Memory controller drivers for v5.14

Several small fixes and cleanups for stm32, atmel, pl353, renesas-rpc,
 TI emif and fsl_ifc.
 -----BEGIN PGP SIGNATURE-----
 
 iQJEBAABCgAuFiEE3dJiKD0RGyM7briowTdm5oaLg9cFAmDDbCEQHGtyemtAa2Vy
 bmVsLm9yZwAKCRDBN2bmhouD1w8SD/9NL4uKzXbKMjwfjzBK89Pxe8DA2hJXUOQ7
 vEe2Qj+xbUZSsukmA0+02x6OIUfMUxqWbb0tBVPa3OTqDGQF5ghqHN2U2+wzbMDU
 BRvouEoRwlevzRFrz4pu0DRojDqWLzpros4HJ6qn/5/7sGtMdYMvzpjCSzQV1OUU
 8TSDAa4NcRlBqt/PXB9wHjObSFiI/XhXPG++DNP1Pht5H4KMBVAi6rmQzxj3Hdgr
 5uZ6GzkxRoVNeUPyQc1wohmBzLjHtJgIYeRUs8eLF7WL9jiyEu8S4LGB5HqbYkhh
 0px9r2HTP1nEQkLWXGXIjVYHUn9sEao9CbqO9YgFFQ8nv9ov6/v309iSjUMPP2Qp
 5NUP+Cveb7Z+5yXPKY9dqFpQ9DM2iNHyqrdusi169euIixT3lVWBKgU5e+LgvyGv
 r7EjjJc6XvU3ITiHylneOGICUzrtpr7gq/bt2mous6JuLhobekW8PeDgenfs9YRa
 G993ZcdnXgcrsw0tYMB5Y46XsL2+Rf46oPsRKQ2S8GqElznbUUYxfcRvb+iZBBaQ
 58X1oT/uqy2DgabUFhY453p3XqFrxXHLJPMb1W/7nqgVLAvYvajSxuWKr2XHybmg
 XR36V3paVXSZZ3uOgnT3I5R4Pyz4PAAtxZln3Lb/Gh0XfFTbhljV+ZaBYBMEu9Hf
 2Ub78fuR7Q==
 =yg0A
 -----END PGP SIGNATURE-----

Merge tag 'memory-controller-drv-5.14' of https://git.kernel.org/pub/scm/linux/kernel/git/krzk/linux-mem-ctrl into arm/drivers

Memory controller drivers for v5.14

Several small fixes and cleanups for stm32, atmel, pl353, renesas-rpc,
TI emif and fsl_ifc.

* tag 'memory-controller-drv-5.14' of https://git.kernel.org/pub/scm/linux/kernel/git/krzk/linux-mem-ctrl:
  memory: emif: remove unused frequency and voltage notifiers
  memory: fsl_ifc: fix leak of private memory on probe failure
  memory: fsl_ifc: fix leak of IO mapping on probe failure
  MAINTAINERS: memory: cover also header file
  memory: renesas-rpc-if: correct whitespace
  memory: pl353: Fix error return code in pl353_smc_probe()
  memory: atmel-ebi: add missing of_node_put for loop iteration
  memory: stm32-fmc2-ebi: add missing of_node_put for loop iteration

Link: https://lore.kernel.org/r/20210611140659.61980-1-krzysztof.kozlowski@canonical.com
Signed-off-by: Olof Johansson <olof@lixom.net>
This commit is contained in:
Olof Johansson 2021-06-12 08:52:34 -07:00
commit 1216037a55
7 changed files with 16 additions and 686 deletions

View File

@ -11796,6 +11796,7 @@ T: git git://git.kernel.org/pub/scm/linux/kernel/git/krzk/linux-mem-ctrl.git
F: Documentation/devicetree/bindings/memory-controllers/
F: drivers/memory/
F: include/dt-bindings/memory/
F: include/memory/
MEMORY FREQUENCY SCALING DRIVERS FOR NVIDIA TEGRA
M: Dmitry Osipenko <digetx@gmail.com>

View File

@ -600,8 +600,10 @@ static int atmel_ebi_probe(struct platform_device *pdev)
child);
ret = atmel_ebi_dev_disable(ebi, child);
if (ret)
if (ret) {
of_node_put(child);
return ret;
}
}
}

