Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net

Lots of overlapping changes and parallel additions, stuff
like that.

Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
David S. Miller 2019-11-16 18:47:31 -08:00
commit 19b7e21c55
245 changed files with 3698 additions and 1069 deletions

View File

@ -108,6 +108,10 @@ Jason Gunthorpe <jgg@ziepe.ca> <jgg@mellanox.com>
Jason Gunthorpe <jgg@ziepe.ca> <jgunthorpe@obsidianresearch.com>
Javi Merino <javi.merino@kernel.org> <javi.merino@arm.com>
<javier@osg.samsung.com> <javier.martinez@collabora.co.uk>
Jayachandran C <c.jayachandran@gmail.com> <jayachandranc@netlogicmicro.com>
Jayachandran C <c.jayachandran@gmail.com> <jchandra@broadcom.com>
Jayachandran C <c.jayachandran@gmail.com> <jchandra@digeo.com>
Jayachandran C <c.jayachandran@gmail.com> <jnair@caviumnetworks.com>
Jean Tourrilhes <jt@hpl.hp.com>
<jean-philippe@linaro.org> <jean-philippe.brucker@arm.com>
Jeff Garzik <jgarzik@pretzel.yyz.us>

View File

@ -486,6 +486,8 @@ What: /sys/devices/system/cpu/vulnerabilities
/sys/devices/system/cpu/vulnerabilities/spec_store_bypass
/sys/devices/system/cpu/vulnerabilities/l1tf
/sys/devices/system/cpu/vulnerabilities/mds
/sys/devices/system/cpu/vulnerabilities/tsx_async_abort
/sys/devices/system/cpu/vulnerabilities/itlb_multihit
Date: January 2018
Contact: Linux kernel mailing list <linux-kernel@vger.kernel.org>
Description: Information about CPU vulnerabilities

View File

@ -12,3 +12,5 @@ are configurable at compile, boot or run time.
spectre
l1tf
mds
tsx_async_abort
multihit.rst

View File

@ -0,0 +1,163 @@
iTLB multihit
=============
iTLB multihit is an erratum where some processors may incur a machine check
error, possibly resulting in an unrecoverable CPU lockup, when an
instruction fetch hits multiple entries in the instruction TLB. This can
occur when the page size is changed along with either the physical address
or cache type. A malicious guest running on a virtualized system can
exploit this erratum to perform a denial of service attack.
Affected processors
-------------------
Variations of this erratum are present on most Intel Core and Xeon processor
models. The erratum is not present on:
- non-Intel processors
- Some Atoms (Airmont, Bonnell, Goldmont, GoldmontPlus, Saltwell, Silvermont)
- Intel processors that have the PSCHANGE_MC_NO bit set in the
IA32_ARCH_CAPABILITIES MSR.
Related CVEs
------------
The following CVE entry is related to this issue:
============== =================================================
CVE-2018-12207 Machine Check Error Avoidance on Page Size Change
============== =================================================
Problem
-------
Privileged software, including OS and virtual machine managers (VMM), are in
charge of memory management. A key component in memory management is the control
of the page tables. Modern processors use virtual memory, a technique that creates
the illusion of a very large memory for processors. This virtual space is split
into pages of a given size. Page tables translate virtual addresses to physical
addresses.
To reduce latency when performing a virtual to physical address translation,
processors include a structure, called TLB, that caches recent translations.
There are separate TLBs for instruction (iTLB) and data (dTLB).
Under this errata, instructions are fetched from a linear address translated
using a 4 KB translation cached in the iTLB. Privileged software modifies the
paging structure so that the same linear address using large page size (2 MB, 4
MB, 1 GB) with a different physical address or memory type. After the page
structure modification but before the software invalidates any iTLB entries for
the linear address, a code fetch that happens on the same linear address may
cause a machine-check error which can result in a system hang or shutdown.
Attack scenarios
----------------
Attacks against the iTLB multihit erratum can be mounted from malicious
guests in a virtualized system.
iTLB multihit system information
--------------------------------
The Linux kernel provides a sysfs interface to enumerate the current iTLB
multihit status of the system:whether the system is vulnerable and which
mitigations are active. The relevant sysfs file is:
/sys/devices/system/cpu/vulnerabilities/itlb_multihit
The possible values in this file are:
.. list-table::
* - Not affected
- The processor is not vulnerable.
* - KVM: Mitigation: Split huge pages
- Software changes mitigate this issue.
* - KVM: Vulnerable
- The processor is vulnerable, but no mitigation enabled
Enumeration of the erratum
--------------------------------
A new bit has been allocated in the IA32_ARCH_CAPABILITIES (PSCHANGE_MC_NO) msr
and will be set on CPU's which are mitigated against this issue.
======================================= =========== ===============================
IA32_ARCH_CAPABILITIES MSR Not present Possibly vulnerable,check model
IA32_ARCH_CAPABILITIES[PSCHANGE_MC_NO] '0' Likely vulnerable,check model
IA32_ARCH_CAPABILITIES[PSCHANGE_MC_NO] '1' Not vulnerable
======================================= =========== ===============================
Mitigation mechanism
-------------------------
This erratum can be mitigated by restricting the use of large page sizes to
non-executable pages. This forces all iTLB entries to be 4K, and removes
the possibility of multiple hits.
In order to mitigate the vulnerability, KVM initially marks all huge pages
as non-executable. If the guest attempts to execute in one of those pages,
the page is broken down into 4K pages, which are then marked executable.
If EPT is disabled or not available on the host, KVM is in control of TLB
flushes and the problematic situation cannot happen. However, the shadow
EPT paging mechanism used by nested virtualization is vulnerable, because
the nested guest can trigger multiple iTLB hits by modifying its own
(non-nested) page tables. For simplicity, KVM will make large pages
non-executable in all shadow paging modes.
Mitigation control on the kernel command line and KVM - module parameter
------------------------------------------------------------------------
The KVM hypervisor mitigation mechanism for marking huge pages as
non-executable can be controlled with a module parameter "nx_huge_pages=".
The kernel command line allows to control the iTLB multihit mitigations at
boot time with the option "kvm.nx_huge_pages=".
The valid arguments for these options are:
========== ================================================================
force Mitigation is enabled. In this case, the mitigation implements
non-executable huge pages in Linux kernel KVM module. All huge
pages in the EPT are marked as non-executable.
If a guest attempts to execute in one of those pages, the page is
broken down into 4K pages, which are then marked executable.
off Mitigation is disabled.
auto Enable mitigation only if the platform is affected and the kernel
was not booted with the "mitigations=off" command line parameter.
This is the default option.
========== ================================================================
Mitigation selection guide
--------------------------
1. No virtualization in use
^^^^^^^^^^^^^^^^^^^^^^^^^^^
The system is protected by the kernel unconditionally and no further
action is required.
2. Virtualization with trusted guests
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If the guest comes from a trusted source, you may assume that the guest will
not attempt to maliciously exploit these errata and no further action is
required.
3. Virtualization with untrusted guests
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If the guest comes from an untrusted source, the guest host kernel will need
to apply iTLB multihit mitigation via the kernel command line or kvm
module parameter.

View File

@ -0,0 +1,276 @@
.. SPDX-License-Identifier: GPL-2.0
TAA - TSX Asynchronous Abort
======================================
TAA is a hardware vulnerability that allows unprivileged speculative access to
data which is available in various CPU internal buffers by using asynchronous
aborts within an Intel TSX transactional region.
Affected processors
-------------------
This vulnerability only affects Intel processors that support Intel
Transactional Synchronization Extensions (TSX) when the TAA_NO bit (bit 8)
is 0 in the IA32_ARCH_CAPABILITIES MSR. On processors where the MDS_NO bit
(bit 5) is 0 in the IA32_ARCH_CAPABILITIES MSR, the existing MDS mitigations
also mitigate against TAA.
Whether a processor is affected or not can be read out from the TAA
vulnerability file in sysfs. See :ref:`tsx_async_abort_sys_info`.
Related CVEs
------------
The following CVE entry is related to this TAA issue:
============== ===== ===================================================
CVE-2019-11135 TAA TSX Asynchronous Abort (TAA) condition on some
microprocessors utilizing speculative execution may
allow an authenticated user to potentially enable
information disclosure via a side channel with
local access.
============== ===== ===================================================
Problem
-------
When performing store, load or L1 refill operations, processors write
data into temporary microarchitectural structures (buffers). The data in
those buffers can be forwarded to load operations as an optimization.
Intel TSX is an extension to the x86 instruction set architecture that adds
hardware transactional memory support to improve performance of multi-threaded
software. TSX lets the processor expose and exploit concurrency hidden in an
application due to dynamically avoiding unnecessary synchronization.
TSX supports atomic memory transactions that are either committed (success) or
aborted. During an abort, operations that happened within the transactional region
are rolled back. An asynchronous abort takes place, among other options, when a
different thread accesses a cache line that is also used within the transactional
region when that access might lead to a data race.
Immediately after an uncompleted asynchronous abort, certain speculatively
executed loads may read data from those internal buffers and pass it to dependent
operations. This can be then used to infer the value via a cache side channel
attack.
Because the buffers are potentially shared between Hyper-Threads cross
Hyper-Thread attacks are possible.
The victim of a malicious actor does not need to make use of TSX. Only the
attacker needs to begin a TSX transaction and raise an asynchronous abort
which in turn potenitally leaks data stored in the buffers.
More detailed technical information is available in the TAA specific x86
architecture section: :ref:`Documentation/x86/tsx_async_abort.rst <tsx_async_abort>`.
Attack scenarios
----------------
Attacks against the TAA vulnerability can be implemented from unprivileged
applications running on hosts or guests.
As for MDS, the attacker has no control over the memory addresses that can
be leaked. Only the victim is responsible for bringing data to the CPU. As
a result, the malicious actor has to sample as much data as possible and
then postprocess it to try to infer any useful information from it.
A potential attacker only has read access to the data. Also, there is no direct
privilege escalation by using this technique.
.. _tsx_async_abort_sys_info:
TAA system information
-----------------------
The Linux kernel provides a sysfs interface to enumerate the current TAA status
of mitigated systems. The relevant sysfs file is:
/sys/devices/system/cpu/vulnerabilities/tsx_async_abort
The possible values in this file are:
.. list-table::
* - 'Vulnerable'
- The CPU is affected by this vulnerability and the microcode and kernel mitigation are not applied.
* - 'Vulnerable: Clear CPU buffers attempted, no microcode'
- The system tries to clear the buffers but the microcode might not support the operation.
* - 'Mitigation: Clear CPU buffers'
- The microcode has been updated to clear the buffers. TSX is still enabled.
* - 'Mitigation: TSX disabled'
- TSX is disabled.
* - 'Not affected'
- The CPU is not affected by this issue.
.. _ucode_needed:
Best effort mitigation mode
^^^^^^^^^^^^^^^^^^^^^^^^^^^
If the processor is vulnerable, but the availability of the microcode-based
mitigation mechanism is not advertised via CPUID the kernel selects a best
effort mitigation mode. This mode invokes the mitigation instructions
without a guarantee that they clear the CPU buffers.
This is done to address virtualization scenarios where the host has the
microcode update applied, but the hypervisor is not yet updated to expose the
CPUID to the guest. If the host has updated microcode the protection takes
effect; otherwise a few CPU cycles are wasted pointlessly.
The state in the tsx_async_abort sysfs file reflects this situation
accordingly.
Mitigation mechanism
--------------------
The kernel detects the affected CPUs and the presence of the microcode which is
required. If a CPU is affected and the microcode is available, then the kernel
enables the mitigation by default.
The mitigation can be controlled at boot time via a kernel command line option.
See :ref:`taa_mitigation_control_command_line`.
.. _virt_mechanism:
Virtualization mitigation
^^^^^^^^^^^^^^^^^^^^^^^^^
Affected systems where the host has TAA microcode and TAA is mitigated by
having disabled TSX previously, are not vulnerable regardless of the status
of the VMs.
In all other cases, if the host either does not have the TAA microcode or
the kernel is not mitigated, the system might be vulnerable.
.. _taa_mitigation_control_command_line:
Mitigation control on the kernel command line
---------------------------------------------
The kernel command line allows to control the TAA mitigations at boot time with
the option "tsx_async_abort=". The valid arguments for this option are:
============ =============================================================
off This option disables the TAA mitigation on affected platforms.
If the system has TSX enabled (see next parameter) and the CPU
is affected, the system is vulnerable.
full TAA mitigation is enabled. If TSX is enabled, on an affected
system it will clear CPU buffers on ring transitions. On
systems which are MDS-affected and deploy MDS mitigation,
TAA is also mitigated. Specifying this option on those
systems will have no effect.
full,nosmt The same as tsx_async_abort=full, with SMT disabled on
vulnerable CPUs that have TSX enabled. This is the complete
mitigation. When TSX is disabled, SMT is not disabled because
CPU is not vulnerable to cross-thread TAA attacks.
============ =============================================================
Not specifying this option is equivalent to "tsx_async_abort=full".
The kernel command line also allows to control the TSX feature using the
parameter "tsx=" on CPUs which support TSX control. MSR_IA32_TSX_CTRL is used
to control the TSX feature and the enumeration of the TSX feature bits (RTM
and HLE) in CPUID.
The valid options are:
============ =============================================================
off Disables TSX on the system.
Note that this option takes effect only on newer CPUs which are
not vulnerable to MDS, i.e., have MSR_IA32_ARCH_CAPABILITIES.MDS_NO=1
and which get the new IA32_TSX_CTRL MSR through a microcode
update. This new MSR allows for the reliable deactivation of
the TSX functionality.
on Enables TSX.
Although there are mitigations for all known security
vulnerabilities, TSX has been known to be an accelerator for
several previous speculation-related CVEs, and so there may be
unknown security risks associated with leaving it enabled.
auto Disables TSX if X86_BUG_TAA is present, otherwise enables TSX
on the system.
============ =============================================================
Not specifying this option is equivalent to "tsx=off".
The following combinations of the "tsx_async_abort" and "tsx" are possible. For
affected platforms tsx=auto is equivalent to tsx=off and the result will be:
========= ========================== =========================================
tsx=on tsx_async_abort=full The system will use VERW to clear CPU
buffers. Cross-thread attacks are still
possible on SMT machines.
tsx=on tsx_async_abort=full,nosmt As above, cross-thread attacks on SMT
mitigated.
tsx=on tsx_async_abort=off The system is vulnerable.
tsx=off tsx_async_abort=full TSX might be disabled if microcode
provides a TSX control MSR. If so,
system is not vulnerable.
tsx=off tsx_async_abort=full,nosmt Ditto
tsx=off tsx_async_abort=off ditto
========= ========================== =========================================
For unaffected platforms "tsx=on" and "tsx_async_abort=full" does not clear CPU
buffers. For platforms without TSX control (MSR_IA32_ARCH_CAPABILITIES.MDS_NO=0)
"tsx" command line argument has no effect.
For the affected platforms below table indicates the mitigation status for the
combinations of CPUID bit MD_CLEAR and IA32_ARCH_CAPABILITIES MSR bits MDS_NO
and TSX_CTRL_MSR.
======= ========= ============= ========================================
MDS_NO MD_CLEAR TSX_CTRL_MSR Status
======= ========= ============= ========================================
0 0 0 Vulnerable (needs microcode)
0 1 0 MDS and TAA mitigated via VERW
1 1 0 MDS fixed, TAA vulnerable if TSX enabled
because MD_CLEAR has no meaning and
VERW is not guaranteed to clear buffers
1 X 1 MDS fixed, TAA can be mitigated by
VERW or TSX_CTRL_MSR
======= ========= ============= ========================================
Mitigation selection guide
--------------------------
1. Trusted userspace and guests
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If all user space applications are from a trusted source and do not execute
untrusted code which is supplied externally, then the mitigation can be
disabled. The same applies to virtualized environments with trusted guests.
2. Untrusted userspace and guests
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If there are untrusted applications or guests on the system, enabling TSX
might allow a malicious actor to leak data from the host or from other
processes running on the same physical core.
If the microcode is available and the TSX is disabled on the host, attacks
are prevented in a virtualized environment as well, even if the VMs do not
explicitly enable the mitigation.
.. _taa_default_mitigations:
Default mitigations
-------------------
The kernel's default action for vulnerable processors is:
- Deploy TSX disable mitigation (tsx_async_abort=full tsx=off).

View File

@ -2055,6 +2055,25 @@
KVM MMU at runtime.
Default is 0 (off)
kvm.nx_huge_pages=
[KVM] Controls the software workaround for the
X86_BUG_ITLB_MULTIHIT bug.
force : Always deploy workaround.
off : Never deploy workaround.
auto : Deploy workaround based on the presence of
X86_BUG_ITLB_MULTIHIT.
Default is 'auto'.
If the software workaround is enabled for the host,
guests do need not to enable it for nested guests.
kvm.nx_huge_pages_recovery_ratio=
[KVM] Controls how many 4KiB pages are periodically zapped
back to huge pages. 0 disables the recovery, otherwise if
the value is N KVM will zap 1/Nth of the 4KiB pages every
minute. The default is 60.
kvm-amd.nested= [KVM,AMD] Allow nested virtualization in KVM/SVM.
Default is 1 (enabled)
@ -2636,6 +2655,13 @@
ssbd=force-off [ARM64]
l1tf=off [X86]
mds=off [X86]
tsx_async_abort=off [X86]
kvm.nx_huge_pages=off [X86]
Exceptions:
This does not have any effect on
kvm.nx_huge_pages when
kvm.nx_huge_pages=force.
auto (default)
Mitigate all CPU vulnerabilities, but leave SMT
@ -2651,6 +2677,7 @@
be fully mitigated, even if it means losing SMT.
Equivalent to: l1tf=flush,nosmt [X86]
mds=full,nosmt [X86]
tsx_async_abort=full,nosmt [X86]
mminit_loglevel=
[KNL] When CONFIG_DEBUG_MEMORY_INIT is set, this
@ -4848,6 +4875,71 @@
interruptions from clocksource watchdog are not
acceptable).
tsx= [X86] Control Transactional Synchronization
Extensions (TSX) feature in Intel processors that
support TSX control.
This parameter controls the TSX feature. The options are:
on - Enable TSX on the system. Although there are
mitigations for all known security vulnerabilities,
TSX has been known to be an accelerator for
several previous speculation-related CVEs, and
so there may be unknown security risks associated
with leaving it enabled.
off - Disable TSX on the system. (Note that this
option takes effect only on newer CPUs which are
not vulnerable to MDS, i.e., have
MSR_IA32_ARCH_CAPABILITIES.MDS_NO=1 and which get
the new IA32_TSX_CTRL MSR through a microcode
update. This new MSR allows for the reliable
deactivation of the TSX functionality.)
auto - Disable TSX if X86_BUG_TAA is present,
otherwise enable TSX on the system.
Not specifying this option is equivalent to tsx=off.
See Documentation/admin-guide/hw-vuln/tsx_async_abort.rst
for more details.
tsx_async_abort= [X86,INTEL] Control mitigation for the TSX Async
Abort (TAA) vulnerability.
Similar to Micro-architectural Data Sampling (MDS)
certain CPUs that support Transactional
Synchronization Extensions (TSX) are vulnerable to an
exploit against CPU internal buffers which can forward
information to a disclosure gadget under certain
conditions.
In vulnerable processors, the speculatively forwarded
data can be used in a cache side channel attack, to
access data to which the attacker does not have direct
access.
This parameter controls the TAA mitigation. The
options are:
full - Enable TAA mitigation on vulnerable CPUs
if TSX is enabled.
full,nosmt - Enable TAA mitigation and disable SMT on
vulnerable CPUs. If TSX is disabled, SMT
is not disabled because CPU is not
vulnerable to cross-thread TAA attacks.
off - Unconditionally disable TAA mitigation
Not specifying this option is equivalent to
tsx_async_abort=full. On CPUs which are MDS affected
and deploy MDS mitigation, TAA mitigation is not
required and doesn't provide any additional
mitigation.
For details see:
Documentation/admin-guide/hw-vuln/tsx_async_abort.rst
turbografx.map[2|3]= [HW,JOY]
TurboGraFX parallel port interface
Format:

View File

@ -27,6 +27,7 @@ x86-specific Documentation
mds
microcode
resctrl_ui
tsx_async_abort
usb-legacy-support
i386/index
x86_64/index

View File

@ -0,0 +1,117 @@
.. SPDX-License-Identifier: GPL-2.0
TSX Async Abort (TAA) mitigation
================================
.. _tsx_async_abort:
Overview
--------
TSX Async Abort (TAA) is a side channel attack on internal buffers in some
Intel processors similar to Microachitectural Data Sampling (MDS). In this
case certain loads may speculatively pass invalid data to dependent operations
when an asynchronous abort condition is pending in a Transactional
Synchronization Extensions (TSX) transaction. This includes loads with no
fault or assist condition. Such loads may speculatively expose stale data from
the same uarch data structures as in MDS, with same scope of exposure i.e.
same-thread and cross-thread. This issue affects all current processors that
support TSX.
Mitigation strategy
-------------------
a) TSX disable - one of the mitigations is to disable TSX. A new MSR
IA32_TSX_CTRL will be available in future and current processors after
microcode update which can be used to disable TSX. In addition, it
controls the enumeration of the TSX feature bits (RTM and HLE) in CPUID.
b) Clear CPU buffers - similar to MDS, clearing the CPU buffers mitigates this
vulnerability. More details on this approach can be found in
:ref:`Documentation/admin-guide/hw-vuln/mds.rst <mds>`.
Kernel internal mitigation modes
--------------------------------
============= ============================================================
off Mitigation is disabled. Either the CPU is not affected or
tsx_async_abort=off is supplied on the kernel command line.
tsx disabled Mitigation is enabled. TSX feature is disabled by default at
bootup on processors that support TSX control.
verw Mitigation is enabled. CPU is affected and MD_CLEAR is
advertised in CPUID.
ucode needed Mitigation is enabled. CPU is affected and MD_CLEAR is not
advertised in CPUID. That is mainly for virtualization
scenarios where the host has the updated microcode but the
hypervisor does not expose MD_CLEAR in CPUID. It's a best
effort approach without guarantee.
============= ============================================================
If the CPU is affected and the "tsx_async_abort" kernel command line parameter is
not provided then the kernel selects an appropriate mitigation depending on the
status of RTM and MD_CLEAR CPUID bits.
Below tables indicate the impact of tsx=on|off|auto cmdline options on state of
TAA mitigation, VERW behavior and TSX feature for various combinations of
MSR_IA32_ARCH_CAPABILITIES bits.
1. "tsx=off"
========= ========= ============ ============ ============== =================== ======================
MSR_IA32_ARCH_CAPABILITIES bits Result with cmdline tsx=off
---------------------------------- -------------------------------------------------------------------------
TAA_NO MDS_NO TSX_CTRL_MSR TSX state VERW can clear TAA mitigation TAA mitigation
after bootup CPU buffers tsx_async_abort=off tsx_async_abort=full
========= ========= ============ ============ ============== =================== ======================
0 0 0 HW default Yes Same as MDS Same as MDS
0 0 1 Invalid case Invalid case Invalid case Invalid case
0 1 0 HW default No Need ucode update Need ucode update
0 1 1 Disabled Yes TSX disabled TSX disabled
1 X 1 Disabled X None needed None needed
========= ========= ============ ============ ============== =================== ======================
2. "tsx=on"
========= ========= ============ ============ ============== =================== ======================
MSR_IA32_ARCH_CAPABILITIES bits Result with cmdline tsx=on
---------------------------------- -------------------------------------------------------------------------
TAA_NO MDS_NO TSX_CTRL_MSR TSX state VERW can clear TAA mitigation TAA mitigation
after bootup CPU buffers tsx_async_abort=off tsx_async_abort=full
========= ========= ============ ============ ============== =================== ======================
0 0 0 HW default Yes Same as MDS Same as MDS
0 0 1 Invalid case Invalid case Invalid case Invalid case
0 1 0 HW default No Need ucode update Need ucode update
0 1 1 Enabled Yes None Same as MDS
1 X 1 Enabled X None needed None needed
========= ========= ============ ============ ============== =================== ======================
3. "tsx=auto"
========= ========= ============ ============ ============== =================== ======================
MSR_IA32_ARCH_CAPABILITIES bits Result with cmdline tsx=auto
---------------------------------- -------------------------------------------------------------------------
TAA_NO MDS_NO TSX_CTRL_MSR TSX state VERW can clear TAA mitigation TAA mitigation
after bootup CPU buffers tsx_async_abort=off tsx_async_abort=full
========= ========= ============ ============ ============== =================== ======================
0 0 0 HW default Yes Same as MDS Same as MDS
0 0 1 Invalid case Invalid case Invalid case Invalid case
0 1 0 HW default No Need ucode update Need ucode update
0 1 1 Disabled Yes TSX disabled TSX disabled
1 X 1 Enabled X None needed None needed
========= ========= ============ ============ ============== =================== ======================
In the tables, TSX_CTRL_MSR is a new bit in MSR_IA32_ARCH_CAPABILITIES that
indicates whether MSR_IA32_TSX_CTRL is supported.
There are two control bits in IA32_TSX_CTRL MSR:
Bit 0: When set it disables the Restricted Transactional Memory (RTM)
sub-feature of TSX (will force all transactions to abort on the
XBEGIN instruction).
Bit 1: When set it disables the enumeration of the RTM and HLE feature
(i.e. it will make CPUID(EAX=7).EBX{bit4} and
CPUID(EAX=7).EBX{bit11} read as 0).

