mirror of https://gitee.com/openkylin/linux.git
Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar: "The main changes in this cycle were: - another round of rq-clock handling debugging, robustization and fixes - PELT accounting improvements - CPU hotplug related ->cpus_allowed affinity handling fixes all around the tree - ... plus misc fixes, cleanups and updates" * 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (35 commits) sched/x86: Update reschedule warning text crypto: N2 - Replace racy task affinity logic cpufreq/sparc-us2e: Replace racy task affinity logic cpufreq/sparc-us3: Replace racy task affinity logic cpufreq/sh: Replace racy task affinity logic cpufreq/ia64: Replace racy task affinity logic ACPI/processor: Replace racy task affinity logic ACPI/processor: Fix error handling in __acpi_processor_start() sparc/sysfs: Replace racy task affinity logic powerpc/smp: Replace open coded task affinity logic ia64/sn/hwperf: Replace racy task affinity logic ia64/salinfo: Replace racy task affinity logic workqueue: Provide work_on_cpu_safe() ia64/topology: Remove cpus_allowed manipulation sched/fair: Move the PELT constants into a generated header sched/fair: Increase PELT accuracy for small tasks sched/fair: Fix comments sched/Documentation: Add 'sched-pelt' tool sched/fair: Fix corner case in __accumulate_sum() sched/core: Remove 'task' parameter and rename tsk_restore_flags() to current_restore_flags() ...
This commit is contained in:
commit
3527d3e951
|
@ -0,0 +1,108 @@
|
|||
/*
|
||||
* The following program is used to generate the constants for
|
||||
* computing sched averages.
|
||||
*
|
||||
* ==============================================================
|
||||
* C program (compile with -lm)
|
||||
* ==============================================================
|
||||
*/
|
||||
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
|
||||
#define HALFLIFE 32
|
||||
#define SHIFT 32
|
||||
|
||||
double y;
|
||||
|
||||
void calc_runnable_avg_yN_inv(void)
|
||||
{
|
||||
int i;
|
||||
unsigned int x;
|
||||
|
||||
printf("static const u32 runnable_avg_yN_inv[] = {");
|
||||
for (i = 0; i < HALFLIFE; i++) {
|
||||
x = ((1UL<<32)-1)*pow(y, i);
|
||||
|
||||
if (i % 6 == 0) printf("\n\t");
|
||||
printf("0x%8x, ", x);
|
||||
}
|
||||
printf("\n};\n\n");
|
||||
}
|
||||
|
||||
int sum = 1024;
|
||||
|
||||
void calc_runnable_avg_yN_sum(void)
|
||||
{
|
||||
int i;
|
||||
|
||||
printf("static const u32 runnable_avg_yN_sum[] = {\n\t 0,");
|
||||
for (i = 1; i <= HALFLIFE; i++) {
|
||||
if (i == 1)
|
||||
sum *= y;
|
||||
else
|
||||
sum = sum*y + 1024*y;
|
||||
|
||||
if (i % 11 == 0)
|
||||
printf("\n\t");
|
||||
|
||||
printf("%5d,", sum);
|
||||
}
|
||||
printf("\n};\n\n");
|
||||
}
|
||||
|
||||
int n = -1;
|
||||
/* first period */
|
||||
long max = 1024;
|
||||
|
||||
void calc_converged_max(void)
|
||||
{
|
||||
long last = 0, y_inv = ((1UL<<32)-1)*y;
|
||||
|
||||
for (; ; n++) {
|
||||
if (n > -1)
|
||||
max = ((max*y_inv)>>SHIFT) + 1024;
|
||||
/*
|
||||
* This is the same as:
|
||||
* max = max*y + 1024;
|
||||
*/
|
||||
|
||||
if (last == max)
|
||||
break;
|
||||
|
||||
last = max;
|
||||
}
|
||||
n--;
|
||||
printf("#define LOAD_AVG_PERIOD %d\n", HALFLIFE);
|
||||
printf("#define LOAD_AVG_MAX %ld\n", max);
