this_id = -1,
.sg_tablesize = 1,
.cmd_per_lun = 1,
.use_clustering = ENABLE_CLUSTERING,
.eh_abort_handler = fcp_scsi_abort,
.eh_device_reset_handler = fcp_scsi_dev_reset,
.eh_host_reset_handler = fcp_scsi_host_reset,
};
#include "scsi_module.c"
MODULE_LICENSE("GPL");

View File

@ -1,27 +0,0 @@
/* fcal.h: Generic Fibre Channel Arbitrated Loop SCSI host adapter driver definitions.
*
* Copyright (C) 1998,1999 Jakub Jelinek (jj@ultra.linux.cz)
*/
#ifndef _FCAL_H
#define _FCAL_H
#include "../fc4/fcp_impl.h"
struct fcal {
/* fc must be first */
fc_channel *fc;
unsigned char map[128];
fc_wwn nport_wwn[128];
fc_wwn node_wwn[128];
};
/* Arbitrary constant. Cannot be too large, as fc4 layer has limitations
for a particular channel */
#define FCAL_CAN_QUEUE 512
int fcal_detect(struct scsi_host_template *);
int fcal_release(struct Scsi_Host *);
int fcal_slave_configure(struct scsi_device *);
#endif /* !(_FCAL_H) */

View File

@ -4734,7 +4734,7 @@ static struct scsi_host_template gdth_template = {
};
#ifdef CONFIG_ISA
static int gdth_isa_probe_one(ulong32 isa_bios)
static int __init gdth_isa_probe_one(ulong32 isa_bios)
{
struct Scsi_Host *shp;
gdth_ha_str *ha;
@ -4862,7 +4862,7 @@ static int gdth_isa_probe_one(ulong32 isa_bios)
#endif /* CONFIG_ISA */
#ifdef CONFIG_EISA
static int gdth_eisa_probe_one(ushort eisa_slot)
static int __init gdth_eisa_probe_one(ushort eisa_slot)
{
struct Scsi_Host *shp;
gdth_ha_str *ha;
@ -4991,7 +4991,7 @@ static int gdth_eisa_probe_one(ushort eisa_slot)
#endif /* CONFIG_EISA */
#ifdef CONFIG_PCI
static int gdth_pci_probe_one(gdth_pci_str *pcistr, int ctr)
static int __init gdth_pci_probe_one(gdth_pci_str *pcistr, int ctr)
{
struct Scsi_Host *shp;
gdth_ha_str *ha;

View File

@ -345,6 +345,12 @@ struct Scsi_Host *scsi_host_alloc(struct scsi_host_template *sht, int privsize)
shost->active_mode = sht->supported_mode;
shost->use_sg_chaining = sht->use_sg_chaining;
if (sht->supported_mode == MODE_UNKNOWN)
/* means we didn't set it ... default to INITIATOR */
shost->active_mode = MODE_INITIATOR;
else
shost->active_mode = sht->supported_mode;
if (sht->max_host_blocked)
shost->max_host_blocked = sht->max_host_blocked;
else

View File

@ -375,8 +375,9 @@ static void hptiop_host_request_callback(struct hptiop_hba *hba, u32 _tag)
scp->result = SAM_STAT_CHECK_CONDITION;
memset(&scp->sense_buffer,
0, sizeof(scp->sense_buffer));
memcpy(&scp->sense_buffer,
&req->sg_list, le32_to_cpu(req->dataxfer_length));
memcpy(&scp->sense_buffer, &req->sg_list,
min(sizeof(scp->sense_buffer),
le32_to_cpu(req->dataxfer_length)));
break;
default:

View File

@ -665,7 +665,7 @@ static void initio_init(struct initio_host * host, u8 *bios_addr)
host->max_tags[i] = 0xFF;
} /* for */
printk("i91u: PCI Base=0x%04X, IRQ=%d, BIOS=0x%04X0, SCSI ID=%d\n",
host->addr, host->irq,
host->addr, host->pci_dev->irq,
host->bios_addr, host->scsi_id);
/* Reset SCSI Bus */
if (host->config & HCC_SCSI_RESET) {
@ -2891,6 +2891,8 @@ static int initio_probe_one(struct pci_dev *pdev,
goto out_release_region;
}
host->pci_dev = pdev;
host->num_scbs = num_scb;
host->scb = scb;
host->next_pending = scb;
@ -2905,6 +2907,7 @@ static int initio_probe_one(struct pci_dev *pdev,
host->scb_end = tmp;
host->first_avail = scb;
host->last_avail = prev;
spin_lock_init(&host->avail_lock);
initio_init(host, phys_to_virt(bios_seg << 4));
@ -2928,7 +2931,6 @@ static int initio_probe_one(struct pci_dev *pdev,
}
pci_set_drvdata(pdev, shost);
host->pci_dev = pdev;
error = scsi_add_host(shost, &pdev->dev);
if (error)

View File

@ -901,7 +901,7 @@ lpfc_debugfs_initialize(struct lpfc_vport *vport)
}
}
vport->disc_trc = kmzlloc(
vport->disc_trc = kzalloc(
(sizeof(struct lpfc_debugfs_trc) * lpfc_debugfs_max_disc_trc),
GFP_KERNEL);

View File

@ -1,349 +0,0 @@
/* pluto.c: SparcSTORAGE Array SCSI host adapter driver.
*
* Copyright (C) 1997,1998,1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
*
*/
#include <linux/completion.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/proc_fs.h>
#include <linux/stat.h>
#include <linux/init.h>
#ifdef CONFIG_KMOD
#include <linux/kmod.h>
#endif
#include <asm/irq.h>
#include "scsi.h"
#include <scsi/scsi_host.h>
#include "../fc4/fcp_impl.h"
#include "pluto.h"
#include <linux/module.h>
#define RQ_SCSI_BUSY 0xffff
#define RQ_SCSI_DONE 0xfffe
/* #define PLUTO_DEBUG */
#define pluto_printk printk ("PLUTO %s: ", fc->name); printk
#ifdef PLUTO_DEBUG
#define PLD(x) pluto_printk x;
#define PLND(x) printk ("PLUTO: "); printk x;
#else
#define PLD(x)
#define PLND(x)
#endif
static struct ctrl_inquiry {
struct Scsi_Host host;
struct pluto pluto;
Scsi_Cmnd cmd;
char inquiry[256];
fc_channel *fc;
} *fcs __initdata;
static int fcscount __initdata = 0;
static atomic_t fcss __initdata = ATOMIC_INIT(0);
static DECLARE_COMPLETION(fc_detect_complete);
static int pluto_encode_addr(Scsi_Cmnd *SCpnt, u16 *addr, fc_channel *fc, fcp_cmnd *fcmd);
static void __init pluto_detect_done(Scsi_Cmnd *SCpnt)
{
/* Do nothing */
}
static void __init pluto_detect_scsi_done(Scsi_Cmnd *SCpnt)
{
PLND(("Detect done %08lx\n", (long)SCpnt))
if (atomic_dec_and_test (&fcss))
complete(&fc_detect_complete);
}
int pluto_slave_configure(struct scsi_device *device)
{
int depth_to_use;
if (device->tagged_supported)
depth_to_use = /* 254 */ 8;
else
depth_to_use = 2;
scsi_adjust_queue_depth(device,
(device->tagged_supported ?
MSG_SIMPLE_TAG : 0),
depth_to_use);
return 0;
}
/* Detect all SSAs attached to the machine.
To be fast, do it on all online FC channels at the same time. */
int __init pluto_detect(struct scsi_host_template *tpnt)
{
int i, retry, nplutos;
fc_channel *fc;
struct scsi_device dev;
tpnt->proc_name = "pluto";
fcscount = 0;
for_each_online_fc_channel(fc) {
if (!fc->posmap)
fcscount++;
}
PLND(("%d channels online\n", fcscount))
if (!fcscount) {
#if defined(MODULE) && defined(CONFIG_FC4_SOC_MODULE) && defined(CONFIG_KMOD)
request_module("soc");
for_each_online_fc_channel(fc) {
if (!fc->posmap)
fcscount++;
}
if (!fcscount)
#endif
return 0;
}
fcs = kcalloc(fcscount, sizeof (struct ctrl_inquiry), GFP_DMA);
if (!fcs) {
printk ("PLUTO: Not enough memory to probe\n");
return 0;
}
memset (&dev, 0, sizeof(dev));
atomic_set (&fcss, fcscount);
i = 0;
for_each_online_fc_channel(fc) {
Scsi_Cmnd *SCpnt;
struct Scsi_Host *host;
struct pluto *pluto;
if (i == fcscount) break;
if (fc->posmap) continue;
PLD(("trying to find SSA\n"))
/* If this is already registered to some other SCSI host, then it cannot be pluto */
if (fc->scsi_name[0]) continue;
memcpy (fc->scsi_name, "SSA", 4);
fcs[i].fc = fc;
fc->can_queue = PLUTO_CAN_QUEUE;
fc->rsp_size = 64;
fc->encode_addr = pluto_encode_addr;
fc->fcp_register(fc, TYPE_SCSI_FCP, 0);
SCpnt = &(fcs[i].cmd);
host = &(fcs[i].host);
pluto = (struct pluto *)host->hostdata;
pluto->fc = fc;
SCpnt->cmnd[0] = INQUIRY;
SCpnt->cmnd[4] = 255;
/* FC layer requires this, so that SCpnt->device->tagged_supported is initially 0 */
SCpnt->device = &dev;
dev.host = host;
SCpnt->cmd_len = COMMAND_SIZE(INQUIRY);
SCpnt->request->cmd_flags &= ~REQ_STARTED;
SCpnt->request_bufflen = 256;
SCpnt->request_buffer = fcs[i].inquiry;
PLD(("set up %d %08lx\n", i, (long)SCpnt))
i++;
}
for (retry = 0; retry < 5; retry++) {
for (i = 0; i < fcscount; i++) {
if (!fcs[i].fc) break;
if (!(fcs[i].cmd.request->cmd_flags & REQ_STARTED)) {
fcs[i].cmd.request->cmd_flags |= REQ_STARTED;
disable_irq(fcs[i].fc->irq);
PLND(("queuecommand %d %d\n", retry, i))
fcp_scsi_queuecommand (&(fcs[i].cmd),
pluto_detect_scsi_done);
enable_irq(fcs[i].fc->irq);
}
}
wait_for_completion_timeout(&fc_detect_complete, 10 * HZ);
PLND(("Woken up\n"))
if (!atomic_read(&fcss))
break; /* All fc channels have answered us */
}
PLND(("Finished search\n"))
for (i = 0, nplutos = 0; i < fcscount; i++) {
Scsi_Cmnd *SCpnt;
if (!(fc = fcs[i].fc)) break;
SCpnt = &(fcs[i].cmd);
/* Let FC mid-level free allocated resources */
pluto_detect_scsi_done(SCpnt);
if (!SCpnt->result) {
struct pluto_inquiry *inq;
struct pluto *pluto;
struct Scsi_Host *host;
inq = (struct pluto_inquiry *)fcs[i].inquiry;
if ((inq->dtype & 0x1f) == TYPE_PROCESSOR &&
!strncmp (inq->vendor_id, "SUN", 3) &&
!strncmp (inq->product_id, "SSA", 3)) {
char *p;
long *ages;
ages = kcalloc((inq->channels + 1) * inq->targets, sizeof(long), GFP_KERNEL);
if (!ages) continue;
host = scsi_register (tpnt, sizeof (struct pluto));
if(!host)
{
kfree(ages);
continue;
}
if (!try_module_get(fc->module)) {
kfree(ages);
scsi_unregister(host);
continue;
}
nplutos++;
pluto = (struct pluto *)host->hostdata;
host->max_id = inq->targets;
host->max_channel = inq->channels;
host->irq = fc->irq;
fc->channels = inq->channels + 1;
fc->targets = inq->targets;
fc->ages = ages;
pluto->fc = fc;
memcpy (pluto->rev_str, inq->revision, 4);
pluto->rev_str[4] = 0;
p = strchr (pluto->rev_str, ' ');
if (p) *p = 0;
memcpy (pluto->fw_rev_str, inq->fw_revision, 4);
pluto->fw_rev_str[4] = 0;
p = strchr (pluto->fw_rev_str, ' ');
if (p) *p = 0;
memcpy (pluto->serial_str, inq->serial, 12);
pluto->serial_str[12] = 0;
p = strchr (pluto->serial_str, ' ');
if (p) *p = 0;
PLD(("Found SSA rev %s fw rev %s serial %s %dx%d\n", pluto->rev_str, pluto->fw_rev_str, pluto->serial_str, host->max_channel, host->max_id))
} else
fc->fcp_register(fc, TYPE_SCSI_FCP, 1);
} else
fc->fcp_register(fc, TYPE_SCSI_FCP, 1);
}
kfree(fcs);
if (nplutos)
printk ("PLUTO: Total of %d SparcSTORAGE Arrays found\n", nplutos);
return nplutos;
}
int pluto_release(struct Scsi_Host *host)
{
struct pluto *pluto = (struct pluto *)host->hostdata;
fc_channel *fc = pluto->fc;
module_put(fc->module);
fc->fcp_register(fc, TYPE_SCSI_FCP, 1);
PLND((" releasing pluto.\n"));
kfree (fc->ages);
PLND(("released pluto!\n"));
return 0;
}
const char *pluto_info(struct Scsi_Host *host)
{
static char buf[128], *p;
struct pluto *pluto = (struct pluto *) host->hostdata;
sprintf(buf, "SUN SparcSTORAGE Array %s fw %s serial %s %dx%d on %s",
pluto->rev_str, pluto->fw_rev_str, pluto->serial_str,
host->max_channel, host->max_id, pluto->fc->name);
#ifdef __sparc__
p = strchr(buf, 0);
sprintf(p, " PROM node %x", pluto->fc->dev->prom_node);
#endif
return buf;
}
/* SSA uses this FC4S addressing:
switch (addr[0])
{
case 0: CONTROLLER - All of addr[1]..addr[3] has to be 0
case 1: SINGLE DISK - addr[1] channel, addr[2] id, addr[3] 0
case 2: DISK GROUP - ???
}
So that SCSI mid-layer can access to these, we reserve
channel 0 id 0 lun 0 for CONTROLLER
and channels 1 .. max_channel are normal single disks.
*/
static int pluto_encode_addr(Scsi_Cmnd *SCpnt, u16 *addr, fc_channel *fc, fcp_cmnd *fcmd)
{
PLND(("encode addr %d %d %d\n", SCpnt->device->channel, SCpnt->device->id, SCpnt->cmnd[1] & 0xe0))
/* We don't support LUNs - neither does SSA :) */
if (SCpnt->cmnd[1] & 0xe0)
return -EINVAL;
if (!SCpnt->device->channel) {
if (SCpnt->device->id)
return -EINVAL;
memset (addr, 0, 4 * sizeof(u16));
} else {
addr[0] = 1;
addr[1] = SCpnt->device->channel - 1;
addr[2] = SCpnt->device->id;
addr[3] = 0;
}
/* We're Point-to-Point, so target it to the default DID */
fcmd->did = fc->did;
PLND(("trying %04x%04x%04x%04x\n", addr[0], addr[1], addr[2], addr[3]))
return 0;
}
static struct scsi_host_template driver_template = {
.name = "Sparc Storage Array 100/200",
.detect = pluto_detect,
.release = pluto_release,
.info = pluto_info,
.queuecommand = fcp_scsi_queuecommand,
.slave_configure = pluto_slave_configure,
.can_queue = PLUTO_CAN_QUEUE,
.this_id = -1,
.sg_tablesize = 1,
.cmd_per_lun = 1,
.use_clustering = ENABLE_CLUSTERING,
.eh_abort_handler = fcp_scsi_abort,
.eh_device_reset_handler = fcp_scsi_dev_reset,
.eh_host_reset_handler = fcp_scsi_host_reset,
};
#include "scsi_module.c"
MODULE_LICENSE("GPL");