View File

@ -3268,7 +3268,6 @@ S: Maintained
F: drivers/cpufreq/bmips-cpufreq.c
BROADCOM BMIPS MIPS ARCHITECTURE
M: Kevin Cernekee <cernekee@gmail.com>
M: Florian Fainelli <f.fainelli@gmail.com>
L: bcm-kernel-feedback-list@broadcom.com
L: linux-mips@vger.kernel.org
@ -3745,7 +3744,6 @@ F: drivers/crypto/cavium/cpt/
CAVIUM THUNDERX2 ARM64 SOC
M: Robert Richter <rrichter@cavium.com>
M: Jayachandran C <jnair@caviumnetworks.com>
L: linux-arm-kernel@lists.infradead.org (moderated for non-subscribers)
S: Maintained
F: arch/arm64/boot/dts/cavium/thunder2-99xx*

View File

@ -2,7 +2,7 @@
VERSION = 5
PATCHLEVEL = 4
SUBLEVEL = 0
EXTRAVERSION = -rc6
EXTRAVERSION = -rc7
NAME = Kleptomaniac Octopus
# *DOCUMENTATION*
@ -917,6 +917,9 @@ ifeq ($(CONFIG_RELR),y)
LDFLAGS_vmlinux += --pack-dyn-relocs=relr
endif
# make the checker run with the right architecture
CHECKFLAGS += --arch=$(ARCH)
# insure the checker run with the right endianness
CHECKFLAGS += $(if $(CONFIG_CPU_BIG_ENDIAN),-mbig-endian,-mlittle-endian)

View File

@ -328,6 +328,10 @@ &pwm3 {
pinctrl-0 = <&pinctrl_pwm3>;
};
&snvs_pwrkey {
status = "okay";
};
&ssi2 {
status = "okay";
};

View File

@ -230,6 +230,8 @@ magnetometer@e {
accelerometer@1c {
compatible = "fsl,mma8451";
reg = <0x1c>;
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_mma8451_int>;
interrupt-parent = <&gpio6>;
interrupts = <31 IRQ_TYPE_LEVEL_LOW>;
};
@ -628,6 +630,12 @@ MX6QDL_PAD_SD2_DAT0__GPIO1_IO15 0x1b0b0
>;
};
pinctrl_mma8451_int: mma8451intgrp {
fsl,pins = <
MX6QDL_PAD_EIM_BCLK__GPIO6_IO31 0xb0b1
>;
};
pinctrl_pwm3: pwm1grp {
fsl,pins = <
MX6QDL_PAD_SD4_DAT1__PWM3_OUT 0x1b0b1

View File

@ -183,14 +183,12 @@ &i2c2 {
ov5640: camera@3c {
compatible = "ovti,ov5640";
pinctrl-names = "default";
pinctrl-0 = <&ov5640_pins>;
reg = <0x3c>;
clocks = <&clk_ext_camera>;
clock-names = "xclk";
DOVDD-supply = <&v2v8>;
powerdown-gpios = <&stmfx_pinctrl 18 GPIO_ACTIVE_HIGH>;
reset-gpios = <&stmfx_pinctrl 19 GPIO_ACTIVE_LOW>;
powerdown-gpios = <&stmfx_pinctrl 18 (GPIO_ACTIVE_HIGH | GPIO_PUSH_PULL)>;
reset-gpios = <&stmfx_pinctrl 19 (GPIO_ACTIVE_LOW | GPIO_PUSH_PULL)>;
rotation = <180>;
status = "okay";
@ -223,15 +221,8 @@ stmfx_pinctrl: stmfx-pin-controller {
joystick_pins: joystick {
pins = "gpio0", "gpio1", "gpio2", "gpio3", "gpio4";
drive-push-pull;
bias-pull-down;
};
ov5640_pins: camera {
pins = "agpio2", "agpio3"; /* stmfx pins 18 & 19 */
drive-push-pull;
output-low;
};
};
};
};

View File

@ -932,7 +932,7 @@ m_can1: can@4400e000 {
interrupt-names = "int0", "int1";
clocks = <&rcc CK_HSE>, <&rcc FDCAN_K>;
clock-names = "hclk", "cclk";
bosch,mram-cfg = <0x1400 0 0 32 0 0 2 2>;
bosch,mram-cfg = <0x0 0 0 32 0 0 2 2>;
status = "disabled";
};
@ -945,7 +945,7 @@ m_can2: can@4400f000 {
interrupt-names = "int0", "int1";
clocks = <&rcc CK_HSE>, <&rcc FDCAN_K>;
clock-names = "hclk", "cclk";
bosch,mram-cfg = <0x0 0 0 32 0 0 2 2>;
bosch,mram-cfg = <0x1400 0 0 32 0 0 2 2>;
status = "disabled";
};

View File

@ -192,6 +192,7 @@ &mmc1 {
vqmmc-supply = <&reg_dldo1>;
non-removable;
wakeup-source;
keep-power-in-suspend;
status = "okay";
brcmf: wifi@1 {

View File

@ -481,14 +481,18 @@ static void sunxi_mc_smp_cpu_die(unsigned int l_cpu)
static int sunxi_cpu_powerdown(unsigned int cpu, unsigned int cluster)
{
u32 reg;
int gating_bit = cpu;
pr_debug("%s: cluster %u cpu %u\n", __func__, cluster, cpu);
if (cpu >= SUNXI_CPUS_PER_CLUSTER || cluster >= SUNXI_NR_CLUSTERS)
return -EINVAL;
if (is_a83t && cpu == 0)
gating_bit = 4;
/* gate processor power */
reg = readl(prcm_base + PRCM_PWROFF_GATING_REG(cluster));
reg |= PRCM_PWROFF_GATING_REG_CORE(cpu);
reg |= PRCM_PWROFF_GATING_REG_CORE(gating_bit);
writel(reg, prcm_base + PRCM_PWROFF_GATING_REG(cluster));
udelay(20);

View File

@ -127,7 +127,7 @@ &i2c0 {
status = "okay";
i2c-mux@77 {
compatible = "nxp,pca9847";
compatible = "nxp,pca9547";
reg = <0x77>;
#address-cells = <1>;
#size-cells = <0>;

View File

@ -394,7 +394,7 @@ wdog3: watchdog@302a0000 {
};
sdma2: dma-controller@302c0000 {
compatible = "fsl,imx8mm-sdma", "fsl,imx7d-sdma";
compatible = "fsl,imx8mm-sdma", "fsl,imx8mq-sdma";
reg = <0x302c0000 0x10000>;
interrupts = <GIC_SPI 103 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&clk IMX8MM_CLK_SDMA2_ROOT>,
@ -405,7 +405,7 @@ sdma2: dma-controller@302c0000 {
};
sdma3: dma-controller@302b0000 {
compatible = "fsl,imx8mm-sdma", "fsl,imx7d-sdma";
compatible = "fsl,imx8mm-sdma", "fsl,imx8mq-sdma";
reg = <0x302b0000 0x10000>;
interrupts = <GIC_SPI 34 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&clk IMX8MM_CLK_SDMA3_ROOT>,
@ -737,7 +737,7 @@ usdhc3: mmc@30b60000 {
};
sdma1: dma-controller@30bd0000 {
compatible = "fsl,imx8mm-sdma", "fsl,imx7d-sdma";
compatible = "fsl,imx8mm-sdma", "fsl,imx8mq-sdma";
reg = <0x30bd0000 0x10000>;
interrupts = <GIC_SPI 2 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&clk IMX8MM_CLK_SDMA1_ROOT>,

View File

@ -288,7 +288,7 @@ wdog3: watchdog@302a0000 {
};
sdma3: dma-controller@302b0000 {
compatible = "fsl,imx8mn-sdma", "fsl,imx7d-sdma";
compatible = "fsl,imx8mn-sdma", "fsl,imx8mq-sdma";
reg = <0x302b0000 0x10000>;
interrupts = <GIC_SPI 34 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&clk IMX8MN_CLK_SDMA3_ROOT>,
@ -299,7 +299,7 @@ sdma3: dma-controller@302b0000 {
};
sdma2: dma-controller@302c0000 {
compatible = "fsl,imx8mn-sdma", "fsl,imx7d-sdma";
compatible = "fsl,imx8mn-sdma", "fsl,imx8mq-sdma";
reg = <0x302c0000 0x10000>;
interrupts = <GIC_SPI 103 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&clk IMX8MN_CLK_SDMA2_ROOT>,
@ -612,7 +612,7 @@ usdhc3: mmc@30b60000 {
};
sdma1: dma-controller@30bd0000 {
compatible = "fsl,imx8mn-sdma", "fsl,imx7d-sdma";
compatible = "fsl,imx8mn-sdma", "fsl,imx8mq-sdma";
reg = <0x30bd0000 0x10000>;
interrupts = <GIC_SPI 2 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&clk IMX8MN_CLK_SDMA1_ROOT>,

View File

@ -88,7 +88,7 @@ reg_arm: regulator-arm {
regulator-name = "0V9_ARM";
regulator-min-microvolt = <900000>;
regulator-max-microvolt = <1000000>;
gpios = <&gpio3 19 GPIO_ACTIVE_HIGH>;
gpios = <&gpio3 16 GPIO_ACTIVE_HIGH>;
states = <1000000 0x1
900000 0x0>;
regulator-always-on;

View File

@ -30,13 +30,6 @@ int __arm64_get_clock_mode(struct timekeeper *tk)
}
#define __arch_get_clock_mode __arm64_get_clock_mode
static __always_inline
int __arm64_use_vsyscall(struct vdso_data *vdata)
{
return !vdata[CS_HRES_COARSE].clock_mode;
}
#define __arch_use_vsyscall __arm64_use_vsyscall
static __always_inline
void __arm64_update_vsyscall(struct vdso_data *vdata, struct timekeeper *tk)
{

View File

@ -28,13 +28,6 @@ int __mips_get_clock_mode(struct timekeeper *tk)
}
#define __arch_get_clock_mode __mips_get_clock_mode
static __always_inline
int __mips_use_vsyscall(struct vdso_data *vdata)
{
return (vdata[CS_HRES_COARSE].clock_mode != VDSO_CLOCK_NONE);
}
#define __arch_use_vsyscall __mips_use_vsyscall
/* The asm-generic header needs to be included after the definitions above */
#include <asm-generic/vdso/vsyscall.h>

View File

@ -38,10 +38,3 @@ config REPLICATE_KTEXT
Say Y here to enable replicating the kernel text across multiple
nodes in a NUMA cluster. This trades memory for speed.
config REPLICATE_EXHANDLERS
bool "Exception handler replication support"
depends on SGI_IP27
help
Say Y here to enable replicating the kernel exception handlers
across multiple nodes in a NUMA cluster. This trades memory for
speed.

View File

@ -69,23 +69,14 @@ static void per_hub_init(cnodeid_t cnode)
hub_rtc_init(cnode);
#ifdef CONFIG_REPLICATE_EXHANDLERS
/*
* If this is not a headless node initialization,
* copy over the caliased exception handlers.
*/
if (get_compact_nodeid() == cnode) {
extern char except_vec2_generic, except_vec3_generic;
extern void build_tlb_refill_handler(void);
memcpy((void *)(CKSEG0 + 0x100), &except_vec2_generic, 0x80);
memcpy((void *)(CKSEG0 + 0x180), &except_vec3_generic, 0x80);
build_tlb_refill_handler();
memcpy((void *)(CKSEG0 + 0x100), (void *) CKSEG0, 0x80);
memcpy((void *)(CKSEG0 + 0x180), &except_vec3_generic, 0x100);
if (nasid) {
/* copy exception handlers from first node to current node */
memcpy((void *)NODE_OFFSET_TO_K0(nasid, 0),
(void *)CKSEG0, 0x200);
__flush_cache_all();
/* switch to node local exception handlers */
REMOTE_HUB_S(nasid, PI_CALIAS_SIZE, PI_CALIAS_SIZE_8K);
}
#endif
}
void per_cpu_init(void)

View File

@ -332,11 +332,7 @@ static void __init mlreset(void)
* thinks it is a node 0 address.
*/
REMOTE_HUB_S(nasid, PI_REGION_PRESENT, (region_mask | 1));
#ifdef CONFIG_REPLICATE_EXHANDLERS
REMOTE_HUB_S(nasid, PI_CALIAS_SIZE, PI_CALIAS_SIZE_8K);
#else
REMOTE_HUB_S(nasid, PI_CALIAS_SIZE, PI_CALIAS_SIZE_0);
#endif
#ifdef LATER
/*

View File

@ -65,14 +65,14 @@ $(vobjs): KBUILD_CFLAGS := $(filter-out $(GCC_PLUGINS_CFLAGS) $(SPARC_REG_CFLAGS
#
# vDSO code runs in userspace and -pg doesn't help with profiling anyway.
#
CFLAGS_REMOVE_vdso-note.o = -pg
CFLAGS_REMOVE_vclock_gettime.o = -pg
CFLAGS_REMOVE_vdso32/vclock_gettime.o = -pg
$(obj)/%.so: OBJCOPYFLAGS := -S
$(obj)/%.so: $(obj)/%.so.dbg FORCE
$(call if_changed,objcopy)
CPPFLAGS_vdso32.lds = $(CPPFLAGS_vdso.lds)
CPPFLAGS_vdso32/vdso32.lds = $(CPPFLAGS_vdso.lds)
VDSO_LDFLAGS_vdso32.lds = -m elf32_sparc -soname linux-gate.so.1
#This makes sure the $(obj) subdirectory exists even though vdso32/

View File

@ -1940,6 +1940,51 @@ config X86_INTEL_MEMORY_PROTECTION_KEYS
If unsure, say y.
choice
prompt "TSX enable mode"
depends on CPU_SUP_INTEL
default X86_INTEL_TSX_MODE_OFF
help
Intel's TSX (Transactional Synchronization Extensions) feature
allows to optimize locking protocols through lock elision which
can lead to a noticeable performance boost.
On the other hand it has been shown that TSX can be exploited
to form side channel attacks (e.g. TAA) and chances are there
will be more of those attacks discovered in the future.
Therefore TSX is not enabled by default (aka tsx=off). An admin
might override this decision by tsx=on the command line parameter.
Even with TSX enabled, the kernel will attempt to enable the best
possible TAA mitigation setting depending on the microcode available
for the particular machine.
This option allows to set the default tsx mode between tsx=on, =off
and =auto. See Documentation/admin-guide/kernel-parameters.txt for more
details.
Say off if not sure, auto if TSX is in use but it should be used on safe
platforms or on if TSX is in use and the security aspect of tsx is not
relevant.
config X86_INTEL_TSX_MODE_OFF
bool "off"
help
TSX is disabled if possible - equals to tsx=off command line parameter.
config X86_INTEL_TSX_MODE_ON
bool "on"
help
TSX is always enabled on TSX capable HW - equals the tsx=on command
line parameter.
config X86_INTEL_TSX_MODE_AUTO
bool "auto"
help
TSX is enabled on TSX capable HW that is believed to be safe against
side channel attacks- equals the tsx=auto command line parameter.
endchoice
config EFI
bool "EFI runtime service support"
depends on ACPI

View File

@ -399,5 +399,7 @@
#define X86_BUG_MDS X86_BUG(19) /* CPU is affected by Microarchitectural data sampling */
#define X86_BUG_MSBDS_ONLY X86_BUG(20) /* CPU is only affected by the MSDBS variant of BUG_MDS */
#define X86_BUG_SWAPGS X86_BUG(21) /* CPU is affected by speculation through SWAPGS */
#define X86_BUG_TAA X86_BUG(22) /* CPU is affected by TSX Async Abort(TAA) */
#define X86_BUG_ITLB_MULTIHIT X86_BUG(23) /* CPU may incur MCE during certain page attribute changes */
#endif /* _ASM_X86_CPUFEATURES_H */

View File

@ -312,9 +312,12 @@ struct kvm_rmap_head {
struct kvm_mmu_page {
struct list_head link;
struct hlist_node hash_link;
struct list_head lpage_disallowed_link;
bool unsync;
u8 mmu_valid_gen;
bool mmio_cached;
bool lpage_disallowed; /* Can't be replaced by an equiv large page */
/*
* The following two entries are used to key the shadow page in the
@ -859,6 +862,7 @@ struct kvm_arch {
*/
struct list_head active_mmu_pages;
struct list_head zapped_obsolete_pages;
struct list_head lpage_disallowed_mmu_pages;
struct kvm_page_track_notifier_node mmu_sp_tracker;
struct kvm_page_track_notifier_head track_notifier_head;
@ -933,6 +937,7 @@ struct kvm_arch {
bool exception_payload_enabled;
struct kvm_pmu_event_filter *pmu_event_filter;
struct task_struct *nx_lpage_recovery_thread;
};
struct kvm_vm_stat {
@ -946,6 +951,7 @@ struct kvm_vm_stat {
ulong mmu_unsync;
ulong remote_tlb_flush;
ulong lpages;
ulong nx_lpage_splits;
ulong max_mmu_page_hash_collisions;
};

View File

@ -93,6 +93,18 @@
* Microarchitectural Data
* Sampling (MDS) vulnerabilities.
*/
#define ARCH_CAP_PSCHANGE_MC_NO BIT(6) /*
* The processor is not susceptible to a
* machine check error due to modifying the
* code page size along with either the
* physical address or cache type
* without TLB invalidation.
*/
#define ARCH_CAP_TSX_CTRL_MSR BIT(7) /* MSR for TSX control is available. */
#define ARCH_CAP_TAA_NO BIT(8) /*
* Not susceptible to
* TSX Async Abort (TAA) vulnerabilities.
*/
#define MSR_IA32_FLUSH_CMD 0x0000010b
#define L1D_FLUSH BIT(0) /*
@ -103,6 +115,10 @@
#define MSR_IA32_BBL_CR_CTL 0x00000119
#define MSR_IA32_BBL_CR_CTL3 0x0000011e
#define MSR_IA32_TSX_CTRL 0x00000122
#define TSX_CTRL_RTM_DISABLE BIT(0) /* Disable RTM feature */
#define TSX_CTRL_CPUID_CLEAR BIT(1) /* Disable TSX enumeration */
#define MSR_IA32_SYSENTER_CS 0x00000174
#define MSR_IA32_SYSENTER_ESP 0x00000175
#define MSR_IA32_SYSENTER_EIP 0x00000176

View File

@ -314,7 +314,7 @@ DECLARE_STATIC_KEY_FALSE(mds_idle_clear);
#include <asm/segment.h>
/**
* mds_clear_cpu_buffers - Mitigation for MDS vulnerability
* mds_clear_cpu_buffers - Mitigation for MDS and TAA vulnerability
*
* This uses the otherwise unused and obsolete VERW instruction in
* combination with microcode which triggers a CPU buffer flush when the
@ -337,7 +337,7 @@ static inline void mds_clear_cpu_buffers(void)
}
/**
* mds_user_clear_cpu_buffers - Mitigation for MDS vulnerability
* mds_user_clear_cpu_buffers - Mitigation for MDS and TAA vulnerability
*
* Clear CPU buffers if the corresponding static key is enabled
*/

View File

@ -988,4 +988,11 @@ enum mds_mitigations {
MDS_MITIGATION_VMWERV,
};
enum taa_mitigations {
TAA_MITIGATION_OFF,
TAA_MITIGATION_UCODE_NEEDED,
TAA_MITIGATION_VERW,
TAA_MITIGATION_TSX_DISABLED,
};
#endif /* _ASM_X86_PROCESSOR_H */

View File

@ -1586,9 +1586,6 @@ static void setup_local_APIC(void)
{
int cpu = smp_processor_id();
unsigned int value;
#ifdef CONFIG_X86_32
int logical_apicid, ldr_apicid;
#endif
if (disable_apic) {
disable_ioapic_support();
@ -1626,16 +1623,21 @@ static void setup_local_APIC(void)
apic->init_apic_ldr();
#ifdef CONFIG_X86_32
/*
* APIC LDR is initialized. If logical_apicid mapping was
* initialized during get_smp_config(), make sure it matches the
* actual value.
*/
logical_apicid = early_per_cpu(x86_cpu_to_logical_apicid, cpu);
ldr_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
WARN_ON(logical_apicid != BAD_APICID && logical_apicid != ldr_apicid);
/* always use the value from LDR */
early_per_cpu(x86_cpu_to_logical_apicid, cpu) = ldr_apicid;
if (apic->dest_logical) {
int logical_apicid, ldr_apicid;
/*
* APIC LDR is initialized. If logical_apicid mapping was
* initialized during get_smp_config(), make sure it matches
* the actual value.
*/
logical_apicid = early_per_cpu(x86_cpu_to_logical_apicid, cpu);
ldr_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
if (logical_apicid != BAD_APICID)
WARN_ON(logical_apicid != ldr_apicid);
/* Always use the value from LDR. */
early_per_cpu(x86_cpu_to_logical_apicid, cpu) = ldr_apicid;
}
#endif
/*