View File

@ -41,7 +41,6 @@
* @node: node in the device list
* @base: base address of memory-mapped IO registers.
* @dev: device pointer.
* @addressing table with addressing information from the spec
* @regs_cache: An array of 'struct emif_regs' that stores
* calculated register values for different
* frequencies, to avoid re-calculating them on
@ -61,7 +60,6 @@ struct emif_data {
unsigned long irq_state;
void __iomem *base;
struct device *dev;
const struct lpddr2_addressing *addressing;
struct emif_regs *regs_cache[EMIF_MAX_NUM_FREQUENCIES];
struct emif_regs *curr_regs;
struct emif_platform_data *plat_data;
@ -72,7 +70,6 @@ struct emif_data {
static struct emif_data *emif1;
static DEFINE_SPINLOCK(emif_lock);
static unsigned long irq_state;
static u32 t_ck; /* DDR clock period in ps */
static LIST_HEAD(device_list);
#ifdef CONFIG_DEBUG_FS
@ -169,15 +166,6 @@ static inline void __exit emif_debugfs_exit(struct emif_data *emif)
}
#endif
/*
* Calculate the period of DDR clock from frequency value
*/
static void set_ddr_clk_period(u32 freq)
{
/* Divide 10^12 by frequency to get period in ps */
t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq);
}
/*
* Get bus width used by EMIF. Note that this may be different from the
* bus width of the DDR devices used. For instance two 16-bit DDR devices
@ -196,19 +184,6 @@ static u32 get_emif_bus_width(struct emif_data *emif)
return width;
}
/*
* Get the CL from SDRAM_CONFIG register
*/
static u32 get_cl(struct emif_data *emif)
{
u32 cl;
void __iomem *base = emif->base;
cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT;
return cl;
}
static void set_lpmode(struct emif_data *emif, u8 lpmode)
{
u32 temp;
@ -328,203 +303,6 @@ static const struct lpddr2_addressing *get_addressing_table(
return &lpddr2_jedec_addressing_table[index];
}
/*
* Find the the right timing table from the array of timing
* tables of the device using DDR clock frequency
*/
static const struct lpddr2_timings *get_timings_table(struct emif_data *emif,
u32 freq)
{
u32 i, min, max, freq_nearest;
const struct lpddr2_timings *timings = NULL;
const struct lpddr2_timings *timings_arr = emif->plat_data->timings;
struct device *dev = emif->dev;
/* Start with a very high frequency - 1GHz */
freq_nearest = 1000000000;
/*
* Find the timings table such that:
* 1. the frequency range covers the required frequency(safe) AND
* 2. the max_freq is closest to the required frequency(optimal)
*/
for (i = 0; i < emif->plat_data->timings_arr_size; i++) {
max = timings_arr[i].max_freq;
min = timings_arr[i].min_freq;
if ((freq >= min) && (freq <= max) && (max < freq_nearest)) {
freq_nearest = max;
timings = &timings_arr[i];
}
}
if (!timings)
dev_err(dev, "%s: couldn't find timings for - %dHz\n",
__func__, freq);
dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n",
__func__, freq, freq_nearest);
return timings;
}
static u32 get_sdram_ref_ctrl_shdw(u32 freq,
const struct lpddr2_addressing *addressing)
{
u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi;
/* Scale down frequency and t_refi to avoid overflow */
freq_khz = freq / 1000;
t_refi = addressing->tREFI_ns / 100;
/*
* refresh rate to be set is 'tREFI(in us) * freq in MHz
* division by 10000 to account for change in units
*/
val = t_refi * freq_khz / 10000;
ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT;
return ref_ctrl_shdw;
}
static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings,
const struct lpddr2_min_tck *min_tck,
const struct lpddr2_addressing *addressing)
{
u32 tim1 = 0, val = 0;
val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
tim1 |= val << T_WTR_SHIFT;
if (addressing->num_banks == B8)
val = DIV_ROUND_UP(timings->tFAW, t_ck*4);
else
val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck));
tim1 |= (val - 1) << T_RRD_SHIFT;
val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1;
tim1 |= val << T_RC_SHIFT;
val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck));
tim1 |= (val - 1) << T_RAS_SHIFT;
val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
tim1 |= val << T_WR_SHIFT;
val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1;
tim1 |= val << T_RCD_SHIFT;
val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1;
tim1 |= val << T_RP_SHIFT;
return tim1;
}
static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings,
const struct lpddr2_min_tck *min_tck,
const struct lpddr2_addressing *addressing)
{
u32 tim1 = 0, val = 0;
val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
tim1 = val << T_WTR_SHIFT;
/*
* tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps
* to tFAW for de-rating
*/
if (addressing->num_banks == B8) {
val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1;
} else {
val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck);
val = max(min_tck->tRRD, val) - 1;
}
tim1 |= val << T_RRD_SHIFT;
val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck);
tim1 |= (val - 1) << T_RC_SHIFT;
val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck);
val = max(min_tck->tRASmin, val) - 1;
tim1 |= val << T_RAS_SHIFT;
val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