View File

@ -1,47 +0,0 @@
/* pluto.h: SparcSTORAGE Array SCSI host adapter driver definitions.
*
* Copyright (C) 1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
*/
#ifndef _PLUTO_H
#define _PLUTO_H
#include "../fc4/fcp_impl.h"
struct pluto {
/* This must be first */
fc_channel *fc;
char rev_str[5];
char fw_rev_str[5];
char serial_str[13];
};
struct pluto_inquiry {
u8 dtype;
u8 removable:1, qualifier:7;
u8 iso:2, ecma:3, ansi:3;
u8 aenc:1, trmiop:1, :2, rdf:4;
u8 len;
u8 xxx1;
u8 xxx2;
u8 reladdr:1, wbus32:1, wbus16:1, sync:1, linked:1, :1, cmdque:1, softreset:1;
u8 vendor_id[8];
u8 product_id[16];
u8 revision[4];
u8 fw_revision[4];
u8 serial[12];
u8 xxx3[2];
u8 channels;
u8 targets;
};
/* This is the max number of outstanding SCSI commands per pluto */
#define PLUTO_CAN_QUEUE 254
int pluto_detect(struct scsi_host_template *);
int pluto_release(struct Scsi_Host *);
const char * pluto_info(struct Scsi_Host *);
int pluto_slave_configure(struct scsi_device *);
#endif /* !(_PLUTO_H) */

View File

@ -4310,7 +4310,7 @@ qla1280_probe_one(struct pci_dev *pdev, const struct pci_device_id *id)
printk(KERN_WARNING "scsi(%li): Unable to set a "
"suitable DMA mask - aborting\n", ha->host_no);
error = -ENODEV;
goto error_free_irq;
goto error_put_host;
}
} else
dprintk(2, "scsi(%li): 64 Bit PCI Addressing Enabled\n",
@ -4320,7 +4320,7 @@ qla1280_probe_one(struct pci_dev *pdev, const struct pci_device_id *id)
printk(KERN_WARNING "scsi(%li): Unable to set a "
"suitable DMA mask - aborting\n", ha->host_no);
error = -ENODEV;
goto error_free_irq;
goto error_put_host;
}
#endif

View File

@ -91,8 +91,8 @@
#define INVALID_HANDLE (MAX_OUTSTANDING_COMMANDS + 2)
/* ISP request and response entry counts (37-65535) */
#define REQUEST_ENTRY_CNT 256 /* Number of request entries. */
#define RESPONSE_ENTRY_CNT 16 /* Number of response entries. */
#define REQUEST_ENTRY_CNT 255 /* Number of request entries. */
#define RESPONSE_ENTRY_CNT 63 /* Number of response entries. */
/*
* SCSI Request Block structure (sp) that is placed

View File

@ -114,7 +114,6 @@ qla2x00_sysfs_write_nvram(struct kobject *kobj,
{
struct scsi_qla_host *ha = shost_priv(dev_to_shost(container_of(kobj,
struct device, kobj)));
unsigned long flags;
uint16_t cnt;
if (!capable(CAP_SYS_ADMIN) || off != 0 || count != ha->nvram_size)
@ -144,11 +143,9 @@ qla2x00_sysfs_write_nvram(struct kobject *kobj,
}
/* Write NVRAM. */
spin_lock_irqsave(&ha->hardware_lock, flags);
ha->isp_ops->write_nvram(ha, (uint8_t *)buf, ha->nvram_base, count);
ha->isp_ops->read_nvram(ha, (uint8_t *)ha->nvram, ha->nvram_base,
count);
spin_unlock_irqrestore(&ha->hardware_lock, flags);
set_bit(ISP_ABORT_NEEDED, &ha->dpc_flags);
@ -397,16 +394,13 @@ qla2x00_sysfs_write_vpd(struct kobject *kobj,
{
struct scsi_qla_host *ha = shost_priv(dev_to_shost(container_of(kobj,
struct device, kobj)));
unsigned long flags;
if (!capable(CAP_SYS_ADMIN) || off != 0 || count != ha->vpd_size)
return 0;
/* Write NVRAM. */
spin_lock_irqsave(&ha->hardware_lock, flags);
ha->isp_ops->write_nvram(ha, (uint8_t *)buf, ha->vpd_base, count);
ha->isp_ops->read_nvram(ha, (uint8_t *)ha->vpd, ha->vpd_base, count);
spin_unlock_irqrestore(&ha->hardware_lock, flags);
return count;
}
@ -544,6 +538,9 @@ qla2x00_serial_num_show(struct class_device *cdev, char *buf)
scsi_qla_host_t *ha = shost_priv(class_to_shost(cdev));
uint32_t sn;
if (IS_FWI2_CAPABLE(ha))
return snprintf(buf, PAGE_SIZE, "\n");
sn = ((ha->serial0 & 0x1f) << 16) | (ha->serial2 << 8) | ha->serial1;
return snprintf(buf, PAGE_SIZE, "%c%05d\n", 'A' + sn / 100000,
sn % 100000);

View File

@ -2271,6 +2271,7 @@ typedef struct scsi_qla_host {
spinlock_t hardware_lock ____cacheline_aligned;
int bars;
device_reg_t __iomem *iobase; /* Base I/O address */
unsigned long pio_address;
unsigned long pio_length;

View File

@ -1,4 +1,4 @@
#define QLA_MODEL_NAMES 0x57
#define QLA_MODEL_NAMES 0x5C
/*
* Adapter model names and descriptions.
@ -91,4 +91,9 @@ static char *qla2x00_model_name[QLA_MODEL_NAMES*2] = {
" ", " ", /* 0x154 */
"QLE220", "PCI-Express to 4Gb FC, Single Channel", /* 0x155 */
"QLE220", "PCI-Express to 4Gb FC, Single Channel", /* 0x156 */
" ", " ", /* 0x157 */
" ", " ", /* 0x158 */
" ", " ", /* 0x159 */
" ", " ", /* 0x15a */
"QME2472", "Dell BS PCI-Express to 4Gb FC, Dual Channel", /* 0x15b */
};

View File

@ -525,7 +525,7 @@ qla2x00_req_pkt(scsi_qla_host_t *ha)
/* Check for pending interrupts. */
/* During init we issue marker directly */
if (!ha->marker_needed)
if (!ha->marker_needed && !ha->flags.init_done)
qla2x00_poll(ha);
spin_lock_irq(&ha->hardware_lock);

View File

@ -1012,8 +1012,14 @@ qla2x00_status_entry(scsi_qla_host_t *ha, void *pkt)
case CS_DATA_UNDERRUN:
resid = resid_len;
/* Use F/W calculated residual length. */
if (IS_FWI2_CAPABLE(ha))
if (IS_FWI2_CAPABLE(ha)) {
if (scsi_status & SS_RESIDUAL_UNDER &&
resid != fw_resid_len) {
scsi_status &= ~SS_RESIDUAL_UNDER;
lscsi_status = 0;
}
resid = fw_resid_len;
}
if (scsi_status & SS_RESIDUAL_UNDER) {
scsi_set_resid(cp, resid);

View File

@ -252,7 +252,7 @@ qla2x00_mailbox_command(scsi_qla_host_t *pvha, mbx_cmd_t *mcp)
/* Clean up */
ha->mcp = NULL;
if (!abort_active) {
if (abort_active || !io_lock_on) {
DEBUG11(printk("%s(%ld): checking for additional resp "
"interrupt.\n", __func__, ha->host_no));