|
||||
// printf("#define LOAD_AVG_MAX_N %d\n\n", n);
|
||||
}
|
||||
|
||||
void calc_accumulated_sum_32(void)
|
||||
{
|
||||
int i, x = sum;
|
||||
|
||||
printf("static const u32 __accumulated_sum_N32[] = {\n\t 0,");
|
||||
for (i = 1; i <= n/HALFLIFE+1; i++) {
|
||||
if (i > 1)
|
||||
x = x/2 + sum;
|
||||
|
||||
if (i % 6 == 0)
|
||||
printf("\n\t");
|
||||
|
||||
printf("%6d,", x);
|
||||
}
|
||||
printf("\n};\n\n");
|
||||
}
|
||||
|
||||
void main(void)
|
||||
{
|
||||
printf("/* Generated by Documentation/scheduler/sched-pelt; do not modify. */\n\n");
|
||||
|
||||
y = pow(0.5, 1/(double)HALFLIFE);
|
||||
|
||||
calc_runnable_avg_yN_inv();
|
||||
// calc_runnable_avg_yN_sum();
|
||||
calc_converged_max();
|
||||
// calc_accumulated_sum_32();
|
||||
}
|
|
@ -179,14 +179,14 @@ struct salinfo_platform_oemdata_parms {
|
|||
const u8 *efi_guid;
|
||||
u8 **oemdata;
|
||||
u64 *oemdata_size;
|
||||
int ret;
|
||||
};
|
||||
|
||||
static void
|
||||
static long
|
||||
salinfo_platform_oemdata_cpu(void *context)
|
||||
{
|
||||
struct salinfo_platform_oemdata_parms *parms = context;
|
||||
parms->ret = salinfo_platform_oemdata(parms->efi_guid, parms->oemdata, parms->oemdata_size);
|
||||
|
||||
return salinfo_platform_oemdata(parms->efi_guid, parms->oemdata, parms->oemdata_size);
|
||||
}
|
||||
|
||||
static void
|
||||
|
@ -380,16 +380,7 @@ salinfo_log_release(struct inode *inode, struct file *file)
|
|||
return 0;
|
||||
}
|
||||
|
||||
static void
|
||||
call_on_cpu(int cpu, void (*fn)(void *), void *arg)
|
||||
{
|
||||
cpumask_t save_cpus_allowed = current->cpus_allowed;
|
||||
set_cpus_allowed_ptr(current, cpumask_of(cpu));
|
||||
(*fn)(arg);
|
||||
set_cpus_allowed_ptr(current, &save_cpus_allowed);
|
||||
}
|
||||
|
||||
static void
|
||||
static long
|
||||
salinfo_log_read_cpu(void *context)
|
||||
{
|
||||
struct salinfo_data *data = context;
|
||||
|
@ -399,6 +390,7 @@ salinfo_log_read_cpu(void *context)
|
|||
/* Clear corrected errors as they are read from SAL */
|
||||
if (rh->severity == sal_log_severity_corrected)
|
||||
ia64_sal_clear_state_info(data->type);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void
|
||||
|
@ -430,7 +422,7 @@ salinfo_log_new_read(int cpu, struct salinfo_data *data)
|
|||
spin_unlock_irqrestore(&data_saved_lock, flags);
|
||||
|
||||
if (!data->saved_num)
|
||||
call_on_cpu(cpu, salinfo_log_read_cpu, data);
|
||||
work_on_cpu_safe(cpu, salinfo_log_read_cpu, data);
|
||||
if (!data->log_size) {
|
||||
data->state = STATE_NO_DATA;
|
||||
cpumask_clear_cpu(cpu, &data->cpu_event);
|
||||
|
@ -459,11 +451,13 @@ salinfo_log_read(struct file *file, char __user *buffer, size_t count, loff_t *p
|
|||
return simple_read_from_buffer(buffer, count, ppos, buf, bufsize);
|
||||
}
|
||||
|
||||
static void
|
||||
static long
|
||||
salinfo_log_clear_cpu(void *context)
|
||||
{
|
||||
struct salinfo_data *data = context;
|
||||
|
||||
ia64_sal_clear_state_info(data->type);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int
|
||||
|
@ -486,7 +480,7 @@ salinfo_log_clear(struct salinfo_data *data, int cpu)
|
|||
rh = (sal_log_record_header_t *)(data->log_buffer);
|
||||
/* Corrected errors have already been cleared from SAL */
|
||||
if (rh->severity != sal_log_severity_corrected)
