|
|
|
@ -41,7 +41,6 @@
|
|
|
|
|
* @node: node in the device list
|
|
|
|
|
* @base: base address of memory-mapped IO registers.
|
|
|
|
|
* @dev: device pointer.
|
|
|
|
|
* @addressing table with addressing information from the spec
|
|
|
|
|
* @regs_cache: An array of 'struct emif_regs' that stores
|
|
|
|
|
* calculated register values for different
|
|
|
|
|
* frequencies, to avoid re-calculating them on
|
|
|
|
@ -61,7 +60,6 @@ struct emif_data {
|
|
|
|
|
unsigned long irq_state;
|
|
|
|
|
void __iomem *base;
|
|
|
|
|
struct device *dev;
|
|
|
|
|
const struct lpddr2_addressing *addressing;
|
|
|
|
|
struct emif_regs *regs_cache[EMIF_MAX_NUM_FREQUENCIES];
|
|
|
|
|
struct emif_regs *curr_regs;
|
|
|
|
|
struct emif_platform_data *plat_data;
|
|
|
|
@ -72,7 +70,6 @@ struct emif_data {
|
|
|
|
|
static struct emif_data *emif1;
|
|
|
|
|
static DEFINE_SPINLOCK(emif_lock);
|
|
|
|
|
static unsigned long irq_state;
|
|
|
|
|
static u32 t_ck; /* DDR clock period in ps */
|
|
|
|
|
static LIST_HEAD(device_list);
|
|
|
|
|
|
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
|
|
@ -169,15 +166,6 @@ static inline void __exit emif_debugfs_exit(struct emif_data *emif)
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Calculate the period of DDR clock from frequency value
|
|
|
|
|
*/
|
|
|
|
|
static void set_ddr_clk_period(u32 freq)
|
|
|
|
|
{
|
|
|
|
|
/* Divide 10^12 by frequency to get period in ps */
|
|
|
|
|
t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Get bus width used by EMIF. Note that this may be different from the
|
|
|
|
|
* bus width of the DDR devices used. For instance two 16-bit DDR devices
|
|
|
|
@ -196,19 +184,6 @@ static u32 get_emif_bus_width(struct emif_data *emif)
|
|
|
|
|
return width;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Get the CL from SDRAM_CONFIG register
|
|
|
|
|
*/
|
|
|
|
|
static u32 get_cl(struct emif_data *emif)
|
|
|
|
|
{
|
|
|
|
|
u32 cl;
|
|
|
|
|
void __iomem *base = emif->base;
|
|
|
|
|
|
|
|
|
|
cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT;
|
|
|
|
|
|
|
|
|
|
return cl;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void set_lpmode(struct emif_data *emif, u8 lpmode)
|
|
|
|
|
{
|
|
|
|
|
u32 temp;
|
|
|
|
@ -328,203 +303,6 @@ static const struct lpddr2_addressing *get_addressing_table(
|
|
|
|
|
return &lpddr2_jedec_addressing_table[index];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Find the the right timing table from the array of timing
|
|
|
|
|
* tables of the device using DDR clock frequency
|
|
|
|
|
*/
|
|
|
|
|
static const struct lpddr2_timings *get_timings_table(struct emif_data *emif,
|
|
|
|
|
u32 freq)
|
|
|
|
|
{
|
|
|
|
|
u32 i, min, max, freq_nearest;
|
|
|
|
|
const struct lpddr2_timings *timings = NULL;
|
|
|
|
|
const struct lpddr2_timings *timings_arr = emif->plat_data->timings;
|
|
|
|
|
