Staging: bcm: Qos: fixed braces' coding style

Fixed badly placed and unnecessary braces.

PS: Performed as task 10 of the Eudyptula Challenge.

Signed-off-by: Luis Ortega <luiorpe1@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This commit is contained in:
Luis Ortega 2014-04-09 13:56:09 +02:00 committed by Greg Kroah-Hartman
parent 32f21cee85
commit 2315e49e78
1 changed files with 48 additions and 126 deletions

View File

@ -33,14 +33,11 @@ static bool MatchSrcIpAddress(struct bcm_classifier_rule *pstClassifierRule, ULO
ulSrcIP = ntohl(ulSrcIP);
if (0 == pstClassifierRule->ucIPSourceAddressLength)
return TRUE;
for (ucLoopIndex = 0; ucLoopIndex < (pstClassifierRule->ucIPSourceAddressLength); ucLoopIndex++)
{
for (ucLoopIndex = 0; ucLoopIndex < (pstClassifierRule->ucIPSourceAddressLength); ucLoopIndex++) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Src Ip Address Mask:0x%x PacketIp:0x%x and Classification:0x%x", (UINT)pstClassifierRule->stSrcIpAddress.ulIpv4Mask[ucLoopIndex], (UINT)ulSrcIP, (UINT)pstClassifierRule->stSrcIpAddress.ulIpv6Addr[ucLoopIndex]);
if ((pstClassifierRule->stSrcIpAddress.ulIpv4Mask[ucLoopIndex] & ulSrcIP) ==
(pstClassifierRule->stSrcIpAddress.ulIpv4Addr[ucLoopIndex] & pstClassifierRule->stSrcIpAddress.ulIpv4Mask[ucLoopIndex]))
{
return TRUE;
}
}
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Src Ip Address Not Matched");
return false;
@ -68,13 +65,10 @@ static bool MatchDestIpAddress(struct bcm_classifier_rule *pstClassifierRule, UL
return TRUE;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Destination Ip Address 0x%x 0x%x 0x%x ", (UINT)ulDestIP, (UINT)pstClassifierRule->stDestIpAddress.ulIpv4Mask[ucLoopIndex], (UINT)pstClassifierRule->stDestIpAddress.ulIpv4Addr[ucLoopIndex]);
for (ucLoopIndex = 0; ucLoopIndex < (pstClassifierRule->ucIPDestinationAddressLength); ucLoopIndex++)
{
for (ucLoopIndex = 0; ucLoopIndex < (pstClassifierRule->ucIPDestinationAddressLength); ucLoopIndex++) {
if ((pstClassifierRule->stDestIpAddress.ulIpv4Mask[ucLoopIndex] & ulDestIP) ==
(pstClassifierRule->stDestIpAddress.ulIpv4Addr[ucLoopIndex] & pstClassifierRule->stDestIpAddress.ulIpv4Mask[ucLoopIndex]))
{
return TRUE;
}
}
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Destination Ip Address Not Matched");
return false;
@ -99,9 +93,8 @@ static bool MatchTos(struct bcm_classifier_rule *pstClassifierRule, UCHAR ucType
return TRUE;
if (((pstClassifierRule->ucTosMask & ucTypeOfService) <= pstClassifierRule->ucTosHigh) && ((pstClassifierRule->ucTosMask & ucTypeOfService) >= pstClassifierRule->ucTosLow))
{
return TRUE;
}
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Type Of Service Not Matched");
return false;
}
@ -123,13 +116,10 @@ bool MatchProtocol(struct bcm_classifier_rule *pstClassifierRule, UCHAR ucProtoc
struct bcm_mini_adapter *Adapter = GET_BCM_ADAPTER(gblpnetdev);
if (0 == pstClassifierRule->ucProtocolLength)
return TRUE;
for (ucLoopIndex = 0; ucLoopIndex < pstClassifierRule->ucProtocolLength; ucLoopIndex++)
{