|
||||
call_on_cpu(cpu, salinfo_log_clear_cpu, data);
|
||||
work_on_cpu_safe(cpu, salinfo_log_clear_cpu, data);
|
||||
/* clearing a record may make a new record visible */
|
||||
salinfo_log_new_read(cpu, data);
|
||||
if (data->state == STATE_LOG_RECORD) {
|
||||
|
@ -531,9 +525,8 @@ salinfo_log_write(struct file *file, const char __user *buffer, size_t count, lo
|
|||
.oemdata = &data->oemdata,
|
||||
.oemdata_size = &data->oemdata_size
|
||||
};
|
||||
call_on_cpu(cpu, salinfo_platform_oemdata_cpu, &parms);
|
||||
if (parms.ret)
|
||||
count = parms.ret;
|
||||
count = work_on_cpu_safe(cpu, salinfo_platform_oemdata_cpu,
|
||||
&parms);
|
||||
} else
|
||||
data->oemdata_size = 0;
|
||||
} else
|
||||
|
|
|
@ -355,18 +355,12 @@ static int cache_add_dev(unsigned int cpu)
|
|||
unsigned long i, j;
|
||||
struct cache_info *this_object;
|
||||
int retval = 0;
|
||||
cpumask_t oldmask;
|
||||
|
||||
if (all_cpu_cache_info[cpu].kobj.parent)
|
||||
return 0;
|
||||
|
||||
oldmask = current->cpus_allowed;
|
||||
retval = set_cpus_allowed_ptr(current, cpumask_of(cpu));
|
||||
if (unlikely(retval))
|
||||
return retval;
|
||||
|
||||
retval = cpu_cache_sysfs_init(cpu);
|
||||
set_cpus_allowed_ptr(current, &oldmask);
|
||||
if (unlikely(retval < 0))
|
||||
return retval;
|
||||
|
||||
|
|
|
@ -598,12 +598,17 @@ static void sn_hwperf_call_sal(void *info)
|
|||
op_info->ret = r;
|
||||
}
|
||||
|
||||
static long sn_hwperf_call_sal_work(void *info)
|
||||
{
|
||||
sn_hwperf_call_sal(info);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int sn_hwperf_op_cpu(struct sn_hwperf_op_info *op_info)
|
||||
{
|
||||
u32 cpu;
|
||||
u32 use_ipi;
|
||||
int r = 0;
|
||||
cpumask_t save_allowed;
|
||||
|
||||
cpu = (op_info->a->arg & SN_HWPERF_ARG_CPU_MASK) >> 32;
|
||||
use_ipi = op_info->a->arg & SN_HWPERF_ARG_USE_IPI_MASK;
|
||||
|
@ -629,13 +634,9 @@ static int sn_hwperf_op_cpu(struct sn_hwperf_op_info *op_info)
|
|||
/* use an interprocessor interrupt to call SAL */
|
||||
smp_call_function_single(cpu, sn_hwperf_call_sal,
|
||||
op_info, 1);
|
||||
}
|
||||
else {
|
||||
/* migrate the task before calling SAL */
|
||||
save_allowed = current->cpus_allowed;
|
||||
set_cpus_allowed_ptr(current, cpumask_of(cpu));
|
||||
sn_hwperf_call_sal(op_info);
|
||||
set_cpus_allowed_ptr(current, &save_allowed);
|
||||
} else {
|
||||
/* Call on the target CPU */
|
||||
work_on_cpu_safe(cpu, sn_hwperf_call_sal_work, op_info);
|
||||
}
|
||||
}
|
||||
r = op_info->ret;
|
||||
|
|
|
@ -787,24 +787,21 @@ static struct sched_domain_topology_level powerpc_topology[] = {
|
|||
{ NULL, },
|
||||
};
|
||||
|
||||
static __init long smp_setup_cpu_workfn(void *data __always_unused)
|
||||
{
|
||||
smp_ops->setup_cpu(boot_cpuid);
|
||||
return 0;
|
||||
}
|
||||
|
||||
void __init smp_cpus_done(unsigned int max_cpus)
|
||||
{
|
||||
cpumask_var_t old_mask;
|
||||
|
||||
/* We want the setup_cpu() here to be called from CPU 0, but our
|
||||
* init thread may have been "borrowed" by another CPU in the meantime
|
||||
* se we pin us down to CPU 0 for a short while
|
||||
/*
|
||||
* We want the setup_cpu() here to be called on the boot CPU, but
|
||||
* init might run on any CPU, so make sure it's invoked on the boot
|
||||
* CPU.
