mirror of https://gitee.com/openkylin/linux.git
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/inaky/wimax
This commit is contained in:
commit
1cdc5abf40
|
@ -83,6 +83,21 @@
|
|||
#define D_SUBMODULE control
|
||||
#include "debug-levels.h"
|
||||
|
||||
static int i2400m_idle_mode_disabled;/* 0 (idle mode enabled) by default */
|
||||
module_param_named(idle_mode_disabled, i2400m_idle_mode_disabled, int, 0644);
|
||||
MODULE_PARM_DESC(idle_mode_disabled,
|
||||
"If true, the device will not enable idle mode negotiation "
|
||||
"with the base station (when connected) to save power.");
|
||||
|
||||
/* 0 (power saving enabled) by default */
|
||||
static int i2400m_power_save_disabled;
|
||||
module_param_named(power_save_disabled, i2400m_power_save_disabled, int, 0644);
|
||||
MODULE_PARM_DESC(power_save_disabled,
|
||||
"If true, the driver will not tell the device to enter "
|
||||
"power saving mode when it reports it is ready for it. "
|
||||
"False by default (so the device is told to do power "
|
||||
"saving).");
|
||||
|
||||
int i2400m_passive_mode; /* 0 (passive mode disabled) by default */
|
||||
module_param_named(passive_mode, i2400m_passive_mode, int, 0644);
|
||||
MODULE_PARM_DESC(passive_mode,
|
||||
|
|
|
@ -75,25 +75,6 @@
|
|||
#include "debug-levels.h"
|
||||
|
||||
|
||||
int i2400m_idle_mode_disabled; /* 0 (idle mode enabled) by default */
|
||||
module_param_named(idle_mode_disabled, i2400m_idle_mode_disabled, int, 0644);
|
||||
MODULE_PARM_DESC(idle_mode_disabled,
|
||||
"If true, the device will not enable idle mode negotiation "
|
||||
"with the base station (when connected) to save power.");
|
||||
|
||||
int i2400m_rx_reorder_disabled; /* 0 (rx reorder enabled) by default */
|
||||
module_param_named(rx_reorder_disabled, i2400m_rx_reorder_disabled, int, 0644);
|
||||
MODULE_PARM_DESC(rx_reorder_disabled,
|
||||
"If true, RX reordering will be disabled.");
|
||||
|
||||
int i2400m_power_save_disabled; /* 0 (power saving enabled) by default */
|
||||
module_param_named(power_save_disabled, i2400m_power_save_disabled, int, 0644);
|
||||
MODULE_PARM_DESC(power_save_disabled,
|
||||
"If true, the driver will not tell the device to enter "
|
||||
"power saving mode when it reports it is ready for it. "
|
||||
"False by default (so the device is told to do power "
|
||||
"saving).");
|
||||
|
||||
static char i2400m_debug_params[128];
|
||||
module_param_string(debug, i2400m_debug_params, sizeof(i2400m_debug_params),
|
||||
0644);
|
||||
|
@ -395,6 +376,16 @@ int __i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri flags)
|
|||
result = i2400m_dev_initialize(i2400m);
|
||||
if (result < 0)
|
||||
goto error_dev_initialize;
|
||||
|
||||
/* We don't want any additional unwanted error recovery triggered
|
||||
* from any other context so if anything went wrong before we come
|
||||
* here, let's keep i2400m->error_recovery untouched and leave it to
|
||||
* dev_reset_handle(). See dev_reset_handle(). */
|
||||
|
||||
atomic_dec(&i2400m->error_recovery);
|
||||
/* Every thing works so far, ok, now we are ready to
|
||||
* take error recovery if it's required. */
|
||||
|
||||
/* At this point, reports will come for the device and set it
|
||||
* to the right state if it is different than UNINITIALIZED */
|
||||
d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n",
|
||||
|
@ -403,10 +394,10 @@ int __i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri flags)
|
|||
|
||||
error_dev_initialize:
|
||||
error_check_mac_addr:
|
||||
error_fw_check:
|
||||
i2400m->ready = 0;
|
||||
wmb(); /* see i2400m->ready's documentation */
|
||||
flush_workqueue(i2400m->work_queue);
|
||||
error_fw_check:
|
||||
if (i2400m->bus_dev_stop)
|
||||
i2400m->bus_dev_stop(i2400m);
|
||||
error_bus_dev_start:
|
||||
|
@ -436,7 +427,8 @@ int i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri bm_flags)
|
|||
result = __i2400m_dev_start(i2400m, bm_flags);
|
||||
if (result >= 0) {
|
||||
i2400m->updown = 1;
|
||||
wmb(); /* see i2400m->updown's documentation */
|
||||
i2400m->alive = 1;
|
||||
wmb();/* see i2400m->updown and i2400m->alive's doc */
|
||||
}
|
||||
}
|
||||
mutex_unlock(&i2400m->init_mutex);
|
||||
|
@ -497,7 +489,8 @@ void i2400m_dev_stop(struct i2400m *i2400m)
|
|||
if (i2400m->updown) {
|
||||
__i2400m_dev_stop(i2400m);
|
||||
i2400m->updown = 0;
|
||||
wmb(); /* see i2400m->updown's documentation */
|
||||
i2400m->alive = 0;
|
||||
wmb(); /* see i2400m->updown and i2400m->alive's doc */
|
||||
}
|
||||
mutex_unlock(&i2400m->init_mutex);
|
||||
}
|
||||
|
@ -617,12 +610,12 @@ int i2400m_post_reset(struct i2400m *i2400m)
|
|||
error_dev_start:
|
||||
if (i2400m->bus_release)
|
||||
i2400m->bus_release(i2400m);
|
||||
error_bus_setup:
|
||||
/* even if the device was up, it could not be recovered, so we
|
||||
* mark it as down. */
|
||||
i2400m->updown = 0;
|
||||
wmb(); /* see i2400m->updown's documentation */
|
||||
mutex_unlock(&i2400m->init_mutex);
|
||||
error_bus_setup:
|
||||
d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
|
||||
return result;
|
||||
}
|
||||
|
@ -669,6 +662,9 @@ void __i2400m_dev_reset_handle(struct work_struct *ws)
|
|||
|
||||
d_fnstart(3, dev, "(ws %p i2400m %p reason %s)\n", ws, i2400m, reason);
|
||||
|
||||
i2400m->boot_mode = 1;
|
||||
wmb(); /* Make sure i2400m_msg_to_dev() sees boot_mode */
|
||||
|
||||
result = 0;
|
||||
if (mutex_trylock(&i2400m->init_mutex) == 0) {
|
||||
/* We are still in i2400m_dev_start() [let it fail] or
|
||||
|
@ -679,32 +675,62 @@ void __i2400m_dev_reset_handle(struct work_struct *ws)
|
|||
complete(&i2400m->msg_completion);
|
||||
goto out;
|
||||
}
|
||||
if (i2400m->updown == 0) {
|
||||
dev_info(dev, "%s: device is down, doing nothing\n", reason);
|
||||
goto out_unlock;
|
||||
}
|
||||
|
||||
dev_err(dev, "%s: reinitializing driver\n", reason);
|
||||
__i2400m_dev_stop(i2400m);
|
||||
result = __i2400m_dev_start(i2400m,
|
||||
I2400M_BRI_SOFT | I2400M_BRI_MAC_REINIT);
|
||||
if (result < 0) {
|
||||