View File

@ -30,7 +30,7 @@ obj-$(CONFIG_PROC_FS) += proc.o
obj-$(CONFIG_X86_FEATURE_NAMES) += capflags.o powerflags.o
ifdef CONFIG_CPU_SUP_INTEL
obj-y += intel.o intel_pconfig.o
obj-y += intel.o intel_pconfig.o tsx.o
obj-$(CONFIG_PM) += intel_epb.o
endif
obj-$(CONFIG_CPU_SUP_AMD) += amd.o

View File

@ -39,6 +39,7 @@ static void __init spectre_v2_select_mitigation(void);
static void __init ssb_select_mitigation(void);
static void __init l1tf_select_mitigation(void);
static void __init mds_select_mitigation(void);
static void __init taa_select_mitigation(void);
/* The base value of the SPEC_CTRL MSR that always has to be preserved. */
u64 x86_spec_ctrl_base;
@ -105,6 +106,7 @@ void __init check_bugs(void)
ssb_select_mitigation();
l1tf_select_mitigation();
mds_select_mitigation();
taa_select_mitigation();
arch_smt_update();
@ -268,6 +270,100 @@ static int __init mds_cmdline(char *str)
}
early_param("mds", mds_cmdline);
#undef pr_fmt
#define pr_fmt(fmt) "TAA: " fmt
/* Default mitigation for TAA-affected CPUs */
static enum taa_mitigations taa_mitigation __ro_after_init = TAA_MITIGATION_VERW;
static bool taa_nosmt __ro_after_init;
static const char * const taa_strings[] = {
[TAA_MITIGATION_OFF] = "Vulnerable",
[TAA_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode",
[TAA_MITIGATION_VERW] = "Mitigation: Clear CPU buffers",
[TAA_MITIGATION_TSX_DISABLED] = "Mitigation: TSX disabled",
};
static void __init taa_select_mitigation(void)
{
u64 ia32_cap;
if (!boot_cpu_has_bug(X86_BUG_TAA)) {
taa_mitigation = TAA_MITIGATION_OFF;
return;
}
/* TSX previously disabled by tsx=off */
if (!boot_cpu_has(X86_FEATURE_RTM)) {
taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
goto out;
}
if (cpu_mitigations_off()) {
taa_mitigation = TAA_MITIGATION_OFF;
return;
}
/* TAA mitigation is turned off on the cmdline (tsx_async_abort=off) */
if (taa_mitigation == TAA_MITIGATION_OFF)
goto out;
if (boot_cpu_has(X86_FEATURE_MD_CLEAR))
taa_mitigation = TAA_MITIGATION_VERW;
else
taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
/*
* VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
* A microcode update fixes this behavior to clear CPU buffers. It also
* adds support for MSR_IA32_TSX_CTRL which is enumerated by the
* ARCH_CAP_TSX_CTRL_MSR bit.
*
* On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
* update is required.
*/
ia32_cap = x86_read_arch_cap_msr();
if ( (ia32_cap & ARCH_CAP_MDS_NO) &&
!(ia32_cap & ARCH_CAP_TSX_CTRL_MSR))
taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
/*
* TSX is enabled, select alternate mitigation for TAA which is
* the same as MDS. Enable MDS static branch to clear CPU buffers.
*
* For guests that can't determine whether the correct microcode is
* present on host, enable the mitigation for UCODE_NEEDED as well.
*/
static_branch_enable(&mds_user_clear);
if (taa_nosmt || cpu_mitigations_auto_nosmt())
cpu_smt_disable(false);
out:
pr_info("%s\n", taa_strings[taa_mitigation]);
}
static int __init tsx_async_abort_parse_cmdline(char *str)
{
if (!boot_cpu_has_bug(X86_BUG_TAA))
return 0;
if (!str)
return -EINVAL;
if (!strcmp(str, "off")) {
taa_mitigation = TAA_MITIGATION_OFF;
} else if (!strcmp(str, "full")) {
taa_mitigation = TAA_MITIGATION_VERW;
} else if (!strcmp(str, "full,nosmt")) {
taa_mitigation = TAA_MITIGATION_VERW;
taa_nosmt = true;
}
return 0;
}
early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
#undef pr_fmt
#define pr_fmt(fmt) "Spectre V1 : " fmt
@ -786,13 +882,10 @@ static void update_mds_branch_idle(void)
}
#define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
#define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
void cpu_bugs_smt_update(void)
{
/* Enhanced IBRS implies STIBP. No update required. */
if (spectre_v2_enabled == SPECTRE_V2_IBRS_ENHANCED)
return;
mutex_lock(&spec_ctrl_mutex);
switch (spectre_v2_user) {
@ -819,6 +912,17 @@ void cpu_bugs_smt_update(void)
break;
}
switch (taa_mitigation) {
case TAA_MITIGATION_VERW:
case TAA_MITIGATION_UCODE_NEEDED:
if (sched_smt_active())
pr_warn_once(TAA_MSG_SMT);
break;
case TAA_MITIGATION_TSX_DISABLED:
case TAA_MITIGATION_OFF:
break;
}
mutex_unlock(&spec_ctrl_mutex);
}
@ -1149,6 +1253,9 @@ void x86_spec_ctrl_setup_ap(void)
x86_amd_ssb_disable();
}
bool itlb_multihit_kvm_mitigation;
EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
#undef pr_fmt
#define pr_fmt(fmt) "L1TF: " fmt
@ -1304,11 +1411,24 @@ static ssize_t l1tf_show_state(char *buf)
l1tf_vmx_states[l1tf_vmx_mitigation],
sched_smt_active() ? "vulnerable" : "disabled");
}
static ssize_t itlb_multihit_show_state(char *buf)
{
if (itlb_multihit_kvm_mitigation)
return sprintf(buf, "KVM: Mitigation: Split huge pages\n");
else
return sprintf(buf, "KVM: Vulnerable\n");
}
#else
static ssize_t l1tf_show_state(char *buf)
{
return sprintf(buf, "%s\n", L1TF_DEFAULT_MSG);
}
static ssize_t itlb_multihit_show_state(char *buf)
{
return sprintf(buf, "Processor vulnerable\n");
}
#endif
static ssize_t mds_show_state(char *buf)
@ -1328,6 +1448,21 @@ static ssize_t mds_show_state(char *buf)
sched_smt_active() ? "vulnerable" : "disabled");
}
static ssize_t tsx_async_abort_show_state(char *buf)
{
if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
(taa_mitigation == TAA_MITIGATION_OFF))
return sprintf(buf, "%s\n", taa_strings[taa_mitigation]);
if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
return sprintf(buf, "%s; SMT Host state unknown\n",
taa_strings[taa_mitigation]);
}
return sprintf(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
sched_smt_active() ? "vulnerable" : "disabled");
}
static char *stibp_state(void)
{
if (spectre_v2_enabled == SPECTRE_V2_IBRS_ENHANCED)
@ -1398,6 +1533,12 @@ static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr
case X86_BUG_MDS:
return mds_show_state(buf);
case X86_BUG_TAA:
return tsx_async_abort_show_state(buf);
case X86_BUG_ITLB_MULTIHIT:
return itlb_multihit_show_state(buf);
default:
break;
}
@ -1434,4 +1575,14 @@ ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *bu
{
return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
}
ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
{
return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
}
ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
{
return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
}
#endif

View File

@ -1016,13 +1016,14 @@ static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
#endif
}
#define NO_SPECULATION BIT(0)
#define NO_MELTDOWN BIT(1)
#define NO_SSB BIT(2)
#define NO_L1TF BIT(3)
#define NO_MDS BIT(4)
#define MSBDS_ONLY BIT(5)
#define NO_SWAPGS BIT(6)
#define NO_SPECULATION BIT(0)
#define NO_MELTDOWN BIT(1)
#define NO_SSB BIT(2)
#define NO_L1TF BIT(3)
#define NO_MDS BIT(4)
#define MSBDS_ONLY BIT(5)
#define NO_SWAPGS BIT(6)
#define NO_ITLB_MULTIHIT BIT(7)
#define VULNWL(_vendor, _family, _model, _whitelist) \
{ X86_VENDOR_##_vendor, _family, _model, X86_FEATURE_ANY, _whitelist }
@ -1043,27 +1044,27 @@ static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION),
/* Intel Family 6 */
VULNWL_INTEL(ATOM_SALTWELL, NO_SPECULATION),
VULNWL_INTEL(ATOM_SALTWELL_TABLET, NO_SPECULATION),
VULNWL_INTEL(ATOM_SALTWELL_MID, NO_SPECULATION),
VULNWL_INTEL(ATOM_BONNELL, NO_SPECULATION),
VULNWL_INTEL(ATOM_BONNELL_MID, NO_SPECULATION),
VULNWL_INTEL(ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
VULNWL_INTEL(ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
VULNWL_INTEL(ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
VULNWL_INTEL(ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
VULNWL_INTEL(ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
VULNWL_INTEL(ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS),
VULNWL_INTEL(ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS),
VULNWL_INTEL(ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS),
VULNWL_INTEL(ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS),
VULNWL_INTEL(XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS),
VULNWL_INTEL(XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS),
VULNWL_INTEL(ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
VULNWL_INTEL(ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
VULNWL_INTEL(ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
VULNWL_INTEL(ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
VULNWL_INTEL(XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
VULNWL_INTEL(XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
VULNWL_INTEL(CORE_YONAH, NO_SSB),
VULNWL_INTEL(ATOM_AIRMONT_MID, NO_L1TF | MSBDS_ONLY | NO_SWAPGS),
VULNWL_INTEL(ATOM_AIRMONT_NP, NO_L1TF | NO_SWAPGS),
VULNWL_INTEL(ATOM_AIRMONT_MID, NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
VULNWL_INTEL(ATOM_AIRMONT_NP, NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
VULNWL_INTEL(ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS),
VULNWL_INTEL(ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS),
VULNWL_INTEL(ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS),
VULNWL_INTEL(ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
VULNWL_INTEL(ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
VULNWL_INTEL(ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
/*
* Technically, swapgs isn't serializing on AMD (despite it previously
@ -1073,15 +1074,17 @@ static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
* good enough for our purposes.
*/
VULNWL_INTEL(ATOM_TREMONT_D, NO_ITLB_MULTIHIT),
/* AMD Family 0xf - 0x12 */
VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS),
VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS),
VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS),
VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS),
VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
/* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS),
VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS),
VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
{}
};
@ -1092,19 +1095,30 @@ static bool __init cpu_matches(unsigned long which)
return m && !!(m->driver_data & which);
}
static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
u64 x86_read_arch_cap_msr(void)
{
u64 ia32_cap = 0;
if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
return ia32_cap;
}
static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
{
u64 ia32_cap = x86_read_arch_cap_msr();
/* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
if (!cpu_matches(NO_ITLB_MULTIHIT) && !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
if (cpu_matches(NO_SPECULATION))
return;
setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
if (cpu_has(c, X86_FEATURE_ARCH_CAPABILITIES))
rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
if (!cpu_matches(NO_SSB) && !(ia32_cap & ARCH_CAP_SSB_NO) &&
!cpu_has(c, X86_FEATURE_AMD_SSB_NO))
setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
@ -1121,6 +1135,21 @@ static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
if (!cpu_matches(NO_SWAPGS))
setup_force_cpu_bug(X86_BUG_SWAPGS);
/*
* When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
* - TSX is supported or
* - TSX_CTRL is present
*
* TSX_CTRL check is needed for cases when TSX could be disabled before
* the kernel boot e.g. kexec.
* TSX_CTRL check alone is not sufficient for cases when the microcode
* update is not present or running as guest that don't get TSX_CTRL.
*/
if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
(cpu_has(c, X86_FEATURE_RTM) ||
(ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
setup_force_cpu_bug(X86_BUG_TAA);
if (cpu_matches(NO_MELTDOWN))
return;
@ -1554,6 +1583,8 @@ void __init identify_boot_cpu(void)
#endif
cpu_detect_tlb(&boot_cpu_data);
setup_cr_pinning();
tsx_init();
}
void identify_secondary_cpu(struct cpuinfo_x86 *c)

View File

@ -44,6 +44,22 @@ struct _tlb_table {
extern const struct cpu_dev *const __x86_cpu_dev_start[],
*const __x86_cpu_dev_end[];
#ifdef CONFIG_CPU_SUP_INTEL
enum tsx_ctrl_states {
TSX_CTRL_ENABLE,
TSX_CTRL_DISABLE,
TSX_CTRL_NOT_SUPPORTED,
};
extern __ro_after_init enum tsx_ctrl_states tsx_ctrl_state;
extern void __init tsx_init(void);
extern void tsx_enable(void);
extern void tsx_disable(void);
#else
static inline void tsx_init(void) { }
#endif /* CONFIG_CPU_SUP_INTEL */
extern void get_cpu_cap(struct cpuinfo_x86 *c);
extern void get_cpu_address_sizes(struct cpuinfo_x86 *c);
extern void cpu_detect_cache_sizes(struct cpuinfo_x86 *c);
@ -62,4 +78,6 @@ unsigned int aperfmperf_get_khz(int cpu);
extern void x86_spec_ctrl_setup_ap(void);
extern u64 x86_read_arch_cap_msr(void);
#endif /* ARCH_X86_CPU_H */

View File

@ -762,6 +762,11 @@ static void init_intel(struct cpuinfo_x86 *c)
detect_tme(c);
init_intel_misc_features(c);
if (tsx_ctrl_state == TSX_CTRL_ENABLE)
tsx_enable();
if (tsx_ctrl_state == TSX_CTRL_DISABLE)
tsx_disable();
}
#ifdef CONFIG_X86_32

View File

@ -522,6 +522,10 @@ int rdtgroup_mondata_show(struct seq_file *m, void *arg)
int ret = 0;
rdtgrp = rdtgroup_kn_lock_live(of->kn);
if (!rdtgrp) {
ret = -ENOENT;
goto out;
}
md.priv = of->kn->priv;
resid = md.u.rid;

View File

@ -461,10 +461,8 @@ static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
}
rdtgrp = rdtgroup_kn_lock_live(of->kn);
rdt_last_cmd_clear();
if (!rdtgrp) {
ret = -ENOENT;
rdt_last_cmd_puts("Directory was removed\n");
goto unlock;
}
@ -2648,10 +2646,8 @@ static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
int ret;
prdtgrp = rdtgroup_kn_lock_live(prgrp_kn);
rdt_last_cmd_clear();
if (!prdtgrp) {
ret = -ENODEV;
rdt_last_cmd_puts("Directory was removed\n");
goto out_unlock;
}

140
arch/x86/kernel/cpu/tsx.c Normal file
View File

@ -0,0 +1,140 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Intel Transactional Synchronization Extensions (TSX) control.
*
* Copyright (C) 2019 Intel Corporation
*
* Author:
* Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
*/
#include <linux/cpufeature.h>
#include <asm/cmdline.h>
#include "cpu.h"
enum tsx_ctrl_states tsx_ctrl_state __ro_after_init = TSX_CTRL_NOT_SUPPORTED;
void tsx_disable(void)
{
u64 tsx;
rdmsrl(MSR_IA32_TSX_CTRL, tsx);
/* Force all transactions to immediately abort */
tsx |= TSX_CTRL_RTM_DISABLE;
/*
* Ensure TSX support is not enumerated in CPUID.
* This is visible to userspace and will ensure they
* do not waste resources trying TSX transactions that
* will always abort.
*/
tsx |= TSX_CTRL_CPUID_CLEAR;
wrmsrl(MSR_IA32_TSX_CTRL, tsx);
}
void tsx_enable(void)
{
u64 tsx;
rdmsrl(MSR_IA32_TSX_CTRL, tsx);
/* Enable the RTM feature in the cpu */
tsx &= ~TSX_CTRL_RTM_DISABLE;
/*
* Ensure TSX support is enumerated in CPUID.
* This is visible to userspace and will ensure they
* can enumerate and use the TSX feature.
*/
tsx &= ~TSX_CTRL_CPUID_CLEAR;
wrmsrl(MSR_IA32_TSX_CTRL, tsx);
}
static bool __init tsx_ctrl_is_supported(void)
{
u64 ia32_cap = x86_read_arch_cap_msr();
/*
* TSX is controlled via MSR_IA32_TSX_CTRL. However, support for this
* MSR is enumerated by ARCH_CAP_TSX_MSR bit in MSR_IA32_ARCH_CAPABILITIES.
*
* TSX control (aka MSR_IA32_TSX_CTRL) is only available after a
* microcode update on CPUs that have their MSR_IA32_ARCH_CAPABILITIES
* bit MDS_NO=1. CPUs with MDS_NO=0 are not planned to get
* MSR_IA32_TSX_CTRL support even after a microcode update. Thus,
* tsx= cmdline requests will do nothing on CPUs without
* MSR_IA32_TSX_CTRL support.
*/
return !!(ia32_cap & ARCH_CAP_TSX_CTRL_MSR);
}
static enum tsx_ctrl_states x86_get_tsx_auto_mode(void)
{
if (boot_cpu_has_bug(X86_BUG_TAA))
return TSX_CTRL_DISABLE;
return TSX_CTRL_ENABLE;
}
void __init tsx_init(void)
{
char arg[5] = {};
int ret;
if (!tsx_ctrl_is_supported())
return;
ret = cmdline_find_option(boot_command_line, "tsx", arg, sizeof(arg));
if (ret >= 0) {
if (!strcmp(arg, "on")) {
tsx_ctrl_state = TSX_CTRL_ENABLE;
} else if (!strcmp(arg, "off")) {
tsx_ctrl_state = TSX_CTRL_DISABLE;
} else if (!strcmp(arg, "auto")) {
tsx_ctrl_state = x86_get_tsx_auto_mode();
} else {
tsx_ctrl_state = TSX_CTRL_DISABLE;
pr_err("tsx: invalid option, defaulting to off\n");
}
} else {
/* tsx= not provided */
if (IS_ENABLED(CONFIG_X86_INTEL_TSX_MODE_AUTO))
tsx_ctrl_state = x86_get_tsx_auto_mode();
else if (IS_ENABLED(CONFIG_X86_INTEL_TSX_MODE_OFF))
tsx_ctrl_state = TSX_CTRL_DISABLE;
else
tsx_ctrl_state = TSX_CTRL_ENABLE;
}
if (tsx_ctrl_state == TSX_CTRL_DISABLE) {
tsx_disable();
/*
* tsx_disable() will change the state of the
* RTM CPUID bit. Clear it here since it is now
* expected to be not set.
*/
setup_clear_cpu_cap(X86_FEATURE_RTM);
} else if (tsx_ctrl_state == TSX_CTRL_ENABLE) {
/*
* HW defaults TSX to be enabled at bootup.
* We may still need the TSX enable support
* during init for special cases like
* kexec after TSX is disabled.
*/
tsx_enable();
/*
* tsx_enable() will change the state of the
* RTM CPUID bit. Force it here since it is now
* expected to be set.
*/
setup_force_cpu_cap(X86_FEATURE_RTM);
}
}

View File

@ -94,6 +94,13 @@ static bool in_exception_stack(unsigned long *stack, struct stack_info *info)
BUILD_BUG_ON(N_EXCEPTION_STACKS != 6);
begin = (unsigned long)__this_cpu_read(cea_exception_stacks);
/*
* Handle the case where stack trace is collected _before_
* cea_exception_stacks had been initialized.
*/
if (!begin)
return false;
end = begin + sizeof(struct cea_exception_stacks);
/* Bail if @stack is outside the exception stack area. */
if (stk < begin || stk >= end)

View File

@ -710,6 +710,8 @@ static struct chipset early_qrk[] __initdata = {
*/
{ PCI_VENDOR_ID_INTEL, 0x0f00,
PCI_CLASS_BRIDGE_HOST, PCI_ANY_ID, 0, force_disable_hpet},
{ PCI_VENDOR_ID_INTEL, 0x3ec4,
PCI_CLASS_BRIDGE_HOST, PCI_ANY_ID, 0, force_disable_hpet},
{ PCI_VENDOR_ID_BROADCOM, 0x4331,
PCI_CLASS_NETWORK_OTHER, PCI_ANY_ID, 0, apple_airport_reset},
{}

View File

@ -1505,6 +1505,9 @@ void __init tsc_init(void)
return;
}
if (tsc_clocksource_reliable || no_tsc_watchdog)
clocksource_tsc_early.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
detect_art();
}

