mirror of https://gitee.com/openkylin/linux.git
crypto: sha-mb - multibuffer crypto infrastructure
This patch introduces the multi-buffer crypto daemon which is responsible for submitting crypto jobs in a work queue to the responsible multi-buffer crypto algorithm. The idea of the multi-buffer algorihtm is to put data streams from multiple jobs in a wide (AVX2) register and then take advantage of SIMD instructions to do crypto computation on several buffers simultaneously. The multi-buffer crypto daemon is also responsbile for flushing the remaining buffers to complete the computation if no new buffers arrive for a while. Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This commit is contained in:
parent
2ee507c472
commit
1e65b81a90
|
@ -158,6 +158,20 @@ config CRYPTO_CRYPTD
|
|||
converts an arbitrary synchronous software crypto algorithm
|
||||
into an asynchronous algorithm that executes in a kernel thread.
|
||||
|
||||
config CRYPTO_MCRYPTD
|
||||
tristate "Software async multi-buffer crypto daemon"
|
||||
select CRYPTO_BLKCIPHER
|
||||
select CRYPTO_HASH
|
||||
select CRYPTO_MANAGER
|
||||
select CRYPTO_WORKQUEUE
|
||||
help
|
||||
This is a generic software asynchronous crypto daemon that
|
||||
provides the kernel thread to assist multi-buffer crypto
|
||||
algorithms for submitting jobs and flushing jobs in multi-buffer
|
||||
crypto algorithms. Multi-buffer crypto algorithms are executed
|
||||
in the context of this kernel thread and drivers can post
|
||||
their crypto request asyncrhously and process by this daemon.
|
||||
|
||||
config CRYPTO_AUTHENC
|
||||
tristate "Authenc support"
|
||||
select CRYPTO_AEAD
|
||||
|
@ -559,6 +573,22 @@ config CRYPTO_SHA1_PPC
|
|||
This is the powerpc hardware accelerated implementation of the
|
||||
SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
|
||||
|
||||
config CRYPTO_SHA1_MB
|
||||
tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
|
||||
depends on X86 && 64BIT
|
||||
select CRYPTO_SHA1
|
||||
select CRYPTO_HASH
|
||||
select CRYPTO_MCRYPTD
|
||||
help
|
||||
SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
|
||||
using multi-buffer technique. This algorithm computes on
|
||||
multiple data lanes concurrently with SIMD instructions for
|
||||
better throughput. It should not be enabled by default but
|
||||
used when there is significant amount of work to keep the keep
|
||||
the data lanes filled to get performance benefit. If the data
|
||||
lanes remain unfilled, a flush operation will be initiated to
|
||||
process the crypto jobs, adding a slight latency.
|
||||
|
||||
config CRYPTO_SHA256
|
||||
tristate "SHA224 and SHA256 digest algorithm"
|
||||
select CRYPTO_HASH
|
||||
|
|
|
@ -60,6 +60,7 @@ obj-$(CONFIG_CRYPTO_GCM) += gcm.o
|
|||
obj-$(CONFIG_CRYPTO_CCM) += ccm.o
|
||||
obj-$(CONFIG_CRYPTO_PCRYPT) += pcrypt.o
|
||||
obj-$(CONFIG_CRYPTO_CRYPTD) += cryptd.o
|
||||
obj-$(CONFIG_CRYPTO_MCRYPTD) += mcryptd.o
|
||||
obj-$(CONFIG_CRYPTO_DES) += des_generic.o
|
||||
obj-$(CONFIG_CRYPTO_FCRYPT) += fcrypt.o
|
||||
obj-$(CONFIG_CRYPTO_BLOWFISH) += blowfish_generic.o
|
||||
|
|
|
@ -0,0 +1,705 @@
|
|||
/*
|
||||
* Software multibuffer async crypto daemon.
|
||||
*
|
||||
* Copyright (c) 2014 Tim Chen <tim.c.chen@linux.intel.com>
|
||||
*
|
||||
* Adapted from crypto daemon.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License as published by the Free
|
||||
* Software Foundation; either version 2 of the License, or (at your option)
|
||||
* any later version.