for (ucLoopIndex = 0; ucLoopIndex < pstClassifierRule->ucProtocolLength; ucLoopIndex++) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Protocol:0x%X Classification Protocol:0x%X", ucProtocol, pstClassifierRule->ucProtocol[ucLoopIndex]);
if (pstClassifierRule->ucProtocol[ucLoopIndex] == ucProtocol)
{
return TRUE;
}
}
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Protocol Not Matched");
return false;
@ -155,13 +145,10 @@ bool MatchSrcPort(struct bcm_classifier_rule *pstClassifierRule, USHORT ushSrcPo
if (0 == pstClassifierRule->ucSrcPortRangeLength)
return TRUE;
for (ucLoopIndex = 0; ucLoopIndex < pstClassifierRule->ucSrcPortRangeLength; ucLoopIndex++)
{
for (ucLoopIndex = 0; ucLoopIndex < pstClassifierRule->ucSrcPortRangeLength; ucLoopIndex++) {
if (ushSrcPort <= pstClassifierRule->usSrcPortRangeHi[ucLoopIndex] &&
ushSrcPort >= pstClassifierRule->usSrcPortRangeLo[ucLoopIndex])
{
return TRUE;
}
}
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Src Port: %x Not Matched ", ushSrcPort);
return false;
@ -186,15 +173,12 @@ bool MatchDestPort(struct bcm_classifier_rule *pstClassifierRule, USHORT ushDest
if (0 == pstClassifierRule->ucDestPortRangeLength)
return TRUE;
for (ucLoopIndex = 0; ucLoopIndex < pstClassifierRule->ucDestPortRangeLength; ucLoopIndex++)
{
for (ucLoopIndex = 0; ucLoopIndex < pstClassifierRule->ucDestPortRangeLength; ucLoopIndex++) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Matching Port:0x%X 0x%X 0x%X", ushDestPort, pstClassifierRule->usDestPortRangeLo[ucLoopIndex], pstClassifierRule->usDestPortRangeHi[ucLoopIndex]);
if (ushDestPort <= pstClassifierRule->usDestPortRangeHi[ucLoopIndex] &&
ushDestPort >= pstClassifierRule->usDestPortRangeLo[ucLoopIndex])
{
return TRUE;
}
}
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Dest Port: %x Not Matched", ushDestPort);
return false;
@ -273,21 +257,13 @@ static USHORT IpVersion4(struct bcm_mini_adapter *Adapter,
bClassificationSucceed = TRUE;
} while (0);
if (TRUE == bClassificationSucceed)
{
if (TRUE == bClassificationSucceed) {
INT iMatchedSFQueueIndex = 0;
iMatchedSFQueueIndex = SearchSfid(Adapter, pstClassifierRule->ulSFID);
if (iMatchedSFQueueIndex >= NO_OF_QUEUES)
{
bClassificationSucceed = false;
}
else
{
if (false == Adapter->PackInfo[iMatchedSFQueueIndex].bActive)
{
bClassificationSucceed = false;
}
}
else if (false == Adapter->PackInfo[iMatchedSFQueueIndex].bActive)
bClassificationSucceed = false;
}
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "IpVersion4 <==========");
@ -299,8 +275,7 @@ VOID PruneQueueAllSF(struct bcm_mini_adapter *Adapter)
{
UINT iIndex = 0;
for (iIndex = 0; iIndex < HiPriority; iIndex++)
{
for (iIndex = 0; iIndex < HiPriority; iIndex++) {
if (!Adapter->PackInfo[iIndex].bValid)
continue;
@ -334,10 +309,10 @@ static VOID PruneQueue(struct bcm_mini_adapter *Adapter, INT iIndex)
spin_lock_bh(&Adapter->PackInfo[iIndex].SFQueueLock);
while (1)
while (1) {
// while((UINT)Adapter->PackInfo[iIndex].uiCurrentPacketsOnHost >
// SF_MAX_ALLOWED_PACKETS_TO_BACKUP)