struct device *dev = emif->dev;
|
|
|
|
|
|
|
|
|
|
/* Start with a very high frequency - 1GHz */
|
|
|
|
|
freq_nearest = 1000000000;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Find the timings table such that:
|
|
|
|
|
* 1. the frequency range covers the required frequency(safe) AND
|
|
|
|
|
* 2. the max_freq is closest to the required frequency(optimal)
|
|
|
|
|
*/
|
|
|
|
|
for (i = 0; i < emif->plat_data->timings_arr_size; i++) {
|
|
|
|
|
max = timings_arr[i].max_freq;
|
|
|
|
|
min = timings_arr[i].min_freq;
|
|
|
|
|
if ((freq >= min) && (freq <= max) && (max < freq_nearest)) {
|
|
|
|
|
freq_nearest = max;
|
|
|
|
|
timings = &timings_arr[i];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!timings)
|
|
|
|
|
dev_err(dev, "%s: couldn't find timings for - %dHz\n",
|
|
|
|
|
__func__, freq);
|
|
|
|
|
|
|
|
|
|
dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n",
|
|
|
|
|
__func__, freq, freq_nearest);
|
|
|
|
|
|
|
|
|
|
return timings;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static u32 get_sdram_ref_ctrl_shdw(u32 freq,
|
|
|
|
|
const struct lpddr2_addressing *addressing)
|
|
|
|
|
{
|
|
|
|
|
u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi;
|
|
|
|
|
|
|
|
|
|
/* Scale down frequency and t_refi to avoid overflow */
|
|
|
|
|
freq_khz = freq / 1000;
|
|
|
|
|
t_refi = addressing->tREFI_ns / 100;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* refresh rate to be set is 'tREFI(in us) * freq in MHz
|
|
|
|
|
* division by 10000 to account for change in units
|
|
|
|
|
*/
|
|
|
|
|
val = t_refi * freq_khz / 10000;
|
|
|
|
|
ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT;
|
|
|
|
|
|
|
|
|
|
return ref_ctrl_shdw;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings,
|
|
|
|
|
const struct lpddr2_min_tck *min_tck,
|
|
|
|
|
const struct lpddr2_addressing *addressing)
|
|
|
|
|
{
|
|
|
|
|
u32 tim1 = 0, val = 0;
|
|
|
|
|
|
|
|
|
|
val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
|
|
|
|
|
tim1 |= val << T_WTR_SHIFT;
|
|
|
|
|
|
|
|
|
|
if (addressing->num_banks == B8)
|
|
|
|
|
val = DIV_ROUND_UP(timings->tFAW, t_ck*4);
|
|
|
|
|
else
|
|
|
|
|
val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck));
|
|
|
|
|
tim1 |= (val - 1) << T_RRD_SHIFT;
|
|
|
|
|
|
|
|
|
|
val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1;
|
|
|
|
|
tim1 |= val << T_RC_SHIFT;
|
|
|
|
|
|
|
|
|
|
val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck));
|
|
|
|
|
tim1 |= (val - 1) << T_RAS_SHIFT;
|
|
|
|
|
|
|
|
|
|
val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
|
|
|
|
|
tim1 |= val << T_WR_SHIFT;
|
|
|
|
|
|
|
|
|
|
val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1;
|
|
|
|
|
tim1 |= val << T_RCD_SHIFT;
|
|
|
|
|
|
|
|
|
|
val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1;
|
|
|
|
|
tim1 |= val << T_RP_SHIFT;
|
|
|
|
|
|
|
|
|
|