tim1 |= val << T_WR_SHIFT;
val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck));
tim1 |= (val - 1) << T_RCD_SHIFT;
val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck));
tim1 |= (val - 1) << T_RP_SHIFT;
return tim1;
}
static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings,
const struct lpddr2_min_tck *min_tck,
const struct lpddr2_addressing *addressing,
u32 type)
{
u32 tim2 = 0, val = 0;
val = min_tck->tCKE - 1;
tim2 |= val << T_CKE_SHIFT;
val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1;
tim2 |= val << T_RTP_SHIFT;
/* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */
val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1;
tim2 |= val << T_XSNR_SHIFT;
/* XSRD same as XSNR for LPDDR2 */
tim2 |= val << T_XSRD_SHIFT;
val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1;
tim2 |= val << T_XP_SHIFT;
return tim2;
}
static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings,
const struct lpddr2_min_tck *min_tck,
const struct lpddr2_addressing *addressing,
u32 type, u32 ip_rev, u32 derated)
{
u32 tim3 = 0, val = 0, t_dqsck;
val = timings->tRAS_max_ns / addressing->tREFI_ns - 1;
val = val > 0xF ? 0xF : val;
tim3 |= val << T_RAS_MAX_SHIFT;
val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1;
tim3 |= val << T_RFC_SHIFT;
t_dqsck = (derated == EMIF_DERATED_TIMINGS) ?
timings->tDQSCK_max_derated : timings->tDQSCK_max;
if (ip_rev == EMIF_4D5)
val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1;
else
val = DIV_ROUND_UP(t_dqsck, t_ck) - 1;
tim3 |= val << T_TDQSCKMAX_SHIFT;
val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1;
tim3 |= val << ZQ_ZQCS_SHIFT;
val = DIV_ROUND_UP(timings->tCKESR, t_ck);
val = max(min_tck->tCKESR, val) - 1;
tim3 |= val << T_CKESR_SHIFT;
if (ip_rev == EMIF_4D5) {
tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT;
val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1;
tim3 |= val << T_PDLL_UL_SHIFT;
}
return tim3;
}
static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
bool cs1_used, bool cal_resistors_per_cs)
{
@ -589,117 +367,6 @@ static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
return alert;
}
static u32 get_read_idle_ctrl_shdw(u8 volt_ramp)
{
u32 idle = 0, val = 0;
/*
* Maximum value in normal conditions and increased frequency
* when voltage is ramping
*/
if (volt_ramp)
val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1;
else
val = 0x1FF;
/*
* READ_IDLE_CTRL register in EMIF4D has same offset and fields
* as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts
*/
idle |= val << DLL_CALIB_INTERVAL_SHIFT;
idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT;
return idle;
}
static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp)
{
u32 calib = 0, val = 0;
if (volt_ramp == DDR_VOLTAGE_RAMPING)
val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1;
else
val = 0; /* Disabled when voltage is stable */
calib |= val << DLL_CALIB_INTERVAL_SHIFT;
calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT;
return calib;
}
static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings,
u32 freq, u8 RL)
{
u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0;
val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1;
phy |= val << READ_LATENCY_SHIFT_4D;
if (freq <= 100000000)
val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY;
else if (freq <= 200000000)
val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY;
else
val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY;
phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D;
return phy;
}
static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl)
{
u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay;
/*
* DLL operates at 266 MHz. If DDR frequency is near 266 MHz,
* half-delay is not needed else set half-delay
*/
if (freq >= 265000000 && freq < 267000000)
half_delay = 0;
else
half_delay = 1;
phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5;
phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS,
t_ck) - 1) << READ_LATENCY_SHIFT_4D5);
return phy;
}
static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void)
{
u32 fifo_we_slave_ratio;
fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256, t_ck);
return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 |
fifo_we_slave_ratio << 22;
}
static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void)
{
u32 fifo_we_slave_ratio;
fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256, t_ck);
return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 |
fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23;
}
static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void)
{
u32 fifo_we_slave_ratio;
fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256, t_ck);
return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 |
fifo_we_slave_ratio << 13;
}
static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
{
u32 pwr_mgmt_ctrl = 0, timeout;
@ -821,51 +488,6 @@ static void get_temperature_level(struct emif_data *emif)
emif->temperature_level = temperature_level;
}
/*