View File

@ -37,6 +37,7 @@
#include <linux/uaccess.h>
#include <linux/hash.h>
#include <linux/kern_levels.h>
#include <linux/kthread.h>
#include <asm/page.h>
#include <asm/pat.h>
@ -47,6 +48,35 @@
#include <asm/kvm_page_track.h>
#include "trace.h"
extern bool itlb_multihit_kvm_mitigation;
static int __read_mostly nx_huge_pages = -1;
#ifdef CONFIG_PREEMPT_RT
/* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
#else
static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
#endif
static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
static struct kernel_param_ops nx_huge_pages_ops = {
.set = set_nx_huge_pages,
.get = param_get_bool,
};
static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
.set = set_nx_huge_pages_recovery_ratio,
.get = param_get_uint,
};
module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
__MODULE_PARM_TYPE(nx_huge_pages, "bool");
module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
&nx_huge_pages_recovery_ratio, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
/*
* When setting this variable to true it enables Two-Dimensional-Paging
* where the hardware walks 2 page tables:
@ -352,6 +382,11 @@ static inline bool spte_ad_need_write_protect(u64 spte)
return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK;
}
static bool is_nx_huge_page_enabled(void)
{
return READ_ONCE(nx_huge_pages);
}
static inline u64 spte_shadow_accessed_mask(u64 spte)
{
MMU_WARN_ON(is_mmio_spte(spte));
@ -1190,6 +1225,17 @@ static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
kvm_mmu_gfn_disallow_lpage(slot, gfn);
}
static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
if (sp->lpage_disallowed)
return;
++kvm->stat.nx_lpage_splits;
list_add_tail(&sp->lpage_disallowed_link,
&kvm->arch.lpage_disallowed_mmu_pages);
sp->lpage_disallowed = true;
}
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
{
struct kvm_memslots *slots;
@ -1207,6 +1253,13 @@ static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
kvm_mmu_gfn_allow_lpage(slot, gfn);
}
static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
--kvm->stat.nx_lpage_splits;
sp->lpage_disallowed = false;
list_del(&sp->lpage_disallowed_link);
}
static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
struct kvm_memory_slot *slot)
{
@ -2792,6 +2845,9 @@ static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
kvm_reload_remote_mmus(kvm);
}
if (sp->lpage_disallowed)
unaccount_huge_nx_page(kvm, sp);
sp->role.invalid = 1;
return list_unstable;
}
@ -3013,6 +3069,11 @@ static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
if (!speculative)
spte |= spte_shadow_accessed_mask(spte);
if (level > PT_PAGE_TABLE_LEVEL && (pte_access & ACC_EXEC_MASK) &&
is_nx_huge_page_enabled()) {
pte_access &= ~ACC_EXEC_MASK;
}
if (pte_access & ACC_EXEC_MASK)
spte |= shadow_x_mask;
else
@ -3233,9 +3294,32 @@ static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
__direct_pte_prefetch(vcpu, sp, sptep);
}
static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
gfn_t gfn, kvm_pfn_t *pfnp, int *levelp)
{
int level = *levelp;
u64 spte = *it.sptep;
if (it.level == level && level > PT_PAGE_TABLE_LEVEL &&
is_nx_huge_page_enabled() &&
is_shadow_present_pte(spte) &&
!is_large_pte(spte)) {
/*
* A small SPTE exists for this pfn, but FNAME(fetch)
* and __direct_map would like to create a large PTE
* instead: just force them to go down another level,
* patching back for them into pfn the next 9 bits of
* the address.
*/
u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1);
*pfnp |= gfn & page_mask;
(*levelp)--;
}
}
static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
int map_writable, int level, kvm_pfn_t pfn,
bool prefault)
bool prefault, bool lpage_disallowed)
{
struct kvm_shadow_walk_iterator it;
struct kvm_mmu_page *sp;
@ -3248,6 +3332,12 @@ static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
trace_kvm_mmu_spte_requested(gpa, level, pfn);
for_each_shadow_entry(vcpu, gpa, it) {
/*
* We cannot overwrite existing page tables with an NX
* large page, as the leaf could be executable.
*/
disallowed_hugepage_adjust(it, gfn, &pfn, &level);
base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
if (it.level == level)
break;
@ -3258,6 +3348,8 @@ static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
it.level - 1, true, ACC_ALL);
link_shadow_page(vcpu, it.sptep, sp);
if (lpage_disallowed)
account_huge_nx_page(vcpu->kvm, sp);
}
}
@ -3306,7 +3398,7 @@ static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
* here.
*/
if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
level == PT_PAGE_TABLE_LEVEL &&
!kvm_is_zone_device_pfn(pfn) && level == PT_PAGE_TABLE_LEVEL &&
PageTransCompoundMap(pfn_to_page(pfn)) &&
!mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
unsigned long mask;
@ -3550,11 +3642,14 @@ static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
{
int r;
int level;
bool force_pt_level = false;
bool force_pt_level;
kvm_pfn_t pfn;
unsigned long mmu_seq;
bool map_writable, write = error_code & PFERR_WRITE_MASK;
bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) &&
is_nx_huge_page_enabled();
force_pt_level = lpage_disallowed;
level = mapping_level(vcpu, gfn, &force_pt_level);
if (likely(!force_pt_level)) {
/*
@ -3588,7 +3683,8 @@ static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
goto out_unlock;
if (likely(!force_pt_level))
transparent_hugepage_adjust(vcpu, gfn, &pfn, &level);
r = __direct_map(vcpu, v, write, map_writable, level, pfn, prefault);
r = __direct_map(vcpu, v, write, map_writable, level, pfn,
prefault, false);
out_unlock:
spin_unlock(&vcpu->kvm->mmu_lock);
kvm_release_pfn_clean(pfn);
@ -4174,6 +4270,8 @@ static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
unsigned long mmu_seq;
int write = error_code & PFERR_WRITE_MASK;
bool map_writable;
bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) &&
is_nx_huge_page_enabled();
MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
@ -4184,8 +4282,9 @@ static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
if (r)
return r;
force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
PT_DIRECTORY_LEVEL);
force_pt_level =
lpage_disallowed ||
!check_hugepage_cache_consistency(vcpu, gfn, PT_DIRECTORY_LEVEL);
level = mapping_level(vcpu, gfn, &force_pt_level);
if (likely(!force_pt_level)) {
if (level > PT_DIRECTORY_LEVEL &&
@ -4214,7 +4313,8 @@ static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
goto out_unlock;
if (likely(!force_pt_level))
transparent_hugepage_adjust(vcpu, gfn, &pfn, &level);
r = __direct_map(vcpu, gpa, write, map_writable, level, pfn, prefault);
r = __direct_map(vcpu, gpa, write, map_writable, level, pfn,
prefault, lpage_disallowed);
out_unlock:
spin_unlock(&vcpu->kvm->mmu_lock);
kvm_release_pfn_clean(pfn);
@ -5914,9 +6014,9 @@ static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
* the guest, and the guest page table is using 4K page size
* mapping if the indirect sp has level = 1.
*/
if (sp->role.direct &&
!kvm_is_reserved_pfn(pfn) &&
PageTransCompoundMap(pfn_to_page(pfn))) {
if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
!kvm_is_zone_device_pfn(pfn) &&
PageTransCompoundMap(pfn_to_page(pfn))) {
pte_list_remove(rmap_head, sptep);
if (kvm_available_flush_tlb_with_range())
@ -6155,10 +6255,59 @@ static void kvm_set_mmio_spte_mask(void)
kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
}
static bool get_nx_auto_mode(void)
{
/* Return true when CPU has the bug, and mitigations are ON */
return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
}
static void __set_nx_huge_pages(bool val)
{
nx_huge_pages = itlb_multihit_kvm_mitigation = val;
}
static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
{
bool old_val = nx_huge_pages;
bool new_val;
/* In "auto" mode deploy workaround only if CPU has the bug. */
if (sysfs_streq(val, "off"))
new_val = 0;
else if (sysfs_streq(val, "force"))
new_val = 1;
else if (sysfs_streq(val, "auto"))
new_val = get_nx_auto_mode();
else if (strtobool(val, &new_val) < 0)
return -EINVAL;
__set_nx_huge_pages(new_val);
if (new_val != old_val) {
struct kvm *kvm;
mutex_lock(&kvm_lock);
list_for_each_entry(kvm, &vm_list, vm_list) {
mutex_lock(&kvm->slots_lock);
kvm_mmu_zap_all_fast(kvm);
mutex_unlock(&kvm->slots_lock);
wake_up_process(kvm->arch.nx_lpage_recovery_thread);
}
mutex_unlock(&kvm_lock);
}
return 0;
}
int kvm_mmu_module_init(void)
{
int ret = -ENOMEM;
if (nx_huge_pages == -1)
__set_nx_huge_pages(get_nx_auto_mode());
/*
* MMU roles use union aliasing which is, generally speaking, an
* undefined behavior. However, we supposedly know how compilers behave
@ -6238,3 +6387,116 @@ void kvm_mmu_module_exit(void)
unregister_shrinker(&mmu_shrinker);
mmu_audit_disable();
}
static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
{
unsigned int old_val;
int err;
old_val = nx_huge_pages_recovery_ratio;
err = param_set_uint(val, kp);
if (err)
return err;
if (READ_ONCE(nx_huge_pages) &&
!old_val && nx_huge_pages_recovery_ratio) {
struct kvm *kvm;
mutex_lock(&kvm_lock);
list_for_each_entry(kvm, &vm_list, vm_list)
wake_up_process(kvm->arch.nx_lpage_recovery_thread);
mutex_unlock(&kvm_lock);
}
return err;
}
static void kvm_recover_nx_lpages(struct kvm *kvm)
{
int rcu_idx;
struct kvm_mmu_page *sp;
unsigned int ratio;
LIST_HEAD(invalid_list);
ulong to_zap;
rcu_idx = srcu_read_lock(&kvm->srcu);
spin_lock(&kvm->mmu_lock);
ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) {
/*
* We use a separate list instead of just using active_mmu_pages
* because the number of lpage_disallowed pages is expected to
* be relatively small compared to the total.
*/
sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
struct kvm_mmu_page,
lpage_disallowed_link);
WARN_ON_ONCE(!sp->lpage_disallowed);
kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
WARN_ON_ONCE(sp->lpage_disallowed);
if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) {
kvm_mmu_commit_zap_page(kvm, &invalid_list);
if (to_zap)
cond_resched_lock(&kvm->mmu_lock);
}
}
spin_unlock(&kvm->mmu_lock);
srcu_read_unlock(&kvm->srcu, rcu_idx);
}
static long get_nx_lpage_recovery_timeout(u64 start_time)
{
return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
? start_time + 60 * HZ - get_jiffies_64()
: MAX_SCHEDULE_TIMEOUT;
}
static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
{
u64 start_time;
long remaining_time;
while (true) {
start_time = get_jiffies_64();
remaining_time = get_nx_lpage_recovery_timeout(start_time);
set_current_state(TASK_INTERRUPTIBLE);
while (!kthread_should_stop() && remaining_time > 0) {
schedule_timeout(remaining_time);
remaining_time = get_nx_lpage_recovery_timeout(start_time);
set_current_state(TASK_INTERRUPTIBLE);
}
set_current_state(TASK_RUNNING);
if (kthread_should_stop())
return 0;
kvm_recover_nx_lpages(kvm);
}
}
int kvm_mmu_post_init_vm(struct kvm *kvm)
{
int err;
err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
"kvm-nx-lpage-recovery",
&kvm->arch.nx_lpage_recovery_thread);
if (!err)
kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
return err;
}
void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
{
if (kvm->arch.nx_lpage_recovery_thread)
kthread_stop(kvm->arch.nx_lpage_recovery_thread);
}

View File

@ -210,4 +210,8 @@ void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn);
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
struct kvm_memory_slot *slot, u64 gfn);
int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu);
int kvm_mmu_post_init_vm(struct kvm *kvm);
void kvm_mmu_pre_destroy_vm(struct kvm *kvm);
#endif

View File

@ -614,13 +614,14 @@ static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
struct guest_walker *gw,
int write_fault, int hlevel,
kvm_pfn_t pfn, bool map_writable, bool prefault)
kvm_pfn_t pfn, bool map_writable, bool prefault,
bool lpage_disallowed)
{
struct kvm_mmu_page *sp = NULL;
struct kvm_shadow_walk_iterator it;
unsigned direct_access, access = gw->pt_access;
int top_level, ret;
gfn_t base_gfn;
gfn_t gfn, base_gfn;
direct_access = gw->pte_access;
@ -665,13 +666,25 @@ static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
link_shadow_page(vcpu, it.sptep, sp);
}
base_gfn = gw->gfn;
/*
* FNAME(page_fault) might have clobbered the bottom bits of
* gw->gfn, restore them from the virtual address.
*/
gfn = gw->gfn | ((addr & PT_LVL_OFFSET_MASK(gw->level)) >> PAGE_SHIFT);
base_gfn = gfn;
trace_kvm_mmu_spte_requested(addr, gw->level, pfn);
for (; shadow_walk_okay(&it); shadow_walk_next(&it)) {
clear_sp_write_flooding_count(it.sptep);
base_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
/*
* We cannot overwrite existing page tables with an NX
* large page, as the leaf could be executable.
*/
disallowed_hugepage_adjust(it, gfn, &pfn, &hlevel);
base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
if (it.level == hlevel)
break;
@ -683,6 +696,8 @@ static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
sp = kvm_mmu_get_page(vcpu, base_gfn, addr,
it.level - 1, true, direct_access);
link_shadow_page(vcpu, it.sptep, sp);
if (lpage_disallowed)
account_huge_nx_page(vcpu->kvm, sp);
}
}
@ -759,9 +774,11 @@ static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
int r;
kvm_pfn_t pfn;
int level = PT_PAGE_TABLE_LEVEL;
bool force_pt_level = false;
unsigned long mmu_seq;
bool map_writable, is_self_change_mapping;
bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) &&
is_nx_huge_page_enabled();
bool force_pt_level = lpage_disallowed;
pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
@ -851,7 +868,7 @@ static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
if (!force_pt_level)
transparent_hugepage_adjust(vcpu, walker.gfn, &pfn, &level);
r = FNAME(fetch)(vcpu, addr, &walker, write_fault,
level, pfn, map_writable, prefault);
level, pfn, map_writable, prefault, lpage_disallowed);
kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
out_unlock:

View File

@ -1268,6 +1268,18 @@ static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
return;
/*
* If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
* PI.NDST: pi_post_block is the one expected to change PID.NDST and the
* wakeup handler expects the vCPU to be on the blocked_vcpu_list that
* matches PI.NDST. Otherwise, a vcpu may not be able to be woken up
* correctly.
*/
if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR || vcpu->cpu == cpu) {
pi_clear_sn(pi_desc);
goto after_clear_sn;
}
/* The full case. */
do {
old.control = new.control = pi_desc->control;
@ -1283,6 +1295,8 @@ static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
} while (cmpxchg64(&pi_desc->control, old.control,
new.control) != old.control);
after_clear_sn:
/*
* Clear SN before reading the bitmap. The VT-d firmware
* writes the bitmap and reads SN atomically (5.2.3 in the
@ -1291,7 +1305,7 @@ static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
*/
smp_mb__after_atomic();
if (!bitmap_empty((unsigned long *)pi_desc->pir, NR_VECTORS))
if (!pi_is_pir_empty(pi_desc))
pi_set_on(pi_desc);
}
@ -6137,7 +6151,7 @@ static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
if (pi_test_on(&vmx->pi_desc)) {
pi_clear_on(&vmx->pi_desc);
/*
* IOMMU can write to PIR.ON, so the barrier matters even on UP.
* IOMMU can write to PID.ON, so the barrier matters even on UP.
* But on x86 this is just a compiler barrier anyway.
*/
smp_mb__after_atomic();
@ -6167,7 +6181,10 @@ static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
static bool vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
{
return pi_test_on(vcpu_to_pi_desc(vcpu));
struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
return pi_test_on(pi_desc) ||
(pi_test_sn(pi_desc) && !pi_is_pir_empty(pi_desc));
}
static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)

View File

@ -355,6 +355,11 @@ static inline int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
}
static inline bool pi_is_pir_empty(struct pi_desc *pi_desc)
{
return bitmap_empty((unsigned long *)pi_desc->pir, NR_VECTORS);
}
static inline void pi_set_sn(struct pi_desc *pi_desc)
{
set_bit(POSTED_INTR_SN,
@ -373,6 +378,12 @@ static inline void pi_clear_on(struct pi_desc *pi_desc)
(unsigned long *)&pi_desc->control);
}
static inline void pi_clear_sn(struct pi_desc *pi_desc)
{
clear_bit(POSTED_INTR_SN,
(unsigned long *)&pi_desc->control);
}
static inline int pi_test_on(struct pi_desc *pi_desc)
{
return test_bit(POSTED_INTR_ON,

View File

@ -213,6 +213,7 @@ struct kvm_stats_debugfs_item debugfs_entries[] = {
{ "mmu_unsync", VM_STAT(mmu_unsync) },
{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
{ "largepages", VM_STAT(lpages, .mode = 0444) },
{ "nx_largepages_splitted", VM_STAT(nx_lpage_splits, .mode = 0444) },
{ "max_mmu_page_hash_collisions",
VM_STAT(max_mmu_page_hash_collisions) },
{ NULL }
@ -1132,13 +1133,15 @@ EXPORT_SYMBOL_GPL(kvm_rdpmc);
* List of msr numbers which we expose to userspace through KVM_GET_MSRS
* and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
*
* This list is modified at module load time to reflect the
* The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
* extract the supported MSRs from the related const lists.
* msrs_to_save is selected from the msrs_to_save_all to reflect the
* capabilities of the host cpu. This capabilities test skips MSRs that are
* kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
* kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
* may depend on host virtualization features rather than host cpu features.
*/
static u32 msrs_to_save[] = {
static const u32 msrs_to_save_all[] = {
MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
MSR_STAR,
#ifdef CONFIG_X86_64
@ -1179,9 +1182,10 @@ static u32 msrs_to_save[] = {
MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
};
static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
static unsigned num_msrs_to_save;
static u32 emulated_msrs[] = {
static const u32 emulated_msrs_all[] = {
MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
@ -1220,7 +1224,7 @@ static u32 emulated_msrs[] = {
* by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
* We always support the "true" VMX control MSRs, even if the host
* processor does not, so I am putting these registers here rather
* than in msrs_to_save.
* than in msrs_to_save_all.
*/
MSR_IA32_VMX_BASIC,
MSR_IA32_VMX_TRUE_PINBASED_CTLS,
@ -1239,13 +1243,14 @@ static u32 emulated_msrs[] = {
MSR_KVM_POLL_CONTROL,
};
static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
static unsigned num_emulated_msrs;
/*
* List of msr numbers which are used to expose MSR-based features that
* can be used by a hypervisor to validate requested CPU features.
*/
static u32 msr_based_features[] = {
static const u32 msr_based_features_all[] = {
MSR_IA32_VMX_BASIC,
MSR_IA32_VMX_TRUE_PINBASED_CTLS,
MSR_IA32_VMX_PINBASED_CTLS,
@ -1270,6 +1275,7 @@ static u32 msr_based_features[] = {
MSR_IA32_ARCH_CAPABILITIES,
};
static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
static unsigned int num_msr_based_features;
static u64 kvm_get_arch_capabilities(void)
@ -1279,6 +1285,14 @@ static u64 kvm_get_arch_capabilities(void)
if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
/*
* If nx_huge_pages is enabled, KVM's shadow paging will ensure that
* the nested hypervisor runs with NX huge pages. If it is not,
* L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
* L1 guests, so it need not worry about its own (L2) guests.
*/
data |= ARCH_CAP_PSCHANGE_MC_NO;
/*
* If we're doing cache flushes (either "always" or "cond")
* we will do one whenever the guest does a vmlaunch/vmresume.
@ -1298,6 +1312,25 @@ static u64 kvm_get_arch_capabilities(void)
if (!boot_cpu_has_bug(X86_BUG_MDS))
data |= ARCH_CAP_MDS_NO;
/*
* On TAA affected systems, export MDS_NO=0 when:
* - TSX is enabled on the host, i.e. X86_FEATURE_RTM=1.
* - Updated microcode is present. This is detected by
* the presence of ARCH_CAP_TSX_CTRL_MSR and ensures
* that VERW clears CPU buffers.
*
* When MDS_NO=0 is exported, guests deploy clear CPU buffer
* mitigation and don't complain:
*
* "Vulnerable: Clear CPU buffers attempted, no microcode"
*
* If TSX is disabled on the system, guests are also mitigated against
* TAA and clear CPU buffer mitigation is not required for guests.
*/
if (boot_cpu_has_bug(X86_BUG_TAA) && boot_cpu_has(X86_FEATURE_RTM) &&
(data & ARCH_CAP_TSX_CTRL_MSR))
data &= ~ARCH_CAP_MDS_NO;
return data;
}
@ -5090,22 +5123,26 @@ static void kvm_init_msr_list(void)
{
struct x86_pmu_capability x86_pmu;
u32 dummy[2];
unsigned i, j;
unsigned i;
BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
"Please update the fixed PMCs in msrs_to_save[]");
"Please update the fixed PMCs in msrs_to_saved_all[]");
perf_get_x86_pmu_capability(&x86_pmu);
for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
num_msrs_to_save = 0;
num_emulated_msrs = 0;
num_msr_based_features = 0;
for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
continue;
/*
* Even MSRs that are valid in the host may not be exposed
* to the guests in some cases.
*/
switch (msrs_to_save[i]) {
switch (msrs_to_save_all[i]) {
case MSR_IA32_BNDCFGS:
if (!kvm_mpx_supported())
continue;
@ -5133,17 +5170,17 @@ static void kvm_init_msr_list(void)
break;
case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: {
if (!kvm_x86_ops->pt_supported() ||
msrs_to_save[i] - MSR_IA32_RTIT_ADDR0_A >=
msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
continue;
break;
case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
if (msrs_to_save[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
continue;
break;
case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
if (msrs_to_save[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
continue;
}
@ -5151,34 +5188,25 @@ static void kvm_init_msr_list(void)
break;
}
if (j < i)
msrs_to_save[j] = msrs_to_save[i];
j++;
msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
}
num_msrs_to_save = j;
for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
if (!kvm_x86_ops->has_emulated_msr(emulated_msrs_all[i]))
continue;
if (j < i)
emulated_msrs[j] = emulated_msrs[i];
j++;
emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
}
num_emulated_msrs = j;
for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
struct kvm_msr_entry msr;
msr.index = msr_based_features[i];
msr.index = msr_based_features_all[i];
if (kvm_get_msr_feature(&msr))
continue;
if (j < i)
msr_based_features[j] = msr_based_features[i];
j++;
msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
}
num_msr_based_features = j;
}
static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
@ -9428,6 +9456,7 @@ int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
atomic_set(&kvm->arch.noncoherent_dma_count, 0);
@ -9456,6 +9485,11 @@ int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
return kvm_x86_ops->vm_init(kvm);
}
int kvm_arch_post_init_vm(struct kvm *kvm)
{
return kvm_mmu_post_init_vm(kvm);
}
static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
{
vcpu_load(vcpu);
@ -9557,6 +9591,11 @@ int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
}
EXPORT_SYMBOL_GPL(x86_set_memory_region);
void kvm_arch_pre_destroy_vm(struct kvm *kvm)
{
kvm_mmu_pre_destroy_vm(kvm);
}
void kvm_arch_destroy_vm(struct kvm *kvm)
{
if (current->mm == kvm->mm) {

View File

@ -2713,6 +2713,28 @@ static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
}
}
static
void bfq_release_process_ref(struct bfq_data *bfqd, struct bfq_queue *bfqq)
{
/*
* To prevent bfqq's service guarantees from being violated,
* bfqq may be left busy, i.e., queued for service, even if
* empty (see comments in __bfq_bfqq_expire() for
* details). But, if no process will send requests to bfqq any
* longer, then there is no point in keeping bfqq queued for
* service. In addition, keeping bfqq queued for service, but
* with no process ref any longer, may have caused bfqq to be
* freed when dequeued from service. But this is assumed to
* never happen.
*/
if (bfq_bfqq_busy(bfqq) && RB_EMPTY_ROOT(&bfqq->sort_list) &&
bfqq != bfqd->in_service_queue)
bfq_del_bfqq_busy(bfqd, bfqq, false);
bfq_put_queue(bfqq);
}
static void
bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
@ -2783,8 +2805,7 @@ bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
*/
new_bfqq->pid = -1;
bfqq->bic = NULL;
/* release process reference to bfqq */
bfq_put_queue(bfqq);
bfq_release_process_ref(bfqd, bfqq);
}
static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
@ -4899,7 +4920,7 @@ static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
bfq_put_cooperator(bfqq);
bfq_put_queue(bfqq); /* release process reference */
bfq_release_process_ref(bfqd, bfqq);
}
static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
@ -5001,8 +5022,7 @@ static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
bfqq = bic_to_bfqq(bic, false);
if (bfqq) {
/* release process reference on this queue */
bfq_put_queue(bfqq);
bfq_release_process_ref(bfqd, bfqq);
bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
bic_set_bfqq(bic, bfqq, false);
}
@ -5963,7 +5983,7 @@ bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
bfq_put_cooperator(bfqq);
bfq_put_queue(bfqq);
bfq_release_process_ref(bfqq->bfqd, bfqq);
return NULL;
}

View File

@ -751,7 +751,7 @@ bool __bio_try_merge_page(struct bio *bio, struct page *page,
if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
return false;
if (bio->bi_vcnt > 0) {
if (bio->bi_vcnt > 0 && !bio_full(bio, len)) {
struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
if (page_is_mergeable(bv, page, len, off, same_page)) {

View File

@ -1057,9 +1057,12 @@ static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
atomic64_set(&iocg->active_period, cur_period);
/* already activated or breaking leaf-only constraint? */
for (i = iocg->level; i > 0; i--)
if (!list_empty(&iocg->active_list))
if (!list_empty(&iocg->active_list))
goto succeed_unlock;
for (i = iocg->level - 1; i > 0; i--)
if (!list_empty(&iocg->ancestors[i]->active_list))
goto fail_unlock;
if (iocg->child_active_sum)
goto fail_unlock;
@ -1101,6 +1104,7 @@ static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
ioc_start_period(ioc, now);
}
succeed_unlock:
spin_unlock_irq(&ioc->lock);
return true;