View File

@ -1482,6 +1482,17 @@ qla2x00_iospace_config(scsi_qla_host_t *ha)
unsigned long pio, pio_len, pio_flags;
unsigned long mmio, mmio_len, mmio_flags;
if (pci_request_selected_regions(ha->pdev, ha->bars,
QLA2XXX_DRIVER_NAME)) {
qla_printk(KERN_WARNING, ha,
"Failed to reserve PIO/MMIO regions (%s)\n",
pci_name(ha->pdev));
goto iospace_error_exit;
}
if (!(ha->bars & 1))
goto skip_pio;
/* We only need PIO for Flash operations on ISP2312 v2 chips. */
pio = pci_resource_start(ha->pdev, 0);
pio_len = pci_resource_len(ha->pdev, 0);
@ -1499,7 +1510,10 @@ qla2x00_iospace_config(scsi_qla_host_t *ha)
pci_name(ha->pdev));
pio = 0;
}
ha->pio_address = pio;
ha->pio_length = pio_len;
skip_pio:
/* Use MMIO operations for all accesses. */
mmio = pci_resource_start(ha->pdev, 1);
mmio_len = pci_resource_len(ha->pdev, 1);
@ -1518,16 +1532,6 @@ qla2x00_iospace_config(scsi_qla_host_t *ha)
goto iospace_error_exit;
}
if (pci_request_regions(ha->pdev, QLA2XXX_DRIVER_NAME)) {
qla_printk(KERN_WARNING, ha,
"Failed to reserve PIO/MMIO regions (%s)\n",
pci_name(ha->pdev));
goto iospace_error_exit;
}
ha->pio_address = pio;
ha->pio_length = pio_len;
ha->iobase = ioremap(mmio, MIN_IOBASE_LEN);
if (!ha->iobase) {
qla_printk(KERN_ERR, ha,
@ -1579,21 +1583,26 @@ qla2x00_probe_one(struct pci_dev *pdev, const struct pci_device_id *id)
char pci_info[30];
char fw_str[30];
struct scsi_host_template *sht;
int bars;
if (pci_enable_device(pdev))
bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
sht = &qla2x00_driver_template;
if (pdev->device == PCI_DEVICE_ID_QLOGIC_ISP2422 ||
pdev->device == PCI_DEVICE_ID_QLOGIC_ISP2432 ||
pdev->device == PCI_DEVICE_ID_QLOGIC_ISP5422 ||
pdev->device == PCI_DEVICE_ID_QLOGIC_ISP5432 ||
pdev->device == PCI_DEVICE_ID_QLOGIC_ISP2532) {
bars = pci_select_bars(pdev, IORESOURCE_MEM);
sht = &qla24xx_driver_template;
}
if (pci_enable_device_bars(pdev, bars))
goto probe_out;
if (pci_find_aer_capability(pdev))
if (pci_enable_pcie_error_reporting(pdev))
goto probe_out;
sht = &qla2x00_driver_template;
if (pdev->device == PCI_DEVICE_ID_QLOGIC_ISP2422 ||
pdev->device == PCI_DEVICE_ID_QLOGIC_ISP2432 ||
pdev->device == PCI_DEVICE_ID_QLOGIC_ISP5422 ||
pdev->device == PCI_DEVICE_ID_QLOGIC_ISP5432 ||
pdev->device == PCI_DEVICE_ID_QLOGIC_ISP2532)
sht = &qla24xx_driver_template;
host = scsi_host_alloc(sht, sizeof(scsi_qla_host_t));
if (host == NULL) {
printk(KERN_WARNING
@ -1610,6 +1619,7 @@ qla2x00_probe_one(struct pci_dev *pdev, const struct pci_device_id *id)
ha->host_no = host->host_no;
sprintf(ha->host_str, "%s_%ld", QLA2XXX_DRIVER_NAME, ha->host_no);
ha->parent = NULL;
ha->bars = bars;
/* Set ISP-type information. */
qla2x00_set_isp_flags(ha);
@ -1880,7 +1890,7 @@ qla2x00_free_device(scsi_qla_host_t *ha)
/* release io space registers */
if (ha->iobase)
iounmap(ha->iobase);
pci_release_regions(ha->pdev);
pci_release_selected_regions(ha->pdev, ha->bars);
}
static inline void
@ -2890,7 +2900,7 @@ qla2xxx_pci_slot_reset(struct pci_dev *pdev)
pci_ers_result_t ret = PCI_ERS_RESULT_DISCONNECT;
scsi_qla_host_t *ha = pci_get_drvdata(pdev);
if (pci_enable_device(pdev)) {
if (pci_enable_device_bars(pdev, ha->bars)) {
qla_printk(KERN_WARNING, ha,
"Can't re-enable PCI device after reset.\n");

View File

@ -7,6 +7,7 @@
#include "qla_def.h"
#include <linux/delay.h>
#include <linux/vmalloc.h>
#include <asm/uaccess.h>
static uint16_t qla2x00_nvram_request(scsi_qla_host_t *, uint32_t);
@ -642,7 +643,7 @@ qla24xx_write_flash_data(scsi_qla_host_t *ha, uint32_t *dwptr, uint32_t faddr,
}
/* Go with burst-write. */
if (optrom && (liter + OPTROM_BURST_DWORDS) < dwords) {
if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
/* Copy data to DMA'ble buffer. */
for (miter = 0, s = optrom, d = dwptr;
miter < OPTROM_BURST_DWORDS; miter++, s++, d++)
@ -656,7 +657,7 @@ qla24xx_write_flash_data(scsi_qla_host_t *ha, uint32_t *dwptr, uint32_t faddr,
"Unable to burst-write optrom segment "
"(%x/%x/%llx).\n", ret,
flash_data_to_access_addr(faddr),
optrom_dma);
(unsigned long long)optrom_dma);
qla_printk(KERN_WARNING, ha,
"Reverting to slow-write.\n");
@ -745,9 +746,11 @@ qla2x00_write_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
int ret, stat;
uint32_t i;
uint16_t *wptr;
unsigned long flags;
ret = QLA_SUCCESS;
spin_lock_irqsave(&ha->hardware_lock, flags);
qla2x00_lock_nvram_access(ha);
/* Disable NVRAM write-protection. */
@ -764,6 +767,7 @@ qla2x00_write_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
qla2x00_set_nvram_protection(ha, stat);
qla2x00_unlock_nvram_access(ha);
spin_unlock_irqrestore(&ha->hardware_lock, flags);
return ret;
}
@ -776,9 +780,11 @@ qla24xx_write_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
uint32_t i;
uint32_t *dwptr;
struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
unsigned long flags;
ret = QLA_SUCCESS;
spin_lock_irqsave(&ha->hardware_lock, flags);
/* Enable flash write. */
WRT_REG_DWORD(&reg->ctrl_status,
RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
@ -812,6 +818,7 @@ qla24xx_write_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
WRT_REG_DWORD(&reg->ctrl_status,
RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
spin_unlock_irqrestore(&ha->hardware_lock, flags);
return ret;
}
@ -836,8 +843,20 @@ int
qla25xx_write_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
uint32_t bytes)
{
return qla24xx_write_flash_data(ha, (uint32_t *)buf,
FA_VPD_NVRAM_ADDR | naddr, bytes >> 2);
#define RMW_BUFFER_SIZE (64 * 1024)
uint8_t *dbuf;
dbuf = vmalloc(RMW_BUFFER_SIZE);
if (!dbuf)
return QLA_MEMORY_ALLOC_FAILED;
ha->isp_ops->read_optrom(ha, dbuf, FA_VPD_NVRAM_ADDR << 2,
RMW_BUFFER_SIZE);
memcpy(dbuf + (naddr << 2), buf, bytes);
ha->isp_ops->write_optrom(ha, dbuf, FA_VPD_NVRAM_ADDR << 2,
RMW_BUFFER_SIZE);
vfree(dbuf);
return QLA_SUCCESS;
}
static inline void
@ -1853,7 +1872,8 @@ qla25xx_read_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
qla_printk(KERN_WARNING, ha,
"Unable to burst-read optrom segment "
"(%x/%x/%llx).\n", rval,
flash_data_to_access_addr(faddr), optrom_dma);
flash_data_to_access_addr(faddr),
(unsigned long long)optrom_dma);
qla_printk(KERN_WARNING, ha,
"Reverting to slow-read.\n");

View File

@ -7,7 +7,7 @@
/*
* Driver version
*/
#define QLA2XXX_VERSION "8.02.00-k4"
#define QLA2XXX_VERSION "8.02.00-k5"
#define QLA_DRIVER_MAJOR_VER 8
#define QLA_DRIVER_MINOR_VER 2

View File

@ -24,7 +24,6 @@
#include <linux/interrupt.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/scatterlist.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>

View File

@ -209,11 +209,13 @@ show_shost_mode(unsigned int mode, char *buf)
static ssize_t show_shost_supported_mode(struct class_device *class_dev, char *buf)
{
struct Scsi_Host *shost = class_to_shost(class_dev);
unsigned int supported_mode = shost->hostt->supported_mode;
if (shost->hostt->supported_mode == MODE_UNKNOWN)
return snprintf(buf, 20, "unknown\n");
else
return show_shost_mode(shost->hostt->supported_mode, buf);
if (supported_mode == MODE_UNKNOWN)
/* by default this should be initiator */
supported_mode = MODE_INITIATOR;
return show_shost_mode(supported_mode, buf);
}
static CLASS_DEVICE_ATTR(supported_mode, S_IRUGO | S_IWUSR, show_shost_supported_mode, NULL);

View File

@ -127,7 +127,6 @@ struct sym_driver_setup {
u_char settle_delay;
u_char use_nvram;
u_long excludes[8];
char tag_ctrl[100];
};
#define SYM_SETUP_MAX_TAG sym_driver_setup.max_tag

View File

@ -104,8 +104,9 @@ static struct sym_fwz_ofs sym_fw2z_ofs = {
* Patch routine for firmware #1.
*/
static void
sym_fw1_patch(struct sym_hcb *np)
sym_fw1_patch(struct Scsi_Host *shost)
{
struct sym_hcb *np = sym_get_hcb(shost);
struct sym_fw1a_scr *scripta0;
struct sym_fw1b_scr *scriptb0;
@ -145,8 +146,11 @@ sym_fw1_patch(struct sym_hcb *np)
* Patch routine for firmware #2.
*/
static void
sym_fw2_patch(struct sym_hcb *np)
sym_fw2_patch(struct Scsi_Host *shost)
{
struct sym_data *sym_data = shost_priv(shost);
struct pci_dev *pdev = sym_data->pdev;
struct sym_hcb *np = sym_data->ncb;
struct sym_fw2a_scr *scripta0;
struct sym_fw2b_scr *scriptb0;
@ -167,7 +171,7 @@ sym_fw2_patch(struct sym_hcb *np)
* Remove useless 64 bit DMA specific SCRIPTS,
* when this feature is not available.
*/
if (!np->use_dac) {
if (!use_dac(np)) {
scripta0->is_dmap_dirty[0] = cpu_to_scr(SCR_NO_OP);
scripta0->is_dmap_dirty[1] = 0;
scripta0->is_dmap_dirty[2] = cpu_to_scr(SCR_NO_OP);
@ -205,14 +209,14 @@ sym_fw2_patch(struct sym_hcb *np)
* Remove a couple of work-arounds specific to C1010 if
* they are not desirable. See `sym_fw2.h' for more details.
*/
if (!(np->device_id == PCI_DEVICE_ID_LSI_53C1010_66 &&
np->revision_id < 0x1 &&
if (!(pdev->device == PCI_DEVICE_ID_LSI_53C1010_66 &&
pdev->revision < 0x1 &&
np->pciclk_khz < 60000)) {
scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP);
scripta0->datao_phase[1] = cpu_to_scr(0);
}
if (!(np->device_id == PCI_DEVICE_ID_LSI_53C1010_33 &&
/* np->revision_id < 0xff */ 1)) {
if (!(pdev->device == PCI_DEVICE_ID_LSI_53C1010_33 /* &&
pdev->revision < 0xff */)) {
scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP);
scripta0->sel_done[1] = cpu_to_scr(0);
}