{
// SF_MAX_ALLOWED_PACKETS_TO_BACKUP) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, PRUNE_QUEUE, DBG_LVL_ALL, "uiCurrentBytesOnHost:%x uiMaxBucketSize :%x",
Adapter->PackInfo[iIndex].uiCurrentBytesOnHost,
Adapter->PackInfo[iIndex].uiMaxBucketSize);
@ -350,8 +325,7 @@ static VOID PruneQueue(struct bcm_mini_adapter *Adapter, INT iIndex)
((1000*(jiffies - *((B_UINT32 *)(PacketToDrop->cb)+SKB_CB_LATENCY_OFFSET))/HZ) <= Adapter->PackInfo[iIndex].uiMaxLatency))
break;
if (PacketToDrop)
{
if (PacketToDrop) {
if (netif_msg_tx_err(Adapter))
pr_info(PFX "%s: tx queue %d overlimit\n",
Adapter->dev->name, iIndex);
@ -394,20 +368,16 @@ VOID flush_all_queues(struct bcm_mini_adapter *Adapter)
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_OTHERS, DUMP_INFO, DBG_LVL_ALL, "=====>");
// down(&Adapter->data_packet_queue_lock);
for (iQIndex = LowPriority; iQIndex < HiPriority; iQIndex++)
{
for (iQIndex = LowPriority; iQIndex < HiPriority; iQIndex++) {
struct net_device_stats *netstats = &Adapter->dev->stats;
spin_lock_bh(&Adapter->PackInfo[iQIndex].SFQueueLock);
while (Adapter->PackInfo[iQIndex].FirstTxQueue)
{
while (Adapter->PackInfo[iQIndex].FirstTxQueue) {
PacketToDrop = Adapter->PackInfo[iQIndex].FirstTxQueue;
if (PacketToDrop)
{
if (PacketToDrop) {
uiTotalPacketLength = PacketToDrop->len;
netstats->tx_dropped++;
}
else
} else
uiTotalPacketLength = 0;
DEQUEUEPACKET(Adapter->PackInfo[iQIndex].FirstTxQueue,
@ -455,58 +425,42 @@ USHORT ClassifyPacket(struct bcm_mini_adapter *Adapter, struct sk_buff* skb)
*((UINT32*) (skb->cb) +SKB_CB_TCPACK_OFFSET) = 0;
EThCSGetPktInfo(Adapter, pvEThPayload, &stEthCsPktInfo);
switch (stEthCsPktInfo.eNwpktEthFrameType)
{
switch (stEthCsPktInfo.eNwpktEthFrameType) {
case eEth802LLCFrame:
{
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "ClassifyPacket : 802LLCFrame\n");
pIpHeader = pvEThPayload + sizeof(struct bcm_eth_llc_frame);
break;
}
case eEth802LLCSNAPFrame:
{
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "ClassifyPacket : 802LLC SNAP Frame\n");
pIpHeader = pvEThPayload + sizeof(struct bcm_eth_llc_snap_frame);
break;
}
case eEth802QVLANFrame:
{
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "ClassifyPacket : 802.1Q VLANFrame\n");
pIpHeader = pvEThPayload + sizeof(struct bcm_eth_q_frame);
break;
}
case eEthOtherFrame:
{
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "ClassifyPacket : ETH Other Frame\n");
pIpHeader = pvEThPayload + sizeof(struct bcm_ethernet2_frame);
break;
}
default:
{
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "ClassifyPacket : Unrecognized ETH Frame\n");
pIpHeader = pvEThPayload + sizeof(struct bcm_ethernet2_frame);
break;
}
}
if (stEthCsPktInfo.eNwpktIPFrameType == eIPv4Packet)
{
if (stEthCsPktInfo.eNwpktIPFrameType == eIPv4Packet) {
usCurrFragment = (ntohs(pIpHeader->frag_off) & IP_OFFSET);
if ((ntohs(pIpHeader->frag_off) & IP_MF) || usCurrFragment)
bFragmentedPkt = TRUE;
if (bFragmentedPkt)
{
if (bFragmentedPkt) {
//Fragmented Packet. Get Frag Classifier Entry.