return tim1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings,
|
|
|
|
|
const struct lpddr2_min_tck *min_tck,
|
|
|
|
|
const struct lpddr2_addressing *addressing)
|
|
|
|
|
{
|
|
|
|
|
u32 tim1 = 0, val = 0;
|
|
|
|
|
|
|
|
|
|
val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
|
|
|
|
|
tim1 = val << T_WTR_SHIFT;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps
|
|
|
|
|
* to tFAW for de-rating
|
|
|
|
|
*/
|
|
|
|
|
if (addressing->num_banks == B8) {
|
|
|
|
|
val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1;
|
|
|
|
|
} else {
|
|
|
|
|
val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck);
|
|
|
|
|
val = max(min_tck->tRRD, val) - 1;
|
|
|
|
|
}
|
|
|
|
|
tim1 |= val << T_RRD_SHIFT;
|
|
|
|
|
|
|
|
|
|
val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck);
|
|
|
|
|
tim1 |= (val - 1) << T_RC_SHIFT;
|
|
|
|
|
|
|
|
|
|
val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck);
|
|
|
|
|
val = max(min_tck->tRASmin, val) - 1;
|
|
|
|
|
tim1 |= val << T_RAS_SHIFT;
|
|
|
|
|
|
|
|
|
|
val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
|
|
|
|
|
tim1 |= val << T_WR_SHIFT;
|
|
|
|
|
|
|
|
|
|
val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck));
|
|
|
|
|
tim1 |= (val - 1) << T_RCD_SHIFT;
|
|
|
|
|
|
|
|
|
|
val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck));
|
|
|
|
|
tim1 |= (val - 1) << T_RP_SHIFT;
|
|
|
|
|
|
|
|
|
|
return tim1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings,
|
|
|
|
|
const struct lpddr2_min_tck *min_tck,
|
|
|
|
|
const struct lpddr2_addressing *addressing,
|
|
|
|
|
u32 type)
|
|
|
|
|
{
|
|
|
|
|
u32 tim2 = 0, val = 0;
|
|
|
|
|
|
|
|
|
|
val = min_tck->tCKE - 1;
|
|
|
|
|
tim2 |= val << T_CKE_SHIFT;
|
|
|
|
|
|
|
|
|
|
val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1;
|
|
|
|
|
tim2 |= val << T_RTP_SHIFT;
|
|
|
|
|
|
|
|
|
|
/* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */
|
|
|
|
|
val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1;
|
|
|
|
|
tim2 |= val << T_XSNR_SHIFT;
|
|
|
|
|
|
|
|
|
|
/* XSRD same as XSNR for LPDDR2 */
|
|
|
|
|
tim2 |= val << T_XSRD_SHIFT;
|
|
|
|
|
|
|
|
|
|
val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1;
|
|
|
|
|
tim2 |= val << T_XP_SHIFT;
|
|
|
|
|
|
|
|
|
|
return tim2;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings,
|
|
|
|
|
const struct lpddr2_min_tck *min_tck,
|
|
|
|
|
const struct lpddr2_addressing *addressing,
|
|
|
|
|
u32 type, u32 ip_rev, u32 derated)
|
|
|
|
|
{
|
|
|
|
|
u32 tim3 = 0, val = 0, t_dqsck;
|
|
|
|
|
|
|
|
|
|
val = timings->tRAS_max_ns / addressing->tREFI_ns - 1;
|
|
|
|
|
val = val > 0xF ? 0xF : val;
|
|
|
|
|
tim3 |= val << T_RAS_MAX_SHIFT;
|
|
|
|
|
|
|
|
|
|
val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1;
|
|
|
|
|
tim3 |= val << T_RFC_SHIFT;
|
|
|
|
|
|
|
|
|
|
t_dqsck = (derated == EMIF_DERATED_TIMINGS) ?