|
||||
*
|
||||
*/
|
||||
|
||||
#include <crypto/algapi.h>
|
||||
#include <crypto/internal/hash.h>
|
||||
#include <crypto/internal/aead.h>
|
||||
#include <crypto/mcryptd.h>
|
||||
#include <crypto/crypto_wq.h>
|
||||
#include <linux/err.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/list.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/scatterlist.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/hardirq.h>
|
||||
|
||||
#define MCRYPTD_MAX_CPU_QLEN 100
|
||||
#define MCRYPTD_BATCH 9
|
||||
|
||||
static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
|
||||
unsigned int tail);
|
||||
|
||||
struct mcryptd_flush_list {
|
||||
struct list_head list;
|
||||
struct mutex lock;
|
||||
};
|
||||
|
||||
struct mcryptd_flush_list __percpu *mcryptd_flist;
|
||||
|
||||
struct hashd_instance_ctx {
|
||||
struct crypto_shash_spawn spawn;
|
||||
struct mcryptd_queue *queue;
|
||||
};
|
||||
|
||||
static void mcryptd_queue_worker(struct work_struct *work);
|
||||
|
||||
void mcryptd_arm_flusher(struct mcryptd_alg_cstate *cstate, unsigned long delay)
|
||||
{
|
||||
struct mcryptd_flush_list *flist;
|
||||
|
||||
if (!cstate->flusher_engaged) {
|
||||
/* put the flusher on the flush list */
|
||||
flist = per_cpu_ptr(mcryptd_flist, smp_processor_id());
|
||||
mutex_lock(&flist->lock);
|
||||
list_add_tail(&cstate->flush_list, &flist->list);
|
||||
cstate->flusher_engaged = true;
|
||||
cstate->next_flush = jiffies + delay;
|
||||
queue_delayed_work_on(smp_processor_id(), kcrypto_wq,
|
||||
&cstate->flush, delay);
|
||||
mutex_unlock(&flist->lock);
|
||||
}
|
||||
}
|
||||
EXPORT_SYMBOL(mcryptd_arm_flusher);
|
||||
|
||||
static int mcryptd_init_queue(struct mcryptd_queue *queue,
|
||||
unsigned int max_cpu_qlen)
|
||||
{
|
||||
int cpu;
|
||||
struct mcryptd_cpu_queue *cpu_queue;
|
||||
|
||||
queue->cpu_queue = alloc_percpu(struct mcryptd_cpu_queue);
|
||||
pr_debug("mqueue:%p mcryptd_cpu_queue %p\n", queue, queue->cpu_queue);
|
||||
if (!queue->cpu_queue)
|
||||
return -ENOMEM;
|
||||
for_each_possible_cpu(cpu) {
|
||||
cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
|
||||
pr_debug("cpu_queue #%d %p\n", cpu, queue->cpu_queue);
|
||||
crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
|
||||
INIT_WORK(&cpu_queue->work, mcryptd_queue_worker);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void mcryptd_fini_queue(struct mcryptd_queue *queue)
|
||||
{
|
||||
int cpu;
|
||||
struct mcryptd_cpu_queue *cpu_queue;
|
||||
|
||||
for_each_possible_cpu(cpu) {
|
||||
cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
|
||||
BUG_ON(cpu_queue->queue.qlen);
|
||||
}
|
||||
free_percpu(queue->cpu_queue);
|
||||
}
|
||||
|
||||
static int mcryptd_enqueue_request(struct mcryptd_queue *queue,
|
||||
struct crypto_async_request *request,
|
||||
struct mcryptd_hash_request_ctx *rctx)
|
||||
{
|
||||
int cpu, err;
|
||||
struct mcryptd_cpu_queue *cpu_queue;
|
||||
|
||||
cpu = get_cpu();
|
||||
cpu_queue = this_cpu_ptr(queue->cpu_queue);
|
||||
rctx->tag.cpu = cpu;
|
||||
|
||||
err = crypto_enqueue_request(&cpu_queue->queue, request);
|
||||
pr_debug("enqueue request: cpu %d cpu_queue %p request %p\n",
|
||||
cpu, cpu_queue, request);
|
||||
queue_work_on(cpu, kcrypto_wq, &cpu_queue->work);
|
||||
put_cpu();
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
/*
|
||||
* Try to opportunisticlly flush the partially completed jobs if
|
||||
* crypto daemon is the only task running.
|
||||
*/
|
||||
static void mcryptd_opportunistic_flush(void)
|
||||
{
|
||||
struct mcryptd_flush_list *flist;
|
||||
struct mcryptd_alg_cstate *cstate;
|
||||
|
||||
flist = per_cpu_ptr(mcryptd_flist, smp_processor_id());
|
||||
while (single_task_running()) {
|
||||
mutex_lock(&flist->lock);
|
||||
if (list_empty(&flist->list)) {
|
||||
mutex_unlock(&flist->lock);
|
||||
return;
|
||||
}
|
||||
cstate = list_entry(flist->list.next,
|
||||
struct mcryptd_alg_cstate, flush_list);
|
||||
if (!cstate->flusher_engaged) {
|
||||
mutex_unlock(&flist->lock);
|
||||
return;
|
||||
}
|
||||
list_del(&cstate->flush_list);
|
||||
cstate->flusher_engaged = false;
|
||||
mutex_unlock(&flist->lock);
|
||||
cstate->alg_state->flusher(cstate);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Called in workqueue context, do one real cryption work (via
|
||||
* req->complete) and reschedule itself if there are more work to
|
||||
* do.