pstClassifierRule = GetFragIPClsEntry(Adapter, pIpHeader->id, pIpHeader->saddr);
if (pstClassifierRule)
{
if (pstClassifierRule) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "It is next Fragmented pkt");
bClassificationSucceed = TRUE;
}
if (!(ntohs(pIpHeader->frag_off) & IP_MF))
{
if (!(ntohs(pIpHeader->frag_off) & IP_MF)) {
//Fragmented Last packet . Remove Frag Classifier Entry
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "This is the last fragmented Pkt");
DelFragIPClsEntry(Adapter, pIpHeader->id, pIpHeader->saddr);
@ -514,23 +468,19 @@ USHORT ClassifyPacket(struct bcm_mini_adapter *Adapter, struct sk_buff* skb)
}
}
for (uiLoopIndex = MAX_CLASSIFIERS - 1; uiLoopIndex >= 0; uiLoopIndex--)
{
for (uiLoopIndex = MAX_CLASSIFIERS - 1; uiLoopIndex >= 0; uiLoopIndex--) {
if (bClassificationSucceed)
break;
//Iterate through all classifiers which are already in order of priority
//to classify the packet until match found
do
{
if (false == Adapter->astClassifierTable[uiLoopIndex].bUsed)
{
do {
if (false == Adapter->astClassifierTable[uiLoopIndex].bUsed) {
bClassificationSucceed = false;
break;
}
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Adapter->PackInfo[%d].bvalid=True\n", uiLoopIndex);
if (0 == Adapter->astClassifierTable[uiLoopIndex].ucDirection)
{
if (0 == Adapter->astClassifierTable[uiLoopIndex].ucDirection) {
bClassificationSucceed = false;//cannot be processed for classification.
break; // it is a down link connection
}
@ -543,11 +493,9 @@ USHORT ClassifyPacket(struct bcm_mini_adapter *Adapter, struct sk_buff* skb)
break;
}
if (Adapter->PackInfo[uiSfIndex].bEthCSSupport)
{
if (Adapter->PackInfo[uiSfIndex].bEthCSSupport) {
if (eEthUnsupportedFrame == stEthCsPktInfo.eNwpktEthFrameType)
{
if (eEthUnsupportedFrame == stEthCsPktInfo.eNwpktEthFrameType) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, " ClassifyPacket : Packet Not a Valid Supported Ethernet Frame\n");
bClassificationSucceed = false;
break;
@ -558,17 +506,12 @@ USHORT ClassifyPacket(struct bcm_mini_adapter *Adapter, struct sk_buff* skb)
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Performing ETH CS Classification on Classifier Rule ID : %x Service Flow ID : %lx\n", pstClassifierRule->uiClassifierRuleIndex, Adapter->PackInfo[uiSfIndex].ulSFID);
bClassificationSucceed = EThCSClassifyPkt(Adapter, skb, &stEthCsPktInfo, pstClassifierRule, Adapter->PackInfo[uiSfIndex].bEthCSSupport);
if (!bClassificationSucceed)
{
if (!bClassificationSucceed) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "ClassifyPacket : Ethernet CS Classification Failed\n");
break;
}
}
else // No ETH Supported on this SF
{
if (eEthOtherFrame != stEthCsPktInfo.eNwpktEthFrameType)
{
} else { // No ETH Supported on this SF
if (eEthOtherFrame != stEthCsPktInfo.eNwpktEthFrameType) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, " ClassifyPacket : Packet Not a 802.3 Ethernet Frame... hence not allowed over non-ETH CS SF\n");
bClassificationSucceed = false;
break;
@ -577,11 +520,9 @@ USHORT ClassifyPacket(struct bcm_mini_adapter *Adapter, struct sk_buff* skb)
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "Proceeding to IP CS Clasification");
if (Adapter->PackInfo[uiSfIndex].bIPCSSupport)
{
if (Adapter->PackInfo[uiSfIndex].bIPCSSupport) {