View File

@ -554,12 +554,27 @@ ssize_t __weak cpu_show_mds(struct device *dev,
return sprintf(buf, "Not affected\n");
}
ssize_t __weak cpu_show_tsx_async_abort(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "Not affected\n");
}
ssize_t __weak cpu_show_itlb_multihit(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sprintf(buf, "Not affected\n");
}
static DEVICE_ATTR(meltdown, 0444, cpu_show_meltdown, NULL);
static DEVICE_ATTR(spectre_v1, 0444, cpu_show_spectre_v1, NULL);
static DEVICE_ATTR(spectre_v2, 0444, cpu_show_spectre_v2, NULL);
static DEVICE_ATTR(spec_store_bypass, 0444, cpu_show_spec_store_bypass, NULL);
static DEVICE_ATTR(l1tf, 0444, cpu_show_l1tf, NULL);
static DEVICE_ATTR(mds, 0444, cpu_show_mds, NULL);
static DEVICE_ATTR(tsx_async_abort, 0444, cpu_show_tsx_async_abort, NULL);
static DEVICE_ATTR(itlb_multihit, 0444, cpu_show_itlb_multihit, NULL);
static struct attribute *cpu_root_vulnerabilities_attrs[] = {
&dev_attr_meltdown.attr,
@ -568,6 +583,8 @@ static struct attribute *cpu_root_vulnerabilities_attrs[] = {
&dev_attr_spec_store_bypass.attr,
&dev_attr_l1tf.attr,
&dev_attr_mds.attr,
&dev_attr_tsx_async_abort.attr,
&dev_attr_itlb_multihit.attr,
NULL
};

View File

@ -872,3 +872,39 @@ int walk_memory_blocks(unsigned long start, unsigned long size,
}
return ret;
}
struct for_each_memory_block_cb_data {
walk_memory_blocks_func_t func;
void *arg;
};
static int for_each_memory_block_cb(struct device *dev, void *data)
{
struct memory_block *mem = to_memory_block(dev);
struct for_each_memory_block_cb_data *cb_data = data;
return cb_data->func(mem, cb_data->arg);
}
/**
* for_each_memory_block - walk through all present memory blocks
*
* @arg: argument passed to func
* @func: callback for each memory block walked
*
* This function walks through all present memory blocks, calling func on
* each memory block.
*
* In case func() returns an error, walking is aborted and the error is
* returned.
*/
int for_each_memory_block(void *arg, walk_memory_blocks_func_t func)
{
struct for_each_memory_block_cb_data cb_data = {
.func = func,
.arg = arg,
};
return bus_for_each_dev(&memory_subsys, NULL, &cb_data,
for_each_memory_block_cb);
}

View File

@ -2087,7 +2087,7 @@ static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
struct ceph_osd_data *osd_data;
u64 objno;
u8 state, new_state, current_state;
u8 state, new_state, uninitialized_var(current_state);
bool has_current_state;
void *p;

View File

@ -1000,8 +1000,10 @@ static void rsxx_pci_remove(struct pci_dev *dev)
cancel_work_sync(&card->event_work);
destroy_workqueue(card->event_wq);
rsxx_destroy_dev(card);
rsxx_dma_destroy(card);
destroy_workqueue(card->creg_ctrl.creg_wq);
spin_lock_irqsave(&card->irq_lock, flags);
rsxx_disable_ier_and_isr(card, CR_INTR_ALL);

View File

@ -13,7 +13,6 @@
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/freezer.h>
#include <linux/fs.h>
#include <linux/hw_random.h>
#include <linux/kernel.h>
@ -422,9 +421,7 @@ static int hwrng_fillfn(void *unused)
{
long rc;
set_freezable();
while (!kthread_freezable_should_stop(NULL)) {
while (!kthread_should_stop()) {
struct hwrng *rng;
rng = get_current_rng();

View File

@ -327,7 +327,6 @@
#include <linux/percpu.h>
#include <linux/cryptohash.h>
#include <linux/fips.h>
#include <linux/freezer.h>
#include <linux/ptrace.h>
#include <linux/workqueue.h>
#include <linux/irq.h>
@ -2500,8 +2499,7 @@ void add_hwgenerator_randomness(const char *buffer, size_t count,
* We'll be woken up again once below random_write_wakeup_thresh,
* or when the calling thread is about to terminate.
*/
wait_event_freezable(random_write_wait,
kthread_should_stop() ||
wait_event_interruptible(random_write_wait, kthread_should_stop() ||
ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
mix_pool_bytes(poolp, buffer, count);
credit_entropy_bits(poolp, entropy);

View File

@ -328,12 +328,13 @@ static int sh_mtu2_register(struct sh_mtu2_channel *ch, const char *name)
return 0;
}
static const unsigned int sh_mtu2_channel_offsets[] = {
0x300, 0x380, 0x000,
};
static int sh_mtu2_setup_channel(struct sh_mtu2_channel *ch, unsigned int index,
struct sh_mtu2_device *mtu)
{
static const unsigned int channel_offsets[] = {
0x300, 0x380, 0x000,
};
char name[6];
int irq;
int ret;
@ -356,7 +357,7 @@ static int sh_mtu2_setup_channel(struct sh_mtu2_channel *ch, unsigned int index,
return ret;
}
ch->base = mtu->mapbase + channel_offsets[index];
ch->base = mtu->mapbase + sh_mtu2_channel_offsets[index];
ch->index = index;
return sh_mtu2_register(ch, dev_name(&mtu->pdev->dev));
@ -408,7 +409,12 @@ static int sh_mtu2_setup(struct sh_mtu2_device *mtu,
}
/* Allocate and setup the channels. */
mtu->num_channels = 3;
ret = platform_irq_count(pdev);
if (ret < 0)
goto err_unmap;
mtu->num_channels = min_t(unsigned int, ret,
ARRAY_SIZE(sh_mtu2_channel_offsets));
mtu->channels = kcalloc(mtu->num_channels, sizeof(*mtu->channels),
GFP_KERNEL);

View File

@ -268,15 +268,12 @@ static int __init mtk_syst_init(struct device_node *node)
ret = timer_of_init(node, &to);
if (ret)
goto err;
return ret;
clockevents_config_and_register(&to.clkevt, timer_of_rate(&to),
TIMER_SYNC_TICKS, 0xffffffff);
return 0;
err:
timer_of_cleanup(&to);
return ret;
}
static int __init mtk_gpt_init(struct device_node *node)
@ -293,7 +290,7 @@ static int __init mtk_gpt_init(struct device_node *node)
ret = timer_of_init(node, &to);
if (ret)
goto err;
return ret;
/* Configure clock source */
mtk_gpt_setup(&to, TIMER_CLK_SRC, GPT_CTRL_OP_FREERUN);
@ -311,9 +308,6 @@ static int __init mtk_gpt_init(struct device_node *node)
mtk_gpt_enable_irq(&to, TIMER_CLK_EVT);
return 0;
err:
timer_of_cleanup(&to);
return ret;
}
TIMER_OF_DECLARE(mtk_mt6577, "mediatek,mt6577-timer", mtk_gpt_init);
TIMER_OF_DECLARE(mtk_mt6765, "mediatek,mt6765-timer", mtk_syst_init);

View File

@ -950,21 +950,7 @@ static void psp_print_fw_hdr(struct psp_context *psp,
struct amdgpu_firmware_info *ucode)
{
struct amdgpu_device *adev = psp->adev;
const struct sdma_firmware_header_v1_0 *sdma_hdr =
(const struct sdma_firmware_header_v1_0 *)
adev->sdma.instance[ucode->ucode_id - AMDGPU_UCODE_ID_SDMA0].fw->data;
const struct gfx_firmware_header_v1_0 *ce_hdr =
(const struct gfx_firmware_header_v1_0 *)adev->gfx.ce_fw->data;
const struct gfx_firmware_header_v1_0 *pfp_hdr =
(const struct gfx_firmware_header_v1_0 *)adev->gfx.pfp_fw->data;
const struct gfx_firmware_header_v1_0 *me_hdr =
(const struct gfx_firmware_header_v1_0 *)adev->gfx.me_fw->data;
const struct gfx_firmware_header_v1_0 *mec_hdr =
(const struct gfx_firmware_header_v1_0 *)adev->gfx.mec_fw->data;
const struct rlc_firmware_header_v2_0 *rlc_hdr =
(const struct rlc_firmware_header_v2_0 *)adev->gfx.rlc_fw->data;
const struct smc_firmware_header_v1_0 *smc_hdr =
(const struct smc_firmware_header_v1_0 *)adev->pm.fw->data;
struct common_firmware_header *hdr;
switch (ucode->ucode_id) {
case AMDGPU_UCODE_ID_SDMA0:
@ -975,25 +961,33 @@ static void psp_print_fw_hdr(struct psp_context *psp,
case AMDGPU_UCODE_ID_SDMA5:
case AMDGPU_UCODE_ID_SDMA6:
case AMDGPU_UCODE_ID_SDMA7:
amdgpu_ucode_print_sdma_hdr(&sdma_hdr->header);
hdr = (struct common_firmware_header *)
adev->sdma.instance[ucode->ucode_id - AMDGPU_UCODE_ID_SDMA0].fw->data;
amdgpu_ucode_print_sdma_hdr(hdr);
break;
case AMDGPU_UCODE_ID_CP_CE:
amdgpu_ucode_print_gfx_hdr(&ce_hdr->header);
hdr = (struct common_firmware_header *)adev->gfx.ce_fw->data;
amdgpu_ucode_print_gfx_hdr(hdr);
break;
case AMDGPU_UCODE_ID_CP_PFP:
amdgpu_ucode_print_gfx_hdr(&pfp_hdr->header);
hdr = (struct common_firmware_header *)adev->gfx.pfp_fw->data;
amdgpu_ucode_print_gfx_hdr(hdr);
break;
case AMDGPU_UCODE_ID_CP_ME:
amdgpu_ucode_print_gfx_hdr(&me_hdr->header);
hdr = (struct common_firmware_header *)adev->gfx.me_fw->data;
amdgpu_ucode_print_gfx_hdr(hdr);
break;
case AMDGPU_UCODE_ID_CP_MEC1:
amdgpu_ucode_print_gfx_hdr(&mec_hdr->header);
hdr = (struct common_firmware_header *)adev->gfx.mec_fw->data;
amdgpu_ucode_print_gfx_hdr(hdr);
break;
case AMDGPU_UCODE_ID_RLC_G:
amdgpu_ucode_print_rlc_hdr(&rlc_hdr->header);
hdr = (struct common_firmware_header *)adev->gfx.rlc_fw->data;
amdgpu_ucode_print_rlc_hdr(hdr);
break;
case AMDGPU_UCODE_ID_SMC:
amdgpu_ucode_print_smc_hdr(&smc_hdr->header);
hdr = (struct common_firmware_header *)adev->pm.fw->data;
amdgpu_ucode_print_smc_hdr(hdr);
break;
default:
break;

View File

@ -4896,6 +4896,9 @@ void intel_power_domains_init_hw(struct drm_i915_private *i915, bool resume)
power_domains->initializing = true;
/* Must happen before power domain init on VLV/CHV */
intel_update_rawclk(i915);
if (INTEL_GEN(i915) >= 11) {
icl_display_core_init(i915, resume);
} else if (IS_CANNONLAKE(i915)) {

View File

@ -319,6 +319,8 @@ static void i915_gem_context_free(struct i915_gem_context *ctx)
free_engines(rcu_access_pointer(ctx->engines));
mutex_destroy(&ctx->engines_mutex);
kfree(ctx->jump_whitelist);
if (ctx->timeline)
intel_timeline_put(ctx->timeline);
@ -441,6 +443,9 @@ __create_context(struct drm_i915_private *i915)
for (i = 0; i < ARRAY_SIZE(ctx->hang_timestamp); i++)
ctx->hang_timestamp[i] = jiffies - CONTEXT_FAST_HANG_JIFFIES;
ctx->jump_whitelist = NULL;
ctx->jump_whitelist_cmds = 0;
return ctx;
err_free:

View File

@ -192,6 +192,13 @@ struct i915_gem_context {
* per vm, which may be one per context or shared with the global GTT)
*/
struct radix_tree_root handles_vma;
/** jump_whitelist: Bit array for tracking cmds during cmdparsing
* Guarded by struct_mutex
*/
unsigned long *jump_whitelist;
/** jump_whitelist_cmds: No of cmd slots available */
u32 jump_whitelist_cmds;
};
#endif /* __I915_GEM_CONTEXT_TYPES_H__ */

View File

@ -296,7 +296,9 @@ static inline u64 gen8_noncanonical_addr(u64 address)
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
return intel_engine_needs_cmd_parser(eb->engine) && eb->batch_len;
return intel_engine_requires_cmd_parser(eb->engine) ||
(intel_engine_using_cmd_parser(eb->engine) &&
eb->args->batch_len);
}
static int eb_create(struct i915_execbuffer *eb)
@ -1955,40 +1957,94 @@ static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
return 0;
}
static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
static struct i915_vma *
shadow_batch_pin(struct i915_execbuffer *eb, struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = eb->i915;
struct i915_vma * const vma = *eb->vma;
struct i915_address_space *vm;
u64 flags;
/*
* PPGTT backed shadow buffers must be mapped RO, to prevent
* post-scan tampering
*/
if (CMDPARSER_USES_GGTT(dev_priv)) {
flags = PIN_GLOBAL;
vm = &dev_priv->ggtt.vm;
} else if (vma->vm->has_read_only) {
flags = PIN_USER;
vm = vma->vm;
i915_gem_object_set_readonly(obj);
} else {
DRM_DEBUG("Cannot prevent post-scan tampering without RO capable vm\n");
return ERR_PTR(-EINVAL);
}
return i915_gem_object_pin(obj, vm, NULL, 0, 0, flags);
}
static struct i915_vma *eb_parse(struct i915_execbuffer *eb)
{
struct intel_engine_pool_node *pool;
struct i915_vma *vma;
u64 batch_start;
u64 shadow_batch_start;
int err;
pool = intel_engine_pool_get(&eb->engine->pool, eb->batch_len);
if (IS_ERR(pool))
return ERR_CAST(pool);
err = intel_engine_cmd_parser(eb->engine,
vma = shadow_batch_pin(eb, pool->obj);
if (IS_ERR(vma))
goto err;
batch_start = gen8_canonical_addr(eb->batch->node.start) +
eb->batch_start_offset;
shadow_batch_start = gen8_canonical_addr(vma->node.start);
err = intel_engine_cmd_parser(eb->gem_context,
eb->engine,
eb->batch->obj,
pool->obj,
batch_start,
eb->batch_start_offset,
eb->batch_len,
is_master);
pool->obj,
shadow_batch_start);
if (err) {
if (err == -EACCES) /* unhandled chained batch */
i915_vma_unpin(vma);
/*
* Unsafe GGTT-backed buffers can still be submitted safely
* as non-secure.
* For PPGTT backing however, we have no choice but to forcibly
* reject unsafe buffers
*/
if (CMDPARSER_USES_GGTT(eb->i915) && (err == -EACCES))
/* Execute original buffer non-secure */
vma = NULL;
else
vma = ERR_PTR(err);
goto err;
}
vma = i915_gem_object_ggtt_pin(pool->obj, NULL, 0, 0, 0);
if (IS_ERR(vma))
goto err;
eb->vma[eb->buffer_count] = i915_vma_get(vma);
eb->flags[eb->buffer_count] =
__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
vma->exec_flags = &eb->flags[eb->buffer_count];
eb->buffer_count++;
eb->batch_start_offset = 0;
eb->batch = vma;
if (CMDPARSER_USES_GGTT(eb->i915))
eb->batch_flags |= I915_DISPATCH_SECURE;
/* eb->batch_len unchanged */
vma->private = pool;
return vma;
@ -2421,6 +2477,7 @@ i915_gem_do_execbuffer(struct drm_device *dev,
struct drm_i915_gem_exec_object2 *exec,
struct drm_syncobj **fences)
{
struct drm_i915_private *i915 = to_i915(dev);
struct i915_execbuffer eb;
struct dma_fence *in_fence = NULL;
struct dma_fence *exec_fence = NULL;
@ -2432,7 +2489,7 @@ i915_gem_do_execbuffer(struct drm_device *dev,
BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
~__EXEC_OBJECT_UNKNOWN_FLAGS);
eb.i915 = to_i915(dev);
eb.i915 = i915;
eb.file = file;
eb.args = args;
if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
@ -2452,8 +2509,15 @@ i915_gem_do_execbuffer(struct drm_device *dev,
eb.batch_flags = 0;
if (args->flags & I915_EXEC_SECURE) {
if (INTEL_GEN(i915) >= 11)
return -ENODEV;
/* Return -EPERM to trigger fallback code on old binaries. */
if (!HAS_SECURE_BATCHES(i915))
return -EPERM;
if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
return -EPERM;
return -EPERM;
eb.batch_flags |= I915_DISPATCH_SECURE;
}
@ -2530,34 +2594,19 @@ i915_gem_do_execbuffer(struct drm_device *dev,
goto err_vma;
}
if (eb.batch_len == 0)
eb.batch_len = eb.batch->size - eb.batch_start_offset;
if (eb_use_cmdparser(&eb)) {
struct i915_vma *vma;
vma = eb_parse(&eb, drm_is_current_master(file));
vma = eb_parse(&eb);
if (IS_ERR(vma)) {
err = PTR_ERR(vma);
goto err_vma;
}
if (vma) {
/*
* Batch parsed and accepted:
*
* Set the DISPATCH_SECURE bit to remove the NON_SECURE
* bit from MI_BATCH_BUFFER_START commands issued in
* the dispatch_execbuffer implementations. We
* specifically don't want that set on batches the
* command parser has accepted.
*/
eb.batch_flags |= I915_DISPATCH_SECURE;
eb.batch_start_offset = 0;
eb.batch = vma;
}
}
if (eb.batch_len == 0)
eb.batch_len = eb.batch->size - eb.batch_start_offset;
/*
* snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
* batch" bit. Hence we need to pin secure batches into the global gtt.

View File

@ -475,12 +475,13 @@ struct intel_engine_cs {
struct intel_engine_hangcheck hangcheck;
#define I915_ENGINE_NEEDS_CMD_PARSER BIT(0)
#define I915_ENGINE_USING_CMD_PARSER BIT(0)
#define I915_ENGINE_SUPPORTS_STATS BIT(1)
#define I915_ENGINE_HAS_PREEMPTION BIT(2)
#define I915_ENGINE_HAS_SEMAPHORES BIT(3)
#define I915_ENGINE_NEEDS_BREADCRUMB_TASKLET BIT(4)
#define I915_ENGINE_IS_VIRTUAL BIT(5)
#define I915_ENGINE_REQUIRES_CMD_PARSER BIT(7)
unsigned int flags;
/*
@ -541,9 +542,15 @@ struct intel_engine_cs {
};
static inline bool
intel_engine_needs_cmd_parser(const struct intel_engine_cs *engine)
intel_engine_using_cmd_parser(const struct intel_engine_cs *engine)
{
return engine->flags & I915_ENGINE_NEEDS_CMD_PARSER;
return engine->flags & I915_ENGINE_USING_CMD_PARSER;
}
static inline bool
intel_engine_requires_cmd_parser(const struct intel_engine_cs *engine)
{
return engine->flags & I915_ENGINE_REQUIRES_CMD_PARSER;
}
static inline bool

View File

@ -38,6 +38,9 @@ static int __gt_unpark(struct intel_wakeref *wf)
gt->awake = intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);
GEM_BUG_ON(!gt->awake);
if (NEEDS_RC6_CTX_CORRUPTION_WA(i915))
intel_uncore_forcewake_get(&i915->uncore, FORCEWAKE_ALL);
intel_enable_gt_powersave(i915);
i915_update_gfx_val(i915);
@ -67,6 +70,11 @@ static int __gt_park(struct intel_wakeref *wf)
if (INTEL_GEN(i915) >= 6)
gen6_rps_idle(i915);
if (NEEDS_RC6_CTX_CORRUPTION_WA(i915)) {
i915_rc6_ctx_wa_check(i915);
intel_uncore_forcewake_put(&i915->uncore, FORCEWAKE_ALL);
}
/* Everything switched off, flush any residual interrupt just in case */
intel_synchronize_irq(i915);

View File

@ -199,14 +199,6 @@ static const struct drm_i915_mocs_entry broxton_mocs_table[] = {
MOCS_ENTRY(15, \
LE_3_WB | LE_TC_1_LLC | LE_LRUM(2) | LE_AOM(1), \
L3_3_WB), \
/* Bypass LLC - Uncached (EHL+) */ \
MOCS_ENTRY(16, \
LE_1_UC | LE_TC_1_LLC | LE_SCF(1), \
L3_1_UC), \
/* Bypass LLC - L3 (Read-Only) (EHL+) */ \
MOCS_ENTRY(17, \
LE_1_UC | LE_TC_1_LLC | LE_SCF(1), \
L3_3_WB), \
/* Self-Snoop - L3 + LLC */ \
MOCS_ENTRY(18, \
LE_3_WB | LE_TC_1_LLC | LE_LRUM(3) | LE_SSE(3), \
@ -270,7 +262,7 @@ static const struct drm_i915_mocs_entry tigerlake_mocs_table[] = {
L3_1_UC),
/* HW Special Case (Displayable) */
MOCS_ENTRY(61,
LE_1_UC | LE_TC_1_LLC | LE_SCF(1),
LE_1_UC | LE_TC_1_LLC,
L3_3_WB),
};

View File

@ -498,8 +498,6 @@ int intel_vgpu_get_dmabuf(struct intel_vgpu *vgpu, unsigned int dmabuf_id)
goto out_free_gem;
}
i915_gem_object_put(obj);
ret = dma_buf_fd(dmabuf, DRM_CLOEXEC | DRM_RDWR);
if (ret < 0) {
gvt_vgpu_err("create dma-buf fd failed ret:%d\n", ret);
@ -524,6 +522,8 @@ int intel_vgpu_get_dmabuf(struct intel_vgpu *vgpu, unsigned int dmabuf_id)
file_count(dmabuf->file),
kref_read(&obj->base.refcount));
i915_gem_object_put(obj);
return dmabuf_fd;
out_free_dmabuf:

View File

@ -53,13 +53,11 @@
* granting userspace undue privileges. There are three categories of privilege.
*
* First, commands which are explicitly defined as privileged or which should
* only be used by the kernel driver. The parser generally rejects such
* commands, though it may allow some from the drm master process.
* only be used by the kernel driver. The parser rejects such commands
*
* Second, commands which access registers. To support correct/enhanced
* userspace functionality, particularly certain OpenGL extensions, the parser
* provides a whitelist of registers which userspace may safely access (for both
* normal and drm master processes).
* provides a whitelist of registers which userspace may safely access
*
* Third, commands which access privileged memory (i.e. GGTT, HWS page, etc).
* The parser always rejects such commands.
@ -84,9 +82,9 @@
* in the per-engine command tables.
*
* Other command table entries map fairly directly to high level categories
* mentioned above: rejected, master-only, register whitelist. The parser
* implements a number of checks, including the privileged memory checks, via a
* general bitmasking mechanism.
* mentioned above: rejected, register whitelist. The parser implements a number
* of checks, including the privileged memory checks, via a general bitmasking
* mechanism.
*/
/*
@ -104,8 +102,6 @@ struct drm_i915_cmd_descriptor {
* CMD_DESC_REJECT: The command is never allowed
* CMD_DESC_REGISTER: The command should be checked against the
* register whitelist for the appropriate ring
* CMD_DESC_MASTER: The command is allowed if the submitting process
* is the DRM master
*/
u32 flags;
#define CMD_DESC_FIXED (1<<0)
@ -113,7 +109,6 @@ struct drm_i915_cmd_descriptor {
#define CMD_DESC_REJECT (1<<2)
#define CMD_DESC_REGISTER (1<<3)
#define CMD_DESC_BITMASK (1<<4)
#define CMD_DESC_MASTER (1<<5)
/*
* The command's unique identification bits and the bitmask to get them.
@ -194,7 +189,7 @@ struct drm_i915_cmd_table {
#define CMD(op, opm, f, lm, fl, ...) \
{ \
.flags = (fl) | ((f) ? CMD_DESC_FIXED : 0), \
.cmd = { (op), ~0u << (opm) }, \
.cmd = { (op & ~0u << (opm)), ~0u << (opm) }, \
.length = { (lm) }, \
__VA_ARGS__ \
}
@ -209,14 +204,13 @@ struct drm_i915_cmd_table {
#define R CMD_DESC_REJECT
#define W CMD_DESC_REGISTER
#define B CMD_DESC_BITMASK
#define M CMD_DESC_MASTER
/* Command Mask Fixed Len Action
---------------------------------------------------------- */
static const struct drm_i915_cmd_descriptor common_cmds[] = {
static const struct drm_i915_cmd_descriptor gen7_common_cmds[] = {
CMD( MI_NOOP, SMI, F, 1, S ),
CMD( MI_USER_INTERRUPT, SMI, F, 1, R ),
CMD( MI_WAIT_FOR_EVENT, SMI, F, 1, M ),
CMD( MI_WAIT_FOR_EVENT, SMI, F, 1, R ),
CMD( MI_ARB_CHECK, SMI, F, 1, S ),
CMD( MI_REPORT_HEAD, SMI, F, 1, S ),
CMD( MI_SUSPEND_FLUSH, SMI, F, 1, S ),
@ -246,7 +240,7 @@ static const struct drm_i915_cmd_descriptor common_cmds[] = {
CMD( MI_BATCH_BUFFER_START, SMI, !F, 0xFF, S ),
};
static const struct drm_i915_cmd_descriptor render_cmds[] = {
static const struct drm_i915_cmd_descriptor gen7_render_cmds[] = {
CMD( MI_FLUSH, SMI, F, 1, S ),
CMD( MI_ARB_ON_OFF, SMI, F, 1, R ),
CMD( MI_PREDICATE, SMI, F, 1, S ),
@ -313,7 +307,7 @@ static const struct drm_i915_cmd_descriptor hsw_render_cmds[] = {
CMD( MI_URB_ATOMIC_ALLOC, SMI, F, 1, S ),
CMD( MI_SET_APPID, SMI, F, 1, S ),
CMD( MI_RS_CONTEXT, SMI, F, 1, S ),
CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, M ),
CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, R ),
CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, R ),
CMD( MI_LOAD_REGISTER_REG, SMI, !F, 0xFF, W,
.reg = { .offset = 1, .mask = 0x007FFFFC, .step = 1 } ),
@ -330,7 +324,7 @@ static const struct drm_i915_cmd_descriptor hsw_render_cmds[] = {
CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_PS, S3D, !F, 0x1FF, S ),
};
static const struct drm_i915_cmd_descriptor video_cmds[] = {
static const struct drm_i915_cmd_descriptor gen7_video_cmds[] = {
CMD( MI_ARB_ON_OFF, SMI, F, 1, R ),
CMD( MI_SET_APPID, SMI, F, 1, S ),
CMD( MI_STORE_DWORD_IMM, SMI, !F, 0xFF, B,
@ -374,7 +368,7 @@ static const struct drm_i915_cmd_descriptor video_cmds[] = {
CMD( MFX_WAIT, SMFX, F, 1, S ),
};
static const struct drm_i915_cmd_descriptor vecs_cmds[] = {
static const struct drm_i915_cmd_descriptor gen7_vecs_cmds[] = {
CMD( MI_ARB_ON_OFF, SMI, F, 1, R ),
CMD( MI_SET_APPID, SMI, F, 1, S ),
CMD( MI_STORE_DWORD_IMM, SMI, !F, 0xFF, B,
@ -412,7 +406,7 @@ static const struct drm_i915_cmd_descriptor vecs_cmds[] = {
}}, ),
};
static const struct drm_i915_cmd_descriptor blt_cmds[] = {
static const struct drm_i915_cmd_descriptor gen7_blt_cmds[] = {
CMD( MI_DISPLAY_FLIP, SMI, !F, 0xFF, R ),
CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3FF, B,
.bits = {{
@ -446,10 +440,64 @@ static const struct drm_i915_cmd_descriptor blt_cmds[] = {
};
static const struct drm_i915_cmd_descriptor hsw_blt_cmds[] = {
CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, M ),
CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, R ),
CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, R ),
};
/*
* For Gen9 we can still rely on the h/w to enforce cmd security, and only
* need to re-enforce the register access checks. We therefore only need to
* teach the cmdparser how to find the end of each command, and identify
* register accesses. The table doesn't need to reject any commands, and so
* the only commands listed here are:
* 1) Those that touch registers
* 2) Those that do not have the default 8-bit length
*
* Note that the default MI length mask chosen for this table is 0xFF, not
* the 0x3F used on older devices. This is because the vast majority of MI
* cmds on Gen9 use a standard 8-bit Length field.
* All the Gen9 blitter instructions are standard 0xFF length mask, and
* none allow access to non-general registers, so in fact no BLT cmds are
* included in the table at all.
*
*/
static const struct drm_i915_cmd_descriptor gen9_blt_cmds[] = {
CMD( MI_NOOP, SMI, F, 1, S ),
CMD( MI_USER_INTERRUPT, SMI, F, 1, S ),
CMD( MI_WAIT_FOR_EVENT, SMI, F, 1, S ),
CMD( MI_FLUSH, SMI, F, 1, S ),
CMD( MI_ARB_CHECK, SMI, F, 1, S ),
CMD( MI_REPORT_HEAD, SMI, F, 1, S ),
CMD( MI_ARB_ON_OFF, SMI, F, 1, S ),
CMD( MI_SUSPEND_FLUSH, SMI, F, 1, S ),
CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, S ),
CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, S ),
CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3FF, S ),
CMD( MI_LOAD_REGISTER_IMM(1), SMI, !F, 0xFF, W,
.reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 } ),
CMD( MI_UPDATE_GTT, SMI, !F, 0x3FF, S ),
CMD( MI_STORE_REGISTER_MEM_GEN8, SMI, F, 4, W,
.reg = { .offset = 1, .mask = 0x007FFFFC } ),
CMD( MI_FLUSH_DW, SMI, !F, 0x3F, S ),
CMD( MI_LOAD_REGISTER_MEM_GEN8, SMI, F, 4, W,
.reg = { .offset = 1, .mask = 0x007FFFFC } ),
CMD( MI_LOAD_REGISTER_REG, SMI, !F, 0xFF, W,
.reg = { .offset = 1, .mask = 0x007FFFFC, .step = 1 } ),
/*
* We allow BB_START but apply further checks. We just sanitize the
* basic fields here.
*/
#define MI_BB_START_OPERAND_MASK GENMASK(SMI-1, 0)
#define MI_BB_START_OPERAND_EXPECT (MI_BATCH_PPGTT_HSW | 1)
CMD( MI_BATCH_BUFFER_START_GEN8, SMI, !F, 0xFF, B,
.bits = {{
.offset = 0,
.mask = MI_BB_START_OPERAND_MASK,
.expected = MI_BB_START_OPERAND_EXPECT,
}}, ),
};
static const struct drm_i915_cmd_descriptor noop_desc =
CMD(MI_NOOP, SMI, F, 1, S);
@ -463,40 +511,44 @@ static const struct drm_i915_cmd_descriptor noop_desc =
#undef R
#undef W
#undef B
#undef M
static const struct drm_i915_cmd_table gen7_render_cmds[] = {
{ common_cmds, ARRAY_SIZE(common_cmds) },
{ render_cmds, ARRAY_SIZE(render_cmds) },
static const struct drm_i915_cmd_table gen7_render_cmd_table[] = {
{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
{ gen7_render_cmds, ARRAY_SIZE(gen7_render_cmds) },
};
static const struct drm_i915_cmd_table hsw_render_ring_cmds[] = {
{ common_cmds, ARRAY_SIZE(common_cmds) },
{ render_cmds, ARRAY_SIZE(render_cmds) },
static const struct drm_i915_cmd_table hsw_render_ring_cmd_table[] = {
{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
{ gen7_render_cmds, ARRAY_SIZE(gen7_render_cmds) },
{ hsw_render_cmds, ARRAY_SIZE(hsw_render_cmds) },
};
static const struct drm_i915_cmd_table gen7_video_cmds[] = {
{ common_cmds, ARRAY_SIZE(common_cmds) },
{ video_cmds, ARRAY_SIZE(video_cmds) },
static const struct drm_i915_cmd_table gen7_video_cmd_table[] = {
{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
{ gen7_video_cmds, ARRAY_SIZE(gen7_video_cmds) },
};
static const struct drm_i915_cmd_table hsw_vebox_cmds[] = {
{ common_cmds, ARRAY_SIZE(common_cmds) },
{ vecs_cmds, ARRAY_SIZE(vecs_cmds) },
static const struct drm_i915_cmd_table hsw_vebox_cmd_table[] = {
{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
{ gen7_vecs_cmds, ARRAY_SIZE(gen7_vecs_cmds) },
};
static const struct drm_i915_cmd_table gen7_blt_cmds[] = {
{ common_cmds, ARRAY_SIZE(common_cmds) },
{ blt_cmds, ARRAY_SIZE(blt_cmds) },
static const struct drm_i915_cmd_table gen7_blt_cmd_table[] = {
{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
{ gen7_blt_cmds, ARRAY_SIZE(gen7_blt_cmds) },
};
static const struct drm_i915_cmd_table hsw_blt_ring_cmds[] = {
{ common_cmds, ARRAY_SIZE(common_cmds) },
{ blt_cmds, ARRAY_SIZE(blt_cmds) },
static const struct drm_i915_cmd_table hsw_blt_ring_cmd_table[] = {
{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
{ gen7_blt_cmds, ARRAY_SIZE(gen7_blt_cmds) },
{ hsw_blt_cmds, ARRAY_SIZE(hsw_blt_cmds) },
};
static const struct drm_i915_cmd_table gen9_blt_cmd_table[] = {
{ gen9_blt_cmds, ARRAY_SIZE(gen9_blt_cmds) },
};
/*
* Register whitelists, sorted by increasing register offset.
*/
@ -612,17 +664,27 @@ static const struct drm_i915_reg_descriptor gen7_blt_regs[] = {
REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
};
static const struct drm_i915_reg_descriptor ivb_master_regs[] = {
REG32(FORCEWAKE_MT),
REG32(DERRMR),
REG32(GEN7_PIPE_DE_LOAD_SL(PIPE_A)),
REG32(GEN7_PIPE_DE_LOAD_SL(PIPE_B)),
REG32(GEN7_PIPE_DE_LOAD_SL(PIPE_C)),
};
static const struct drm_i915_reg_descriptor hsw_master_regs[] = {
REG32(FORCEWAKE_MT),
REG32(DERRMR),
static const struct drm_i915_reg_descriptor gen9_blt_regs[] = {
REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE),
REG32(BCS_SWCTRL),
REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
REG64_IDX(BCS_GPR, 0),
REG64_IDX(BCS_GPR, 1),
REG64_IDX(BCS_GPR, 2),
REG64_IDX(BCS_GPR, 3),
REG64_IDX(BCS_GPR, 4),
REG64_IDX(BCS_GPR, 5),
REG64_IDX(BCS_GPR, 6),
REG64_IDX(BCS_GPR, 7),
REG64_IDX(BCS_GPR, 8),
REG64_IDX(BCS_GPR, 9),
REG64_IDX(BCS_GPR, 10),
REG64_IDX(BCS_GPR, 11),
REG64_IDX(BCS_GPR, 12),
REG64_IDX(BCS_GPR, 13),
REG64_IDX(BCS_GPR, 14),
REG64_IDX(BCS_GPR, 15),
};
#undef REG64
@ -631,28 +693,27 @@ static const struct drm_i915_reg_descriptor hsw_master_regs[] = {
struct drm_i915_reg_table {
const struct drm_i915_reg_descriptor *regs;
int num_regs;
bool master;
};
static const struct drm_i915_reg_table ivb_render_reg_tables[] = {
{ gen7_render_regs, ARRAY_SIZE(gen7_render_regs), false },
{ ivb_master_regs, ARRAY_SIZE(ivb_master_regs), true },
{ gen7_render_regs, ARRAY_SIZE(gen7_render_regs) },
};
static const struct drm_i915_reg_table ivb_blt_reg_tables[] = {
{ gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs), false },
{ ivb_master_regs, ARRAY_SIZE(ivb_master_regs), true },
{ gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs) },
};
static const struct drm_i915_reg_table hsw_render_reg_tables[] = {
{ gen7_render_regs, ARRAY_SIZE(gen7_render_regs), false },
{ hsw_render_regs, ARRAY_SIZE(hsw_render_regs), false },
{ hsw_master_regs, ARRAY_SIZE(hsw_master_regs), true },
{ gen7_render_regs, ARRAY_SIZE(gen7_render_regs) },
{ hsw_render_regs, ARRAY_SIZE(hsw_render_regs) },
};
static const struct drm_i915_reg_table hsw_blt_reg_tables[] = {
{ gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs), false },
{ hsw_master_regs, ARRAY_SIZE(hsw_master_regs), true },
{ gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs) },
};
static const struct drm_i915_reg_table gen9_blt_reg_tables[] = {
{ gen9_blt_regs, ARRAY_SIZE(gen9_blt_regs) },
};
static u32 gen7_render_get_cmd_length_mask(u32 cmd_header)
@ -710,6 +771,17 @@ static u32 gen7_blt_get_cmd_length_mask(u32 cmd_header)
return 0;
}
static u32 gen9_blt_get_cmd_length_mask(u32 cmd_header)
{
u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
if (client == INSTR_MI_CLIENT || client == INSTR_BC_CLIENT)
return 0xFF;
DRM_DEBUG_DRIVER("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header);
return 0;
}
static bool validate_cmds_sorted(const struct intel_engine_cs *engine,
const struct drm_i915_cmd_table *cmd_tables,
int cmd_table_count)
@ -867,18 +939,19 @@ void intel_engine_init_cmd_parser(struct intel_engine_cs *engine)
int cmd_table_count;
int ret;
if (!IS_GEN(engine->i915, 7))
if (!IS_GEN(engine->i915, 7) && !(IS_GEN(engine->i915, 9) &&
engine->class == COPY_ENGINE_CLASS))
return;
switch (engine->class) {
case RENDER_CLASS:
if (IS_HASWELL(engine->i915)) {
cmd_tables = hsw_render_ring_cmds;
cmd_tables = hsw_render_ring_cmd_table;
cmd_table_count =
ARRAY_SIZE(hsw_render_ring_cmds);
ARRAY_SIZE(hsw_render_ring_cmd_table);
} else {
cmd_tables = gen7_render_cmds;
cmd_table_count = ARRAY_SIZE(gen7_render_cmds);
cmd_tables = gen7_render_cmd_table;
cmd_table_count = ARRAY_SIZE(gen7_render_cmd_table);
}
if (IS_HASWELL(engine->i915)) {
@ -888,36 +961,46 @@ void intel_engine_init_cmd_parser(struct intel_engine_cs *engine)
engine->reg_tables = ivb_render_reg_tables;
engine->reg_table_count = ARRAY_SIZE(ivb_render_reg_tables);
}
engine->get_cmd_length_mask = gen7_render_get_cmd_length_mask;
break;
case VIDEO_DECODE_CLASS:
cmd_tables = gen7_video_cmds;
cmd_table_count = ARRAY_SIZE(gen7_video_cmds);
cmd_tables = gen7_video_cmd_table;
cmd_table_count = ARRAY_SIZE(gen7_video_cmd_table);
engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask;
break;
case COPY_ENGINE_CLASS:
if (IS_HASWELL(engine->i915)) {
cmd_tables = hsw_blt_ring_cmds;
cmd_table_count = ARRAY_SIZE(hsw_blt_ring_cmds);
engine->get_cmd_length_mask = gen7_blt_get_cmd_length_mask;
if (IS_GEN(engine->i915, 9)) {
cmd_tables = gen9_blt_cmd_table;
cmd_table_count = ARRAY_SIZE(gen9_blt_cmd_table);
engine->get_cmd_length_mask =
gen9_blt_get_cmd_length_mask;
/* BCS Engine unsafe without parser */
engine->flags |= I915_ENGINE_REQUIRES_CMD_PARSER;
} else if (IS_HASWELL(engine->i915)) {
cmd_tables = hsw_blt_ring_cmd_table;
cmd_table_count = ARRAY_SIZE(hsw_blt_ring_cmd_table);
} else {
cmd_tables = gen7_blt_cmds;
cmd_table_count = ARRAY_SIZE(gen7_blt_cmds);
cmd_tables = gen7_blt_cmd_table;
cmd_table_count = ARRAY_SIZE(gen7_blt_cmd_table);
}
if (IS_HASWELL(engine->i915)) {
if (IS_GEN(engine->i915, 9)) {
engine->reg_tables = gen9_blt_reg_tables;
engine->reg_table_count =
ARRAY_SIZE(gen9_blt_reg_tables);
} else if (IS_HASWELL(engine->i915)) {
engine->reg_tables = hsw_blt_reg_tables;
engine->reg_table_count = ARRAY_SIZE(hsw_blt_reg_tables);
} else {
engine->reg_tables = ivb_blt_reg_tables;
engine->reg_table_count = ARRAY_SIZE(ivb_blt_reg_tables);
}
engine->get_cmd_length_mask = gen7_blt_get_cmd_length_mask;
break;
case VIDEO_ENHANCEMENT_CLASS:
cmd_tables = hsw_vebox_cmds;
cmd_table_count = ARRAY_SIZE(hsw_vebox_cmds);
cmd_tables = hsw_vebox_cmd_table;
cmd_table_count = ARRAY_SIZE(hsw_vebox_cmd_table);
/* VECS can use the same length_mask function as VCS */
engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask;
break;
@ -943,7 +1026,7 @@ void intel_engine_init_cmd_parser(struct intel_engine_cs *engine)
return;
}
engine->flags |= I915_ENGINE_NEEDS_CMD_PARSER;
engine->flags |= I915_ENGINE_USING_CMD_PARSER;
}
/**
@ -955,7 +1038,7 @@ void intel_engine_init_cmd_parser(struct intel_engine_cs *engine)
*/
void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine)
{
if (!intel_engine_needs_cmd_parser(engine))
if (!intel_engine_using_cmd_parser(engine))
return;
fini_hash_table(engine);
@ -1029,22 +1112,16 @@ __find_reg(const struct drm_i915_reg_descriptor *table, int count, u32 addr)
}
static const struct drm_i915_reg_descriptor *
find_reg(const struct intel_engine_cs *engine, bool is_master, u32 addr)
find_reg(const struct intel_engine_cs *engine, u32 addr)
{
const struct drm_i915_reg_table *table = engine->reg_tables;
const struct drm_i915_reg_descriptor *reg = NULL;
int count = engine->reg_table_count;
for (; count > 0; ++table, --count) {
if (!table->master || is_master) {
const struct drm_i915_reg_descriptor *reg;
for (; !reg && (count > 0); ++table, --count)
reg = __find_reg(table->regs, table->num_regs, addr);
reg = __find_reg(table->regs, table->num_regs, addr);
if (reg != NULL)
return reg;
}
}
return NULL;
return reg;
}
/* Returns a vmap'd pointer to dst_obj, which the caller must unmap */
@ -1128,8 +1205,7 @@ static u32 *copy_batch(struct drm_i915_gem_object *dst_obj,
static bool check_cmd(const struct intel_engine_cs *engine,
const struct drm_i915_cmd_descriptor *desc,
const u32 *cmd, u32 length,
const bool is_master)
const u32 *cmd, u32 length)
{
if (desc->flags & CMD_DESC_SKIP)
return true;
@ -1139,12 +1215,6 @@ static bool check_cmd(const struct intel_engine_cs *engine,
return false;
}
if ((desc->flags & CMD_DESC_MASTER) && !is_master) {
DRM_DEBUG_DRIVER("CMD: Rejected master-only command: 0x%08X\n",
*cmd);
return false;
}
if (desc->flags & CMD_DESC_REGISTER) {
/*
* Get the distance between individual register offset
@ -1158,7 +1228,7 @@ static bool check_cmd(const struct intel_engine_cs *engine,
offset += step) {
const u32 reg_addr = cmd[offset] & desc->reg.mask;
const struct drm_i915_reg_descriptor *reg =
find_reg(engine, is_master, reg_addr);
find_reg(engine, reg_addr);
if (!reg) {
DRM_DEBUG_DRIVER("CMD: Rejected register 0x%08X in command: 0x%08X (%s)\n",
@ -1236,16 +1306,112 @@ static bool check_cmd(const struct intel_engine_cs *engine,
return true;
}
static int check_bbstart(const struct i915_gem_context *ctx,
u32 *cmd, u32 offset, u32 length,
u32 batch_len,
u64 batch_start,
u64 shadow_batch_start)
{
u64 jump_offset, jump_target;
u32 target_cmd_offset, target_cmd_index;
/* For igt compatibility on older platforms */
if (CMDPARSER_USES_GGTT(ctx->i915)) {
DRM_DEBUG("CMD: Rejecting BB_START for ggtt based submission\n");
return -EACCES;
}
if (length != 3) {
DRM_DEBUG("CMD: Recursive BB_START with bad length(%u)\n",
length);
return -EINVAL;
}
jump_target = *(u64*)(cmd+1);
jump_offset = jump_target - batch_start;
/*
* Any underflow of jump_target is guaranteed to be outside the range
* of a u32, so >= test catches both too large and too small
*/
if (jump_offset >= batch_len) {
DRM_DEBUG("CMD: BB_START to 0x%llx jumps out of BB\n",
jump_target);
return -EINVAL;
}
/*
* This cannot overflow a u32 because we already checked jump_offset
* is within the BB, and the batch_len is a u32
*/
target_cmd_offset = lower_32_bits(jump_offset);
target_cmd_index = target_cmd_offset / sizeof(u32);
*(u64*)(cmd + 1) = shadow_batch_start + target_cmd_offset;
if (target_cmd_index == offset)
return 0;
if (ctx->jump_whitelist_cmds <= target_cmd_index) {
DRM_DEBUG("CMD: Rejecting BB_START - truncated whitelist array\n");
return -EINVAL;
} else if (!test_bit(target_cmd_index, ctx->jump_whitelist)) {
DRM_DEBUG("CMD: BB_START to 0x%llx not a previously executed cmd\n",
jump_target);
return -EINVAL;
}
return 0;
}
static void init_whitelist(struct i915_gem_context *ctx, u32 batch_len)
{
const u32 batch_cmds = DIV_ROUND_UP(batch_len, sizeof(u32));
const u32 exact_size = BITS_TO_LONGS(batch_cmds);
u32 next_size = BITS_TO_LONGS(roundup_pow_of_two(batch_cmds));
unsigned long *next_whitelist;
if (CMDPARSER_USES_GGTT(ctx->i915))
return;
if (batch_cmds <= ctx->jump_whitelist_cmds) {
bitmap_zero(ctx->jump_whitelist, batch_cmds);
return;
}
again:
next_whitelist = kcalloc(next_size, sizeof(long), GFP_KERNEL);
if (next_whitelist) {
kfree(ctx->jump_whitelist);
ctx->jump_whitelist = next_whitelist;
ctx->jump_whitelist_cmds =
next_size * BITS_PER_BYTE * sizeof(long);
return;
}
if (next_size > exact_size) {
next_size = exact_size;
goto again;
}
DRM_DEBUG("CMD: Failed to extend whitelist. BB_START may be disallowed\n");
bitmap_zero(ctx->jump_whitelist, ctx->jump_whitelist_cmds);
return;
}
#define LENGTH_BIAS 2
/**
* i915_parse_cmds() - parse a submitted batch buffer for privilege violations
* @ctx: the context in which the batch is to execute
* @engine: the engine on which the batch is to execute
* @batch_obj: the batch buffer in question
* @shadow_batch_obj: copy of the batch buffer in question
* @batch_start: Canonical base address of batch
* @batch_start_offset: byte offset in the batch at which execution starts
* @batch_len: length of the commands in batch_obj
* @is_master: is the submitting process the drm master?
* @shadow_batch_obj: copy of the batch buffer in question
* @shadow_batch_start: Canonical base address of shadow_batch_obj
*
* Parses the specified batch buffer looking for privilege violations as
* described in the overview.
@ -1253,14 +1419,17 @@ static bool check_cmd(const struct intel_engine_cs *engine,
* Return: non-zero if the parser finds violations or otherwise fails; -EACCES
* if the batch appears legal but should use hardware parsing
*/
int intel_engine_cmd_parser(struct intel_engine_cs *engine,
int intel_engine_cmd_parser(struct i915_gem_context *ctx,
struct intel_engine_cs *engine,
struct drm_i915_gem_object *batch_obj,
struct drm_i915_gem_object *shadow_batch_obj,
u64 batch_start,
u32 batch_start_offset,
u32 batch_len,
bool is_master)
struct drm_i915_gem_object *shadow_batch_obj,
u64 shadow_batch_start)
{
u32 *cmd, *batch_end;
u32 *cmd, *batch_end, offset = 0;
struct drm_i915_cmd_descriptor default_desc = noop_desc;
const struct drm_i915_cmd_descriptor *desc = &default_desc;
bool needs_clflush_after = false;
@ -1274,6 +1443,8 @@ int intel_engine_cmd_parser(struct intel_engine_cs *engine,
return PTR_ERR(cmd);
}
init_whitelist(ctx, batch_len);
/*
* We use the batch length as size because the shadow object is as
* large or larger and copy_batch() will write MI_NOPs to the extra
@ -1283,31 +1454,15 @@ int intel_engine_cmd_parser(struct intel_engine_cs *engine,
do {
u32 length;
if (*cmd == MI_BATCH_BUFFER_END) {
if (needs_clflush_after) {
void *ptr = page_mask_bits(shadow_batch_obj->mm.mapping);
drm_clflush_virt_range(ptr,
(void *)(cmd + 1) - ptr);
}
if (*cmd == MI_BATCH_BUFFER_END)
break;
}
desc = find_cmd(engine, *cmd, desc, &default_desc);
if (!desc) {
DRM_DEBUG_DRIVER("CMD: Unrecognized command: 0x%08X\n",
*cmd);
ret = -EINVAL;
break;
}
/*
* If the batch buffer contains a chained batch, return an
* error that tells the caller to abort and dispatch the
* workload as a non-secure batch.
*/
if (desc->cmd.value == MI_BATCH_BUFFER_START) {
ret = -EACCES;
break;
goto err;
}
if (desc->flags & CMD_DESC_FIXED)
@ -1321,22 +1476,43 @@ int intel_engine_cmd_parser(struct intel_engine_cs *engine,
length,
batch_end - cmd);
ret = -EINVAL;
goto err;
}
if (!check_cmd(engine, desc, cmd, length)) {
ret = -EACCES;
goto err;
}
if (desc->cmd.value == MI_BATCH_BUFFER_START) {
ret = check_bbstart(ctx, cmd, offset, length,
batch_len, batch_start,
shadow_batch_start);
if (ret)
goto err;
break;
}
if (!check_cmd(engine, desc, cmd, length, is_master)) {
ret = -EACCES;
break;
}
if (ctx->jump_whitelist_cmds > offset)
set_bit(offset, ctx->jump_whitelist);
cmd += length;
offset += length;
if (cmd >= batch_end) {
DRM_DEBUG_DRIVER("CMD: Got to the end of the buffer w/o a BBE cmd!\n");
ret = -EINVAL;
break;
goto err;
}
} while (1);
if (needs_clflush_after) {
void *ptr = page_mask_bits(shadow_batch_obj->mm.mapping);
drm_clflush_virt_range(ptr, (void *)(cmd + 1) - ptr);
}
err:
i915_gem_object_unpin_map(shadow_batch_obj);
return ret;
}
@ -1357,7 +1533,7 @@ int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv)
/* If the command parser is not enabled, report 0 - unsupported */
for_each_uabi_engine(engine, dev_priv) {
if (intel_engine_needs_cmd_parser(engine)) {
if (intel_engine_using_cmd_parser(engine)) {
active = true;
break;
}
@ -1382,6 +1558,7 @@ int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv)
* the parser enabled.
* 9. Don't whitelist or handle oacontrol specially, as ownership
* for oacontrol state is moving to i915-perf.
* 10. Support for Gen9 BCS Parsing
*/
return 9;
return 10;
}