|
||||
*/
|
||||
static void mcryptd_queue_worker(struct work_struct *work)
|
||||
{
|
||||
struct mcryptd_cpu_queue *cpu_queue;
|
||||
struct crypto_async_request *req, *backlog;
|
||||
int i;
|
||||
|
||||
/*
|
||||
* Need to loop through more than once for multi-buffer to
|
||||
* be effective.
|
||||
*/
|
||||
|
||||
cpu_queue = container_of(work, struct mcryptd_cpu_queue, work);
|
||||
i = 0;
|
||||
while (i < MCRYPTD_BATCH || single_task_running()) {
|
||||
/*
|
||||
* preempt_disable/enable is used to prevent
|
||||
* being preempted by mcryptd_enqueue_request()
|
||||
*/
|
||||
local_bh_disable();
|
||||
preempt_disable();
|
||||
backlog = crypto_get_backlog(&cpu_queue->queue);
|
||||
req = crypto_dequeue_request(&cpu_queue->queue);
|
||||
preempt_enable();
|
||||
local_bh_enable();
|
||||
|
||||
if (!req) {
|
||||
mcryptd_opportunistic_flush();
|
||||
return;
|
||||
}
|
||||
|
||||
if (backlog)
|
||||
backlog->complete(backlog, -EINPROGRESS);
|
||||
req->complete(req, 0);
|
||||
if (!cpu_queue->queue.qlen)
|
||||
return;
|
||||
++i;
|
||||
}
|
||||
if (cpu_queue->queue.qlen)
|
||||
queue_work(kcrypto_wq, &cpu_queue->work);
|
||||
}
|
||||
|
||||
void mcryptd_flusher(struct work_struct *__work)
|
||||
{
|
||||
struct mcryptd_alg_cstate *alg_cpu_state;
|
||||
struct mcryptd_alg_state *alg_state;
|
||||
struct mcryptd_flush_list *flist;
|
||||
int cpu;
|
||||
|
||||
cpu = smp_processor_id();
|
||||
alg_cpu_state = container_of(to_delayed_work(__work),
|
||||
struct mcryptd_alg_cstate, flush);
|
||||
alg_state = alg_cpu_state->alg_state;
|
||||
if (alg_cpu_state->cpu != cpu)
|
||||
pr_debug("mcryptd error: work on cpu %d, should be cpu %d\n",
|
||||
cpu, alg_cpu_state->cpu);
|
||||
|
||||
if (alg_cpu_state->flusher_engaged) {
|
||||
flist = per_cpu_ptr(mcryptd_flist, cpu);
|
||||
mutex_lock(&flist->lock);
|
||||
list_del(&alg_cpu_state->flush_list);
|
||||
alg_cpu_state->flusher_engaged = false;
|
||||
mutex_unlock(&flist->lock);
|
||||
alg_state->flusher(alg_cpu_state);
|
||||
}
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(mcryptd_flusher);
|
||||
|
||||
static inline struct mcryptd_queue *mcryptd_get_queue(struct crypto_tfm *tfm)
|
||||
{
|
||||
struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
|
||||
struct mcryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
|
||||
|
||||
return ictx->queue;
|
||||
}
|
||||
|
||||
static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
|
||||
unsigned int tail)
|
||||
{
|
||||
char *p;
|
||||
struct crypto_instance *inst;
|
||||
int err;
|
||||
|
||||
p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL);
|
||||
if (!p)
|
||||
return ERR_PTR(-ENOMEM);
|
||||
|
||||
inst = (void *)(p + head);
|
||||
|
||||
err = -ENAMETOOLONG;
|
||||
if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
|
||||
"mcryptd(%s)", alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
|
||||
goto out_free_inst;
|
||||
|
||||
memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
|
||||
|
||||
inst->alg.cra_priority = alg->cra_priority + 50;
|
||||
inst->alg.cra_blocksize = alg->cra_blocksize;
|
||||
inst->alg.cra_alignmask = alg->cra_alignmask;
|
||||
|
||||
out:
|
||||
return p;
|
||||
|
||||
out_free_inst:
|
||||
kfree(p);
|
||||
p = ERR_PTR(err);
|
||||
goto out;
|
||||
}
|
||||
|
||||
static int mcryptd_hash_init_tfm(struct crypto_tfm *tfm)
|
||||
{
|
||||
struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
|
||||
struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
|
||||
struct crypto_shash_spawn *spawn = &ictx->spawn;
|
||||
struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
|
||||
struct crypto_shash *hash;
|