rmb();
|
||||
if (i2400m->updown) {
|
||||
__i2400m_dev_stop(i2400m);
|
||||
i2400m->updown = 0;
|
||||
wmb(); /* see i2400m->updown's documentation */
|
||||
dev_err(dev, "%s: cannot start the device: %d\n",
|
||||
reason, result);
|
||||
result = -EUCLEAN;
|
||||
}
|
||||
out_unlock:
|
||||
|
||||
if (i2400m->alive) {
|
||||
result = __i2400m_dev_start(i2400m,
|
||||
I2400M_BRI_SOFT | I2400M_BRI_MAC_REINIT);
|
||||
if (result < 0) {
|
||||
dev_err(dev, "%s: cannot start the device: %d\n",
|
||||
reason, result);
|
||||
result = -EUCLEAN;
|
||||
if (atomic_read(&i2400m->bus_reset_retries)
|
||||
>= I2400M_BUS_RESET_RETRIES) {
|
||||
result = -ENODEV;
|
||||
dev_err(dev, "tried too many times to "
|
||||
"reset the device, giving up\n");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (i2400m->reset_ctx) {
|
||||
ctx->result = result;
|
||||
complete(&ctx->completion);
|
||||
}
|
||||
mutex_unlock(&i2400m->init_mutex);
|
||||
if (result == -EUCLEAN) {
|
||||
/*
|
||||
* We come here because the reset during operational mode
|
||||
* wasn't successully done and need to proceed to a bus
|
||||
* reset. For the dev_reset_handle() to be able to handle
|
||||
* the reset event later properly, we restore boot_mode back
|
||||
* to the state before previous reset. ie: just like we are
|
||||
* issuing the bus reset for the first time
|
||||
*/
|
||||
i2400m->boot_mode = 0;
|
||||
wmb();
|
||||
|
||||
atomic_inc(&i2400m->bus_reset_retries);
|
||||
/* ops, need to clean up [w/ init_mutex not held] */
|
||||
result = i2400m_reset(i2400m, I2400M_RT_BUS);
|
||||
if (result >= 0)
|
||||
result = -ENODEV;
|
||||
} else {
|
||||
rmb();
|
||||
if (i2400m->alive) {
|
||||
/* great, we expect the device state up and
|
||||
* dev_start() actually brings the device state up */
|
||||
i2400m->updown = 1;
|
||||
wmb();
|
||||
atomic_set(&i2400m->bus_reset_retries, 0);
|
||||
}
|
||||
}
|
||||
out:
|
||||
i2400m_put(i2400m);
|
||||
|
@ -728,14 +754,72 @@ void __i2400m_dev_reset_handle(struct work_struct *ws)
|
|||
*/
|
||||
int i2400m_dev_reset_handle(struct i2400m *i2400m, const char *reason)
|
||||
{
|
||||
i2400m->boot_mode = 1;
|
||||
wmb(); /* Make sure i2400m_msg_to_dev() sees boot_mode */
|
||||
return i2400m_schedule_work(i2400m, __i2400m_dev_reset_handle,
|
||||
GFP_ATOMIC, &reason, sizeof(reason));
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(i2400m_dev_reset_handle);
|
||||
|
||||
|
||||
/*
|
||||
* The actual work of error recovery.
|
||||
*
|
||||
* The current implementation of error recovery is to trigger a bus reset.
|
||||
*/
|
||||
static
|
||||
void __i2400m_error_recovery(struct work_struct *ws)
|
||||
{
|
||||
struct i2400m_work *iw = container_of(ws, struct i2400m_work, ws);
|
||||
struct i2400m *i2400m = iw->i2400m;
|
||||
|
||||
i2400m_reset(i2400m, I2400M_RT_BUS);
|
||||
|
||||
i2400m_put(i2400m);
|
||||
kfree(iw);
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
* Schedule a work struct for error recovery.
|
||||
*
|
||||
* The intention of error recovery is to bring back the device to some
|
||||
* known state whenever TX sees -110 (-ETIMEOUT) on copying the data to
|
||||
* the device. The TX failure could mean a device bus stuck, so the current
|
||||
* error recovery implementation is to trigger a bus reset to the device
|
||||
* and hopefully it can bring back the device.
|
||||
*
|
||||
* The actual work of error recovery has to be in a thread context because
|
||||
* it is kicked off in the TX thread (i2400ms->tx_workqueue) which is to be
|
||||
* destroyed by the error recovery mechanism (currently a bus reset).
|
||||
*
|
||||
* Also, there may be already a queue of TX works that all hit
|
||||
* the -ETIMEOUT error condition because the device is stuck already.
|
||||
* Since bus reset is used as the error recovery mechanism and we don't
|
||||
* want consecutive bus resets simply because the multiple TX works
|
||||
* in the queue all hit the same device erratum, the flag "error_recovery"
|
||||
* is introduced for preventing unwanted consecutive bus resets.
|
||||
*
|
||||
* Error recovery shall only be invoked again if previous one was completed.
|
||||
* The flag error_recovery is set when error recovery mechanism is scheduled,
|
||||
* and is checked when we need to schedule another error recovery. If it is
|
||||
* in place already, then we shouldn't schedule another one.
|
||||
*/
|
||||
void i2400m_error_recovery(struct i2400m *i2400m)
|
||||
{
|
||||
struct device *dev = i2400m_dev(i2400m);
|
||||
|
||||
if (atomic_add_return(1, &i2400m->error_recovery) == 1) {
|
||||
if (i2400m_schedule_work(i2400m, __i2400m_error_recovery,
|
||||
GFP_ATOMIC, NULL, 0) < 0) {
|
||||
dev_err(dev, "run out of memory for "
|
||||
"scheduling an error recovery ?\n");
|
||||
atomic_dec(&i2400m->error_recovery);
|
||||
}
|
||||
} else
|
||||
atomic_dec(&i2400m->error_recovery);
|
||||
return;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(i2400m_error_recovery);
|
||||
|
||||
/*
|
||||
* Alloc the command and ack buffers for boot mode
|
||||
*
|
||||
|
@ -802,6 +886,13 @@ void i2400m_init(struct i2400m *i2400m)
|
|||
|
||||
mutex_init(&i2400m->init_mutex);
|
||||
/* wake_tx_ws is initialized in i2400m_tx_setup() */
|
||||
atomic_set(&i2400m->bus_reset_retries, 0);
|
||||
|
||||
i2400m->alive = 0;
|
||||
|
||||
/* initialize error_recovery to 1 for denoting we
|
||||
* are not yet ready to take any error recovery */
|
||||
atomic_set(&i2400m->error_recovery, 1);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(i2400m_init);
|
||||
|
||||
|
|
|
@ -99,7 +99,10 @@ enum {
|
|||
*
|
||||
* @tx_workqueue: workqeueue used for data TX; we don't use the
|
||||
* system's workqueue as that might cause deadlocks with code in
|
||||
* the bus-generic driver.
|
||||
* the bus-generic driver. The read/write operation to the queue
|
||||
* is protected with spinlock (tx_lock in struct i2400m) to avoid
|
||||
* the queue being destroyed in the middle of a the queue read/write
|
||||
* operation.