View File

@ -143,7 +143,7 @@ struct sym_fw {
*z_ofs; /* Useful offsets in script Z */
/* Setup and patch methods for this firmware */
void (*setup)(struct sym_hcb *, struct sym_fw *);
void (*patch)(struct sym_hcb *);
void (*patch)(struct Scsi_Host *);
};
/*

View File

@ -39,7 +39,6 @@
*/
#include <linux/ctype.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/spinlock.h>
@ -54,16 +53,12 @@
#define NAME53C "sym53c"
#define NAME53C8XX "sym53c8xx"
#define IRQ_FMT "%d"
#define IRQ_PRM(x) (x)
struct sym_driver_setup sym_driver_setup = SYM_LINUX_DRIVER_SETUP;
unsigned int sym_debug_flags = 0;
static char *excl_string;
static char *safe_string;
module_param_named(cmd_per_lun, sym_driver_setup.max_tag, ushort, 0);
module_param_string(tag_ctrl, sym_driver_setup.tag_ctrl, 100, 0);
module_param_named(burst, sym_driver_setup.burst_order, byte, 0);
module_param_named(led, sym_driver_setup.scsi_led, byte, 0);
module_param_named(diff, sym_driver_setup.scsi_diff, byte, 0);
@ -78,7 +73,6 @@ module_param_named(excl, excl_string, charp, 0);
module_param_named(safe, safe_string, charp, 0);
MODULE_PARM_DESC(cmd_per_lun, "The maximum number of tags to use by default");
MODULE_PARM_DESC(tag_ctrl, "More detailed control over tags per LUN");
MODULE_PARM_DESC(burst, "Maximum burst. 0 to disable, 255 to read from registers");
MODULE_PARM_DESC(led, "Set to 1 to enable LED support");
MODULE_PARM_DESC(diff, "0 for no differential mode, 1 for BIOS, 2 for always, 3 for not GPIO3");
@ -134,57 +128,27 @@ static struct scsi_transport_template *sym2_transport_template = NULL;
* Driver private area in the SCSI command structure.
*/
struct sym_ucmd { /* Override the SCSI pointer structure */
dma_addr_t data_mapping;
unsigned char data_mapped;
unsigned char to_do; /* For error handling */
void (*old_done)(struct scsi_cmnd *); /* For error handling */
struct completion *eh_done; /* For error handling */
struct completion *eh_done; /* SCSI error handling */
};
#define SYM_UCMD_PTR(cmd) ((struct sym_ucmd *)(&(cmd)->SCp))
#define SYM_SOFTC_PTR(cmd) sym_get_hcb(cmd->device->host)
static void __unmap_scsi_data(struct pci_dev *pdev, struct scsi_cmnd *cmd)
{
if (SYM_UCMD_PTR(cmd)->data_mapped)
scsi_dma_unmap(cmd);
SYM_UCMD_PTR(cmd)->data_mapped = 0;
}
static int __map_scsi_sg_data(struct pci_dev *pdev, struct scsi_cmnd *cmd)
{
int use_sg;
use_sg = scsi_dma_map(cmd);
if (use_sg > 0) {
SYM_UCMD_PTR(cmd)->data_mapped = 2;
SYM_UCMD_PTR(cmd)->data_mapping = use_sg;
}
return use_sg;
}
#define unmap_scsi_data(np, cmd) \
__unmap_scsi_data(np->s.device, cmd)
#define map_scsi_sg_data(np, cmd) \
__map_scsi_sg_data(np->s.device, cmd)
/*
* Complete a pending CAM CCB.
*/
void sym_xpt_done(struct sym_hcb *np, struct scsi_cmnd *cmd)
{
unmap_scsi_data(np, cmd);
struct sym_ucmd *ucmd = SYM_UCMD_PTR(cmd);
BUILD_BUG_ON(sizeof(struct scsi_pointer) < sizeof(struct sym_ucmd));
if (ucmd->eh_done)
complete(ucmd->eh_done);
scsi_dma_unmap(cmd);
cmd->scsi_done(cmd);
}
static void sym_xpt_done2(struct sym_hcb *np, struct scsi_cmnd *cmd, int cam_status)
{
sym_set_cam_status(cmd, cam_status);
sym_xpt_done(np, cmd);
}
/*
* Tell the SCSI layer about a BUS RESET.
*/
@ -198,14 +162,6 @@ void sym_xpt_async_bus_reset(struct sym_hcb *np)
sym_name(np), sym_driver_setup.settle_delay);
}
/*
* Tell the SCSI layer about a BUS DEVICE RESET message sent.
*/
void sym_xpt_async_sent_bdr(struct sym_hcb *np, int target)
{
printf_notice("%s: TARGET %d has been reset.\n", sym_name(np), target);
}
/*
* Choose the more appropriate CAM status if
* the IO encountered an extended error.
@ -307,14 +263,14 @@ static int sym_scatter(struct sym_hcb *np, struct sym_ccb *cp, struct scsi_cmnd
cp->data_len = 0;
use_sg = map_scsi_sg_data(np, cmd);
use_sg = scsi_dma_map(cmd);
if (use_sg > 0) {
struct scatterlist *sg;
struct sym_tcb *tp = &np->target[cp->target];
struct sym_tblmove *data;
if (use_sg > SYM_CONF_MAX_SG) {
unmap_scsi_data(np, cmd);
scsi_dma_unmap(cmd);
return -1;
}
@ -350,15 +306,6 @@ static int sym_queue_command(struct sym_hcb *np, struct scsi_cmnd *cmd)
struct sym_ccb *cp;
int order;
/*
* Minimal checkings, so that we will not
* go outside our tables.
*/
if (sdev->id == np->myaddr) {
sym_xpt_done2(np, cmd, DID_NO_CONNECT);
return 0;
}
/*
* Retrieve the target descriptor.
*/
@ -433,7 +380,7 @@ int sym_setup_data_and_start(struct sym_hcb *np, struct scsi_cmnd *cmd, struct s
*/
switch (dir) {
case DMA_BIDIRECTIONAL:
printk("%s: got DMA_BIDIRECTIONAL command", sym_name(np));
scmd_printk(KERN_INFO, cmd, "got DMA_BIDIRECTIONAL command");
sym_set_cam_status(cmd, DID_ERROR);
goto out_abort;
case DMA_TO_DEVICE:
@ -542,14 +489,16 @@ static void sym_timer(struct sym_hcb *np)
/*
* PCI BUS error handler.
*/
void sym_log_bus_error(struct sym_hcb *np)
void sym_log_bus_error(struct Scsi_Host *shost)
{
u_short pci_sts;
pci_read_config_word(np->s.device, PCI_STATUS, &pci_sts);
struct sym_data *sym_data = shost_priv(shost);
struct pci_dev *pdev = sym_data->pdev;
unsigned short pci_sts;
pci_read_config_word(pdev, PCI_STATUS, &pci_sts);
if (pci_sts & 0xf900) {
pci_write_config_word(np->s.device, PCI_STATUS, pci_sts);
printf("%s: PCI STATUS = 0x%04x\n",
sym_name(np), pci_sts & 0xf900);
pci_write_config_word(pdev, PCI_STATUS, pci_sts);
shost_printk(KERN_WARNING, shost,
"PCI bus error: status = 0x%04x\n", pci_sts & 0xf900);
}
}
@ -564,7 +513,7 @@ static int sym53c8xx_queue_command(struct scsi_cmnd *cmd,
struct sym_ucmd *ucp = SYM_UCMD_PTR(cmd);
int sts = 0;
cmd->scsi_done = done;
cmd->scsi_done = done;
memset(ucp, 0, sizeof(*ucp));
/*
@ -593,18 +542,23 @@ static int sym53c8xx_queue_command(struct scsi_cmnd *cmd,
*/
static irqreturn_t sym53c8xx_intr(int irq, void *dev_id)
{
unsigned long flags;
struct sym_hcb *np = (struct sym_hcb *)dev_id;
struct Scsi_Host *shost = dev_id;
struct sym_data *sym_data = shost_priv(shost);
irqreturn_t result;
/* Avoid spinloop trying to handle interrupts on frozen device */
if (pci_channel_offline(sym_data->pdev))
return IRQ_NONE;
if (DEBUG_FLAGS & DEBUG_TINY) printf_debug ("[");
spin_lock_irqsave(np->s.host->host_lock, flags);
sym_interrupt(np);
spin_unlock_irqrestore(np->s.host->host_lock, flags);
spin_lock(shost->host_lock);
result = sym_interrupt(shost);
spin_unlock(shost->host_lock);
if (DEBUG_FLAGS & DEBUG_TINY) printf_debug ("]\n");
return IRQ_HANDLED;
return result;
}
/*
@ -629,60 +583,62 @@ static void sym53c8xx_timer(unsigned long npref)
#define SYM_EH_BUS_RESET 2
#define SYM_EH_HOST_RESET 3
/*
* What we will do regarding the involved SCSI command.
*/
#define SYM_EH_DO_IGNORE 0
#define SYM_EH_DO_WAIT 2
/*
* scsi_done() alias when error recovery is in progress.
*/
static void sym_eh_done(struct scsi_cmnd *cmd)
{
struct sym_ucmd *ucmd = SYM_UCMD_PTR(cmd);
BUILD_BUG_ON(sizeof(struct scsi_pointer) < sizeof(struct sym_ucmd));
cmd->scsi_done = ucmd->old_done;
if (ucmd->to_do == SYM_EH_DO_WAIT)
complete(ucmd->eh_done);
}
/*
* Generic method for our eh processing.
* The 'op' argument tells what we have to do.
*/
static int sym_eh_handler(int op, char *opname, struct scsi_cmnd *cmd)
{
struct sym_hcb *np = SYM_SOFTC_PTR(cmd);
struct sym_ucmd *ucmd = SYM_UCMD_PTR(cmd);
struct Scsi_Host *host = cmd->device->host;
struct Scsi_Host *shost = cmd->device->host;
struct sym_data *sym_data = shost_priv(shost);
struct pci_dev *pdev = sym_data->pdev;
struct sym_hcb *np = sym_data->ncb;
SYM_QUEHEAD *qp;
int to_do = SYM_EH_DO_IGNORE;
int cmd_queued = 0;
int sts = -1;
struct completion eh_done;
dev_warn(&cmd->device->sdev_gendev, "%s operation started.\n", opname);
scmd_printk(KERN_WARNING, cmd, "%s operation started\n", opname);
spin_lock_irq(host->host_lock);
/* We may be in an error condition because the PCI bus
* went down. In this case, we need to wait until the
* PCI bus is reset, the card is reset, and only then
* proceed with the scsi error recovery. There's no
* point in hurrying; take a leisurely wait.
*/
#define WAIT_FOR_PCI_RECOVERY 35
if (pci_channel_offline(pdev)) {
struct completion *io_reset;
int finished_reset = 0;
init_completion(&eh_done);
spin_lock_irq(shost->host_lock);
/* Make sure we didn't race */
if (pci_channel_offline(pdev)) {
if (!sym_data->io_reset)
sym_data->io_reset = &eh_done;
io_reset = sym_data->io_reset;
} else {
finished_reset = 1;
}
spin_unlock_irq(shost->host_lock);
if (!finished_reset)
finished_reset = wait_for_completion_timeout(io_reset,
WAIT_FOR_PCI_RECOVERY*HZ);
if (!finished_reset)
return SCSI_FAILED;
}
spin_lock_irq(shost->host_lock);
/* This one is queued in some place -> to wait for completion */
FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
struct sym_ccb *cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
if (cp->cmd == cmd) {
to_do = SYM_EH_DO_WAIT;
cmd_queued = 1;
break;
}
}
if (to_do == SYM_EH_DO_WAIT) {
init_completion(&eh_done);
ucmd->old_done = cmd->scsi_done;
ucmd->eh_done = &eh_done;
wmb();
cmd->scsi_done = sym_eh_done;
}
/* Try to proceed the operation we have been asked for */
sts = -1;
switch(op) {
@ -698,7 +654,7 @@ static int sym_eh_handler(int op, char *opname, struct scsi_cmnd *cmd)
break;
case SYM_EH_HOST_RESET:
sym_reset_scsi_bus(np, 0);
sym_start_up (np, 1);
sym_start_up(shost, 1);
sts = 0;
break;
default:
@ -706,21 +662,21 @@ static int sym_eh_handler(int op, char *opname, struct scsi_cmnd *cmd)
}
/* On error, restore everything and cross fingers :) */
if (sts) {
cmd->scsi_done = ucmd->old_done;
to_do = SYM_EH_DO_IGNORE;