||||
|
||||
hash = crypto_spawn_shash(spawn);
|
||||
if (IS_ERR(hash))
|
||||
return PTR_ERR(hash);
|
||||
|
||||
ctx->child = hash;
|
||||
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
|
||||
sizeof(struct mcryptd_hash_request_ctx) +
|
||||
crypto_shash_descsize(hash));
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void mcryptd_hash_exit_tfm(struct crypto_tfm *tfm)
|
||||
{
|
||||
struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
|
||||
|
||||
crypto_free_shash(ctx->child);
|
||||
}
|
||||
|
||||
static int mcryptd_hash_setkey(struct crypto_ahash *parent,
|
||||
const u8 *key, unsigned int keylen)
|
||||
{
|
||||
struct mcryptd_hash_ctx *ctx = crypto_ahash_ctx(parent);
|
||||
struct crypto_shash *child = ctx->child;
|
||||
int err;
|
||||
|
||||
crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
|
||||
crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) &
|
||||
CRYPTO_TFM_REQ_MASK);
|
||||
err = crypto_shash_setkey(child, key, keylen);
|
||||
crypto_ahash_set_flags(parent, crypto_shash_get_flags(child) &
|
||||
CRYPTO_TFM_RES_MASK);
|
||||
return err;
|
||||
}
|
||||
|
||||
static int mcryptd_hash_enqueue(struct ahash_request *req,
|
||||
crypto_completion_t complete)
|
||||
{
|
||||
int ret;
|
||||
|
||||
struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
|
||||
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
||||
struct mcryptd_queue *queue =
|
||||
mcryptd_get_queue(crypto_ahash_tfm(tfm));
|
||||
|
||||
rctx->complete = req->base.complete;
|
||||
req->base.complete = complete;
|
||||
|
||||
ret = mcryptd_enqueue_request(queue, &req->base, rctx);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void mcryptd_hash_init(struct crypto_async_request *req_async, int err)
|
||||
{
|
||||
struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
|
||||
struct crypto_shash *child = ctx->child;
|
||||
struct ahash_request *req = ahash_request_cast(req_async);
|
||||
struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
|
||||
struct shash_desc *desc = &rctx->desc;
|
||||
|
||||
if (unlikely(err == -EINPROGRESS))
|
||||
goto out;
|
||||
|
||||
desc->tfm = child;
|
||||
desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
|
||||
|
||||
err = crypto_shash_init(desc);
|
||||
|
||||
req->base.complete = rctx->complete;
|
||||
|
||||
out:
|
||||
local_bh_disable();
|
||||
rctx->complete(&req->base, err);
|
||||
local_bh_enable();
|
||||
}
|
||||
|
||||
static int mcryptd_hash_init_enqueue(struct ahash_request *req)
|
||||
{
|
||||
return mcryptd_hash_enqueue(req, mcryptd_hash_init);
|
||||
}
|
||||
|
||||
static void mcryptd_hash_update(struct crypto_async_request *req_async, int err)
|
||||
{
|
||||
struct ahash_request *req = ahash_request_cast(req_async);
|
||||
struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
|
||||
|
||||
if (unlikely(err == -EINPROGRESS))
|
||||
goto out;
|
||||
|
||||
err = shash_ahash_mcryptd_update(req, &rctx->desc);
|
||||
if (err) {
|
||||
req->base.complete = rctx->complete;
|
||||
goto out;
|
||||
}
|
||||
|
||||
return;
|
||||
out:
|
||||
local_bh_disable();
|
||||
rctx->complete(&req->base, err);
|
||||
local_bh_enable();
|
||||
}
|
||||
|
||||
static int mcryptd_hash_update_enqueue(struct ahash_request *req)
|
||||
{
|
||||
return mcryptd_hash_enqueue(req, mcryptd_hash_update);
|
||||
}
|
||||
|
||||
static void mcryptd_hash_final(struct crypto_async_request *req_async, int err)
|
||||
{
|
||||
struct ahash_request *req = ahash_request_cast(req_async);
|
||||
struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
|
||||
|
||||
if (unlikely(err == -EINPROGRESS))
|
||||
goto out;
|
||||
|
||||