|
|
|
|
|
timings->tDQSCK_max_derated : timings->tDQSCK_max;
|
|
|
|
|
if (ip_rev == EMIF_4D5)
|
|
|
|
|
val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1;
|
|
|
|
|
else
|
|
|
|
|
val = DIV_ROUND_UP(t_dqsck, t_ck) - 1;
|
|
|
|
|
|
|
|
|
|
tim3 |= val << T_TDQSCKMAX_SHIFT;
|
|
|
|
|
|
|
|
|
|
val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1;
|
|
|
|
|
tim3 |= val << ZQ_ZQCS_SHIFT;
|
|
|
|
|
|
|
|
|
|
val = DIV_ROUND_UP(timings->tCKESR, t_ck);
|
|
|
|
|
val = max(min_tck->tCKESR, val) - 1;
|
|
|
|
|
tim3 |= val << T_CKESR_SHIFT;
|
|
|
|
|
|
|
|
|
|
if (ip_rev == EMIF_4D5) {
|
|
|
|
|
tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT;
|
|
|
|
|
|
|
|
|
|
val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1;
|
|
|
|
|
tim3 |= val << T_PDLL_UL_SHIFT;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return tim3;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
|
|
|
|
|
bool cs1_used, bool cal_resistors_per_cs)
|
|
|
|
|
{
|
|
|
|
@ -589,117 +367,6 @@ static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
|
|
|
|
|
return alert;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static u32 get_read_idle_ctrl_shdw(u8 volt_ramp)
|
|
|
|
|
{
|
|
|
|
|
u32 idle = 0, val = 0;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Maximum value in normal conditions and increased frequency
|
|
|
|
|
* when voltage is ramping
|
|
|
|
|
*/
|
|
|
|
|
if (volt_ramp)
|
|
|
|
|
val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1;
|
|
|
|
|
else
|
|
|
|
|
val = 0x1FF;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* READ_IDLE_CTRL register in EMIF4D has same offset and fields
|
|
|
|
|
* as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts
|
|
|
|
|
*/
|
|
|
|
|
idle |= val << DLL_CALIB_INTERVAL_SHIFT;
|
|
|
|
|
idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT;
|
|
|
|
|
|
|
|
|
|
return idle;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp)
|
|
|
|
|
{
|
|
|
|
|
u32 calib = 0, val = 0;
|
|
|
|
|
|
|
|
|
|
if (volt_ramp == DDR_VOLTAGE_RAMPING)
|
|
|
|
|
val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1;
|
|
|
|
|
else
|
|
|
|
|
val = 0; /* Disabled when voltage is stable */
|
|
|
|
|
|
|
|
|
|
calib |= val << DLL_CALIB_INTERVAL_SHIFT;
|
|
|
|
|
calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT;
|
|
|
|
|
|
|
|
|
|
return calib;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings,
|
|
|
|
|
u32 freq, u8 RL)
|
|
|
|
|
{
|
|
|
|
|
u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0;
|
|
|
|
|
|
|
|
|
|
val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1;
|
|
|
|
|
phy |= val << READ_LATENCY_SHIFT_4D;
|
|
|
|
|
|
|
|
|
|
if (freq <= 100000000)
|
|
|
|
|
val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY;
|
|
|
|
|
else if (freq <= 200000000)
|
|
|
|
|
val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY;
|
|
|
|
|
else
|
|
|
|
|
val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY;
|
|
|
|
|
|
|
|
|
|
phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D;
|
|
|
|
|
|
|
|
|
|
return phy;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl)
|
|
|
|
|
{
|
|
|
|
|
u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* DLL operates at 266 MHz. If DDR frequency is near 266 MHz,
|
|
|
|
|
* half-delay is not needed else set half-delay
|
|
|
|
|
*/
|
|
|
|
|
if (freq >= 265000000 && freq < 267000000)
|
|
|
|
|
half_delay = 0;
|
|
|
|
|
else
|
|
|
|
|
half_delay = 1;
|
|
|
|
|
|
|
|
|
|
phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5;
|
|
|
|
|
phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS,
|
|
|
|
|
t_ck) - 1) << READ_LATENCY_SHIFT_4D5);
|
|
|
|
|
|
|
|
|
|
return phy;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void)
|
|
|
|
|
{
|
|
|
|
|
u32 fifo_we_slave_ratio;
|
|
|
|
|
|
|
|
|
|
fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
|
|
|
|
|
EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256, t_ck);
|
|
|
|
|
|
|
|
|
|