|
||||
*
|
||||
* @debugfs_dentry: dentry for the SDIO specific debugfs files
|
||||
*
|
||||
|
|
|
@ -160,6 +160,16 @@
|
|||
#include <linux/wimax/i2400m.h>
|
||||
#include <asm/byteorder.h>
|
||||
|
||||
enum {
|
||||
/* netdev interface */
|
||||
/*
|
||||
* Out of NWG spec (R1_v1.2.2), 3.3.3 ASN Bearer Plane MTU Size
|
||||
*
|
||||
* The MTU is 1400 or less
|
||||
*/
|
||||
I2400M_MAX_MTU = 1400,
|
||||
};
|
||||
|
||||
/* Misc constants */
|
||||
enum {
|
||||
/* Size of the Boot Mode Command buffer */
|
||||
|
@ -167,6 +177,11 @@ enum {
|
|||
I2400M_BM_ACK_BUF_SIZE = 256,
|
||||
};
|
||||
|
||||
enum {
|
||||
/* Maximum number of bus reset can be retried */
|
||||
I2400M_BUS_RESET_RETRIES = 3,
|
||||
};
|
||||
|
||||
/**
|
||||
* struct i2400m_poke_table - Hardware poke table for the Intel 2400m
|
||||
*
|
||||
|
@ -227,6 +242,11 @@ struct i2400m_barker_db;
|
|||
* so we have a tx_blk_size variable that the bus layer sets to
|
||||
* tell the engine how much of that we need.
|
||||
*
|
||||
* @bus_tx_room_min: [fill] Minimum room required while allocating
|
||||
* TX queue's buffer space for message header. SDIO requires
|
||||
* 224 bytes and USB 16 bytes. Refer bus specific driver code
|
||||
* for details.
|
||||
*
|
||||
* @bus_pl_size_max: [fill] Maximum payload size.
|
||||
*
|
||||
* @bus_setup: [optional fill] Function called by the bus-generic code
|
||||
|
@ -397,7 +417,7 @@ struct i2400m_barker_db;
|
|||
*
|
||||
* @tx_size_max: biggest TX message sent.
|
||||
*
|
||||
* @rx_lock: spinlock to protect RX members
|
||||
* @rx_lock: spinlock to protect RX members and rx_roq_refcount.
|
||||
*
|
||||
* @rx_pl_num: total number of payloads received
|
||||
*
|
||||
|
@ -421,6 +441,10 @@ struct i2400m_barker_db;
|
|||
* delivered. Then the driver can release them to the host. See
|
||||
* drivers/net/i2400m/rx.c for details.
|
||||
*
|
||||
* @rx_roq_refcount: refcount rx_roq. This refcounts any access to
|
||||
* rx_roq thus preventing rx_roq being destroyed when rx_roq
|
||||
* is being accessed. rx_roq_refcount is protected by rx_lock.
|
||||
*
|
||||
* @rx_reports: reports received from the device that couldn't be
|
||||
* processed because the driver wasn't still ready; when ready,
|
||||
* they are pulled from here and chewed.
|
||||
|
@ -507,6 +531,38 @@ struct i2400m_barker_db;
|
|||
* same.
|
||||
*
|
||||
* @pm_notifier: used to register for PM events
|
||||
*
|
||||
* @bus_reset_retries: counter for the number of bus resets attempted for
|
||||
* this boot. It's not for tracking the number of bus resets during
|
||||
* the whole driver life cycle (from insmod to rmmod) but for the
|
||||
* number of dev_start() executed until dev_start() returns a success
|
||||
* (ie: a good boot means a dev_stop() followed by a successful
|
||||
* dev_start()). dev_reset_handler() increments this counter whenever
|
||||
* it is triggering a bus reset. It checks this counter to decide if a
|
||||
* subsequent bus reset should be retried. dev_reset_handler() retries
|
||||
* the bus reset until dev_start() succeeds or the counter reaches
|
||||
* I2400M_BUS_RESET_RETRIES. The counter is cleared to 0 in
|
||||
* dev_reset_handle() when dev_start() returns a success,
|
||||
* ie: a successul boot is completed.
|
||||
*
|
||||
* @alive: flag to denote if the device *should* be alive. This flag is
|
||||
* everything like @updown (see doc for @updown) except reflecting
|
||||
* the device state *we expect* rather than the actual state as denoted
|
||||
* by @updown. It is set 1 whenever @updown is set 1 in dev_start().
|
||||
* Then the device is expected to be alive all the time
|
||||
* (i2400m->alive remains 1) until the driver is removed. Therefore
|
||||
* all the device reboot events detected can be still handled properly
|
||||
* by either dev_reset_handle() or .pre_reset/.post_reset as long as
|
||||
* the driver presents. It is set 0 along with @updown in dev_stop().
|
||||
*
|
||||
* @error_recovery: flag to denote if we are ready to take an error recovery.
|
||||
* 0 for ready to take an error recovery; 1 for not ready. It is
|
||||
* initialized to 1 while probe() since we don't tend to take any error
|
||||
* recovery during probe(). It is decremented by 1 whenever dev_start()
|
||||
* succeeds to indicate we are ready to take error recovery from now on.
|
||||
* It is checked every time we wanna schedule an error recovery. If an
|
||||
* error recovery is already in place (error_recovery was set 1), we
|
||||
* should not schedule another one until the last one is done.