if (stEthCsPktInfo.eNwpktIPFrameType == eNonIPPacket)
{
if (stEthCsPktInfo.eNwpktIPFrameType == eNonIPPacket) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, " ClassifyPacket : Packet is Not an IP Packet\n");
bClassificationSucceed = false;
break;
@ -598,31 +539,26 @@ USHORT ClassifyPacket(struct bcm_mini_adapter *Adapter, struct sk_buff* skb)
} while (0);
}
if (bClassificationSucceed == TRUE)
{
if (bClassificationSucceed == TRUE) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "CF id : %d, SF ID is =%lu", pstClassifierRule->uiClassifierRuleIndex, pstClassifierRule->ulSFID);
//Store The matched Classifier in SKB
*((UINT32*)(skb->cb)+SKB_CB_CLASSIFICATION_OFFSET) = pstClassifierRule->uiClassifierRuleIndex;
if ((TCP == pIpHeader->protocol) && !bFragmentedPkt && (ETH_AND_IP_HEADER_LEN + TCP_HEADER_LEN <= skb->len))
{
if ((TCP == pIpHeader->protocol) && !bFragmentedPkt && (ETH_AND_IP_HEADER_LEN + TCP_HEADER_LEN <= skb->len)) {
IpHeaderLength = pIpHeader->ihl;
pTcpHeader = (struct bcm_tcp_header *)(((PUCHAR)pIpHeader)+(IpHeaderLength*4));
TcpHeaderLength = GET_TCP_HEADER_LEN(pTcpHeader->HeaderLength);
if ((pTcpHeader->ucFlags & TCP_ACK) &&
(ntohs(pIpHeader->tot_len) == (IpHeaderLength*4)+(TcpHeaderLength*4)))
{
*((UINT32*) (skb->cb) + SKB_CB_TCPACK_OFFSET) = TCP_ACK;
}
}
usIndex = SearchSfid(Adapter, pstClassifierRule->ulSFID);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "index is =%d", usIndex);
//If this is the first fragment of a Fragmented pkt, add this CF. Only This CF should be used for all other fragment of this Pkt.
if (bFragmentedPkt && (usCurrFragment == 0))
{
if (bFragmentedPkt && (usCurrFragment == 0)) {
//First Fragment of Fragmented Packet. Create Frag CLS Entry
struct bcm_fragmented_packet_info stFragPktInfo;
stFragPktInfo.bUsed = TRUE;
@ -649,8 +585,7 @@ static bool EthCSMatchSrcMACAddress(struct bcm_classifier_rule *pstClassifierRul
if (pstClassifierRule->ucEthCSSrcMACLen == 0)
return TRUE;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "%s\n", __FUNCTION__);
for (i = 0; i < MAC_ADDRESS_SIZE; i++)
{
for (i = 0; i < MAC_ADDRESS_SIZE; i++) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "SRC MAC[%x] = %x ClassifierRuleSrcMAC = %x Mask : %x\n", i, Mac[i], pstClassifierRule->au8EThCSSrcMAC[i], pstClassifierRule->au8EThCSSrcMACMask[i]);
if ((pstClassifierRule->au8EThCSSrcMAC[i] & pstClassifierRule->au8EThCSSrcMACMask[i]) !=
(Mac[i] & pstClassifierRule->au8EThCSSrcMACMask[i]))
@ -666,8 +601,7 @@ static bool EthCSMatchDestMACAddress(struct bcm_classifier_rule *pstClassifierRu
if (pstClassifierRule->ucEthCSDestMACLen == 0)
return TRUE;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "%s\n", __FUNCTION__);
for (i = 0; i < MAC_ADDRESS_SIZE; i++)
{
for (i = 0; i < MAC_ADDRESS_SIZE; i++) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "SRC MAC[%x] = %x ClassifierRuleSrcMAC = %x Mask : %x\n", i, Mac[i], pstClassifierRule->au8EThCSDestMAC[i], pstClassifierRule->au8EThCSDestMACMask[i]);
if ((pstClassifierRule->au8EThCSDestMAC[i] & pstClassifierRule->au8EThCSDestMACMask[i]) !=
(Mac[i] & pstClassifierRule->au8EThCSDestMACMask[i]))
@ -684,8 +618,7 @@ static bool EthCSMatchEThTypeSAP(struct bcm_classifier_rule *pstClassifierRule,
return TRUE;