return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 |
|
|
|
|
|
fifo_we_slave_ratio << 22;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void)
|
|
|
|
|
{
|
|
|
|
|
u32 fifo_we_slave_ratio;
|
|
|
|
|
|
|
|
|
|
fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
|
|
|
|
|
EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256, t_ck);
|
|
|
|
|
|
|
|
|
|
return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 |
|
|
|
|
|
fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void)
|
|
|
|
|
{
|
|
|
|
|
u32 fifo_we_slave_ratio;
|
|
|
|
|
|
|
|
|
|
fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
|
|
|
|
|
EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256, t_ck);
|
|
|
|
|
|
|
|
|
|
return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 |
|
|
|
|
|
fifo_we_slave_ratio << 13;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
|
|
|
|
|
{
|
|
|
|
|
u32 pwr_mgmt_ctrl = 0, timeout;
|
|
|
|
@ -821,51 +488,6 @@ static void get_temperature_level(struct emif_data *emif)
|
|
|
|
|
emif->temperature_level = temperature_level;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Program EMIF shadow registers that are not dependent on temperature
|
|
|
|
|
* or voltage
|
|
|
|
|
*/
|
|
|
|
|
static void setup_registers(struct emif_data *emif, struct emif_regs *regs)
|
|
|
|
|
{
|
|
|
|
|
void __iomem *base = emif->base;
|
|
|
|
|
|
|
|
|
|
writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW);
|
|
|
|
|
writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW);
|
|
|
|
|
writel(regs->pwr_mgmt_ctrl_shdw,
|
|
|
|
|
base + EMIF_POWER_MANAGEMENT_CTRL_SHDW);
|
|
|
|
|
|
|
|
|
|
/* Settings specific for EMIF4D5 */
|
|
|
|
|
if (emif->plat_data->ip_rev != EMIF_4D5)
|
|
|
|
|
return;
|
|
|
|
|
writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW);
|
|
|
|
|
writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW);
|
|
|
|
|
writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* When voltage ramps dll calibration and forced read idle should
|
|
|
|
|
* happen more often
|
|
|
|
|
*/
|
|
|
|
|
static void setup_volt_sensitive_regs(struct emif_data *emif,
|
|
|
|
|
struct emif_regs *regs, u32 volt_state)
|
|
|
|
|
{
|
|
|
|
|
u32 calib_ctrl;
|
|
|
|
|
void __iomem *base = emif->base;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as
|
|
|
|
|
* EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_*
|
|
|
|
|
* is an alias of the respective read_idle_ctrl_shdw_* (members of
|
|
|
|
|
* a union). So, the below code takes care of both cases
|
|
|
|
|
*/
|
|
|
|
|
if (volt_state == DDR_VOLTAGE_RAMPING)
|
|
|
|
|
calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp;
|
|
|
|
|
else
|
|
|
|
|
calib_ctrl = regs->dll_calib_ctrl_shdw_normal;
|
|
|
|
|
|
|
|
|
|
writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* setup_temperature_sensitive_regs() - set the timings for temperature
|
|
|
|
|
* sensitive registers. This happens once at initialisation time based
|
|
|
|
@ -1508,7 +1130,6 @@ static int __init_or_module emif_probe(struct platform_device *pdev)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
list_add(&emif->node, &device_list);
|
|
|
|
|
emif->addressing = get_addressing_table(emif->plat_data->device_info);
|
|
|
|
|
|
|
|
|
|
/* Save pointers to each other in emif and device structures */
|
|
|
|
|
emif->dev = &pdev->dev;
|
|
|
|
@ -1563,305 +1184,6 @@ static void emif_shutdown(struct platform_device *pdev)
|
|
|
|
|
disable_and_clear_all_interrupts(emif);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static int get_emif_reg_values(struct emif_data *emif, u32 freq,
|
|
|
|
|
struct emif_regs *regs)
|
|
|
|
|
{
|
|
|
|
|
u32 ip_rev, phy_type;
|
|
|
|
|
u32 cl, type;
|
|
|
|
|
const struct lpddr2_timings *timings;
|
|
|
|
|
const struct lpddr2_min_tck *min_tck;
|
|
|
|
|
const struct ddr_device_info *device_info;
|
|
|
|
|
const struct lpddr2_addressing *addressing;
|
|
|
|
|
struct emif_data *emif_for_calc;
|
|
|
|
|