|
||||
*/
|
||||
struct i2400m {
|
||||
struct wimax_dev wimax_dev; /* FIRST! See doc */
|
||||
|
@ -522,6 +578,7 @@ struct i2400m {
|
|||
wait_queue_head_t state_wq; /* Woken up when on state updates */
|
||||
|
||||
size_t bus_tx_block_size;
|
||||
size_t bus_tx_room_min;
|
||||
size_t bus_pl_size_max;
|
||||
unsigned bus_bm_retries;
|
||||
|
||||
|
@ -550,10 +607,12 @@ struct i2400m {
|
|||
tx_num, tx_size_acc, tx_size_min, tx_size_max;
|
||||
|
||||
/* RX stuff */
|
||||
spinlock_t rx_lock; /* protect RX state */
|
||||
/* protect RX state and rx_roq_refcount */
|
||||
spinlock_t rx_lock;
|
||||
unsigned rx_pl_num, rx_pl_max, rx_pl_min,
|
||||
rx_num, rx_size_acc, rx_size_min, rx_size_max;
|
||||
struct i2400m_roq *rx_roq; /* not under rx_lock! */
|
||||
struct i2400m_roq *rx_roq; /* access is refcounted */
|
||||
struct kref rx_roq_refcount; /* refcount access to rx_roq */
|
||||
u8 src_mac_addr[ETH_HLEN];
|
||||
struct list_head rx_reports; /* under rx_lock! */
|
||||
struct work_struct rx_report_ws;
|
||||
|
@ -581,6 +640,16 @@ struct i2400m {
|
|||
struct i2400m_barker_db *barker;
|
||||
|
||||
struct notifier_block pm_notifier;
|
||||
|
||||
/* counting bus reset retries in this boot */
|
||||
atomic_t bus_reset_retries;
|
||||
|
||||
/* if the device is expected to be alive */
|
||||
unsigned alive;
|
||||
|
||||
/* 0 if we are ready for error recovery; 1 if not ready */
|
||||
atomic_t error_recovery;
|
||||
|
||||
};
|
||||
|
||||
|
||||
|
@ -803,6 +872,7 @@ void i2400m_put(struct i2400m *i2400m)
|
|||
extern int i2400m_dev_reset_handle(struct i2400m *, const char *);
|
||||
extern int i2400m_pre_reset(struct i2400m *);
|
||||
extern int i2400m_post_reset(struct i2400m *);
|
||||
extern void i2400m_error_recovery(struct i2400m *);
|
||||
|
||||
/*
|
||||
* _setup()/_release() are called by the probe/disconnect functions of
|
||||
|
@ -815,7 +885,6 @@ extern int i2400m_rx(struct i2400m *, struct sk_buff *);
|
|||
extern struct i2400m_msg_hdr *i2400m_tx_msg_get(struct i2400m *, size_t *);
|
||||
extern void i2400m_tx_msg_sent(struct i2400m *);
|
||||
|
||||
extern int i2400m_power_save_disabled;
|
||||
|
||||
/*
|
||||
* Utility functions
|
||||
|
@ -922,10 +991,5 @@ extern int i2400m_barker_db_init(const char *);
|
|||
extern void i2400m_barker_db_exit(void);
|
||||
|
||||
|
||||
/* Module parameters */
|
||||
|
||||
extern int i2400m_idle_mode_disabled;
|
||||
extern int i2400m_rx_reorder_disabled;
|
||||
|
||||
|
||||
#endif /* #ifndef __I2400M_H__ */
|
||||
|
|
|
@ -84,17 +84,15 @@
|
|||
|
||||
enum {
|
||||
/* netdev interface */
|
||||
/*
|
||||
* Out of NWG spec (R1_v1.2.2), 3.3.3 ASN Bearer Plane MTU Size
|
||||
*
|
||||
* The MTU is 1400 or less
|
||||
*/
|
||||
I2400M_MAX_MTU = 1400,
|
||||
/* 20 secs? yep, this is the maximum timeout that the device
|
||||
* might take to get out of IDLE / negotiate it with the base
|
||||
* station. We add 1sec for good measure. */
|
||||
I2400M_TX_TIMEOUT = 21 * HZ,
|
||||
I2400M_TX_QLEN = 5,
|
||||
/*
|
||||
* Experimentation has determined that, 20 to be a good value
|
||||
* for minimizing the jitter in the throughput.
|
||||
*/
|
||||
I2400M_TX_QLEN = 20,
|
||||
};
|
||||
|
||||
|
||||
|
|
|
@ -155,6 +155,11 @@
|
|||
#define D_SUBMODULE rx
|
||||
#include "debug-levels.h"
|
||||
|
||||
static int i2400m_rx_reorder_disabled; /* 0 (rx reorder enabled) by default */
|
||||
module_param_named(rx_reorder_disabled, i2400m_rx_reorder_disabled, int, 0644);
|
||||
MODULE_PARM_DESC(rx_reorder_disabled,
|
||||
"If true, RX reordering will be disabled.");
|
||||
|
||||
struct i2400m_report_hook_args {
|
||||
struct sk_buff *skb_rx;
|
||||
const struct i2400m_l3l4_hdr *l3l4_hdr;
|
||||
|
@ -300,17 +305,16 @@ void i2400m_rx_ctl_ack(struct i2400m *i2400m,
|
|||
d_printf(1, dev, "Huh? waiter for command reply cancelled\n");
|
||||
goto error_waiter_cancelled;
|
||||
}
|
||||
if (ack_skb == NULL) {
|
||||
if (IS_ERR(ack_skb))
|
||||
dev_err(dev, "CMD/GET/SET ack: cannot allocate SKB\n");
|
||||
i2400m->ack_skb = ERR_PTR(-ENOMEM);
|
||||
} else
|
||||
i2400m->ack_skb = ack_skb;
|
||||
i2400m->ack_skb = ack_skb;
|
||||
spin_unlock_irqrestore(&i2400m->rx_lock, flags);
|
||||
complete(&i2400m->msg_completion);
|
||||
return;
|
||||
|
||||
error_waiter_cancelled:
|
||||
kfree_skb(ack_skb);
|
||||
if (!IS_ERR(ack_skb))
|
||||
kfree_skb(ack_skb);
|
||||
error_no_waiter:
|
||||
spin_unlock_irqrestore(&i2400m->rx_lock, flags);
|
||||
}
|
||||
|
@ -741,12 +745,12 @@ unsigned __i2400m_roq_update_ws(struct i2400m *i2400m, struct i2400m_roq *roq,
|
|||
unsigned new_nws, nsn_itr;
|
||||
|
||||
new_nws = __i2400m_roq_nsn(roq, sn);
|
||||
if (unlikely(new_nws >= 1024) && d_test(1)) {
|
||||
dev_err(dev, "SW BUG? __update_ws new_nws %u (sn %u ws %u)\n",
|
||||
new_nws, sn, roq->ws);
|
||||
WARN_ON(1);
|
||||
i2400m_roq_log_dump(i2400m, roq);
|
||||
}
|
||||
/*
|
||||
* For type 2(update_window_start) rx messages, there is no
|
||||
* need to check if the normalized sequence number is greater 1023.
|
||||
* Simply insert and deliver all packets to the host up to the
|
||||
* window start.
|
||||
*/
|
||||
skb_queue_walk_safe(&roq->queue, skb_itr, tmp_itr) {
|
||||
roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
|
||||
nsn_itr = __i2400m_roq_nsn(roq, roq_data_itr->sn);
|
||||
|
@ -885,31 +889,51 @@ void i2400m_roq_queue_update_ws(struct i2400m *i2400m, struct i2400m_roq *roq,
|
|||
i2400m, roq, skb, sn);
|
||||
len = skb_queue_len(&roq->queue);
|
||||
nsn = __i2400m_roq_nsn(roq, sn);
|
||||
/*
|
||||
* For type 3(queue_update_window_start) rx messages, there is no
|
||||
* need to check if the normalized sequence number is greater 1023.
|
||||
* Simply insert and deliver all packets to the host up to the
|
||||
* window start.
|
||||
*/
|
||||
old_ws = roq->ws;
|
||||
if (unlikely(nsn >= 1024)) {
|
||||
dev_err(dev, "SW BUG? queue_update_ws nsn %u (sn %u ws %u)\n",
|
||||
nsn, sn, roq->ws);
|
||||
i2400m_roq_log_dump(i2400m, roq);
|
||||
i2400m_reset(i2400m, I2400M_RT_WARM);
|
||||
} else {
|
||||
/* if the queue is empty, don't bother as we'd queue
|
||||
* it and inmediately unqueue it -- just deliver it */
|
||||
if (len == 0) {
|
||||
struct i2400m_roq_data *roq_data;
|
||||
roq_data = (struct i2400m_roq_data *) &skb->cb;
|
||||
i2400m_net_erx(i2400m, skb, roq_data->cs);
|
||||
}
|
||||
else
|
||||
__i2400m_roq_queue(i2400m, roq, skb, sn, nsn);
|
||||
__i2400m_roq_update_ws(i2400m, roq, sn + 1);
|
||||
i2400m_roq_log_add(i2400m, roq, I2400M_RO_TYPE_PACKET_WS,
|
||||
old_ws, len, sn, nsn, roq->ws);
|
||||
}
|
||||
/* If the queue is empty, don't bother as we'd queue
|
||||
* it and immediately unqueue it -- just deliver it.