* Program EMIF shadow registers that are not dependent on temperature
* or voltage
*/
static void setup_registers(struct emif_data *emif, struct emif_regs *regs)
{
void __iomem *base = emif->base;
writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW);
writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW);
writel(regs->pwr_mgmt_ctrl_shdw,
base + EMIF_POWER_MANAGEMENT_CTRL_SHDW);
/* Settings specific for EMIF4D5 */
if (emif->plat_data->ip_rev != EMIF_4D5)
return;
writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW);
writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW);
writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW);
}
/*
* When voltage ramps dll calibration and forced read idle should
* happen more often
*/
static void setup_volt_sensitive_regs(struct emif_data *emif,
struct emif_regs *regs, u32 volt_state)
{
u32 calib_ctrl;
void __iomem *base = emif->base;
/*
* EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as
* EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_*
* is an alias of the respective read_idle_ctrl_shdw_* (members of
* a union). So, the below code takes care of both cases
*/
if (volt_state == DDR_VOLTAGE_RAMPING)
calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp;
else
calib_ctrl = regs->dll_calib_ctrl_shdw_normal;
writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW);
}
/*
* setup_temperature_sensitive_regs() - set the timings for temperature
* sensitive registers. This happens once at initialisation time based
@ -1508,7 +1130,6 @@ static int __init_or_module emif_probe(struct platform_device *pdev)
}
list_add(&emif->node, &device_list);
emif->addressing = get_addressing_table(emif->plat_data->device_info);
/* Save pointers to each other in emif and device structures */
emif->dev = &pdev->dev;
@ -1563,305 +1184,6 @@ static void emif_shutdown(struct platform_device *pdev)
disable_and_clear_all_interrupts(emif);
}
static int get_emif_reg_values(struct emif_data *emif, u32 freq,
struct emif_regs *regs)
{
u32 ip_rev, phy_type;
u32 cl, type;
const struct lpddr2_timings *timings;
const struct lpddr2_min_tck *min_tck;
const struct ddr_device_info *device_info;
const struct lpddr2_addressing *addressing;
struct emif_data *emif_for_calc;
struct device *dev;
dev = emif->dev;
/*
* If the devices on this EMIF instance is duplicate of EMIF1,
* use EMIF1 details for the calculation
*/
emif_for_calc = emif->duplicate ? emif1 : emif;
timings = get_timings_table(emif_for_calc, freq);
addressing = emif_for_calc->addressing;
if (!timings || !addressing) {
dev_err(dev, "%s: not enough data available for %dHz",
__func__, freq);
return -1;
}
device_info = emif_for_calc->plat_data->device_info;
type = device_info->type;
ip_rev = emif_for_calc->plat_data->ip_rev;
phy_type = emif_for_calc->plat_data->phy_type;
min_tck = emif_for_calc->plat_data->min_tck;
set_ddr_clk_period(freq);
regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing);
regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck,
addressing);
regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck,
addressing, type);
regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck,
addressing, type, ip_rev, EMIF_NORMAL_TIMINGS);
cl = get_cl(emif);
if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) {
regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d(
timings, freq, cl);
} else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) {
regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl);
regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5();
regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5();
regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5();
} else {
return -1;
}
/* Only timeout values in pwr_mgmt_ctrl_shdw register */
regs->pwr_mgmt_ctrl_shdw =
get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) &
(CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK);
if (ip_rev & EMIF_4D) {
regs->read_idle_ctrl_shdw_normal =
get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE);
regs->read_idle_ctrl_shdw_volt_ramp =
get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING);
} else if (ip_rev & EMIF_4D5) {
regs->dll_calib_ctrl_shdw_normal =
get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE);
regs->dll_calib_ctrl_shdw_volt_ramp =
get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING);
}
if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4,
addressing);
regs->sdram_tim1_shdw_derated =
get_sdram_tim_1_shdw_derated(timings, min_tck,
addressing);
regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings,
min_tck, addressing, type, ip_rev,
EMIF_DERATED_TIMINGS);
}
regs->freq = freq;
return 0;
}
/*
* get_regs() - gets the cached emif_regs structure for a given EMIF instance
* given frequency(freq):
*
* As an optimisation, every EMIF instance other than EMIF1 shares the
* register cache with EMIF1 if the devices connected on this instance
* are same as that on EMIF1(indicated by the duplicate flag)
*
* If we do not have an entry corresponding to the frequency given, we
* allocate a new entry and calculate the values
*