|
||||
*/
|
||||
alloc_cpumask_var(&old_mask, GFP_NOWAIT);
|
||||
cpumask_copy(old_mask, ¤t->cpus_allowed);
|
||||
set_cpus_allowed_ptr(current, cpumask_of(boot_cpuid));
|
||||
|
||||
if (smp_ops && smp_ops->setup_cpu)
|
||||
smp_ops->setup_cpu(boot_cpuid);
|
||||
|
||||
set_cpus_allowed_ptr(current, old_mask);
|
||||
|
||||
free_cpumask_var(old_mask);
|
||||
work_on_cpu_safe(boot_cpuid, smp_setup_cpu_workfn, NULL);
|
||||
|
||||
if (smp_ops && smp_ops->bringup_done)
|
||||
smp_ops->bringup_done();
|
||||
|
@ -812,7 +809,6 @@ void __init smp_cpus_done(unsigned int max_cpus)
|
|||
dump_numa_cpu_topology();
|
||||
|
||||
set_sched_topology(powerpc_topology);
|
||||
|
||||
}
|
||||
|
||||
#ifdef CONFIG_HOTPLUG_CPU
|
||||
|
|
|
@ -98,27 +98,7 @@ static struct attribute_group mmu_stat_group = {
|
|||
.name = "mmu_stats",
|
||||
};
|
||||
|
||||
/* XXX convert to rusty's on_one_cpu */
|
||||
static unsigned long run_on_cpu(unsigned long cpu,
|
||||
unsigned long (*func)(unsigned long),
|
||||
unsigned long arg)
|
||||
{
|
||||
cpumask_t old_affinity;
|
||||
unsigned long ret;
|
||||
|
||||
cpumask_copy(&old_affinity, ¤t->cpus_allowed);
|
||||
/* should return -EINVAL to userspace */
|
||||
if (set_cpus_allowed_ptr(current, cpumask_of(cpu)))
|
||||
return 0;
|
||||
|
||||
ret = func(arg);
|
||||
|
||||
set_cpus_allowed_ptr(current, &old_affinity);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static unsigned long read_mmustat_enable(unsigned long junk)
|
||||
static long read_mmustat_enable(void *data __maybe_unused)
|
||||
{
|
||||
unsigned long ra = 0;
|
||||
|
||||
|
@ -127,11 +107,11 @@ static unsigned long read_mmustat_enable(unsigned long junk)
|
|||
return ra != 0;
|
||||
}
|
||||
|
||||
static unsigned long write_mmustat_enable(unsigned long val)
|
||||
static long write_mmustat_enable(void *data)
|
||||
{
|
||||
unsigned long ra, orig_ra;
|
||||
unsigned long ra, orig_ra, *val = data;
|
||||
|
||||
if (val)
|
||||
if (*val)
|
||||
ra = __pa(&per_cpu(mmu_stats, smp_processor_id()));
|
||||
else
|
||||
ra = 0UL;
|
||||
|
@ -142,7 +122,8 @@ static unsigned long write_mmustat_enable(unsigned long val)
|
|||
static ssize_t show_mmustat_enable(struct device *s,
|
||||
struct device_attribute *attr, char *buf)
|
||||
{
|
||||
unsigned long val = run_on_cpu(s->id, read_mmustat_enable, 0);
|
||||
long val = work_on_cpu(s->id, read_mmustat_enable, NULL);
|
||||
|
||||
return sprintf(buf, "%lx\n", val);
|
||||
}
|
||||
|
||||
|
@ -150,13 +131,15 @@ static ssize_t store_mmustat_enable(struct device *s,
|
|||
struct device_attribute *attr, const char *buf,
|
||||
size_t count)
|
||||
{
|
||||
unsigned long val, err;
|
||||
int ret = sscanf(buf, "%lu", &val);
|
||||
unsigned long val;
|
||||
long err;
|
||||
int ret;
|
||||
|
||||
ret = sscanf(buf, "%lu", &val);
|
||||
if (ret != 1)
|
||||
return -EINVAL;
|
||||
|
||||
err = run_on_cpu(s->id, write_mmustat_enable, val);
|
||||
err = work_on_cpu(s->id, write_mmustat_enable, &val);
|
||||
if (err)
|
||||
return -EIO;
|
||||
|
||||
|
|
|
@ -124,7 +124,7 @@ static bool smp_no_nmi_ipi = false;
|
|||
static void native_smp_send_reschedule(int cpu)
|
||||
{
|
||||
if (unlikely(cpu_is_offline(cpu))) {
|
||||