struct device *dev;
|
|
|
|
|
|
|
|
|
|
dev = emif->dev;
|
|
|
|
|
/*
|
|
|
|
|
* If the devices on this EMIF instance is duplicate of EMIF1,
|
|
|
|
|
* use EMIF1 details for the calculation
|
|
|
|
|
*/
|
|
|
|
|
emif_for_calc = emif->duplicate ? emif1 : emif;
|
|
|
|
|
timings = get_timings_table(emif_for_calc, freq);
|
|
|
|
|
addressing = emif_for_calc->addressing;
|
|
|
|
|
if (!timings || !addressing) {
|
|
|
|
|
dev_err(dev, "%s: not enough data available for %dHz",
|
|
|
|
|
__func__, freq);
|
|
|
|
|
return -1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
device_info = emif_for_calc->plat_data->device_info;
|
|
|
|
|
type = device_info->type;
|
|
|
|
|
ip_rev = emif_for_calc->plat_data->ip_rev;
|
|
|
|
|
phy_type = emif_for_calc->plat_data->phy_type;
|
|
|
|
|
|
|
|
|
|
min_tck = emif_for_calc->plat_data->min_tck;
|
|
|
|
|
|
|
|
|
|
set_ddr_clk_period(freq);
|
|
|
|
|
|
|
|
|
|
regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing);
|
|
|
|
|
regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck,
|
|
|
|
|
addressing);
|
|
|
|
|
regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck,
|
|
|
|
|
addressing, type);
|
|
|
|
|
regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck,
|
|
|
|
|
addressing, type, ip_rev, EMIF_NORMAL_TIMINGS);
|
|
|
|
|
|
|
|
|
|
cl = get_cl(emif);
|
|
|
|
|
|
|
|
|
|
if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) {
|
|
|
|
|
regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d(
|
|
|
|
|
timings, freq, cl);
|
|
|
|
|
} else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) {
|
|
|
|
|
regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl);
|
|
|
|
|
regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5();
|
|
|
|
|
regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5();
|
|
|
|
|
regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5();
|
|
|
|
|
} else {
|
|
|
|
|
return -1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Only timeout values in pwr_mgmt_ctrl_shdw register */
|
|
|
|
|
regs->pwr_mgmt_ctrl_shdw =
|
|
|
|
|
get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) &
|
|
|
|
|
(CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK);
|
|
|
|
|
|
|
|
|
|
if (ip_rev & EMIF_4D) {
|
|
|
|
|
regs->read_idle_ctrl_shdw_normal =
|
|
|
|
|
get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE);
|
|
|
|
|
|
|
|
|
|
regs->read_idle_ctrl_shdw_volt_ramp =
|
|
|
|
|
get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING);
|
|
|
|
|
} else if (ip_rev & EMIF_4D5) {
|
|
|
|
|
regs->dll_calib_ctrl_shdw_normal =
|
|
|
|
|
get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE);
|
|
|
|
|
|
|
|
|
|
regs->dll_calib_ctrl_shdw_volt_ramp =
|
|
|
|
|
get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
|
|
|
|
|
regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4,
|
|
|
|
|
addressing);
|
|
|
|
|
|
|
|
|
|
regs->sdram_tim1_shdw_derated =
|
|
|
|
|
get_sdram_tim_1_shdw_derated(timings, min_tck,
|
|
|
|
|
addressing);
|
|
|
|
|
|
|
|
|
|
regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings,
|
|
|
|
|
min_tck, addressing, type, ip_rev,
|
|
|
|
|
EMIF_DERATED_TIMINGS);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
regs->freq = freq;
|
|
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* get_regs() - gets the cached emif_regs structure for a given EMIF instance
|
|
|
|
|
* given frequency(freq):
|
|
|
|
|
*
|
|
|
|
|
* As an optimisation, every EMIF instance other than EMIF1 shares the
|
|
|
|
|
* register cache with EMIF1 if the devices connected on this instance
|
|
|
|
|
* are same as that on EMIF1(indicated by the duplicate flag)
|
|
|
|
|
*
|
|
|
|
|
* If we do not have an entry corresponding to the frequency given, we
|
|
|
|
|
* allocate a new entry and calculate the values
|
|
|
|
|
*
|
|
|
|
|
* Upon finding the right reg dump, save it in curr_regs. It can be
|
|
|
|
|
* directly used for thermal de-rating and voltage ramping changes.