* Upon finding the right reg dump, save it in curr_regs. It can be
* directly used for thermal de-rating and voltage ramping changes.
*/
static struct emif_regs *get_regs(struct emif_data *emif, u32 freq)
{
int i;
struct emif_regs **regs_cache;
struct emif_regs *regs = NULL;
struct device *dev;
dev = emif->dev;
if (emif->curr_regs && emif->curr_regs->freq == freq) {
dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq);
return emif->curr_regs;
}
if (emif->duplicate)
regs_cache = emif1->regs_cache;
else
regs_cache = emif->regs_cache;
for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
if (regs_cache[i]->freq == freq) {
regs = regs_cache[i];
dev_dbg(dev,
"%s: reg dump found in reg cache for %u Hz\n",
__func__, freq);
break;
}
}
/*
* If we don't have an entry for this frequency in the cache create one
* and calculate the values
*/
if (!regs) {
regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC);
if (!regs)
return NULL;
if (get_emif_reg_values(emif, freq, regs)) {
devm_kfree(emif->dev, regs);
return NULL;
}
/*
* Now look for an un-used entry in the cache and save the
* newly created struct. If there are no free entries
* over-write the last entry
*/
for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++)
;
if (i >= EMIF_MAX_NUM_FREQUENCIES) {
dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n",
__func__);
i = EMIF_MAX_NUM_FREQUENCIES - 1;
devm_kfree(emif->dev, regs_cache[i]);
}
regs_cache[i] = regs;
}
return regs;
}
static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state)
{
dev_dbg(emif->dev, "%s: voltage notification : %d", __func__,
volt_state);
if (!emif->curr_regs) {
dev_err(emif->dev,
"%s: volt-notify before registers are ready: %d\n",
__func__, volt_state);
return;
}
setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state);
}
/*
* TODO: voltage notify handling should be hooked up to
* regulator framework as soon as the necessary support
* is available in mainline kernel. This function is un-used
* right now.
*/
static void __attribute__((unused)) volt_notify_handling(u32 volt_state)
{
struct emif_data *emif;
spin_lock_irqsave(&emif_lock, irq_state);
list_for_each_entry(emif, &device_list, node)
do_volt_notify_handling(emif, volt_state);
do_freq_update();
spin_unlock_irqrestore(&emif_lock, irq_state);
}
static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq)
{
struct emif_regs *regs;
regs = get_regs(emif, new_freq);
if (!regs)
return;
emif->curr_regs = regs;
/*
* Update the shadow registers:
* Temperature and voltage-ramp sensitive settings are also configured
* in terms of DDR cycles. So, we need to update them too when there
* is a freq change
*/
dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz",
__func__, new_freq);
setup_registers(emif, regs);
setup_temperature_sensitive_regs(emif, regs);
setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE);
/*
* Part of workaround for errata i728. See do_freq_update()
* for more details
*/
if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
set_lpmode(emif, EMIF_LP_MODE_DISABLE);
}
/*
* TODO: frequency notify handling should be hooked up to
* clock framework as soon as the necessary support is
* available in mainline kernel. This function is un-used
* right now.
*/
static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq)
{
struct emif_data *emif;
/*
* NOTE: we are taking the spin-lock here and releases it
* only in post-notifier. This doesn't look good and
* Sparse complains about it, but this seems to be
* un-avoidable. We need to lock a sequence of events
* that is split between EMIF and clock framework.
*
* 1. EMIF driver updates EMIF timings in shadow registers in the
* frequency pre-notify callback from clock framework
* 2. clock framework sets up the registers for the new frequency
* 3. clock framework initiates a hw-sequence that updates
* the frequency EMIF timings synchronously.
*
* All these 3 steps should be performed as an atomic operation
* vis-a-vis similar sequence in the EMIF interrupt handler
* for temperature events. Otherwise, there could be race
* conditions that could result in incorrect EMIF timings for
* a given frequency
*/
spin_lock_irqsave(&emif_lock, irq_state);
list_for_each_entry(emif, &device_list, node)
do_freq_pre_notify_handling(emif, new_freq);
}
static void do_freq_post_notify_handling(struct emif_data *emif)
{
/*
* Part of workaround for errata i728. See do_freq_update()
* for more details
*/
if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
}
/*
* TODO: frequency notify handling should be hooked up to
* clock framework as soon as the necessary support is
* available in mainline kernel. This function is un-used
* right now.
*/
static void __attribute__((unused)) freq_post_notify_handling(void)
{
struct emif_data *emif;
list_for_each_entry(emif, &device_list, node)
do_freq_post_notify_handling(emif);
/*
* Lock is done in pre-notify handler. See freq_pre_notify_handling()
* for more details
*/
spin_unlock_irqrestore(&emif_lock, irq_state);
}
#if defined(CONFIG_OF)
static const struct of_device_id emif_of_match[] = {
{ .compatible = "ti,emif-4d" },