|
||||
*/
|
||||
if (len == 0) {
|
||||
struct i2400m_roq_data *roq_data;
|
||||
roq_data = (struct i2400m_roq_data *) &skb->cb;
|
||||
i2400m_net_erx(i2400m, skb, roq_data->cs);
|
||||
} else
|
||||
__i2400m_roq_queue(i2400m, roq, skb, sn, nsn);
|
||||
|
||||
__i2400m_roq_update_ws(i2400m, roq, sn + 1);
|
||||
i2400m_roq_log_add(i2400m, roq, I2400M_RO_TYPE_PACKET_WS,
|
||||
old_ws, len, sn, nsn, roq->ws);
|
||||
|
||||
d_fnend(2, dev, "(i2400m %p roq %p skb %p sn %u) = void\n",
|
||||
i2400m, roq, skb, sn);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* This routine destroys the memory allocated for rx_roq, when no
|
||||
* other thread is accessing it. Access to rx_roq is refcounted by
|
||||
* rx_roq_refcount, hence memory allocated must be destroyed when
|
||||
* rx_roq_refcount becomes zero. This routine gets executed when
|
||||
* rx_roq_refcount becomes zero.
|
||||
*/
|
||||
void i2400m_rx_roq_destroy(struct kref *ref)
|
||||
{
|
||||
unsigned itr;
|
||||
struct i2400m *i2400m
|
||||
= container_of(ref, struct i2400m, rx_roq_refcount);
|
||||
for (itr = 0; itr < I2400M_RO_CIN + 1; itr++)
|
||||
__skb_queue_purge(&i2400m->rx_roq[itr].queue);
|
||||
kfree(i2400m->rx_roq[0].log);
|
||||
kfree(i2400m->rx_roq);
|
||||
i2400m->rx_roq = NULL;
|
||||
}
|
||||
|
||||
/*
|
||||
* Receive and send up an extended data packet
|
||||
*
|
||||
|
@ -963,6 +987,7 @@ void i2400m_rx_edata(struct i2400m *i2400m, struct sk_buff *skb_rx,
|
|||
unsigned ro_needed, ro_type, ro_cin, ro_sn;
|
||||
struct i2400m_roq *roq;
|
||||
struct i2400m_roq_data *roq_data;
|
||||
unsigned long flags;
|
||||
|
||||
BUILD_BUG_ON(ETH_HLEN > sizeof(*hdr));
|
||||
|
||||
|
@ -1001,7 +1026,16 @@ void i2400m_rx_edata(struct i2400m *i2400m, struct sk_buff *skb_rx,
|
|||
ro_cin = (reorder >> I2400M_RO_CIN_SHIFT) & I2400M_RO_CIN;
|
||||
ro_sn = (reorder >> I2400M_RO_SN_SHIFT) & I2400M_RO_SN;
|
||||
|
||||
spin_lock_irqsave(&i2400m->rx_lock, flags);
|
||||
roq = &i2400m->rx_roq[ro_cin];
|
||||
if (roq == NULL) {
|
||||
kfree_skb(skb); /* rx_roq is already destroyed */
|
||||
spin_unlock_irqrestore(&i2400m->rx_lock, flags);
|
||||
goto error;
|
||||
}
|
||||
kref_get(&i2400m->rx_roq_refcount);
|
||||
spin_unlock_irqrestore(&i2400m->rx_lock, flags);
|
||||
|
||||
roq_data = (struct i2400m_roq_data *) &skb->cb;
|
||||
roq_data->sn = ro_sn;
|
||||
roq_data->cs = cs;
|
||||
|
@ -1028,6 +1062,10 @@ void i2400m_rx_edata(struct i2400m *i2400m, struct sk_buff *skb_rx,
|
|||
default:
|
||||
dev_err(dev, "HW BUG? unknown reorder type %u\n", ro_type);
|
||||
}
|
||||
|
||||
spin_lock_irqsave(&i2400m->rx_lock, flags);
|
||||
kref_put(&i2400m->rx_roq_refcount, i2400m_rx_roq_destroy);
|
||||
spin_unlock_irqrestore(&i2400m->rx_lock, flags);
|
||||
}
|
||||
else
|
||||
i2400m_net_erx(i2400m, skb, cs);
|
||||
|
@ -1337,6 +1375,7 @@ int i2400m_rx_setup(struct i2400m *i2400m)
|
|||
__i2400m_roq_init(&i2400m->rx_roq[itr]);
|
||||
i2400m->rx_roq[itr].log = &rd[itr];
|
||||
}
|
||||
kref_init(&i2400m->rx_roq_refcount);
|
||||
}
|
||||
return 0;
|
||||
|
||||
|
@ -1350,12 +1389,12 @@ int i2400m_rx_setup(struct i2400m *i2400m)
|
|||
/* Tear down the RX queue and infrastructure */
|
||||
void i2400m_rx_release(struct i2400m *i2400m)
|
||||
{
|
||||
unsigned long flags;
|
||||
|
||||
if (i2400m->rx_reorder) {
|
||||
unsigned itr;
|
||||
for(itr = 0; itr < I2400M_RO_CIN + 1; itr++)
|
||||
__skb_queue_purge(&i2400m->rx_roq[itr].queue);
|
||||
kfree(i2400m->rx_roq[0].log);
|
||||
kfree(i2400m->rx_roq);
|
||||
spin_lock_irqsave(&i2400m->rx_lock, flags);
|
||||
kref_put(&i2400m->rx_roq_refcount, i2400m_rx_roq_destroy);
|
||||
spin_unlock_irqrestore(&i2400m->rx_lock, flags);
|
||||
}
|
||||
/* at this point, nothing can be received... */
|
||||
i2400m_report_hook_flush(i2400m);
|
||||
|
|
|
@ -98,6 +98,10 @@ void i2400ms_tx_submit(struct work_struct *ws)
|
|||
tx_msg_size, result);
|
||||
}
|
||||
|
||||
if (result == -ETIMEDOUT) {
|
||||
i2400m_error_recovery(i2400m);
|
||||
break;
|
||||
}
|
||||
d_printf(2, dev, "TX: %zub submitted\n", tx_msg_size);
|
||||
}
|
||||
|
||||
|
@ -114,13 +118,17 @@ void i2400ms_bus_tx_kick(struct i2400m *i2400m)
|
|||
{
|
||||
struct i2400ms *i2400ms = container_of(i2400m, struct i2400ms, i2400m);
|
||||
struct device *dev = &i2400ms->func->dev;
|
||||
unsigned long flags;
|
||||
|
||||
d_fnstart(3, dev, "(i2400m %p) = void\n", i2400m);
|
||||
|
||||
/* schedule tx work, this is because tx may block, therefore
|
||||
* it has to run in a thread context.