|
|
|
|
|
*/
|
|
|
|
|
static struct emif_regs *get_regs(struct emif_data *emif, u32 freq)
|
|
|
|
|
{
|
|
|
|
|
int i;
|
|
|
|
|
struct emif_regs **regs_cache;
|
|
|
|
|
struct emif_regs *regs = NULL;
|
|
|
|
|
struct device *dev;
|
|
|
|
|
|
|
|
|
|
dev = emif->dev;
|
|
|
|
|
if (emif->curr_regs && emif->curr_regs->freq == freq) {
|
|
|
|
|
dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq);
|
|
|
|
|
return emif->curr_regs;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (emif->duplicate)
|
|
|
|
|
regs_cache = emif1->regs_cache;
|
|
|
|
|
else
|
|
|
|
|
regs_cache = emif->regs_cache;
|
|
|
|
|
|
|
|
|
|
for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
|
|
|
|
|
if (regs_cache[i]->freq == freq) {
|
|
|
|
|
regs = regs_cache[i];
|
|
|
|
|
dev_dbg(dev,
|
|
|
|
|
"%s: reg dump found in reg cache for %u Hz\n",
|
|
|
|
|
__func__, freq);
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* If we don't have an entry for this frequency in the cache create one
|
|
|
|
|
* and calculate the values
|
|
|
|
|
*/
|
|
|
|
|
if (!regs) {
|
|
|
|
|
regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC);
|
|
|
|
|
if (!regs)
|
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
|
|
if (get_emif_reg_values(emif, freq, regs)) {
|
|
|
|
|
devm_kfree(emif->dev, regs);
|
|
|
|
|
return NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Now look for an un-used entry in the cache and save the
|
|
|
|
|
* newly created struct. If there are no free entries
|
|
|
|
|
* over-write the last entry
|
|
|
|
|
*/
|
|
|
|
|
for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++)
|
|
|
|
|
;
|
|
|
|
|
|
|
|
|
|
if (i >= EMIF_MAX_NUM_FREQUENCIES) {
|
|
|
|
|
dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n",
|
|
|
|
|
__func__);
|
|
|
|
|
i = EMIF_MAX_NUM_FREQUENCIES - 1;
|
|
|
|
|
devm_kfree(emif->dev, regs_cache[i]);
|
|
|
|
|
}
|
|
|
|
|
regs_cache[i] = regs;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return regs;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state)
|
|
|
|
|
{
|
|
|
|
|
dev_dbg(emif->dev, "%s: voltage notification : %d", __func__,
|
|
|
|
|
volt_state);
|
|
|
|
|
|
|
|
|
|
if (!emif->curr_regs) {
|
|
|
|
|
dev_err(emif->dev,
|
|
|
|
|
"%s: volt-notify before registers are ready: %d\n",
|
|
|
|
|
__func__, volt_state);
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* TODO: voltage notify handling should be hooked up to
|
|
|
|
|
* regulator framework as soon as the necessary support
|
|
|
|
|
* is available in mainline kernel. This function is un-used
|
|
|
|
|
* right now.