err = shash_ahash_mcryptd_final(req, &rctx->desc);
|
||||
if (err) {
|
||||
req->base.complete = rctx->complete;
|
||||
goto out;
|
||||
}
|
||||
|
||||
return;
|
||||
out:
|
||||
local_bh_disable();
|
||||
rctx->complete(&req->base, err);
|
||||
local_bh_enable();
|
||||
}
|
||||
|
||||
static int mcryptd_hash_final_enqueue(struct ahash_request *req)
|
||||
{
|
||||
return mcryptd_hash_enqueue(req, mcryptd_hash_final);
|
||||
}
|
||||
|
||||
static void mcryptd_hash_finup(struct crypto_async_request *req_async, int err)
|
||||
{
|
||||
struct ahash_request *req = ahash_request_cast(req_async);
|
||||
struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
|
||||
|
||||
if (unlikely(err == -EINPROGRESS))
|
||||
goto out;
|
||||
|
||||
err = shash_ahash_mcryptd_finup(req, &rctx->desc);
|
||||
|
||||
if (err) {
|
||||
req->base.complete = rctx->complete;
|
||||
goto out;
|
||||
}
|
||||
|
||||
return;
|
||||
out:
|
||||
local_bh_disable();
|
||||
rctx->complete(&req->base, err);
|
||||
local_bh_enable();
|
||||
}
|
||||
|
||||
static int mcryptd_hash_finup_enqueue(struct ahash_request *req)
|
||||
{
|
||||
return mcryptd_hash_enqueue(req, mcryptd_hash_finup);
|
||||
}
|
||||
|
||||
static void mcryptd_hash_digest(struct crypto_async_request *req_async, int err)
|
||||
{
|
||||
struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
|
||||
struct crypto_shash *child = ctx->child;
|
||||
struct ahash_request *req = ahash_request_cast(req_async);
|
||||
struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
|
||||
struct shash_desc *desc = &rctx->desc;
|
||||
|
||||
if (unlikely(err == -EINPROGRESS))
|
||||
goto out;
|
||||
|
||||
desc->tfm = child;
|
||||
desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP; /* check this again */
|
||||
|
||||
err = shash_ahash_mcryptd_digest(req, desc);
|
||||
|
||||
if (err) {
|
||||
req->base.complete = rctx->complete;
|
||||
goto out;
|
||||
}
|
||||
|
||||
return;
|
||||
out:
|
||||
local_bh_disable();
|
||||
rctx->complete(&req->base, err);
|
||||
local_bh_enable();
|
||||
}
|
||||
|
||||
static int mcryptd_hash_digest_enqueue(struct ahash_request *req)
|
||||
{
|
||||
return mcryptd_hash_enqueue(req, mcryptd_hash_digest);
|
||||
}
|
||||
|
||||
static int mcryptd_hash_export(struct ahash_request *req, void *out)
|
||||
{
|
||||
struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
|
||||
|
||||
return crypto_shash_export(&rctx->desc, out);
|
||||
}
|
||||
|
||||
static int mcryptd_hash_import(struct ahash_request *req, const void *in)
|
||||
{
|
||||
struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
|
||||
|
||||
return crypto_shash_import(&rctx->desc, in);
|
||||
}
|
||||
|
||||
static int mcryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
|
||||
struct mcryptd_queue *queue)
|
||||
{
|
||||
struct hashd_instance_ctx *ctx;
|
||||
struct ahash_instance *inst;
|
||||
struct shash_alg *salg;
|
||||
struct crypto_alg *alg;
|
||||
int err;
|
||||
|
||||
salg = shash_attr_alg(tb[1], 0, 0);
|
||||
if (IS_ERR(salg))
|
||||
return PTR_ERR(salg);
|
||||
|
||||
alg = &salg->base;
|
||||
pr_debug("crypto: mcryptd hash alg: %s\n", alg->cra_name);
|
||||
inst = mcryptd_alloc_instance(alg, ahash_instance_headroom(),
|
||||
sizeof(*ctx));
|
||||
err = PTR_ERR(inst);
|
||||
if (IS_ERR(inst))
|
||||
goto out_put_alg;
|
||||
|
||||
ctx = ahash_instance_ctx(inst);
|
||||
ctx->queue = queue;
|
||||
|
||||
err = crypto_init_shash_spawn(&ctx->spawn, salg,
|
||||
ahash_crypto_instance(inst));
|
||||
if (err)
|
||||
goto out_free_inst;
|
||||
|
||||
inst->alg.halg.base.cra_flags = CRYPTO_ALG_ASYNC;
|
||||
|
||||
inst->alg.halg.digestsize = salg->digestsize;