|
||||
*/
|
||||
queue_work(i2400ms->tx_workqueue, &i2400ms->tx_worker);
|
||||
spin_lock_irqsave(&i2400m->tx_lock, flags);
|
||||
if (i2400ms->tx_workqueue != NULL)
|
||||
queue_work(i2400ms->tx_workqueue, &i2400ms->tx_worker);
|
||||
spin_unlock_irqrestore(&i2400m->tx_lock, flags);
|
||||
|
||||
d_fnend(3, dev, "(i2400m %p) = void\n", i2400m);
|
||||
}
|
||||
|
@ -130,27 +138,40 @@ int i2400ms_tx_setup(struct i2400ms *i2400ms)
|
|||
int result;
|
||||
struct device *dev = &i2400ms->func->dev;
|
||||
struct i2400m *i2400m = &i2400ms->i2400m;
|
||||
struct workqueue_struct *tx_workqueue;
|
||||
unsigned long flags;
|
||||
|
||||
d_fnstart(5, dev, "(i2400ms %p)\n", i2400ms);
|
||||
|
||||
INIT_WORK(&i2400ms->tx_worker, i2400ms_tx_submit);
|
||||
snprintf(i2400ms->tx_wq_name, sizeof(i2400ms->tx_wq_name),
|
||||
"%s-tx", i2400m->wimax_dev.name);
|
||||
i2400ms->tx_workqueue =
|
||||
tx_workqueue =
|
||||
create_singlethread_workqueue(i2400ms->tx_wq_name);
|
||||
if (NULL == i2400ms->tx_workqueue) {
|
||||
if (tx_workqueue == NULL) {
|
||||
dev_err(dev, "TX: failed to create workqueue\n");
|
||||
result = -ENOMEM;
|
||||
} else
|
||||
result = 0;
|
||||
spin_lock_irqsave(&i2400m->tx_lock, flags);
|
||||
i2400ms->tx_workqueue = tx_workqueue;
|
||||
spin_unlock_irqrestore(&i2400m->tx_lock, flags);
|
||||
d_fnend(5, dev, "(i2400ms %p) = %d\n", i2400ms, result);
|
||||
return result;
|
||||
}
|
||||
|
||||
void i2400ms_tx_release(struct i2400ms *i2400ms)
|
||||
{
|
||||
if (i2400ms->tx_workqueue) {
|
||||
destroy_workqueue(i2400ms->tx_workqueue);
|
||||
i2400ms->tx_workqueue = NULL;
|
||||
}
|
||||
struct i2400m *i2400m = &i2400ms->i2400m;
|
||||
struct workqueue_struct *tx_workqueue;
|
||||
unsigned long flags;
|
||||
|
||||
tx_workqueue = i2400ms->tx_workqueue;
|
||||
|
||||
spin_lock_irqsave(&i2400m->tx_lock, flags);
|
||||
i2400ms->tx_workqueue = NULL;
|
||||
spin_unlock_irqrestore(&i2400m->tx_lock, flags);
|
||||
|
||||
if (tx_workqueue)
|
||||
destroy_workqueue(tx_workqueue);
|
||||
}
|
||||
|
|
|
@ -483,6 +483,13 @@ int i2400ms_probe(struct sdio_func *func,
|
|||
sdio_set_drvdata(func, i2400ms);
|
||||
|
||||
i2400m->bus_tx_block_size = I2400MS_BLK_SIZE;
|
||||
/*
|
||||
* Room required in the TX queue for SDIO message to accommodate
|
||||
* a smallest payload while allocating header space is 224 bytes,
|
||||
* which is the smallest message size(the block size 256 bytes)
|
||||
* minus the smallest message header size(32 bytes).
|
||||
*/
|
||||
i2400m->bus_tx_room_min = I2400MS_BLK_SIZE - I2400M_PL_ALIGN * 2;
|
||||
i2400m->bus_pl_size_max = I2400MS_PL_SIZE_MAX;
|
||||
i2400m->bus_setup = i2400ms_bus_setup;
|
||||
i2400m->bus_dev_start = i2400ms_bus_dev_start;
|
||||
|
|
|
@ -258,8 +258,10 @@ enum {
|
|||
* Doc says maximum transaction is 16KiB. If we had 16KiB en
|
||||
* route and 16KiB being queued, it boils down to needing
|
||||
* 32KiB.
|
||||
* 32KiB is insufficient for 1400 MTU, hence increasing
|
||||
* tx buffer size to 64KiB.
|
||||
*/
|
||||
I2400M_TX_BUF_SIZE = 32768,
|
||||
I2400M_TX_BUF_SIZE = 65536,
|
||||
/**
|
||||
* Message header and payload descriptors have to be 16
|
||||
* aligned (16 + 4 * N = 16 * M). If we take that average sent
|
||||
|
@ -270,10 +272,21 @@ enum {
|
|||
* at the end there are less, we pad up to the nearest
|
||||
* multiple of 16.
|
||||
*/
|
||||
I2400M_TX_PLD_MAX = 12,
|
||||
/*
|
||||
* According to Intel Wimax i3200, i5x50 and i6x50 specification
|
||||
* documents, the maximum number of payloads per message can be
|
||||
* up to 60. Increasing the number of payloads to 60 per message
|
||||
* helps to accommodate smaller payloads in a single transaction.
|
||||
*/
|
||||
I2400M_TX_PLD_MAX = 60,
|
||||
I2400M_TX_PLD_SIZE = sizeof(struct i2400m_msg_hdr)
|
||||
+ I2400M_TX_PLD_MAX * sizeof(struct i2400m_pld),
|
||||
I2400M_TX_SKIP = 0x80000000,
|
||||
/*
|
||||
* According to Intel Wimax i3200, i5x50 and i6x50 specification
|
||||
* documents, the maximum size of each message can be up to 16KiB.
|
||||
*/
|
||||
I2400M_TX_MSG_SIZE = 16384,
|
||||
};
|
||||
|
||||
#define TAIL_FULL ((void *)~(unsigned long)NULL)
|
||||
|
@ -328,6 +341,14 @@ size_t __i2400m_tx_tail_room(struct i2400m *i2400m)
|
|||
* @padding: ensure that there is at least this many bytes of free
|
||||
* contiguous space in the fifo. This is needed because later on
|
||||
* we might need to add padding.
|
||||
* @try_head: specify either to allocate head room or tail room space
|
||||
* in the TX FIFO. This boolean is required to avoids a system hang
|
||||
* due to an infinite loop caused by i2400m_tx_fifo_push().
|
||||
* The caller must always try to allocate tail room space first by
|
||||
* calling this routine with try_head = 0. In case if there
|
||||
* is not enough tail room space but there is enough head room space,
|
||||
* (i2400m_tx_fifo_push() returns TAIL_FULL) try to allocate head
|
||||
* room space, by calling this routine again with try_head = 1.
|
||||
*
|
||||
* Returns:
|
||||
*
|
||||
|
@ -359,6 +380,48 @@ size_t __i2400m_tx_tail_room(struct i2400m *i2400m)
|
|||
* fail and return TAIL_FULL and let the caller figure out if we wants to
|
||||
* skip the tail room and try to allocate from the head.
|
||||
*
|
||||
* There is a corner case, wherein i2400m_tx_new() can get into
|
||||
* an infinite loop calling i2400m_tx_fifo_push().