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "%s SrcEtherType:%x CLS EtherType[0]:%x\n", __FUNCTION__, pstEthCsPktInfo->usEtherType, pstClassifierRule->au8EthCSEtherType[0]);
if (pstClassifierRule->au8EthCSEtherType[0] == 1)
{
if (pstClassifierRule->au8EthCSEtherType[0] == 1) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "%s CLS EtherType[1]:%x EtherType[2]:%x\n", __FUNCTION__, pstClassifierRule->au8EthCSEtherType[1], pstClassifierRule->au8EthCSEtherType[2]);
if (memcmp(&pstEthCsPktInfo->usEtherType, &pstClassifierRule->au8EthCSEtherType[1], 2) == 0)
@ -694,8 +627,7 @@ static bool EthCSMatchEThTypeSAP(struct bcm_classifier_rule *pstClassifierRule,
return false;
}
if (pstClassifierRule->au8EthCSEtherType[0] == 2)
{
if (pstClassifierRule->au8EthCSEtherType[0] == 2) {
if (eEth802LLCFrame != pstEthCsPktInfo->eNwpktEthFrameType)
return false;
@ -721,8 +653,7 @@ static bool EthCSMatchVLANRules(struct bcm_classifier_rule *pstClassifierRule, s
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "%s CLS UserPrio:%x CLS VLANID:%x\n", __FUNCTION__, ntohs(*((USHORT *)pstClassifierRule->usUserPriority)), pstClassifierRule->usVLANID);
/* In case FW didn't receive the TLV, the priority field should be ignored */
if (pstClassifierRule->usValidityBitMap & (1<<PKT_CLASSIFICATION_USER_PRIORITY_VALID))
{
if (pstClassifierRule->usValidityBitMap & (1<<PKT_CLASSIFICATION_USER_PRIORITY_VALID)) {
if (pstEthCsPktInfo->eNwpktEthFrameType != eEth802QVLANFrame)
return false;
@ -739,8 +670,7 @@ static bool EthCSMatchVLANRules(struct bcm_classifier_rule *pstClassifierRule, s
bClassificationSucceed = false;
if (pstClassifierRule->usValidityBitMap & (1<<PKT_CLASSIFICATION_VLANID_VALID))
{
if (pstClassifierRule->usValidityBitMap & (1<<PKT_CLASSIFICATION_VLANID_VALID)) {
if (pstEthCsPktInfo->eNwpktEthFrameType != eEth802QVLANFrame)
return false;
@ -800,32 +730,24 @@ static void EThCSGetPktInfo(struct bcm_mini_adapter *Adapter, PVOID pvEthPayload
USHORT u16Etype = ntohs(((struct bcm_eth_header *)pvEthPayload)->u16Etype);
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "EthCSGetPktInfo : Eth Hdr Type : %X\n", u16Etype);
if (u16Etype > 0x5dc)
{
if (u16Etype > 0x5dc) {
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "EthCSGetPktInfo : ETH2 Frame\n");
//ETH2 Frame
if (u16Etype == ETHERNET_FRAMETYPE_802QVLAN)
{
if (u16Etype == ETHERNET_FRAMETYPE_802QVLAN) {
//802.1Q VLAN Header
pstEthCsPktInfo->eNwpktEthFrameType = eEth802QVLANFrame;
u16Etype = ((struct bcm_eth_q_frame *)pvEthPayload)->EthType;
//((ETH_CS_802_Q_FRAME*)pvEthPayload)->UserPriority
}
else
{
} else {
pstEthCsPktInfo->eNwpktEthFrameType = eEthOtherFrame;
u16Etype = ntohs(u16Etype);
}
}
else
{
} else {
//802.2 LLC
BCM_DEBUG_PRINT(Adapter, DBG_TYPE_TX, IPV4_DBG, DBG_LVL_ALL, "802.2 LLC Frame\n");
pstEthCsPktInfo->eNwpktEthFrameType = eEth802LLCFrame;
pstEthCsPktInfo->ucDSAP = ((struct bcm_eth_llc_frame *)pvEthPayload)->DSAP;
if (pstEthCsPktInfo->ucDSAP == 0xAA && ((struct bcm_eth_llc_frame *)pvEthPayload)->SSAP == 0xAA)
{
if (pstEthCsPktInfo->ucDSAP == 0xAA && ((struct bcm_eth_llc_frame *)pvEthPayload)->SSAP == 0xAA) {
//SNAP Frame
pstEthCsPktInfo->eNwpktEthFrameType = eEth802LLCSNAPFrame;
u16Etype = ((struct bcm_eth_llc_snap_frame *)pvEthPayload)->usEtherType;