View File

@ -364,9 +364,6 @@ static int i915_driver_modeset_probe(struct drm_device *dev)
if (ret)
goto cleanup_vga_client;
/* must happen before intel_power_domains_init_hw() on VLV/CHV */
intel_update_rawclk(dev_priv);
intel_power_domains_init_hw(dev_priv, false);
intel_csr_ucode_init(dev_priv);
@ -1850,6 +1847,8 @@ static int i915_drm_suspend_late(struct drm_device *dev, bool hibernation)
i915_gem_suspend_late(dev_priv);
i915_rc6_ctx_wa_suspend(dev_priv);
intel_uncore_suspend(&dev_priv->uncore);
intel_power_domains_suspend(dev_priv,
@ -2053,6 +2052,8 @@ static int i915_drm_resume_early(struct drm_device *dev)
intel_power_domains_resume(dev_priv);
i915_rc6_ctx_wa_resume(dev_priv);
intel_gt_sanitize(&dev_priv->gt, true);
enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);

View File

@ -593,6 +593,8 @@ struct intel_rps {
struct intel_rc6 {
bool enabled;
bool ctx_corrupted;
intel_wakeref_t ctx_corrupted_wakeref;
u64 prev_hw_residency[4];
u64 cur_residency[4];
};
@ -2075,9 +2077,16 @@ IS_SUBPLATFORM(const struct drm_i915_private *i915,
#define VEBOX_MASK(dev_priv) \
ENGINE_INSTANCES_MASK(dev_priv, VECS0, I915_MAX_VECS)
/*
* The Gen7 cmdparser copies the scanned buffer to the ggtt for execution
* All later gens can run the final buffer from the ppgtt
*/
#define CMDPARSER_USES_GGTT(dev_priv) IS_GEN(dev_priv, 7)
#define HAS_LLC(dev_priv) (INTEL_INFO(dev_priv)->has_llc)
#define HAS_SNOOP(dev_priv) (INTEL_INFO(dev_priv)->has_snoop)
#define HAS_EDRAM(dev_priv) ((dev_priv)->edram_size_mb)
#define HAS_SECURE_BATCHES(dev_priv) (INTEL_GEN(dev_priv) < 6)
#define HAS_WT(dev_priv) ((IS_HASWELL(dev_priv) || \
IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
@ -2110,10 +2119,12 @@ IS_SUBPLATFORM(const struct drm_i915_private *i915,
/* Early gen2 have a totally busted CS tlb and require pinned batches. */
#define HAS_BROKEN_CS_TLB(dev_priv) (IS_I830(dev_priv) || IS_I845G(dev_priv))
#define NEEDS_RC6_CTX_CORRUPTION_WA(dev_priv) \
(IS_BROADWELL(dev_priv) || IS_GEN(dev_priv, 9))
/* WaRsDisableCoarsePowerGating:skl,cnl */
#define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
(IS_CANNONLAKE(dev_priv) || \
IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
(IS_CANNONLAKE(dev_priv) || IS_GEN(dev_priv, 9))
#define HAS_GMBUS_IRQ(dev_priv) (INTEL_GEN(dev_priv) >= 4)
#define HAS_GMBUS_BURST_READ(dev_priv) (INTEL_GEN(dev_priv) >= 10 || \
@ -2284,6 +2295,14 @@ int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
unsigned long flags);
#define I915_GEM_OBJECT_UNBIND_ACTIVE BIT(0)
struct i915_vma * __must_check
i915_gem_object_pin(struct drm_i915_gem_object *obj,
struct i915_address_space *vm,
const struct i915_ggtt_view *view,
u64 size,
u64 alignment,
u64 flags);
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
static inline int __must_check
@ -2393,12 +2412,14 @@ const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
int intel_engine_cmd_parser(struct intel_engine_cs *engine,
int intel_engine_cmd_parser(struct i915_gem_context *cxt,
struct intel_engine_cs *engine,
struct drm_i915_gem_object *batch_obj,
struct drm_i915_gem_object *shadow_batch_obj,
u64 user_batch_start,
u32 batch_start_offset,
u32 batch_len,
bool is_master);
struct drm_i915_gem_object *shadow_batch_obj,
u64 shadow_batch_start);
/* intel_device_info.c */
static inline struct intel_device_info *

View File

@ -964,6 +964,20 @@ i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
{
struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
struct i915_address_space *vm = &dev_priv->ggtt.vm;
return i915_gem_object_pin(obj, vm, view, size, alignment,
flags | PIN_GLOBAL);
}
struct i915_vma *
i915_gem_object_pin(struct drm_i915_gem_object *obj,
struct i915_address_space *vm,
const struct i915_ggtt_view *view,
u64 size,
u64 alignment,
u64 flags)
{
struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
struct i915_vma *vma;
int ret;
@ -1038,7 +1052,7 @@ i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
return ERR_PTR(ret);
}
ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
ret = i915_vma_pin(vma, size, alignment, flags);
if (ret)
return ERR_PTR(ret);

View File

@ -62,7 +62,7 @@ int i915_getparam_ioctl(struct drm_device *dev, void *data,
value = !!(i915->caps.scheduler & I915_SCHEDULER_CAP_SEMAPHORES);
break;
case I915_PARAM_HAS_SECURE_BATCHES:
value = capable(CAP_SYS_ADMIN);
value = HAS_SECURE_BATCHES(i915) && capable(CAP_SYS_ADMIN);
break;
case I915_PARAM_CMD_PARSER_VERSION:
value = i915_cmd_parser_get_version(i915);

View File

@ -471,6 +471,8 @@ static inline bool i915_mmio_reg_valid(i915_reg_t reg)
#define ECOCHK_PPGTT_WT_HSW (0x2 << 3)
#define ECOCHK_PPGTT_WB_HSW (0x3 << 3)
#define GEN8_RC6_CTX_INFO _MMIO(0x8504)
#define GAC_ECO_BITS _MMIO(0x14090)
#define ECOBITS_SNB_BIT (1 << 13)
#define ECOBITS_PPGTT_CACHE64B (3 << 8)
@ -555,6 +557,10 @@ static inline bool i915_mmio_reg_valid(i915_reg_t reg)
*/
#define BCS_SWCTRL _MMIO(0x22200)
/* There are 16 GPR registers */
#define BCS_GPR(n) _MMIO(0x22600 + (n) * 8)
#define BCS_GPR_UDW(n) _MMIO(0x22600 + (n) * 8 + 4)
#define GPGPU_THREADS_DISPATCHED _MMIO(0x2290)
#define GPGPU_THREADS_DISPATCHED_UDW _MMIO(0x2290 + 4)
#define HS_INVOCATION_COUNT _MMIO(0x2300)
@ -7211,6 +7217,10 @@ enum {
#define TGL_DMC_DEBUG_DC5_COUNT _MMIO(0x101084)
#define TGL_DMC_DEBUG_DC6_COUNT _MMIO(0x101088)
/* Display Internal Timeout Register */
#define RM_TIMEOUT _MMIO(0x42060)
#define MMIO_TIMEOUT_US(us) ((us) << 0)
/* interrupts */
#define DE_MASTER_IRQ_CONTROL (1 << 31)
#define DE_SPRITEB_FLIP_DONE (1 << 29)

View File

@ -126,6 +126,14 @@ static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
*/
I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
PWM1_GATING_DIS | PWM2_GATING_DIS);
/*
* Lower the display internal timeout.
* This is needed to avoid any hard hangs when DSI port PLL
* is off and a MMIO access is attempted by any privilege
* application, using batch buffers or any other means.
*/
I915_WRITE(RM_TIMEOUT, MMIO_TIMEOUT_US(950));
}
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
@ -8544,6 +8552,100 @@ static void intel_init_emon(struct drm_i915_private *dev_priv)
dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
}
static bool i915_rc6_ctx_corrupted(struct drm_i915_private *dev_priv)
{
return !I915_READ(GEN8_RC6_CTX_INFO);
}
static void i915_rc6_ctx_wa_init(struct drm_i915_private *i915)
{
if (!NEEDS_RC6_CTX_CORRUPTION_WA(i915))
return;
if (i915_rc6_ctx_corrupted(i915)) {
DRM_INFO("RC6 context corrupted, disabling runtime power management\n");
i915->gt_pm.rc6.ctx_corrupted = true;
i915->gt_pm.rc6.ctx_corrupted_wakeref =
intel_runtime_pm_get(&i915->runtime_pm);
}
}
static void i915_rc6_ctx_wa_cleanup(struct drm_i915_private *i915)
{
if (i915->gt_pm.rc6.ctx_corrupted) {
intel_runtime_pm_put(&i915->runtime_pm,
i915->gt_pm.rc6.ctx_corrupted_wakeref);
i915->gt_pm.rc6.ctx_corrupted = false;
}
}
/**
* i915_rc6_ctx_wa_suspend - system suspend sequence for the RC6 CTX WA
* @i915: i915 device
*
* Perform any steps needed to clean up the RC6 CTX WA before system suspend.
*/
void i915_rc6_ctx_wa_suspend(struct drm_i915_private *i915)
{
if (i915->gt_pm.rc6.ctx_corrupted)
intel_runtime_pm_put(&i915->runtime_pm,
i915->gt_pm.rc6.ctx_corrupted_wakeref);
}
/**
* i915_rc6_ctx_wa_resume - system resume sequence for the RC6 CTX WA
* @i915: i915 device
*
* Perform any steps needed to re-init the RC6 CTX WA after system resume.
*/
void i915_rc6_ctx_wa_resume(struct drm_i915_private *i915)
{
if (!i915->gt_pm.rc6.ctx_corrupted)
return;
if (i915_rc6_ctx_corrupted(i915)) {
i915->gt_pm.rc6.ctx_corrupted_wakeref =
intel_runtime_pm_get(&i915->runtime_pm);
return;
}
DRM_INFO("RC6 context restored, re-enabling runtime power management\n");
i915->gt_pm.rc6.ctx_corrupted = false;
}
static void intel_disable_rc6(struct drm_i915_private *dev_priv);
/**
* i915_rc6_ctx_wa_check - check for a new RC6 CTX corruption
* @i915: i915 device
*
* Check if an RC6 CTX corruption has happened since the last check and if so
* disable RC6 and runtime power management.
*
* Return false if no context corruption has happened since the last call of
* this function, true otherwise.
*/
bool i915_rc6_ctx_wa_check(struct drm_i915_private *i915)
{
if (!NEEDS_RC6_CTX_CORRUPTION_WA(i915))
return false;
if (i915->gt_pm.rc6.ctx_corrupted)
return false;
if (!i915_rc6_ctx_corrupted(i915))
return false;
DRM_NOTE("RC6 context corruption, disabling runtime power management\n");
intel_disable_rc6(i915);
i915->gt_pm.rc6.ctx_corrupted = true;
i915->gt_pm.rc6.ctx_corrupted_wakeref =
intel_runtime_pm_get_noresume(&i915->runtime_pm);
return true;
}
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
{
struct intel_rps *rps = &dev_priv->gt_pm.rps;
@ -8557,6 +8659,8 @@ void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
pm_runtime_get(&dev_priv->drm.pdev->dev);
}
i915_rc6_ctx_wa_init(dev_priv);
/* Initialize RPS limits (for userspace) */
if (IS_CHERRYVIEW(dev_priv))
cherryview_init_gt_powersave(dev_priv);
@ -8595,6 +8699,8 @@ void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
if (IS_VALLEYVIEW(dev_priv))
valleyview_cleanup_gt_powersave(dev_priv);
i915_rc6_ctx_wa_cleanup(dev_priv);
if (!HAS_RC6(dev_priv))
pm_runtime_put(&dev_priv->drm.pdev->dev);
}
@ -8623,7 +8729,7 @@ static inline void intel_disable_llc_pstate(struct drm_i915_private *i915)
i915->gt_pm.llc_pstate.enabled = false;
}
static void intel_disable_rc6(struct drm_i915_private *dev_priv)
static void __intel_disable_rc6(struct drm_i915_private *dev_priv)
{
lockdep_assert_held(&dev_priv->gt_pm.rps.lock);
@ -8642,6 +8748,15 @@ static void intel_disable_rc6(struct drm_i915_private *dev_priv)
dev_priv->gt_pm.rc6.enabled = false;
}
static void intel_disable_rc6(struct drm_i915_private *dev_priv)
{
struct intel_rps *rps = &dev_priv->gt_pm.rps;
mutex_lock(&rps->lock);
__intel_disable_rc6(dev_priv);
mutex_unlock(&rps->lock);
}
static void intel_disable_rps(struct drm_i915_private *dev_priv)
{
lockdep_assert_held(&dev_priv->gt_pm.rps.lock);
@ -8667,7 +8782,7 @@ void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
{
mutex_lock(&dev_priv->gt_pm.rps.lock);
intel_disable_rc6(dev_priv);
__intel_disable_rc6(dev_priv);
intel_disable_rps(dev_priv);
if (HAS_LLC(dev_priv))
intel_disable_llc_pstate(dev_priv);
@ -8694,6 +8809,9 @@ static void intel_enable_rc6(struct drm_i915_private *dev_priv)
if (dev_priv->gt_pm.rc6.enabled)
return;
if (dev_priv->gt_pm.rc6.ctx_corrupted)
return;
if (IS_CHERRYVIEW(dev_priv))
cherryview_enable_rc6(dev_priv);
else if (IS_VALLEYVIEW(dev_priv))

View File

@ -36,6 +36,9 @@ void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv);
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv);
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv);
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv);
bool i915_rc6_ctx_wa_check(struct drm_i915_private *i915);
void i915_rc6_ctx_wa_suspend(struct drm_i915_private *i915);
void i915_rc6_ctx_wa_resume(struct drm_i915_private *i915);
void gen6_rps_busy(struct drm_i915_private *dev_priv);
void gen6_rps_idle(struct drm_i915_private *dev_priv);
void gen6_rps_boost(struct i915_request *rq);

View File

@ -488,7 +488,7 @@ static void sun4i_tcon0_mode_set_rgb(struct sun4i_tcon *tcon,
WARN_ON(!tcon->quirks->has_channel_0);
tcon->dclk_min_div = 6;
tcon->dclk_min_div = 1;
tcon->dclk_max_div = 127;
sun4i_tcon0_mode_set_common(tcon, mode);

View File

@ -626,6 +626,9 @@ static void intel_th_gth_switch(struct intel_th_device *thdev,
if (!count)
dev_dbg(&thdev->dev, "timeout waiting for CTS Trigger\n");
/* De-assert the trigger */
iowrite32(0, gth->base + REG_CTS_CTL);
intel_th_gth_stop(gth, output, false);
intel_th_gth_start(gth, output);
}

View File

@ -164,7 +164,7 @@ struct msc {
};
static LIST_HEAD(msu_buffer_list);
static struct mutex msu_buffer_mutex;
static DEFINE_MUTEX(msu_buffer_mutex);
/**
* struct msu_buffer_entry - internal MSU buffer bookkeeping
@ -327,7 +327,7 @@ static size_t msc_win_total_sz(struct msc_window *win)
struct msc_block_desc *bdesc = sg_virt(sg);
if (msc_block_wrapped(bdesc))
return win->nr_blocks << PAGE_SHIFT;
return (size_t)win->nr_blocks << PAGE_SHIFT;
size += msc_total_sz(bdesc);
if (msc_block_last_written(bdesc))
@ -1848,9 +1848,14 @@ mode_store(struct device *dev, struct device_attribute *attr, const char *buf,
len = cp - buf;
mode = kstrndup(buf, len, GFP_KERNEL);
if (!mode)
return -ENOMEM;
i = match_string(msc_mode, ARRAY_SIZE(msc_mode), mode);
if (i >= 0)
if (i >= 0) {
kfree(mode);
goto found;
}
/* Buffer sinks only work with a usable IRQ */
if (!msc->do_irq) {

View File

@ -199,6 +199,11 @@ static const struct pci_device_id intel_th_pci_id_table[] = {
PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x02a6),
.driver_data = (kernel_ulong_t)&intel_th_2x,
},
{
/* Comet Lake PCH */
PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x06a6),
.driver_data = (kernel_ulong_t)&intel_th_2x,
},
{
/* Ice Lake NNPI */
PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x45c5),
@ -209,6 +214,11 @@ static const struct pci_device_id intel_th_pci_id_table[] = {
PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0xa0a6),
.driver_data = (kernel_ulong_t)&intel_th_2x,
},
{
/* Jasper Lake PCH */
PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x4da6),
.driver_data = (kernel_ulong_t)&intel_th_2x,
},
{ 0 },
};

View File

@ -1399,7 +1399,7 @@ static int stm32_adc_dma_start(struct iio_dev *indio_dev)
cookie = dmaengine_submit(desc);
ret = dma_submit_error(cookie);
if (ret) {
dmaengine_terminate_all(adc->dma_chan);
dmaengine_terminate_sync(adc->dma_chan);
return ret;
}
@ -1477,7 +1477,7 @@ static void __stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
stm32_adc_conv_irq_disable(adc);
if (adc->dma_chan)
dmaengine_terminate_all(adc->dma_chan);
dmaengine_terminate_sync(adc->dma_chan);
if (stm32_adc_set_trig(indio_dev, NULL))
dev_err(&indio_dev->dev, "Can't clear trigger\n");