|
||||
* In certain situations, tx_in would have reached on the top of TX FIFO
|
||||
* and i2400m_tx_tail_room() returns 0, as described below:
|
||||
*
|
||||
* N ___________ tail room is zero
|
||||
* |<- IN ->|
|
||||
* | |
|
||||
* | |
|
||||
* | |
|
||||
* | data |
|
||||
* |<- OUT ->|
|
||||
* | |
|
||||
* | |
|
||||
* | head room |
|
||||
* 0 -----------
|
||||
* During such a time, where tail room is zero in the TX FIFO and if there
|
||||
* is a request to add a payload to TX FIFO, which calls:
|
||||
* i2400m_tx()
|
||||
* ->calls i2400m_tx_close()
|
||||
* ->calls i2400m_tx_skip_tail()
|
||||
* goto try_new;
|
||||
* ->calls i2400m_tx_new()
|
||||
* |----> [try_head:]
|
||||
* infinite loop | ->calls i2400m_tx_fifo_push()
|
||||
* | if (tail_room < needed)
|
||||
* | if (head_room => needed)
|
||||
* | return TAIL_FULL;
|
||||
* |<---- goto try_head;
|
||||
*
|
||||
* i2400m_tx() calls i2400m_tx_close() to close the message, since there
|
||||
* is no tail room to accommodate the payload and calls
|
||||
* i2400m_tx_skip_tail() to skip the tail space. Now i2400m_tx() calls
|
||||
* i2400m_tx_new() to allocate space for new message header calling
|
||||
* i2400m_tx_fifo_push() that returns TAIL_FULL, since there is no tail space
|
||||
* to accommodate the message header, but there is enough head space.
|
||||
* The i2400m_tx_new() keeps re-retrying by calling i2400m_tx_fifo_push()
|
||||
* ending up in a loop causing system freeze.
|
||||
*
|
||||
* This corner case is avoided by using a try_head boolean,
|
||||
* as an argument to i2400m_tx_fifo_push().
|
||||
*
|
||||
* Note:
|
||||
*
|
||||
* Assumes i2400m->tx_lock is taken, and we use that as a barrier
|
||||
|
@ -367,7 +430,8 @@ size_t __i2400m_tx_tail_room(struct i2400m *i2400m)
|
|||
* pop data off the queue
|
||||
*/
|
||||
static
|
||||
void *i2400m_tx_fifo_push(struct i2400m *i2400m, size_t size, size_t padding)
|
||||
void *i2400m_tx_fifo_push(struct i2400m *i2400m, size_t size,
|
||||
size_t padding, bool try_head)
|
||||
{
|
||||
struct device *dev = i2400m_dev(i2400m);
|
||||
size_t room, tail_room, needed_size;
|
||||
|
@ -382,9 +446,21 @@ void *i2400m_tx_fifo_push(struct i2400m *i2400m, size_t size, size_t padding)
|
|||
}
|
||||
/* Is there space at the tail? */
|
||||
tail_room = __i2400m_tx_tail_room(i2400m);
|
||||
if (tail_room < needed_size) {
|
||||
if (i2400m->tx_out % I2400M_TX_BUF_SIZE
|
||||
< i2400m->tx_in % I2400M_TX_BUF_SIZE) {
|
||||
if (!try_head && tail_room < needed_size) {
|
||||
/*
|
||||
* If the tail room space is not enough to push the message
|
||||
* in the TX FIFO, then there are two possibilities:
|
||||
* 1. There is enough head room space to accommodate
|
||||
* this message in the TX FIFO.
|
||||
* 2. There is not enough space in the head room and
|
||||
* in tail room of the TX FIFO to accommodate the message.
|
||||
* In the case (1), return TAIL_FULL so that the caller
|
||||
* can figure out, if the caller wants to push the message
|
||||
* into the head room space.
|
||||
* In the case (2), return NULL, indicating that the TX FIFO
|
||||
* cannot accommodate the message.
|
||||
*/
|
||||
if (room - tail_room >= needed_size) {
|
||||
d_printf(2, dev, "fifo push %zu/%zu: tail full\n",
|
||||
size, padding);
|
||||
return TAIL_FULL; /* There might be head space */
|
||||
|
@ -485,14 +561,25 @@ void i2400m_tx_new(struct i2400m *i2400m)
|
|||
{
|
||||
struct device *dev = i2400m_dev(i2400m);
|
||||
struct i2400m_msg_hdr *tx_msg;
|
||||
bool try_head = 0;
|
||||
BUG_ON(i2400m->tx_msg != NULL);
|
||||
/*
|
||||
* In certain situations, TX queue might have enough space to
|
||||
* accommodate the new message header I2400M_TX_PLD_SIZE, but
|
||||
* might not have enough space to accommodate the payloads.
|
||||
* Adding bus_tx_room_min padding while allocating a new TX message
|
||||
* increases the possibilities of including at least one payload of the
|
||||
* size <= bus_tx_room_min.
|
||||
*/
|
||||
try_head:
|
||||
tx_msg = i2400m_tx_fifo_push(i2400m, I2400M_TX_PLD_SIZE, 0);
|
||||
tx_msg = i2400m_tx_fifo_push(i2400m, I2400M_TX_PLD_SIZE,
|
||||
i2400m->bus_tx_room_min, try_head);
|
||||
if (tx_msg == NULL)
|
||||
goto out;
|
||||
else if (tx_msg == TAIL_FULL) {
|
||||
i2400m_tx_skip_tail(i2400m);
|
||||
d_printf(2, dev, "new TX message: tail full, trying head\n");
|
||||
try_head = 1;
|
||||
goto try_head;
|
||||
}
|
||||
memset(tx_msg, 0, I2400M_TX_PLD_SIZE);
|
||||
|
@ -566,7 +653,7 @@ void i2400m_tx_close(struct i2400m *i2400m)
|
|||
aligned_size = ALIGN(tx_msg_moved->size, i2400m->bus_tx_block_size);
|
||||
padding = aligned_size - tx_msg_moved->size;
|
||||
if (padding > 0) {
|
||||
pad_buf = i2400m_tx_fifo_push(i2400m, padding, 0);
|
||||
pad_buf = i2400m_tx_fifo_push(i2400m, padding, 0, 0);
|
||||
if (unlikely(WARN_ON(pad_buf == NULL
|
||||
|| pad_buf == TAIL_FULL))) {
|
||||
/* This should not happen -- append should verify
|
||||
|
@ -632,6 +719,7 @@ int i2400m_tx(struct i2400m *i2400m, const void *buf, size_t buf_len,
|
|||
unsigned long flags;
|
||||
size_t padded_len;
|
||||
void *ptr;
|
||||
bool try_head = 0;
|
||||
unsigned is_singleton = pl_type == I2400M_PT_RESET_WARM
|
||||
|| pl_type == I2400M_PT_RESET_COLD;
|
||||
|
||||
|
@ -643,9 +731,11 @@ int i2400m_tx(struct i2400m *i2400m, const void *buf, size_t buf_len,
|
|||
* current one is out of payload slots or we have a singleton,
|
||||
* close it and start a new one */
|
||||
spin_lock_irqsave(&i2400m->tx_lock, flags);
|
||||
result = -ESHUTDOWN;
|
||||
if (i2400m->tx_buf == NULL)
|
||||
/* If tx_buf is NULL, device is shutdown */
|
||||
if (i2400m->tx_buf == NULL) {
|
||||
result = -ESHUTDOWN;
|
||||
goto error_tx_new;
|
||||
}
|
||||
try_new:
|
||||
if (unlikely(i2400m->tx_msg == NULL))
|
||||
i2400m_tx_new(i2400m);
|
||||
|
@ -659,7 +749,13 @@ int i2400m_tx(struct i2400m *i2400m, const void *buf, size_t buf_len,
|
|||
}
|
||||
if (i2400m->tx_msg == NULL)
|
||||
goto error_tx_new;
|
||||
if (i2400m->tx_msg->size + padded_len > I2400M_TX_BUF_SIZE / 2) {
|
||||
/*
|
||||
* Check if this skb will fit in the TX queue's current active
|
||||
* TX message. The total message size must not exceed the maximum
|
||||
* size of each message I2400M_TX_MSG_SIZE. If it exceeds,
|
||||
* close the current message and push this skb into the new message.