|
|
|
|
|
*/
|
|
|
|
|
static void __attribute__((unused)) volt_notify_handling(u32 volt_state)
|
|
|
|
|
{
|
|
|
|
|
struct emif_data *emif;
|
|
|
|
|
|
|
|
|
|
spin_lock_irqsave(&emif_lock, irq_state);
|
|
|
|
|
|
|
|
|
|
list_for_each_entry(emif, &device_list, node)
|
|
|
|
|
do_volt_notify_handling(emif, volt_state);
|
|
|
|
|
do_freq_update();
|
|
|
|
|
|
|
|
|
|
spin_unlock_irqrestore(&emif_lock, irq_state);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq)
|
|
|
|
|
{
|
|
|
|
|
struct emif_regs *regs;
|
|
|
|
|
|
|
|
|
|
regs = get_regs(emif, new_freq);
|
|
|
|
|
if (!regs)
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
emif->curr_regs = regs;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Update the shadow registers:
|
|
|
|
|
* Temperature and voltage-ramp sensitive settings are also configured
|
|
|
|
|
* in terms of DDR cycles. So, we need to update them too when there
|
|
|
|
|
* is a freq change
|
|
|
|
|
*/
|
|
|
|
|
dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz",
|
|
|
|
|
__func__, new_freq);
|
|
|
|
|
setup_registers(emif, regs);
|
|
|
|
|
setup_temperature_sensitive_regs(emif, regs);
|
|
|
|
|
setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE);
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Part of workaround for errata i728. See do_freq_update()
|
|
|
|
|
* for more details
|
|
|
|
|
*/
|
|
|
|
|
if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
|
|
|
|
|
set_lpmode(emif, EMIF_LP_MODE_DISABLE);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* TODO: frequency notify handling should be hooked up to
|
|
|
|
|
* clock framework as soon as the necessary support is
|
|
|
|
|
* available in mainline kernel. This function is un-used
|
|
|
|
|
* right now.
|
|
|
|
|
*/
|
|
|
|
|
static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq)
|
|
|
|
|
{
|
|
|
|
|
struct emif_data *emif;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* NOTE: we are taking the spin-lock here and releases it
|
|
|
|
|
* only in post-notifier. This doesn't look good and
|
|
|
|
|
* Sparse complains about it, but this seems to be
|
|
|
|
|
* un-avoidable. We need to lock a sequence of events
|
|
|
|
|
* that is split between EMIF and clock framework.
|
|
|
|
|
*
|
|
|
|
|
* 1. EMIF driver updates EMIF timings in shadow registers in the
|
|
|
|
|
* frequency pre-notify callback from clock framework
|
|
|
|
|
* 2. clock framework sets up the registers for the new frequency
|
|
|
|
|
* 3. clock framework initiates a hw-sequence that updates
|
|
|
|
|
* the frequency EMIF timings synchronously.
|
|
|
|
|
*
|
|
|
|
|
* All these 3 steps should be performed as an atomic operation
|
|
|
|
|
* vis-a-vis similar sequence in the EMIF interrupt handler
|
|
|
|
|
* for temperature events. Otherwise, there could be race
|
|
|
|
|
* conditions that could result in incorrect EMIF timings for
|
|
|
|
|
* a given frequency
|
|
|
|
|
*/
|
|
|
|
|
spin_lock_irqsave(&emif_lock, irq_state);
|
|
|
|
|
|
|
|
|
|
list_for_each_entry(emif, &device_list, node)
|
|
|
|
|
do_freq_pre_notify_handling(emif, new_freq);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void do_freq_post_notify_handling(struct emif_data *emif)
|
|
|
|
|
{
|
|
|
|
|
/*
|
|
|
|
|
* Part of workaround for errata i728. See do_freq_update()
|
|
|
|
|
* for more details
|
|
|
|
|
*/
|
|
|
|
|
if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
|
|
|
|
|
set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* TODO: frequency notify handling should be hooked up to
|
|
|
|
|
* clock framework as soon as the necessary support is
|
|
|
|
|
* available in mainline kernel. This function is un-used
|
|
|
|
|
* right now.
|
|
|
|
|
*/
|
|
|
|
|
static void __attribute__((unused)) freq_post_notify_handling(void)
|
|
|
|
|
{
|
|
|
|
|
struct emif_data *emif;
|
|
|
|
|
|
|
|
|
|
list_for_each_entry(emif, &device_list, node)
|
|
|
|
|
do_freq_post_notify_handling(emif);
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Lock is done in pre-notify handler. See freq_pre_notify_handling()
|
|
|
|
|
* for more details
|
|
|
|
|
*/
|
|
|
|
|
spin_unlock_irqrestore(&emif_lock, irq_state);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#if defined(CONFIG_OF)
|
|
|
|
|
static const struct of_device_id emif_of_match[] = {
|
|
|
|
|
{ .compatible = "ti,emif-4d" },
|
|
|
|
|