|
||||
inst->alg.halg.base.cra_ctxsize = sizeof(struct mcryptd_hash_ctx);
|
||||
|
||||
inst->alg.halg.base.cra_init = mcryptd_hash_init_tfm;
|
||||
inst->alg.halg.base.cra_exit = mcryptd_hash_exit_tfm;
|
||||
|
||||
inst->alg.init = mcryptd_hash_init_enqueue;
|
||||
inst->alg.update = mcryptd_hash_update_enqueue;
|
||||
inst->alg.final = mcryptd_hash_final_enqueue;
|
||||
inst->alg.finup = mcryptd_hash_finup_enqueue;
|
||||
inst->alg.export = mcryptd_hash_export;
|
||||
inst->alg.import = mcryptd_hash_import;
|
||||
inst->alg.setkey = mcryptd_hash_setkey;
|
||||
inst->alg.digest = mcryptd_hash_digest_enqueue;
|
||||
|
||||
err = ahash_register_instance(tmpl, inst);
|
||||
if (err) {
|
||||
crypto_drop_shash(&ctx->spawn);
|
||||
out_free_inst:
|
||||
kfree(inst);
|
||||
}
|
||||
|
||||
out_put_alg:
|
||||
crypto_mod_put(alg);
|
||||
return err;
|
||||
}
|
||||
|
||||
static struct mcryptd_queue mqueue;
|
||||
|
||||
static int mcryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
|
||||
{
|
||||
struct crypto_attr_type *algt;
|
||||
|
||||
algt = crypto_get_attr_type(tb);
|
||||
if (IS_ERR(algt))
|
||||
return PTR_ERR(algt);
|
||||
|
||||
switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
|
||||
case CRYPTO_ALG_TYPE_DIGEST:
|
||||
return mcryptd_create_hash(tmpl, tb, &mqueue);
|
||||
break;
|
||||
}
|
||||
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
static void mcryptd_free(struct crypto_instance *inst)
|
||||
{
|
||||
struct mcryptd_instance_ctx *ctx = crypto_instance_ctx(inst);
|
||||
struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst);
|
||||
|
||||
switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) {
|
||||
case CRYPTO_ALG_TYPE_AHASH:
|
||||
crypto_drop_shash(&hctx->spawn);
|
||||
kfree(ahash_instance(inst));
|
||||
return;
|
||||
default:
|
||||
crypto_drop_spawn(&ctx->spawn);
|
||||
kfree(inst);
|
||||
}
|
||||
}
|
||||
|
||||
static struct crypto_template mcryptd_tmpl = {
|
||||
.name = "mcryptd",
|
||||
.create = mcryptd_create,
|
||||
.free = mcryptd_free,
|
||||
.module = THIS_MODULE,
|
||||
};
|
||||
|
||||
struct mcryptd_ahash *mcryptd_alloc_ahash(const char *alg_name,
|
||||
u32 type, u32 mask)
|
||||
{
|
||||
char mcryptd_alg_name[CRYPTO_MAX_ALG_NAME];
|
||||
struct crypto_ahash *tfm;
|
||||
|
||||
if (snprintf(mcryptd_alg_name, CRYPTO_MAX_ALG_NAME,
|
||||
"mcryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
|
||||
return ERR_PTR(-EINVAL);
|
||||
tfm = crypto_alloc_ahash(mcryptd_alg_name, type, mask);
|
||||
if (IS_ERR(tfm))
|
||||
return ERR_CAST(tfm);
|
||||
if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
|
||||
crypto_free_ahash(tfm);
|
||||
return ERR_PTR(-EINVAL);
|
||||
}
|
||||
|
||||
return __mcryptd_ahash_cast(tfm);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(mcryptd_alloc_ahash);
|
||||
|
||||
int shash_ahash_mcryptd_digest(struct ahash_request *req,
|
||||
struct shash_desc *desc)
|
||||
{
|
||||
int err;
|
||||
|
||||
err = crypto_shash_init(desc) ?:
|
||||
shash_ahash_mcryptd_finup(req, desc);
|
||||
|
||||
return err;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(shash_ahash_mcryptd_digest);
|
||||
|
||||
int shash_ahash_mcryptd_update(struct ahash_request *req,
|
||||
struct shash_desc *desc)
|
||||
{
|
||||
struct crypto_shash *tfm = desc->tfm;
|
||||
struct shash_alg *shash = crypto_shash_alg(tfm);
|
||||
|
||||
/* alignment is to be done by multi-buffer crypto algorithm if needed */
|
||||
|
||||
return shash->update(desc, NULL, 0);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(shash_ahash_mcryptd_update);
|
||||
|
||||
int shash_ahash_mcryptd_finup(struct ahash_request *req,
|