View File

@ -317,8 +317,11 @@ static int adis16480_set_freq(struct iio_dev *indio_dev, int val, int val2)
struct adis16480 *st = iio_priv(indio_dev);
unsigned int t, reg;
if (val < 0 || val2 < 0)
return -EINVAL;
t = val * 1000 + val2 / 1000;
if (t <= 0)
if (t == 0)
return -EINVAL;
/*

View File

@ -114,54 +114,63 @@ static const struct inv_mpu6050_hw hw_info[] = {
.name = "MPU6050",
.reg = &reg_set_6050,
.config = &chip_config_6050,
.fifo_size = 1024,
},
{
.whoami = INV_MPU6500_WHOAMI_VALUE,
.name = "MPU6500",
.reg = &reg_set_6500,
.config = &chip_config_6050,
.fifo_size = 512,
},
{
.whoami = INV_MPU6515_WHOAMI_VALUE,
.name = "MPU6515",
.reg = &reg_set_6500,
.config = &chip_config_6050,
.fifo_size = 512,
},
{
.whoami = INV_MPU6000_WHOAMI_VALUE,
.name = "MPU6000",
.reg = &reg_set_6050,
.config = &chip_config_6050,
.fifo_size = 1024,
},
{
.whoami = INV_MPU9150_WHOAMI_VALUE,
.name = "MPU9150",
.reg = &reg_set_6050,
.config = &chip_config_6050,
.fifo_size = 1024,
},
{
.whoami = INV_MPU9250_WHOAMI_VALUE,
.name = "MPU9250",
.reg = &reg_set_6500,
.config = &chip_config_6050,
.fifo_size = 512,
},
{
.whoami = INV_MPU9255_WHOAMI_VALUE,
.name = "MPU9255",
.reg = &reg_set_6500,
.config = &chip_config_6050,
.fifo_size = 512,
},
{
.whoami = INV_ICM20608_WHOAMI_VALUE,
.name = "ICM20608",
.reg = &reg_set_6500,
.config = &chip_config_6050,
.fifo_size = 512,
},
{
.whoami = INV_ICM20602_WHOAMI_VALUE,
.name = "ICM20602",
.reg = &reg_set_icm20602,
.config = &chip_config_6050,
.fifo_size = 1008,
},
};

View File

@ -100,12 +100,14 @@ struct inv_mpu6050_chip_config {
* @name: name of the chip.
* @reg: register map of the chip.
* @config: configuration of the chip.
* @fifo_size: size of the FIFO in bytes.
*/
struct inv_mpu6050_hw {
u8 whoami;
u8 *name;
const struct inv_mpu6050_reg_map *reg;
const struct inv_mpu6050_chip_config *config;
size_t fifo_size;
};
/*

View File

@ -180,9 +180,6 @@ irqreturn_t inv_mpu6050_read_fifo(int irq, void *p)
"failed to ack interrupt\n");
goto flush_fifo;
}
/* handle fifo overflow by reseting fifo */
if (int_status & INV_MPU6050_BIT_FIFO_OVERFLOW_INT)
goto flush_fifo;
if (!(int_status & INV_MPU6050_BIT_RAW_DATA_RDY_INT)) {
dev_warn(regmap_get_device(st->map),
"spurious interrupt with status 0x%x\n", int_status);
@ -211,6 +208,18 @@ irqreturn_t inv_mpu6050_read_fifo(int irq, void *p)
if (result)
goto end_session;
fifo_count = get_unaligned_be16(&data[0]);
/*
* Handle fifo overflow by resetting fifo.
* Reset if there is only 3 data set free remaining to mitigate
* possible delay between reading fifo count and fifo data.
*/
nb = 3 * bytes_per_datum;
if (fifo_count >= st->hw->fifo_size - nb) {
dev_warn(regmap_get_device(st->map), "fifo overflow reset\n");
goto flush_fifo;
}
/* compute and process all complete datum */
nb = fifo_count / bytes_per_datum;
inv_mpu6050_update_period(st, pf->timestamp, nb);

View File

@ -110,7 +110,7 @@ static int srf04_read(struct srf04_data *data)
udelay(data->cfg->trigger_pulse_us);
gpiod_set_value(data->gpiod_trig, 0);
/* it cannot take more than 20 ms */
/* it should not take more than 20 ms until echo is rising */
ret = wait_for_completion_killable_timeout(&data->rising, HZ/50);
if (ret < 0) {
mutex_unlock(&data->lock);
@ -120,7 +120,8 @@ static int srf04_read(struct srf04_data *data)
return -ETIMEDOUT;
}
ret = wait_for_completion_killable_timeout(&data->falling, HZ/50);
/* it cannot take more than 50 ms until echo is falling */
ret = wait_for_completion_killable_timeout(&data->falling, HZ/20);
if (ret < 0) {
mutex_unlock(&data->lock);
return ret;
@ -135,19 +136,19 @@ static int srf04_read(struct srf04_data *data)
dt_ns = ktime_to_ns(ktime_dt);
/*
* measuring more than 3 meters is beyond the capabilities of
* the sensor
* measuring more than 6,45 meters is beyond the capabilities of
* the supported sensors
* ==> filter out invalid results for not measuring echos of
* another us sensor
*
* formula:
* distance 3 m
* time = ---------- = --------- = 9404389 ns
* speed 319 m/s
* distance 6,45 * 2 m
* time = ---------- = ------------ = 40438871 ns
* speed 319 m/s
*
* using a minimum speed at -20 °C of 319 m/s
*/
if (dt_ns > 9404389)
if (dt_ns > 40438871)
return -EIO;
time_ns = dt_ns;
@ -159,20 +160,20 @@ static int srf04_read(struct srf04_data *data)
* with Temp in °C
* and speed in m/s
*
* use 343 m/s as ultrasonic speed at 20 °C here in absence of the
* use 343,5 m/s as ultrasonic speed at 20 °C here in absence of the
* temperature
*
* therefore:
* time 343
* distance = ------ * -----
* 10^6 2
* time 343,5 time * 106
* distance = ------ * ------- = ------------
* 10^6 2 617176
* with time in ns
* and distance in mm (one way)
*
* because we limit to 3 meters the multiplication with 343 just
* because we limit to 6,45 meters the multiplication with 106 just
* fits into 32 bit
*/
distance_mm = time_ns * 343 / 2000000;
distance_mm = time_ns * 106 / 617176;
return distance_mm;
}

View File

@ -1489,7 +1489,6 @@ static int __init hfi1_mod_init(void)
goto bail_dev;
}
hfi1_compute_tid_rdma_flow_wt();
/*
* These must be called before the driver is registered with
* the PCI subsystem.

View File

@ -319,7 +319,9 @@ int pcie_speeds(struct hfi1_devdata *dd)
/*
* bus->max_bus_speed is set from the bridge's linkcap Max Link Speed
*/
if (parent && dd->pcidev->bus->max_bus_speed != PCIE_SPEED_8_0GT) {
if (parent &&
(dd->pcidev->bus->max_bus_speed == PCIE_SPEED_2_5GT ||
dd->pcidev->bus->max_bus_speed == PCIE_SPEED_5_0GT)) {
dd_dev_info(dd, "Parent PCIe bridge does not support Gen3\n");
dd->link_gen3_capable = 0;
}

View File

@ -2209,15 +2209,15 @@ int do_rc_ack(struct rvt_qp *qp, u32 aeth, u32 psn, int opcode,
if (qp->s_flags & RVT_S_WAIT_RNR)
goto bail_stop;
rdi = ib_to_rvt(qp->ibqp.device);
if (qp->s_rnr_retry == 0 &&
!((rdi->post_parms[wqe->wr.opcode].flags &
RVT_OPERATION_IGN_RNR_CNT) &&
qp->s_rnr_retry_cnt == 0)) {
status = IB_WC_RNR_RETRY_EXC_ERR;
goto class_b;
if (!(rdi->post_parms[wqe->wr.opcode].flags &
RVT_OPERATION_IGN_RNR_CNT)) {
if (qp->s_rnr_retry == 0) {
status = IB_WC_RNR_RETRY_EXC_ERR;
goto class_b;
}
if (qp->s_rnr_retry_cnt < 7 && qp->s_rnr_retry_cnt > 0)
qp->s_rnr_retry--;
}
if (qp->s_rnr_retry_cnt < 7 && qp->s_rnr_retry_cnt > 0)
qp->s_rnr_retry--;
/*
* The last valid PSN is the previous PSN. For TID RDMA WRITE

View File

@ -107,8 +107,6 @@ static u32 mask_generation(u32 a)
* C - Capcode
*/
static u32 tid_rdma_flow_wt;
static void tid_rdma_trigger_resume(struct work_struct *work);
static void hfi1_kern_exp_rcv_free_flows(struct tid_rdma_request *req);
static int hfi1_kern_exp_rcv_alloc_flows(struct tid_rdma_request *req,
@ -136,6 +134,26 @@ static void update_r_next_psn_fecn(struct hfi1_packet *packet,
struct tid_rdma_flow *flow,
bool fecn);
static void validate_r_tid_ack(struct hfi1_qp_priv *priv)
{
if (priv->r_tid_ack == HFI1_QP_WQE_INVALID)
priv->r_tid_ack = priv->r_tid_tail;
}
static void tid_rdma_schedule_ack(struct rvt_qp *qp)
{
struct hfi1_qp_priv *priv = qp->priv;
priv->s_flags |= RVT_S_ACK_PENDING;
hfi1_schedule_tid_send(qp);
}
static void tid_rdma_trigger_ack(struct rvt_qp *qp)
{
validate_r_tid_ack(qp->priv);
tid_rdma_schedule_ack(qp);
}
static u64 tid_rdma_opfn_encode(struct tid_rdma_params *p)
{
return
@ -3005,10 +3023,7 @@ bool hfi1_handle_kdeth_eflags(struct hfi1_ctxtdata *rcd,
qpriv->s_nak_state = IB_NAK_PSN_ERROR;
/* We are NAK'ing the next expected PSN */
qpriv->s_nak_psn = mask_psn(flow->flow_state.r_next_psn);
qpriv->s_flags |= RVT_S_ACK_PENDING;
if (qpriv->r_tid_ack == HFI1_QP_WQE_INVALID)
qpriv->r_tid_ack = qpriv->r_tid_tail;
hfi1_schedule_tid_send(qp);
tid_rdma_trigger_ack(qp);
}
goto unlock;
}
@ -3371,18 +3386,17 @@ u32 hfi1_build_tid_rdma_write_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
return sizeof(ohdr->u.tid_rdma.w_req) / sizeof(u32);
}
void hfi1_compute_tid_rdma_flow_wt(void)
static u32 hfi1_compute_tid_rdma_flow_wt(struct rvt_qp *qp)
{
/*
* Heuristic for computing the RNR timeout when waiting on the flow
* queue. Rather than a computationaly expensive exact estimate of when
* a flow will be available, we assume that if a QP is at position N in
* the flow queue it has to wait approximately (N + 1) * (number of
* segments between two sync points), assuming PMTU of 4K. The rationale
* for this is that flows are released and recycled at each sync point.
* segments between two sync points). The rationale for this is that
* flows are released and recycled at each sync point.
*/
tid_rdma_flow_wt = MAX_TID_FLOW_PSN * enum_to_mtu(OPA_MTU_4096) /
TID_RDMA_MAX_SEGMENT_SIZE;
return (MAX_TID_FLOW_PSN * qp->pmtu) >> TID_RDMA_SEGMENT_SHIFT;
}
static u32 position_in_queue(struct hfi1_qp_priv *qpriv,
@ -3505,7 +3519,7 @@ static void hfi1_tid_write_alloc_resources(struct rvt_qp *qp, bool intr_ctx)
if (qpriv->flow_state.index >= RXE_NUM_TID_FLOWS) {
ret = hfi1_kern_setup_hw_flow(qpriv->rcd, qp);
if (ret) {
to_seg = tid_rdma_flow_wt *
to_seg = hfi1_compute_tid_rdma_flow_wt(qp) *
position_in_queue(qpriv,
&rcd->flow_queue);
break;
@ -3526,7 +3540,7 @@ static void hfi1_tid_write_alloc_resources(struct rvt_qp *qp, bool intr_ctx)
/*
* If overtaking req->acked_tail, send an RNR NAK. Because the
* QP is not queued in this case, and the issue can only be
* caused due a delay in scheduling the second leg which we
* caused by a delay in scheduling the second leg which we
* cannot estimate, we use a rather arbitrary RNR timeout of
* (MAX_FLOWS / 2) segments
*/
@ -3534,8 +3548,7 @@ static void hfi1_tid_write_alloc_resources(struct rvt_qp *qp, bool intr_ctx)
MAX_FLOWS)) {
ret = -EAGAIN;
to_seg = MAX_FLOWS >> 1;
qpriv->s_flags |= RVT_S_ACK_PENDING;
hfi1_schedule_tid_send(qp);
tid_rdma_trigger_ack(qp);
break;
}
@ -4335,8 +4348,7 @@ void hfi1_rc_rcv_tid_rdma_write_data(struct hfi1_packet *packet)
trace_hfi1_tid_req_rcv_write_data(qp, 0, e->opcode, e->psn, e->lpsn,
req);
trace_hfi1_tid_write_rsp_rcv_data(qp);
if (priv->r_tid_ack == HFI1_QP_WQE_INVALID)
priv->r_tid_ack = priv->r_tid_tail;
validate_r_tid_ack(priv);
if (opcode == TID_OP(WRITE_DATA_LAST)) {
release_rdma_sge_mr(e);
@ -4375,8 +4387,7 @@ void hfi1_rc_rcv_tid_rdma_write_data(struct hfi1_packet *packet)
}
done:
priv->s_flags |= RVT_S_ACK_PENDING;
hfi1_schedule_tid_send(qp);
tid_rdma_schedule_ack(qp);
exit:
priv->r_next_psn_kdeth = flow->flow_state.r_next_psn;
if (fecn)
@ -4388,10 +4399,7 @@ void hfi1_rc_rcv_tid_rdma_write_data(struct hfi1_packet *packet)
if (!priv->s_nak_state) {
priv->s_nak_state = IB_NAK_PSN_ERROR;
priv->s_nak_psn = flow->flow_state.r_next_psn;
priv->s_flags |= RVT_S_ACK_PENDING;
if (priv->r_tid_ack == HFI1_QP_WQE_INVALID)
priv->r_tid_ack = priv->r_tid_tail;
hfi1_schedule_tid_send(qp);
tid_rdma_trigger_ack(qp);
}
goto done;
}
@ -4939,8 +4947,7 @@ void hfi1_rc_rcv_tid_rdma_resync(struct hfi1_packet *packet)
qpriv->resync = true;
/* RESYNC request always gets a TID RDMA ACK. */
qpriv->s_nak_state = 0;
qpriv->s_flags |= RVT_S_ACK_PENDING;
hfi1_schedule_tid_send(qp);
tid_rdma_trigger_ack(qp);
bail:
if (fecn)
qp->s_flags |= RVT_S_ECN;

View File

@ -17,6 +17,7 @@
#define TID_RDMA_MIN_SEGMENT_SIZE BIT(18) /* 256 KiB (for now) */
#define TID_RDMA_MAX_SEGMENT_SIZE BIT(18) /* 256 KiB (for now) */
#define TID_RDMA_MAX_PAGES (BIT(18) >> PAGE_SHIFT)
#define TID_RDMA_SEGMENT_SHIFT 18
/*
* Bit definitions for priv->s_flags.
@ -274,8 +275,6 @@ u32 hfi1_build_tid_rdma_write_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
struct ib_other_headers *ohdr,
u32 *bth1, u32 *bth2, u32 *len);
void hfi1_compute_tid_rdma_flow_wt(void);
void hfi1_rc_rcv_tid_rdma_write_req(struct hfi1_packet *packet);
u32 hfi1_build_tid_rdma_write_resp(struct rvt_qp *qp, struct rvt_ack_entry *e,

View File

@ -59,7 +59,7 @@ enum {
#define HNS_ROCE_HEM_CHUNK_LEN \
((256 - sizeof(struct list_head) - 2 * sizeof(int)) / \
(sizeof(struct scatterlist)))
(sizeof(struct scatterlist) + sizeof(void *)))
#define check_whether_bt_num_3(type, hop_num) \
(type < HEM_TYPE_MTT && hop_num == 2)

View File

@ -376,7 +376,7 @@ int hns_roce_create_srq(struct ib_srq *ib_srq,
srq->max = roundup_pow_of_two(srq_init_attr->attr.max_wr + 1);
srq->max_gs = srq_init_attr->attr.max_sge;
srq_desc_size = max(16, 16 * srq->max_gs);
srq_desc_size = roundup_pow_of_two(max(16, 16 * srq->max_gs));
srq->wqe_shift = ilog2(srq_desc_size);

View File

@ -489,6 +489,15 @@ static void ml_ff_destroy(struct ff_device *ff)
{
struct ml_device *ml = ff->private;
/*
* Even though we stop all playing effects when tearing down
* an input device (via input_device_flush() that calls into
* input_ff_flush() that stops and erases all effects), we
* do not actually stop the timer, and therefore we should
* do it here.
*/
del_timer_sync(&ml->timer);
kfree(ml->private);
}

View File

@ -177,6 +177,7 @@ static const char * const smbus_pnp_ids[] = {
"LEN0096", /* X280 */
"LEN0097", /* X280 -> ALPS trackpoint */
"LEN009b", /* T580 */
"LEN0402", /* X1 Extreme 2nd Generation */
"LEN200f", /* T450s */
"LEN2054", /* E480 */
"LEN2055", /* E580 */

View File

@ -510,7 +510,6 @@ struct f11_data {
struct rmi_2d_sensor_platform_data sensor_pdata;
unsigned long *abs_mask;
unsigned long *rel_mask;
unsigned long *result_bits;
};
enum f11_finger_state {
@ -1057,7 +1056,7 @@ static int rmi_f11_initialize(struct rmi_function *fn)
/*
** init instance data, fill in values and create any sysfs files
*/
f11 = devm_kzalloc(&fn->dev, sizeof(struct f11_data) + mask_size * 3,
f11 = devm_kzalloc(&fn->dev, sizeof(struct f11_data) + mask_size * 2,
GFP_KERNEL);
if (!f11)
return -ENOMEM;
@ -1076,8 +1075,6 @@ static int rmi_f11_initialize(struct rmi_function *fn)
+ sizeof(struct f11_data));
f11->rel_mask = (unsigned long *)((char *)f11
+ sizeof(struct f11_data) + mask_size);
f11->result_bits = (unsigned long *)((char *)f11
+ sizeof(struct f11_data) + mask_size * 2);
set_bit(fn->irq_pos, f11->abs_mask);
set_bit(fn->irq_pos + 1, f11->rel_mask);
@ -1284,8 +1281,8 @@ static irqreturn_t rmi_f11_attention(int irq, void *ctx)
valid_bytes = f11->sensor.attn_size;
memcpy(f11->sensor.data_pkt, drvdata->attn_data.data,
valid_bytes);
drvdata->attn_data.data += f11->sensor.attn_size;
drvdata->attn_data.size -= f11->sensor.attn_size;
drvdata->attn_data.data += valid_bytes;
drvdata->attn_data.size -= valid_bytes;
} else {
error = rmi_read_block(rmi_dev,
data_base_addr, f11->sensor.data_pkt,

View File

@ -55,6 +55,9 @@ struct f12_data {
const struct rmi_register_desc_item *data15;
u16 data15_offset;
unsigned long *abs_mask;
unsigned long *rel_mask;
};
static int rmi_f12_read_sensor_tuning(struct f12_data *f12)
@ -209,8 +212,8 @@ static irqreturn_t rmi_f12_attention(int irq, void *ctx)
valid_bytes = sensor->attn_size;
memcpy(sensor->data_pkt, drvdata->attn_data.data,
valid_bytes);
drvdata->attn_data.data += sensor->attn_size;
drvdata->attn_data.size -= sensor->attn_size;
drvdata->attn_data.data += valid_bytes;
drvdata->attn_data.size -= valid_bytes;
} else {
retval = rmi_read_block(rmi_dev, f12->data_addr,
sensor->data_pkt, sensor->pkt_size);
@ -291,9 +294,18 @@ static int rmi_f12_write_control_regs(struct rmi_function *fn)
static int rmi_f12_config(struct rmi_function *fn)
{
struct rmi_driver *drv = fn->rmi_dev->driver;
struct f12_data *f12 = dev_get_drvdata(&fn->dev);
struct rmi_2d_sensor *sensor;
int ret;
drv->set_irq_bits(fn->rmi_dev, fn->irq_mask);
sensor = &f12->sensor;
if (!sensor->report_abs)
drv->clear_irq_bits(fn->rmi_dev, f12->abs_mask);
else
drv->set_irq_bits(fn->rmi_dev, f12->abs_mask);
drv->clear_irq_bits(fn->rmi_dev, f12->rel_mask);
ret = rmi_f12_write_control_regs(fn);
if (ret)
@ -315,9 +327,12 @@ static int rmi_f12_probe(struct rmi_function *fn)
struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
u16 data_offset = 0;
int mask_size;
rmi_dbg(RMI_DEBUG_FN, &fn->dev, "%s\n", __func__);
mask_size = BITS_TO_LONGS(drvdata->irq_count) * sizeof(unsigned long);
ret = rmi_read(fn->rmi_dev, query_addr, &buf);
if (ret < 0) {
dev_err(&fn->dev, "Failed to read general info register: %d\n",
@ -332,10 +347,19 @@ static int rmi_f12_probe(struct rmi_function *fn)
return -ENODEV;
}
f12 = devm_kzalloc(&fn->dev, sizeof(struct f12_data), GFP_KERNEL);
f12 = devm_kzalloc(&fn->dev, sizeof(struct f12_data) + mask_size * 2,
GFP_KERNEL);
if (!f12)
return -ENOMEM;
f12->abs_mask = (unsigned long *)((char *)f12
+ sizeof(struct f12_data));
f12->rel_mask = (unsigned long *)((char *)f12
+ sizeof(struct f12_data) + mask_size);
set_bit(fn->irq_pos, f12->abs_mask);
set_bit(fn->irq_pos + 1, f12->rel_mask);
f12->has_dribble = !!(buf & BIT(3));
if (fn->dev.of_node) {

View File

@ -359,7 +359,7 @@ static const struct vb2_ops rmi_f54_queue_ops = {
static const struct vb2_queue rmi_f54_queue = {
.type = V4L2_BUF_TYPE_VIDEO_CAPTURE,
.io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF | VB2_READ,
.buf_struct_size = sizeof(struct vb2_buffer),
.buf_struct_size = sizeof(struct vb2_v4l2_buffer),
.ops = &rmi_f54_queue_ops,
.mem_ops = &vb2_vmalloc_memops,
.timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC,
@ -601,7 +601,7 @@ static int rmi_f54_config(struct rmi_function *fn)
{
struct rmi_driver *drv = fn->rmi_dev->driver;
drv->set_irq_bits(fn->rmi_dev, fn->irq_mask);
drv->clear_irq_bits(fn->rmi_dev, fn->irq_mask);
return 0;
}
@ -730,6 +730,7 @@ static void rmi_f54_remove(struct rmi_function *fn)
video_unregister_device(&f54->vdev);
v4l2_device_unregister(&f54->v4l2);
destroy_workqueue(f54->workqueue);
}
struct rmi_function_handler rmi_f54_handler = {

Some files were not shown because too many files have changed in this diff Show More