}
if (sts)
cmd_queued = 0;
ucmd->to_do = to_do;
spin_unlock_irq(host->host_lock);
if (to_do == SYM_EH_DO_WAIT) {
if (cmd_queued) {
init_completion(&eh_done);
ucmd->eh_done = &eh_done;
spin_unlock_irq(shost->host_lock);
if (!wait_for_completion_timeout(&eh_done, 5*HZ)) {
ucmd->to_do = SYM_EH_DO_IGNORE;
wmb();
ucmd->eh_done = NULL;
sts = -2;
}
} else {
spin_unlock_irq(shost->host_lock);
}
dev_warn(&cmd->device->sdev_gendev, "%s operation %s.\n", opname,
sts==0 ? "complete" :sts==-2 ? "timed-out" : "failed");
return sts ? SCSI_FAILED : SCSI_SUCCESS;
@ -775,59 +731,6 @@ static void sym_tune_dev_queuing(struct sym_tcb *tp, int lun, u_short reqtags)
}
}
/*
* Linux select queue depths function
*/
#define DEF_DEPTH (sym_driver_setup.max_tag)
#define ALL_TARGETS -2
#define NO_TARGET -1
#define ALL_LUNS -2
#define NO_LUN -1
static int device_queue_depth(struct sym_hcb *np, int target, int lun)
{
int c, h, t, u, v;
char *p = sym_driver_setup.tag_ctrl;
char *ep;
h = -1;
t = NO_TARGET;
u = NO_LUN;
while ((c = *p++) != 0) {
v = simple_strtoul(p, &ep, 0);
switch(c) {
case '/':
++h;
t = ALL_TARGETS;
u = ALL_LUNS;
break;
case 't':
if (t != target)
t = (target == v) ? v : NO_TARGET;
u = ALL_LUNS;
break;
case 'u':
if (u != lun)
u = (lun == v) ? v : NO_LUN;
break;
case 'q':
if (h == np->s.unit &&
(t == ALL_TARGETS || t == target) &&
(u == ALL_LUNS || u == lun))
return v;
break;
case '-':
t = ALL_TARGETS;
u = ALL_LUNS;
break;
default:
break;
}
p = ep;
}
return DEF_DEPTH;
}
static int sym53c8xx_slave_alloc(struct scsi_device *sdev)
{
struct sym_hcb *np = sym_get_hcb(sdev->host);
@ -892,21 +795,16 @@ static int sym53c8xx_slave_configure(struct scsi_device *sdev)
* Use at least 2.
* Donnot use more than our maximum.
*/
reqtags = device_queue_depth(np, sdev->id, sdev->lun);
reqtags = sym_driver_setup.max_tag;
if (reqtags > tp->usrtags)
reqtags = tp->usrtags;
if (!sdev->tagged_supported)
reqtags = 0;
#if 1 /* Avoid to locally queue commands for no good reasons */
if (reqtags > SYM_CONF_MAX_TAG)
reqtags = SYM_CONF_MAX_TAG;
depth_to_use = (reqtags ? reqtags : 2);
#else
depth_to_use = (reqtags ? SYM_CONF_MAX_TAG : 2);
#endif
depth_to_use = reqtags ? reqtags : 2;
scsi_adjust_queue_depth(sdev,
(sdev->tagged_supported ?
MSG_SIMPLE_TAG : 0),
sdev->tagged_supported ? MSG_SIMPLE_TAG : 0,
depth_to_use);
lp->s.scdev_depth = depth_to_use;
sym_tune_dev_queuing(tp, sdev->lun, reqtags);
@ -1089,8 +987,9 @@ static int is_keyword(char *ptr, int len, char *verb)
* Parse a control command
*/
static int sym_user_command(struct sym_hcb *np, char *buffer, int length)
static int sym_user_command(struct Scsi_Host *shost, char *buffer, int length)
{
struct sym_hcb *np = sym_get_hcb(shost);
char *ptr = buffer;
int len = length;
struct sym_usrcmd cmd, *uc = &cmd;
@ -1217,9 +1116,9 @@ printk("sym_user_command: data=%ld\n", uc->data);
else {
unsigned long flags;
spin_lock_irqsave(np->s.host->host_lock, flags);
sym_exec_user_command (np, uc);
spin_unlock_irqrestore(np->s.host->host_lock, flags);
spin_lock_irqsave(shost->host_lock, flags);
sym_exec_user_command(np, uc);
spin_unlock_irqrestore(shost->host_lock, flags);
}
return length;
}
@ -1275,8 +1174,11 @@ static int copy_info(struct info_str *info, char *fmt, ...)
/*
* Copy formatted information into the input buffer.
*/
static int sym_host_info(struct sym_hcb *np, char *ptr, off_t offset, int len)
static int sym_host_info(struct Scsi_Host *shost, char *ptr, off_t offset, int len)
{
struct sym_data *sym_data = shost_priv(shost);
struct pci_dev *pdev = sym_data->pdev;
struct sym_hcb *np = sym_data->ncb;
struct info_str info;
info.buffer = ptr;
@ -1285,10 +1187,10 @@ static int sym_host_info(struct sym_hcb *np, char *ptr, off_t offset, int len)
info.pos = 0;
copy_info(&info, "Chip " NAME53C "%s, device id 0x%x, "
"revision id 0x%x\n",
np->s.chip_name, np->device_id, np->revision_id);
copy_info(&info, "At PCI address %s, IRQ " IRQ_FMT "\n",
pci_name(np->s.device), IRQ_PRM(np->s.irq));
"revision id 0x%x\n", np->s.chip_name,
pdev->device, pdev->revision);
copy_info(&info, "At PCI address %s, IRQ %u\n",
pci_name(pdev), pdev->irq);
copy_info(&info, "Min. period factor %d, %s SCSI BUS%s\n",
(int) (np->minsync_dt ? np->minsync_dt : np->minsync),
np->maxwide ? "Wide" : "Narrow",
@ -1307,15 +1209,14 @@ static int sym_host_info(struct sym_hcb *np, char *ptr, off_t offset, int len)
* - func = 0 means read (returns adapter infos)
* - func = 1 means write (not yet merget from sym53c8xx)
*/
static int sym53c8xx_proc_info(struct Scsi_Host *host, char *buffer,
static int sym53c8xx_proc_info(struct Scsi_Host *shost, char *buffer,
char **start, off_t offset, int length, int func)
{
struct sym_hcb *np = sym_get_hcb(host);
int retv;
if (func) {
#ifdef SYM_LINUX_USER_COMMAND_SUPPORT
retv = sym_user_command(np, buffer, length);
retv = sym_user_command(shost, buffer, length);
#else
retv = -EINVAL;
#endif
@ -1323,7 +1224,7 @@ static int sym53c8xx_proc_info(struct Scsi_Host *host, char *buffer,
if (start)
*start = buffer;
#ifdef SYM_LINUX_USER_INFO_SUPPORT
retv = sym_host_info(np, buffer, offset, length);
retv = sym_host_info(shost, buffer, offset, length);
#else
retv = -EINVAL;
#endif
@ -1341,8 +1242,8 @@ static void sym_free_resources(struct sym_hcb *np, struct pci_dev *pdev)
/*
* Free O/S specific resources.
*/
if (np->s.irq)
free_irq(np->s.irq, np);
if (pdev->irq)
free_irq(pdev->irq, np);
if (np->s.ioaddr)
pci_iounmap(pdev, np->s.ioaddr);
if (np->s.ramaddr)
@ -1355,31 +1256,6 @@ static void sym_free_resources(struct sym_hcb *np, struct pci_dev *pdev)
sym_mfree_dma(np, sizeof(*np), "HCB");
}
/*
* Ask/tell the system about DMA addressing.
*/
static int sym_setup_bus_dma_mask(struct sym_hcb *np)
{
#if SYM_CONF_DMA_ADDRESSING_MODE > 0
#if SYM_CONF_DMA_ADDRESSING_MODE == 1
#define DMA_DAC_MASK DMA_40BIT_MASK
#elif SYM_CONF_DMA_ADDRESSING_MODE == 2
#define DMA_DAC_MASK DMA_64BIT_MASK
#endif
if ((np->features & FE_DAC) &&
!pci_set_dma_mask(np->s.device, DMA_DAC_MASK)) {
np->use_dac = 1;
return 0;
}
#endif
if (!pci_set_dma_mask(np->s.device, DMA_32BIT_MASK))
return 0;
printf_warning("%s: No suitable DMA available\n", sym_name(np));
return -1;
}
/*
* Host attach and initialisations.
*
@ -1392,32 +1268,28 @@ static int sym_setup_bus_dma_mask(struct sym_hcb *np)
static struct Scsi_Host * __devinit sym_attach(struct scsi_host_template *tpnt,
int unit, struct sym_device *dev)
{
struct host_data *host_data;
struct sym_data *sym_data;
struct sym_hcb *np = NULL;
struct Scsi_Host *instance = NULL;
struct Scsi_Host *shost;
struct pci_dev *pdev = dev->pdev;
unsigned long flags;
struct sym_fw *fw;
printk(KERN_INFO
"sym%d: <%s> rev 0x%x at pci %s irq " IRQ_FMT "\n",
unit, dev->chip.name, dev->chip.revision_id,
pci_name(pdev), IRQ_PRM(pdev->irq));
printk(KERN_INFO "sym%d: <%s> rev 0x%x at pci %s irq %u\n",
unit, dev->chip.name, pdev->revision, pci_name(pdev),
pdev->irq);
/*
* Get the firmware for this chip.
*/
fw = sym_find_firmware(&dev->chip);
if (!fw)
goto attach_failed;
return NULL;
/*
* Allocate host_data structure
*/
instance = scsi_host_alloc(tpnt, sizeof(*host_data));
if (!instance)
goto attach_failed;
host_data = (struct host_data *) instance->hostdata;
shost = scsi_host_alloc(tpnt, sizeof(*sym_data));
if (!shost)
return NULL;
sym_data = shost_priv(shost);
/*
* Allocate immediately the host control block,
@ -1428,22 +1300,19 @@ static struct Scsi_Host * __devinit sym_attach(struct scsi_host_template *tpnt,
np = __sym_calloc_dma(&pdev->dev, sizeof(*np), "HCB");
if (!np)
goto attach_failed;
np->s.device = pdev;
np->bus_dmat = &pdev->dev; /* Result in 1 DMA pool per HBA */
host_data->ncb = np;
np->s.host = instance;
sym_data->ncb = np;
sym_data->pdev = pdev;
np->s.host = shost;
pci_set_drvdata(pdev, np);
pci_set_drvdata(pdev, shost);
/*
* Copy some useful infos to the HCB.
*/
np->hcb_ba = vtobus(np);
np->verbose = sym_driver_setup.verbose;
np->s.device = pdev;
np->s.unit = unit;
np->device_id = dev->chip.device_id;
np->revision_id = dev->chip.revision_id;
np->features = dev->chip.features;
np->clock_divn = dev->chip.nr_divisor;
np->maxoffs = dev->chip.offset_max;
@ -1456,8 +1325,13 @@ static struct Scsi_Host * __devinit sym_attach(struct scsi_host_template *tpnt,
strlcpy(np->s.chip_name, dev->chip.name, sizeof(np->s.chip_name));
sprintf(np->s.inst_name, "sym%d", np->s.unit);
if (sym_setup_bus_dma_mask(np))
if ((SYM_CONF_DMA_ADDRESSING_MODE > 0) && (np->features & FE_DAC) &&
!pci_set_dma_mask(pdev, DMA_DAC_MASK)) {
set_dac(np);
} else if (pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
printf_warning("%s: No suitable DMA available\n", sym_name(np));
goto attach_failed;
}
/*
* Try to map the controller chip to
@ -1466,19 +1340,16 @@ static struct Scsi_Host * __devinit sym_attach(struct scsi_host_template *tpnt,
np->mmio_ba = (u32)dev->mmio_base;
np->s.ioaddr = dev->s.ioaddr;
np->s.ramaddr = dev->s.ramaddr;
np->s.io_ws = (np->features & FE_IO256) ? 256 : 128;
/*
* Map on-chip RAM if present and supported.
*/
if (!(np->features & FE_RAM))
dev->ram_base = 0;
if (dev->ram_base) {
if (dev->ram_base)
np->ram_ba = (u32)dev->ram_base;
np->ram_ws = (np->features & FE_RAM8K) ? 8192 : 4096;
}
if (sym_hcb_attach(instance, fw, dev->nvram))
if (sym_hcb_attach(shost, fw, dev->nvram))
goto attach_failed;
/*
@ -1486,25 +1357,25 @@ static struct Scsi_Host * __devinit sym_attach(struct scsi_host_template *tpnt,