|
||||
*/
|
||||
if (i2400m->tx_msg->size + padded_len > I2400M_TX_MSG_SIZE) {
|
||||
d_printf(2, dev, "TX: message too big, going new\n");
|
||||
i2400m_tx_close(i2400m);
|
||||
i2400m_tx_new(i2400m);
|
||||
|
@ -669,11 +765,12 @@ int i2400m_tx(struct i2400m *i2400m, const void *buf, size_t buf_len,
|
|||
/* So we have a current message header; now append space for
|
||||
* the message -- if there is not enough, try the head */
|
||||
ptr = i2400m_tx_fifo_push(i2400m, padded_len,
|
||||
i2400m->bus_tx_block_size);
|
||||
i2400m->bus_tx_block_size, try_head);
|
||||
if (ptr == TAIL_FULL) { /* Tail is full, try head */
|
||||
d_printf(2, dev, "pl append: tail full\n");
|
||||
i2400m_tx_close(i2400m);
|
||||
i2400m_tx_skip_tail(i2400m);
|
||||
try_head = 1;
|
||||
goto try_new;
|
||||
} else if (ptr == NULL) { /* All full */
|
||||
result = -ENOSPC;
|
||||
|
@ -860,25 +957,43 @@ EXPORT_SYMBOL_GPL(i2400m_tx_msg_sent);
|
|||
* i2400m_tx_setup - Initialize the TX queue and infrastructure
|
||||
*
|
||||
* Make sure we reset the TX sequence to zero, as when this function
|
||||
* is called, the firmware has been just restarted.
|
||||
* is called, the firmware has been just restarted. Same rational
|
||||
* for tx_in, tx_out, tx_msg_size and tx_msg. We reset them since
|
||||
* the memory for TX queue is reallocated.
|
||||
*/
|
||||
int i2400m_tx_setup(struct i2400m *i2400m)
|
||||
{
|
||||
int result;
|
||||
int result = 0;
|
||||
void *tx_buf;
|
||||
unsigned long flags;
|
||||
|
||||
/* Do this here only once -- can't do on
|
||||
* i2400m_hard_start_xmit() as we'll cause race conditions if
|
||||
* the WS was scheduled on another CPU */
|
||||
INIT_WORK(&i2400m->wake_tx_ws, i2400m_wake_tx_work);
|
||||
|
||||
i2400m->tx_sequence = 0;
|
||||
i2400m->tx_buf = kmalloc(I2400M_TX_BUF_SIZE, GFP_KERNEL);
|
||||
if (i2400m->tx_buf == NULL)
|
||||
tx_buf = kmalloc(I2400M_TX_BUF_SIZE, GFP_ATOMIC);
|
||||
if (tx_buf == NULL) {
|
||||
result = -ENOMEM;
|
||||
else
|
||||
result = 0;
|
||||
goto error_kmalloc;
|
||||
}
|
||||
|
||||
/*
|
||||
* Fail the build if we can't fit at least two maximum size messages
|
||||
* on the TX FIFO [one being delivered while one is constructed].
|
||||
*/
|
||||
BUILD_BUG_ON(2 * I2400M_TX_MSG_SIZE > I2400M_TX_BUF_SIZE);
|
||||
spin_lock_irqsave(&i2400m->tx_lock, flags);
|
||||
i2400m->tx_sequence = 0;
|
||||
i2400m->tx_in = 0;
|
||||
i2400m->tx_out = 0;
|
||||
i2400m->tx_msg_size = 0;
|
||||
i2400m->tx_msg = NULL;
|
||||
i2400m->tx_buf = tx_buf;
|
||||
spin_unlock_irqrestore(&i2400m->tx_lock, flags);
|
||||
/* Huh? the bus layer has to define this... */
|
||||
BUG_ON(i2400m->bus_tx_block_size == 0);
|
||||
error_kmalloc:
|
||||
return result;
|
||||
|
||||
}
|
||||
|
|
|
@ -82,6 +82,8 @@ MODULE_PARM_DESC(debug,
|
|||
|
||||
/* Our firmware file name */
|
||||
static const char *i2400mu_bus_fw_names_5x50[] = {
|
||||
#define I2400MU_FW_FILE_NAME_v1_5 "i2400m-fw-usb-1.5.sbcf"
|
||||
I2400MU_FW_FILE_NAME_v1_5,
|
||||
#define I2400MU_FW_FILE_NAME_v1_4 "i2400m-fw-usb-1.4.sbcf"
|
||||
I2400MU_FW_FILE_NAME_v1_4,
|
||||
NULL,
|
||||
|
@ -467,6 +469,13 @@ int i2400mu_probe(struct usb_interface *iface,
|
|||
usb_set_intfdata(iface, i2400mu);
|
||||
|
||||
i2400m->bus_tx_block_size = I2400MU_BLK_SIZE;
|
||||
/*
|
||||
* Room required in the Tx queue for USB message to accommodate
|
||||
* a smallest payload while allocating header space is 16 bytes.
|
||||
* Adding this room for the new tx message increases the
|
||||
* possibilities of including any payload with size <= 16 bytes.
|
||||
*/
|
||||
i2400m->bus_tx_room_min = I2400MU_BLK_SIZE;
|
||||
i2400m->bus_pl_size_max = I2400MU_PL_SIZE_MAX;
|
||||
i2400m->bus_setup = NULL;
|
||||
i2400m->bus_dev_start = i2400mu_bus_dev_start;
|
||||
|
@ -778,4 +787,5 @@ MODULE_AUTHOR("Intel Corporation <linux-wimax@intel.com>");
|
|||
MODULE_DESCRIPTION("Driver for USB based Intel Wireless WiMAX Connection 2400M "
|
||||
"(5x50 & 6050)");
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_FIRMWARE(I2400MU_FW_FILE_NAME_v1_4);
|
||||
MODULE_FIRMWARE(I2400MU_FW_FILE_NAME_v1_5);
|
||||
MODULE_FIRMWARE(I6050U_FW_FILE_NAME_v1_5);
|
||||
|
|
|
@ -315,7 +315,7 @@ void __wimax_state_change(struct wimax_dev *wimax_dev, enum wimax_st new_state)
|
|||
BUG();
|
||||
}
|
||||
__wimax_state_set(wimax_dev, new_state);
|
||||
if (stch_skb)
|
||||
if (!IS_ERR(stch_skb))
|
||||
wimax_gnl_re_state_change_send(wimax_dev, stch_skb, header);
|
||||
out:
|
||||
d_fnend(3, dev, "(wimax_dev %p new_state %u [old %u]) = void\n",
|
||||
|
|
Loading…
Reference in New Issue