||||
struct shash_desc *desc)
|
||||
{
|
||||
struct crypto_shash *tfm = desc->tfm;
|
||||
struct shash_alg *shash = crypto_shash_alg(tfm);
|
||||
|
||||
/* alignment is to be done by multi-buffer crypto algorithm if needed */
|
||||
|
||||
return shash->finup(desc, NULL, 0, req->result);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(shash_ahash_mcryptd_finup);
|
||||
|
||||
int shash_ahash_mcryptd_final(struct ahash_request *req,
|
||||
struct shash_desc *desc)
|
||||
{
|
||||
struct crypto_shash *tfm = desc->tfm;
|
||||
struct shash_alg *shash = crypto_shash_alg(tfm);
|
||||
|
||||
/* alignment is to be done by multi-buffer crypto algorithm if needed */
|
||||
|
||||
return shash->final(desc, req->result);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(shash_ahash_mcryptd_final);
|
||||
|
||||
struct crypto_shash *mcryptd_ahash_child(struct mcryptd_ahash *tfm)
|
||||
{
|
||||
struct mcryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
|
||||
|
||||
return ctx->child;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(mcryptd_ahash_child);
|
||||
|
||||
struct shash_desc *mcryptd_shash_desc(struct ahash_request *req)
|
||||
{
|
||||
struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
|
||||
return &rctx->desc;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(mcryptd_shash_desc);
|
||||
|
||||
void mcryptd_free_ahash(struct mcryptd_ahash *tfm)
|
||||
{
|
||||
crypto_free_ahash(&tfm->base);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(mcryptd_free_ahash);
|
||||
|
||||
|
||||
static int __init mcryptd_init(void)
|
||||
{
|
||||
int err, cpu;
|
||||
struct mcryptd_flush_list *flist;
|
||||
|
||||
mcryptd_flist = alloc_percpu(struct mcryptd_flush_list);
|
||||
for_each_possible_cpu(cpu) {
|
||||
flist = per_cpu_ptr(mcryptd_flist, cpu);
|
||||
INIT_LIST_HEAD(&flist->list);
|
||||
mutex_init(&flist->lock);
|
||||
}
|
||||
|
||||
err = mcryptd_init_queue(&mqueue, MCRYPTD_MAX_CPU_QLEN);
|
||||
if (err) {
|
||||
free_percpu(mcryptd_flist);
|
||||
return err;
|
||||
}
|
||||
|
||||
err = crypto_register_template(&mcryptd_tmpl);
|
||||
if (err) {
|
||||
mcryptd_fini_queue(&mqueue);
|
||||
free_percpu(mcryptd_flist);
|
||||
}
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
static void __exit mcryptd_exit(void)
|
||||
{
|
||||
mcryptd_fini_queue(&mqueue);
|
||||
crypto_unregister_template(&mcryptd_tmpl);
|
||||
free_percpu(mcryptd_flist);
|
||||
}
|
||||
|
||||
subsys_initcall(mcryptd_init);
|
||||
module_exit(mcryptd_exit);
|
||||
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_DESCRIPTION("Software async multibuffer crypto daemon");
|
|
@ -117,6 +117,15 @@ int shash_ahash_update(struct ahash_request *req, struct shash_desc *desc);
|
|||
int shash_ahash_finup(struct ahash_request *req, struct shash_desc *desc);
|
||||
int shash_ahash_digest(struct ahash_request *req, struct shash_desc *desc);
|
||||
|
||||
int shash_ahash_mcryptd_update(struct ahash_request *req,
|
||||
struct shash_desc *desc);
|
||||
int shash_ahash_mcryptd_final(struct ahash_request *req,
|
||||
struct shash_desc *desc);
|
||||
int shash_ahash_mcryptd_finup(struct ahash_request *req,
|
||||
struct shash_desc *desc);
|
||||
int shash_ahash_mcryptd_digest(struct ahash_request *req,
|
||||
struct shash_desc *desc);
|
||||
|
||||
int crypto_init_shash_ops_async(struct crypto_tfm *tfm);
|
||||
|
||||
static inline void *crypto_ahash_ctx(struct crypto_ahash *tfm)
|
||||
|
|
|
@ -0,0 +1,112 @@
|
|||
/*
|
||||
* Software async multibuffer crypto daemon headers
|
||||
*
|
||||
* Author:
|
||||
* Tim Chen <tim.c.chen@linux.intel.com>
|
||||
*
|
||||
* Copyright (c) 2014, Intel Corporation.