* If we synchonize the C code with SCRIPTS on interrupt,
* we do not want to share the INTR line at all.
*/
if (request_irq(pdev->irq, sym53c8xx_intr, IRQF_SHARED, NAME53C8XX, np)) {
printf_err("%s: request irq %d failure\n",
if (request_irq(pdev->irq, sym53c8xx_intr, IRQF_SHARED, NAME53C8XX,
shost)) {
printf_err("%s: request irq %u failure\n",
sym_name(np), pdev->irq);
goto attach_failed;
}
np->s.irq = pdev->irq;
/*
* After SCSI devices have been opened, we cannot
* reset the bus safely, so we do it here.
*/
spin_lock_irqsave(instance->host_lock, flags);
spin_lock_irqsave(shost->host_lock, flags);
if (sym_reset_scsi_bus(np, 0))
goto reset_failed;
/*
* Start the SCRIPTS.
*/
sym_start_up (np, 1);
sym_start_up(shost, 1);
/*
* Start the timer daemon
@ -1519,33 +1390,37 @@ static struct Scsi_Host * __devinit sym_attach(struct scsi_host_template *tpnt,
* Fill Linux host instance structure
* and return success.
*/
instance->max_channel = 0;
instance->this_id = np->myaddr;
instance->max_id = np->maxwide ? 16 : 8;
instance->max_lun = SYM_CONF_MAX_LUN;
instance->unique_id = pci_resource_start(pdev, 0);
instance->cmd_per_lun = SYM_CONF_MAX_TAG;
instance->can_queue = (SYM_CONF_MAX_START-2);
instance->sg_tablesize = SYM_CONF_MAX_SG;
instance->max_cmd_len = 16;
shost->max_channel = 0;
shost->this_id = np->myaddr;
shost->max_id = np->maxwide ? 16 : 8;
shost->max_lun = SYM_CONF_MAX_LUN;
shost->unique_id = pci_resource_start(pdev, 0);
shost->cmd_per_lun = SYM_CONF_MAX_TAG;
shost->can_queue = (SYM_CONF_MAX_START-2);
shost->sg_tablesize = SYM_CONF_MAX_SG;
shost->max_cmd_len = 16;
BUG_ON(sym2_transport_template == NULL);
instance->transportt = sym2_transport_template;
shost->transportt = sym2_transport_template;
spin_unlock_irqrestore(instance->host_lock, flags);
/* 53c896 rev 1 errata: DMA may not cross 16MB boundary */
if (pdev->device == PCI_DEVICE_ID_NCR_53C896 && pdev->revision < 2)
shost->dma_boundary = 0xFFFFFF;
return instance;
spin_unlock_irqrestore(shost->host_lock, flags);
return shost;
reset_failed:
printf_err("%s: FATAL ERROR: CHECK SCSI BUS - CABLES, "
"TERMINATION, DEVICE POWER etc.!\n", sym_name(np));
spin_unlock_irqrestore(instance->host_lock, flags);
spin_unlock_irqrestore(shost->host_lock, flags);
attach_failed:
if (!instance)
if (!shost)
return NULL;
printf_info("%s: giving up ...\n", sym_name(np));
if (np)
sym_free_resources(np, pdev);
scsi_host_put(instance);
scsi_host_put(shost);
return NULL;
}
@ -1558,7 +1433,6 @@ static struct Scsi_Host * __devinit sym_attach(struct scsi_host_template *tpnt,
static void __devinit sym_get_nvram(struct sym_device *devp, struct sym_nvram *nvp)
{
devp->nvram = nvp;
devp->device_id = devp->chip.device_id;
nvp->type = 0;
sym_read_nvram(devp, nvp);
@ -1573,7 +1447,6 @@ static int __devinit sym_check_supported(struct sym_device *device)
{
struct sym_chip *chip;
struct pci_dev *pdev = device->pdev;
u_char revision;
unsigned long io_port = pci_resource_start(pdev, 0);
int i;
@ -1593,14 +1466,12 @@ static int __devinit sym_check_supported(struct sym_device *device)
* to our device structure so we can make it match the actual device
* and options.
*/
pci_read_config_byte(pdev, PCI_CLASS_REVISION, &revision);
chip = sym_lookup_chip_table(pdev->device, revision);
chip = sym_lookup_chip_table(pdev->device, pdev->revision);
if (!chip) {
dev_info(&pdev->dev, "device not supported\n");
return -ENODEV;
}
memcpy(&device->chip, chip, sizeof(device->chip));
device->chip.revision_id = revision;
return 0;
}
@ -1641,7 +1512,7 @@ static int __devinit sym_set_workarounds(struct sym_device *device)
* We must ensure the chip will use WRITE AND INVALIDATE.
* The revision number limit is for now arbitrary.
*/
if (pdev->device == PCI_DEVICE_ID_NCR_53C896 && chip->revision_id < 0x4) {
if (pdev->device == PCI_DEVICE_ID_NCR_53C896 && pdev->revision < 0x4) {
chip->features |= (FE_WRIE | FE_CLSE);
}
@ -1769,8 +1640,9 @@ static void sym_config_pqs(struct pci_dev *pdev, struct sym_device *sym_dev)
* Detach the host.
* We have to free resources and halt the NCR chip.
*/
static int sym_detach(struct sym_hcb *np, struct pci_dev *pdev)
static int sym_detach(struct Scsi_Host *shost, struct pci_dev *pdev)
{
struct sym_hcb *np = sym_get_hcb(shost);
printk("%s: detaching ...\n", sym_name(np));
del_timer_sync(&np->s.timer);
@ -1823,7 +1695,7 @@ static int __devinit sym2_probe(struct pci_dev *pdev,
{
struct sym_device sym_dev;
struct sym_nvram nvram;
struct Scsi_Host *instance;
struct Scsi_Host *shost;
memset(&sym_dev, 0, sizeof(sym_dev));
memset(&nvram, 0, sizeof(nvram));
@ -1850,13 +1722,13 @@ static int __devinit sym2_probe(struct pci_dev *pdev,
sym_get_nvram(&sym_dev, &nvram);
instance = sym_attach(&sym2_template, attach_count, &sym_dev);
if (!instance)
shost = sym_attach(&sym2_template, attach_count, &sym_dev);
if (!shost)
goto free;
if (scsi_add_host(instance, &pdev->dev))
if (scsi_add_host(shost, &pdev->dev))
goto detach;
scsi_scan_host(instance);
scsi_scan_host(shost);
attach_count++;
@ -1874,20 +1746,143 @@ static int __devinit sym2_probe(struct pci_dev *pdev,
static void __devexit sym2_remove(struct pci_dev *pdev)
{
struct sym_hcb *np = pci_get_drvdata(pdev);
struct Scsi_Host *host = np->s.host;
scsi_remove_host(host);
scsi_host_put(host);
sym_detach(np, pdev);
struct Scsi_Host *shost = pci_get_drvdata(pdev);
scsi_remove_host(shost);
scsi_host_put(shost);
sym_detach(shost, pdev);
pci_release_regions(pdev);
pci_disable_device(pdev);
attach_count--;
}
/**
* sym2_io_error_detected() - called when PCI error is detected
* @pdev: pointer to PCI device
* @state: current state of the PCI slot
*/
static pci_ers_result_t sym2_io_error_detected(struct pci_dev *pdev,
enum pci_channel_state state)
{
/* If slot is permanently frozen, turn everything off */
if (state == pci_channel_io_perm_failure) {
sym2_remove(pdev);
return PCI_ERS_RESULT_DISCONNECT;
}
disable_irq(pdev->irq);
pci_disable_device(pdev);
/* Request that MMIO be enabled, so register dump can be taken. */
return PCI_ERS_RESULT_CAN_RECOVER;
}
/**
* sym2_io_slot_dump - Enable MMIO and dump debug registers
* @pdev: pointer to PCI device
*/
static pci_ers_result_t sym2_io_slot_dump(struct pci_dev *pdev)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
sym_dump_registers(shost);
/* Request a slot reset. */
return PCI_ERS_RESULT_NEED_RESET;
}
/**
* sym2_reset_workarounds - hardware-specific work-arounds
*
* This routine is similar to sym_set_workarounds(), except
* that, at this point, we already know that the device was
* succesfully intialized at least once before, and so most
* of the steps taken there are un-needed here.
*/
static void sym2_reset_workarounds(struct pci_dev *pdev)
{
u_short status_reg;
struct sym_chip *chip;
chip = sym_lookup_chip_table(pdev->device, pdev->revision);
/* Work around for errant bit in 895A, in a fashion
* similar to what is done in sym_set_workarounds().
*/
pci_read_config_word(pdev, PCI_STATUS, &status_reg);
if (!(chip->features & FE_66MHZ) && (status_reg & PCI_STATUS_66MHZ)) {
status_reg = PCI_STATUS_66MHZ;
pci_write_config_word(pdev, PCI_STATUS, status_reg);
pci_read_config_word(pdev, PCI_STATUS, &status_reg);
}
}
/**
* sym2_io_slot_reset() - called when the pci bus has been reset.
* @pdev: pointer to PCI device
*
* Restart the card from scratch.
*/
static pci_ers_result_t sym2_io_slot_reset(struct pci_dev *pdev)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct sym_hcb *np = sym_get_hcb(shost);
printk(KERN_INFO "%s: recovering from a PCI slot reset\n",
sym_name(np));
if (pci_enable_device(pdev)) {
printk(KERN_ERR "%s: Unable to enable after PCI reset\n",
sym_name(np));
return PCI_ERS_RESULT_DISCONNECT;
}
pci_set_master(pdev);
enable_irq(pdev->irq);
/* If the chip can do Memory Write Invalidate, enable it */
if (np->features & FE_WRIE) {
if (pci_set_mwi(pdev))
return PCI_ERS_RESULT_DISCONNECT;
}
/* Perform work-arounds, analogous to sym_set_workarounds() */
sym2_reset_workarounds(pdev);
/* Perform host reset only on one instance of the card */
if (PCI_FUNC(pdev->devfn) == 0) {
if (sym_reset_scsi_bus(np, 0)) {
printk(KERN_ERR "%s: Unable to reset scsi host\n",
sym_name(np));
return PCI_ERS_RESULT_DISCONNECT;
}
sym_start_up(shost, 1);
}
return PCI_ERS_RESULT_RECOVERED;
}
/**
* sym2_io_resume() - resume normal ops after PCI reset
* @pdev: pointer to PCI device
*
* Called when the error recovery driver tells us that its
* OK to resume normal operation. Use completion to allow
* halted scsi ops to resume.
*/
static void sym2_io_resume(struct pci_dev *pdev)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct sym_data *sym_data = shost_priv(shost);
spin_lock_irq(shost->host_lock);
if (sym_data->io_reset)
complete_all(sym_data->io_reset);
sym_data->io_reset = NULL;
spin_unlock_irq(shost->host_lock);
}
static void sym2_get_signalling(struct Scsi_Host *shost)
{
struct sym_hcb *np = sym_get_hcb(shost);
@ -2050,11 +2045,19 @@ static struct pci_device_id sym2_id_table[] __devinitdata = {
MODULE_DEVICE_TABLE(pci, sym2_id_table);
static struct pci_error_handlers sym2_err_handler = {
.error_detected = sym2_io_error_detected,
.mmio_enabled = sym2_io_slot_dump,
.slot_reset = sym2_io_slot_reset,
.resume = sym2_io_resume,
};
static struct pci_driver sym2_driver = {
.name = NAME53C8XX,
.id_table = sym2_id_table,
.probe = sym2_probe,
.remove = __devexit_p(sym2_remove),
.err_handler = &sym2_err_handler,
};
static int __init sym2_init(void)