View File

@ -97,7 +97,6 @@ static int fsl_ifc_ctrl_remove(struct platform_device *dev)
iounmap(ctrl->gregs);
dev_set_drvdata(&dev->dev, NULL);
kfree(ctrl);
return 0;
}
@ -209,7 +208,8 @@ static int fsl_ifc_ctrl_probe(struct platform_device *dev)
dev_info(&dev->dev, "Freescale Integrated Flash Controller\n");
fsl_ifc_ctrl_dev = kzalloc(sizeof(*fsl_ifc_ctrl_dev), GFP_KERNEL);
fsl_ifc_ctrl_dev = devm_kzalloc(&dev->dev, sizeof(*fsl_ifc_ctrl_dev),
GFP_KERNEL);
if (!fsl_ifc_ctrl_dev)
return -ENOMEM;
@ -219,8 +219,7 @@ static int fsl_ifc_ctrl_probe(struct platform_device *dev)
fsl_ifc_ctrl_dev->gregs = of_iomap(dev->dev.of_node, 0);
if (!fsl_ifc_ctrl_dev->gregs) {
dev_err(&dev->dev, "failed to get memory region\n");
ret = -ENODEV;
goto err;
return -ENODEV;
}
if (of_property_read_bool(dev->dev.of_node, "little-endian")) {
@ -295,6 +294,7 @@ static int fsl_ifc_ctrl_probe(struct platform_device *dev)
free_irq(fsl_ifc_ctrl_dev->irq, fsl_ifc_ctrl_dev);
irq_dispose_mapping(fsl_ifc_ctrl_dev->irq);
err:
iounmap(fsl_ifc_ctrl_dev->gregs);
return ret;
}

View File

@ -407,6 +407,7 @@ static int pl353_smc_probe(struct amba_device *adev, const struct amba_id *id)
break;
}
if (!match) {
err = -ENODEV;
dev_err(&adev->dev, "no matching children\n");
goto out_clk_disable;
}

View File

@ -1048,16 +1048,19 @@ static int stm32_fmc2_ebi_parse_dt(struct stm32_fmc2_ebi *ebi)
if (ret) {
dev_err(dev, "could not retrieve reg property: %d\n",
ret);
of_node_put(child);
return ret;
}
if (bank >= FMC2_MAX_BANKS) {
dev_err(dev, "invalid reg value: %d\n", bank);
of_node_put(child);
return -EINVAL;
}
if (ebi->bank_assigned & BIT(bank)) {
dev_err(dev, "bank already assigned: %d\n", bank);
of_node_put(child);
return -EINVAL;
}
@ -1066,6 +1069,7 @@ static int stm32_fmc2_ebi_parse_dt(struct stm32_fmc2_ebi *ebi)
if (ret) {
dev_err(dev, "setup chip select %d failed: %d\n",
bank, ret);
of_node_put(child);
return ret;
}
}

View File

@ -19,7 +19,7 @@ enum rpcif_data_dir {
RPCIF_DATA_OUT,
};
struct rpcif_op {
struct rpcif_op {
struct {
u8 buswidth;
u8 opcode;
@ -57,7 +57,7 @@ struct rpcif_op {
} data;
};
struct rpcif {
struct rpcif {
struct device *dev;
void __iomem *dirmap;
struct regmap *regmap;
@ -76,7 +76,7 @@ struct rpcif {
u32 ddr; /* DRDRENR or SMDRENR */
};
int rpcif_sw_init(struct rpcif *rpc, struct device *dev);
int rpcif_sw_init(struct rpcif *rpc, struct device *dev);
void rpcif_hw_init(struct rpcif *rpc, bool hyperflash);
void rpcif_prepare(struct rpcif *rpc, const struct rpcif_op *op, u64 *offs,
size_t *len);