|
||||
*/
|
||||
|
||||
#ifndef _CRYPTO_MCRYPT_H
|
||||
#define _CRYPTO_MCRYPT_H
|
||||
|
||||
#include <linux/crypto.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <crypto/hash.h>
|
||||
|
||||
struct mcryptd_ahash {
|
||||
struct crypto_ahash base;
|
||||
};
|
||||
|
||||
static inline struct mcryptd_ahash *__mcryptd_ahash_cast(
|
||||
struct crypto_ahash *tfm)
|
||||
{
|
||||
return (struct mcryptd_ahash *)tfm;
|
||||
}
|
||||
|
||||
struct mcryptd_cpu_queue {
|
||||
struct crypto_queue queue;
|
||||
struct work_struct work;
|
||||
};
|
||||
|
||||
struct mcryptd_queue {
|
||||
struct mcryptd_cpu_queue __percpu *cpu_queue;
|
||||
};
|
||||
|
||||
struct mcryptd_instance_ctx {
|
||||
struct crypto_spawn spawn;
|
||||
struct mcryptd_queue *queue;
|
||||
};
|
||||
|
||||
struct mcryptd_hash_ctx {
|
||||
struct crypto_shash *child;
|
||||
struct mcryptd_alg_state *alg_state;
|
||||
};
|
||||
|
||||
struct mcryptd_tag {
|
||||
/* seq number of request */
|
||||
unsigned seq_num;
|
||||
/* arrival time of request */
|
||||
unsigned long arrival;
|
||||
unsigned long expire;
|
||||
int cpu;
|
||||
};
|
||||
|
||||
struct mcryptd_hash_request_ctx {
|
||||
struct list_head waiter;
|
||||
crypto_completion_t complete;
|
||||
struct mcryptd_tag tag;
|
||||
struct crypto_hash_walk walk;
|
||||
u8 *out;
|
||||
int flag;
|
||||
struct shash_desc desc;
|
||||
};
|
||||
|
||||
struct mcryptd_ahash *mcryptd_alloc_ahash(const char *alg_name,
|
||||
u32 type, u32 mask);
|
||||
struct crypto_shash *mcryptd_ahash_child(struct mcryptd_ahash *tfm);
|
||||
struct shash_desc *mcryptd_shash_desc(struct ahash_request *req);
|
||||
void mcryptd_free_ahash(struct mcryptd_ahash *tfm);
|
||||
void mcryptd_flusher(struct work_struct *work);
|
||||
|
||||
enum mcryptd_req_type {
|
||||
MCRYPTD_NONE,
|
||||
MCRYPTD_UPDATE,
|
||||
MCRYPTD_FINUP,
|
||||
MCRYPTD_DIGEST,
|
||||
MCRYPTD_FINAL
|
||||
};
|
||||
|
||||
struct mcryptd_alg_cstate {
|
||||
unsigned long next_flush;
|
||||
unsigned next_seq_num;
|
||||
bool flusher_engaged;
|
||||
struct delayed_work flush;
|
||||
int cpu;
|
||||
struct mcryptd_alg_state *alg_state;
|
||||
void *mgr;
|
||||
spinlock_t work_lock;
|
||||
struct list_head work_list;
|
||||
struct list_head flush_list;
|
||||
};
|
||||
|
||||
struct mcryptd_alg_state {
|
||||
struct mcryptd_alg_cstate __percpu *alg_cstate;
|
||||
unsigned long (*flusher)(struct mcryptd_alg_cstate *cstate);
|
||||
};
|
||||
|
||||
/* return delay in jiffies from current time */
|
||||
static inline unsigned long get_delay(unsigned long t)
|
||||
{
|
||||
long delay;
|
||||
|
||||
delay = (long) t - (long) jiffies;
|
||||
if (delay <= 0)
|
||||
return 0;
|
||||
else
|
||||
return (unsigned long) delay;
|
||||
}
|
||||
|
||||
void mcryptd_arm_flusher(struct mcryptd_alg_cstate *cstate, unsigned long delay);
|
||||
|
||||
#endif
|
Loading…
Reference in New Issue