View File

@ -40,7 +40,9 @@
#ifndef SYM_GLUE_H
#define SYM_GLUE_H
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/pci.h>
#include <linux/string.h>
@ -177,14 +179,11 @@ struct sym_shcb {
int unit;
char inst_name[16];
char chip_name[8];
struct pci_dev *device;
struct Scsi_Host *host;
void __iomem * ioaddr; /* MMIO kernel io address */
void __iomem * ramaddr; /* RAM kernel io address */
u_short io_ws; /* IO window size */
int irq; /* IRQ number */
struct timer_list timer; /* Timer handler link header */
u_long lasttime;
@ -212,20 +211,21 @@ struct sym_device {
} s;
struct sym_chip chip;
struct sym_nvram *nvram;
u_short device_id;
u_char host_id;
};
/*
* Driver host data structure.
*/
struct host_data {
struct sym_data {
struct sym_hcb *ncb;
struct completion *io_reset; /* PCI error handling */
struct pci_dev *pdev;
};
static inline struct sym_hcb * sym_get_hcb(struct Scsi_Host *host)
{
return ((struct host_data *)host->hostdata)->ncb;
return ((struct sym_data *)host->hostdata)->ncb;
}
#include "sym_fw.h"
@ -263,8 +263,8 @@ void sym_set_cam_result_error(struct sym_hcb *np, struct sym_ccb *cp, int resid)
void sym_xpt_done(struct sym_hcb *np, struct scsi_cmnd *ccb);
#define sym_print_addr(cmd, arg...) dev_info(&cmd->device->sdev_gendev , ## arg)
void sym_xpt_async_bus_reset(struct sym_hcb *np);
void sym_xpt_async_sent_bdr(struct sym_hcb *np, int target);
int sym_setup_data_and_start (struct sym_hcb *np, struct scsi_cmnd *csio, struct sym_ccb *cp);
void sym_log_bus_error(struct sym_hcb *np);
void sym_log_bus_error(struct Scsi_Host *);
void sym_dump_registers(struct Scsi_Host *);
#endif /* SYM_GLUE_H */

View File

@ -52,7 +52,7 @@
* Needed function prototypes.
*/
static void sym_int_ma (struct sym_hcb *np);
static void sym_int_sir (struct sym_hcb *np);
static void sym_int_sir(struct sym_hcb *);
static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np);
static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa);
static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln);
@ -684,6 +684,8 @@ static void sym_set_bus_mode(struct sym_hcb *np, struct sym_nvram *nvram)
*/
static int sym_prepare_setting(struct Scsi_Host *shost, struct sym_hcb *np, struct sym_nvram *nvram)
{
struct sym_data *sym_data = shost_priv(shost);
struct pci_dev *pdev = sym_data->pdev;
u_char burst_max;
u32 period;
int i;
@ -778,19 +780,12 @@ static int sym_prepare_setting(struct Scsi_Host *shost, struct sym_hcb *np, stru
* 64 bit addressing (895A/896/1010) ?
*/
if (np->features & FE_DAC) {
#if SYM_CONF_DMA_ADDRESSING_MODE == 0
np->rv_ccntl1 |= (DDAC);
#elif SYM_CONF_DMA_ADDRESSING_MODE == 1
if (!np->use_dac)
np->rv_ccntl1 |= (DDAC);
else
np->rv_ccntl1 |= (XTIMOD | EXTIBMV);
#elif SYM_CONF_DMA_ADDRESSING_MODE == 2
if (!np->use_dac)
np->rv_ccntl1 |= (DDAC);
else
np->rv_ccntl1 |= (0 | EXTIBMV);
#endif
if (!use_dac(np))
np->rv_ccntl1 |= (DDAC);
else if (SYM_CONF_DMA_ADDRESSING_MODE == 1)
np->rv_ccntl1 |= (XTIMOD | EXTIBMV);
else if (SYM_CONF_DMA_ADDRESSING_MODE == 2)
np->rv_ccntl1 |= (0 | EXTIBMV);
}
/*
@ -804,8 +799,8 @@ static int sym_prepare_setting(struct Scsi_Host *shost, struct sym_hcb *np, stru
* In dual channel mode, contention occurs if internal cycles
* are used. Disable internal cycles.
*/
if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_33 &&
np->revision_id < 0x1)
if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_33 &&
pdev->revision < 0x1)
np->rv_ccntl0 |= DILS;
/*
@ -828,10 +823,10 @@ static int sym_prepare_setting(struct Scsi_Host *shost, struct sym_hcb *np, stru
* this driver. The generic ncr driver that does not use
* LOAD/STORE instructions does not need this work-around.
*/
if ((np->device_id == PCI_DEVICE_ID_NCR_53C810 &&
np->revision_id >= 0x10 && np->revision_id <= 0x11) ||
(np->device_id == PCI_DEVICE_ID_NCR_53C860 &&
np->revision_id <= 0x1))
if ((pdev->device == PCI_DEVICE_ID_NCR_53C810 &&
pdev->revision >= 0x10 && pdev->revision <= 0x11) ||
(pdev->device == PCI_DEVICE_ID_NCR_53C860 &&
pdev->revision <= 0x1))
np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
/*
@ -897,7 +892,7 @@ static int sym_prepare_setting(struct Scsi_Host *shost, struct sym_hcb *np, stru
if ((SYM_SETUP_SCSI_LED ||
(nvram->type == SYM_SYMBIOS_NVRAM ||
(nvram->type == SYM_TEKRAM_NVRAM &&
np->device_id == PCI_DEVICE_ID_NCR_53C895))) &&
pdev->device == PCI_DEVICE_ID_NCR_53C895))) &&
!(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
np->features |= FE_LED0;
@ -1135,8 +1130,9 @@ static int sym_snooptest(struct sym_hcb *np)
* First 24 register of the chip:
* r0..rf
*/
static void sym_log_hard_error(struct sym_hcb *np, u_short sist, u_char dstat)
static void sym_log_hard_error(struct Scsi_Host *shost, u_short sist, u_char dstat)
{
struct sym_hcb *np = sym_get_hcb(shost);
u32 dsp;
int script_ofs;
int script_size;
@ -1180,16 +1176,27 @@ static void sym_log_hard_error(struct sym_hcb *np, u_short sist, u_char dstat)
scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
}
printf ("%s: regdump:", sym_name(np));
for (i=0; i<24;i++)
printf (" %02x", (unsigned)INB_OFF(np, i));
printf (".\n");
printf("%s: regdump:", sym_name(np));
for (i = 0; i < 24; i++)
printf(" %02x", (unsigned)INB_OFF(np, i));
printf(".\n");
/*
* PCI BUS error.
*/
if (dstat & (MDPE|BF))
sym_log_bus_error(np);
sym_log_bus_error(shost);
}
void sym_dump_registers(struct Scsi_Host *shost)
{
struct sym_hcb *np = sym_get_hcb(shost);
u_short sist;
u_char dstat;
sist = INW(np, nc_sist);
dstat = INB(np, nc_dstat);
sym_log_hard_error(shost, sist, dstat);
}
static struct sym_chip sym_dev_table[] = {
@ -1312,7 +1319,7 @@ int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s)
{
int i;
if (!np->use_dac)
if (!use_dac(np))
goto weird;
/* Look up existing mappings */
@ -1519,7 +1526,8 @@ void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp)
np->squeueput = qidx;
if (DEBUG_FLAGS & DEBUG_QUEUE)
printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput);
scmd_printk(KERN_DEBUG, cp->cmd, "queuepos=%d\n",
np->squeueput);
/*
* Script processor may be waiting for reselect.
@ -1696,8 +1704,11 @@ static void sym_flush_busy_queue (struct sym_hcb *np, int cam_status)
* 1: SCSI BUS RESET delivered or received.
* 2: SCSI BUS MODE changed.
*/
void sym_start_up (struct sym_hcb *np, int reason)
void sym_start_up(struct Scsi_Host *shost, int reason)
{
struct sym_data *sym_data = shost_priv(shost);
struct pci_dev *pdev = sym_data->pdev;
struct sym_hcb *np = sym_data->ncb;
int i;
u32 phys;
@ -1746,7 +1757,7 @@ void sym_start_up (struct sym_hcb *np, int reason)
* This also let point to first position the start
* and done queue pointers used from SCRIPTS.
*/
np->fw_patch(np);
np->fw_patch(shost);
/*
* Wakeup all pending jobs.
@ -1788,7 +1799,7 @@ void sym_start_up (struct sym_hcb *np, int reason)
/*
* For now, disable AIP generation on C1010-66.
*/
if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_66)
if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_66)
OUTB(np, nc_aipcntl1, DISAIP);
/*
@ -1798,8 +1809,8 @@ void sym_start_up (struct sym_hcb *np, int reason)
* that from SCRIPTS for each selection/reselection, but
* I just don't want. :)
*/
if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_33 &&
np->revision_id < 1)
if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_33 &&
pdev->revision < 1)
OUTB(np, nc_stest1, INB(np, nc_stest1) | 0x30);
/*
@ -1807,9 +1818,9 @@ void sym_start_up (struct sym_hcb *np, int reason)
* Disable overlapped arbitration for some dual function devices,
* regardless revision id (kind of post-chip-design feature. ;-))
*/
if (np->device_id == PCI_DEVICE_ID_NCR_53C875)
if (pdev->device == PCI_DEVICE_ID_NCR_53C875)
OUTB(np, nc_ctest0, (1<<5));
else if (np->device_id == PCI_DEVICE_ID_NCR_53C896)
else if (pdev->device == PCI_DEVICE_ID_NCR_53C896)
np->rv_ccntl0 |= DPR;
/*
@ -1827,7 +1838,7 @@ void sym_start_up (struct sym_hcb *np, int reason)
* Set up scratch C and DRS IO registers to map the 32 bit
* DMA address range our data structures are located in.
*/
if (np->use_dac) {
if (use_dac(np)) {
np->dmap_bah[0] = 0; /* ??? */
OUTL(np, nc_scrx[0], np->dmap_bah[0]);
OUTL(np, nc_drs, np->dmap_bah[0]);
@ -1900,7 +1911,7 @@ void sym_start_up (struct sym_hcb *np, int reason)
if (sym_verbose >= 2)
printf("%s: Downloading SCSI SCRIPTS.\n", sym_name(np));
memcpy_toio(np->s.ramaddr, np->scripta0, np->scripta_sz);
if (np->ram_ws == 8192) {
if (np->features & FE_RAM8K) {
memcpy_toio(np->s.ramaddr + 4096, np->scriptb0, np->scriptb_sz);
phys = scr_to_cpu(np->scr_ram_seg);
OUTL(np, nc_mmws, phys);
@ -2214,8 +2225,9 @@ static void sym_int_udc (struct sym_hcb *np)
* mode to eight bit asynchronous, etc...
* So, just reinitializing all except chip should be enough.
*/
static void sym_int_sbmc (struct sym_hcb *np)
static void sym_int_sbmc(struct Scsi_Host *shost)
{
struct sym_hcb *np = sym_get_hcb(shost);
u_char scsi_mode = INB(np, nc_stest4) & SMODE;
/*
@ -2228,7 +2240,7 @@ static void sym_int_sbmc (struct sym_hcb *np)
* Should suspend command processing for a few seconds and
* reinitialize all except the chip.
*/
sym_start_up (np, 2);
sym_start_up(shost, 2);
}
/*
@ -2756,8 +2768,11 @@ static void sym_int_ma (struct sym_hcb *np)
* Use at your own decision and risk.
*/
void sym_interrupt (struct sym_hcb *np)
irqreturn_t sym_interrupt(struct Scsi_Host *shost)
{
struct sym_data *sym_data = shost_priv(shost);
struct sym_hcb *np = sym_data->ncb;
struct pci_dev *pdev = sym_data->pdev;
u_char istat, istatc;
u_char dstat;
u_short sist;
@ -2782,7 +2797,7 @@ void sym_interrupt (struct sym_hcb *np)
}
if (!(istat & (SIP|DIP)))
return;
return (istat & INTF) ? IRQ_HANDLED : IRQ_NONE;
#if 0 /* We should never get this one */
if (istat & CABRT)
@ -2809,6 +2824,13 @@ void sym_interrupt (struct sym_hcb *np)
dstat |= INB(np, nc_dstat);
istatc = INB(np, nc_istat);
istat |= istatc;
/* Prevent deadlock waiting on a condition that may
* never clear. */
if (unlikely(sist == 0xffff && dstat == 0xff)) {
if (pci_channel_offline(pdev))
return IRQ_NONE;
}
} while (istatc & (SIP|DIP));
if (DEBUG_FLAGS & DEBUG_TINY)
@ -2842,10 +2864,10 @@ void sym_interrupt (struct sym_hcb *np)
!(dstat & (MDPE|BF|ABRT|IID))) {
if (sist & PAR) sym_int_par (np, sist);
else if (sist & MA) sym_int_ma (np);
else if (dstat & SIR) sym_int_sir (np);
else if (dstat & SIR) sym_int_sir(np);
else if (dstat & SSI) OUTONB_STD();
else goto unknown_int;
return;
return IRQ_HANDLED;
}
/*
@ -2861,8 +2883,8 @@ void sym_interrupt (struct sym_hcb *np)
*/
if (sist & RST) {
printf("%s: SCSI BUS reset detected.\n", sym_name(np));
sym_start_up (np, 1);
return;
sym_start_up(shost, 1);
return IRQ_HANDLED;
}
OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */
@ -2870,11 +2892,11 @@ void sym_interrupt (struct sym_hcb *np)
if (!(sist & (GEN|HTH|SGE)) &&
!(dstat & (MDPE|BF|ABRT|IID))) {
if (sist & SBMC) sym_int_sbmc (np);
if (sist & SBMC) sym_int_sbmc(shost);
else if (sist & STO) sym_int_sto (np);
else if (sist & UDC) sym_int_udc (np);
else goto unknown_int;
return;
return IRQ_HANDLED;
}
/*
@ -2884,12 +2906,12 @@ void sym_interrupt (struct sym_hcb *np)
* Reset everything.
*/
sym_log_hard_error(np, sist, dstat);
sym_log_hard_error(shost, sist, dstat);
if ((sist & (GEN|HTH|SGE)) ||
(dstat & (MDPE|BF|ABRT|IID))) {
sym_start_reset(np);
return;
return IRQ_HANDLED;
}
unknown_int:
@ -2900,6 +2922,7 @@ void sym_interrupt (struct sym_hcb *np)
printf( "%s: unknown interrupt(s) ignored, "
"ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
sym_name(np), istat, dstat, sist);
return IRQ_NONE;
}
/*
@ -3520,7 +3543,8 @@ static void sym_sir_task_recovery(struct sym_hcb *np, int num)
* If we sent a BDR, make upper layer aware of that.
*/
if (np->abrt_msg[0] == M_RESET)
sym_xpt_async_sent_bdr(np, target);
starget_printk(KERN_NOTICE, starget,
"has been reset\n");
break;
}
@ -4304,7 +4328,7 @@ static void sym_nego_rejected(struct sym_hcb *np, struct sym_tcb *tp, struct sym
/*
* chip exception handler for programmed interrupts.
*/
static void sym_int_sir (struct sym_hcb *np)
static void sym_int_sir(struct sym_hcb *np)
{
u_char num = INB(np, nc_dsps);
u32 dsa = INL(np, nc_dsa);
@ -4343,31 +4367,30 @@ static void sym_int_sir (struct sym_hcb *np)
return;
/*
* The device didn't go to MSG OUT phase after having
* been selected with ATN. We donnot want to handle
* that.
* been selected with ATN. We do not want to handle that.
*/
case SIR_SEL_ATN_NO_MSG_OUT:
printf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
sym_name (np), target);
scmd_printk(KERN_WARNING, cp->cmd,
"No MSG OUT phase after selection with ATN\n");
goto out_stuck;
/*
* The device didn't switch to MSG IN phase after
* having reseleted the initiator.
* having reselected the initiator.
*/
case SIR_RESEL_NO_MSG_IN:
printf ("%s:%d: No MSG IN phase after reselection.\n",
sym_name (np), target);
scmd_printk(KERN_WARNING, cp->cmd,
"No MSG IN phase after reselection\n");
goto out_stuck;
/*
* After reselection, the device sent a message that wasn't
* an IDENTIFY.
*/
case SIR_RESEL_NO_IDENTIFY:
printf ("%s:%d: No IDENTIFY after reselection.\n",
sym_name (np), target);
scmd_printk(KERN_WARNING, cp->cmd,
"No IDENTIFY after reselection\n");
goto out_stuck;
/*
* The device reselected a LUN we donnot know about.
* The device reselected a LUN we do not know about.
*/
case SIR_RESEL_BAD_LUN:
np->msgout[0] = M_RESET;
@ -4380,8 +4403,7 @@ static void sym_int_sir (struct sym_hcb *np)
np->msgout[0] = M_ABORT;
goto out;
/*
* The device reselected for a tagged nexus that we donnot
* have.
* The device reselected for a tagged nexus that we do not have.
*/
case SIR_RESEL_BAD_I_T_L_Q:
np->msgout[0] = M_ABORT_TAG;
@ -4393,8 +4415,8 @@ static void sym_int_sir (struct sym_hcb *np)
case SIR_RESEL_ABORTED:
np->lastmsg = np->msgout[0];
np->msgout[0] = M_NOOP;
printf ("%s:%d: message %x sent on bad reselection.\n",
sym_name (np), target, np->lastmsg);
scmd_printk(KERN_WARNING, cp->cmd,
"message %x sent on bad reselection\n", np->lastmsg);
goto out;
/*
* The SCRIPTS let us know that a message has been
@ -5578,16 +5600,13 @@ int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram
np->scriptz_ba = vtobus(np->scriptz0);
if (np->ram_ba) {
np->scripta_ba = np->ram_ba;
np->scripta_ba = np->ram_ba;
if (np->features & FE_RAM8K) {
np->ram_ws = 8192;
np->scriptb_ba = np->scripta_ba + 4096;
#if 0 /* May get useful for 64 BIT PCI addressing */
np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
#endif
}
else
np->ram_ws = 4096;
}
/*

View File

@ -883,10 +883,7 @@ struct sym_hcb {
* Physical bus addresses of the chip.
*/
u32 mmio_ba; /* MMIO 32 bit BUS address */
int mmio_ws; /* MMIO Window size */
u32 ram_ba; /* RAM 32 bit BUS address */
int ram_ws; /* RAM window size */
/*
* SCRIPTS virtual and physical bus addresses.
@ -912,14 +909,12 @@ struct sym_hcb {
struct sym_fwb_ba fwb_bas; /* Useful SCRIPTB bus addresses */
struct sym_fwz_ba fwz_bas; /* Useful SCRIPTZ bus addresses */
void (*fw_setup)(struct sym_hcb *np, struct sym_fw *fw);
void (*fw_patch)(struct sym_hcb *np);
void (*fw_patch)(struct Scsi_Host *);
char *fw_name;
/*
* General controller parameters and configuration.
*/
u_short device_id; /* PCI device id */
u_char revision_id; /* PCI device revision id */
u_int features; /* Chip features map */
u_char myaddr; /* SCSI id of the adapter */
u_char maxburst; /* log base 2 of dwords burst */
@ -1031,6 +1026,14 @@ struct sym_hcb {
#endif
};
#if SYM_CONF_DMA_ADDRESSING_MODE == 0
#define use_dac(np) 0
#define set_dac(np) do { } while (0)
#else
#define use_dac(np) (np)->use_dac
#define set_dac(np) (np)->use_dac = 1
#endif
#define HCB_BA(np, lbl) (np->hcb_ba + offsetof(struct sym_hcb, lbl))
@ -1052,8 +1055,8 @@ void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn);
#else
void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp);
#endif
void sym_start_up(struct sym_hcb *np, int reason);
void sym_interrupt(struct sym_hcb *np);
void sym_start_up(struct Scsi_Host *, int reason);
irqreturn_t sym_interrupt(struct Scsi_Host *);
int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task);
struct sym_ccb *sym_get_ccb(struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order);
void sym_free_ccb(struct sym_hcb *np, struct sym_ccb *cp);
@ -1073,18 +1076,21 @@ int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram
*/
#if SYM_CONF_DMA_ADDRESSING_MODE == 0
#define DMA_DAC_MASK DMA_32BIT_MASK
#define sym_build_sge(np, data, badd, len) \
do { \
(data)->addr = cpu_to_scr(badd); \
(data)->size = cpu_to_scr(len); \
} while (0)
#elif SYM_CONF_DMA_ADDRESSING_MODE == 1
#define DMA_DAC_MASK DMA_40BIT_MASK
#define sym_build_sge(np, data, badd, len) \
do { \
(data)->addr = cpu_to_scr(badd); \
(data)->size = cpu_to_scr((((badd) >> 8) & 0xff000000) + len); \
} while (0)
#elif SYM_CONF_DMA_ADDRESSING_MODE == 2
#define DMA_DAC_MASK DMA_64BIT_MASK
int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s);
static __inline void
sym_build_sge(struct sym_hcb *np, struct sym_tblmove *data, u64 badd, int len)

View File

@ -696,7 +696,7 @@ static int sym_read_Tekram_nvram (struct sym_device *np, Tekram_nvram *nvram)
u_short csum;
int x;
switch (np->device_id) {
switch (np->pdev->device) {
case PCI_DEVICE_ID_NCR_53C885:
case PCI_DEVICE_ID_NCR_53C895:
case PCI_DEVICE_ID_NCR_53C896:

View File

@ -1,6 +1,8 @@
#ifndef _SCSI_SCSI_EH_H
#define _SCSI_SCSI_EH_H
#include <linux/scatterlist.h>
#include <scsi/scsi_cmnd.h>
struct scsi_device;
struct Scsi_Host;