WARN_ON(1);
|
||||
WARN(1, "sched: Unexpected reschedule of offline CPU#%d!\n", cpu);
|
||||
return;
|
||||
}
|
||||
apic->send_IPI(cpu, RESCHEDULE_VECTOR);
|
||||
|
|
|
@ -251,6 +251,9 @@ static int __acpi_processor_start(struct acpi_device *device)
|
|||
if (ACPI_SUCCESS(status))
|
||||
return 0;
|
||||
|
||||
result = -ENODEV;
|
||||
acpi_pss_perf_exit(pr, device);
|
||||
|
||||
err_power_exit:
|
||||
acpi_processor_power_exit(pr);
|
||||
return result;
|
||||
|
@ -259,11 +262,16 @@ static int __acpi_processor_start(struct acpi_device *device)
|
|||
static int acpi_processor_start(struct device *dev)
|
||||
{
|
||||
struct acpi_device *device = ACPI_COMPANION(dev);
|
||||
int ret;
|
||||
|
||||
if (!device)
|
||||
return -ENODEV;
|
||||
|
||||
return __acpi_processor_start(device);
|
||||
/* Protect against concurrent CPU hotplug operations */
|
||||
get_online_cpus();
|
||||
ret = __acpi_processor_start(device);
|
||||
put_online_cpus();
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int acpi_processor_stop(struct device *dev)
|
||||
|
|
|
@ -62,8 +62,8 @@ struct acpi_processor_throttling_arg {
|
|||
#define THROTTLING_POSTCHANGE (2)
|
||||
|
||||
static int acpi_processor_get_throttling(struct acpi_processor *pr);
|
||||
int acpi_processor_set_throttling(struct acpi_processor *pr,
|
||||
int state, bool force);
|
||||
static int __acpi_processor_set_throttling(struct acpi_processor *pr,
|
||||
int state, bool force, bool direct);
|
||||
|
||||
static int acpi_processor_update_tsd_coord(void)
|
||||
{
|
||||
|
@ -891,7 +891,8 @@ static int acpi_processor_get_throttling_ptc(struct acpi_processor *pr)
|
|||
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
|
||||
"Invalid throttling state, reset\n"));
|
||||
state = 0;
|
||||
ret = acpi_processor_set_throttling(pr, state, true);
|
||||
ret = __acpi_processor_set_throttling(pr, state, true,
|
||||
true);
|
||||
if (ret)
|
||||
return ret;
|
||||
}
|
||||
|
@ -901,36 +902,31 @@ static int acpi_processor_get_throttling_ptc(struct acpi_processor *pr)
|
|||
return 0;
|
||||
}
|
||||
|
||||
static long __acpi_processor_get_throttling(void *data)
|
||||
{
|
||||
struct acpi_processor *pr = data;
|
||||
|
||||
return pr->throttling.acpi_processor_get_throttling(pr);
|
||||
}
|
||||
|
||||
static int acpi_processor_get_throttling(struct acpi_processor *pr)
|
||||
{
|
||||
cpumask_var_t saved_mask;
|
||||
int ret;
|
||||
|
||||
if (!pr)
|
||||
return -EINVAL;
|
||||
|
||||
if (!pr->flags.throttling)
|
||||
return -ENODEV;
|
||||
|
||||
if (!alloc_cpumask_var(&saved_mask, GFP_KERNEL))
|
||||
return -ENOMEM;
|
||||
|
||||
/*
|
||||
* Migrate task to the cpu pointed by pr.
|
||||
* This is either called from the CPU hotplug callback of
|
||||
* processor_driver or via the ACPI probe function. In the latter
|
||||
* case the CPU is not guaranteed to be online. Both call sites are
|
||||
* protected against CPU hotplug.
|
||||
*/
|
||||
cpumask_copy(saved_mask, ¤t->cpus_allowed);
|
||||
/* FIXME: use work_on_cpu() */
|
||||
if (set_cpus_allowed_ptr(current, cpumask_of(pr->id))) {
|
||||
/* Can't migrate to the target pr->id CPU. Exit */
|
||||
free_cpumask_var(saved_mask);
|
||||
if (!cpu_online(pr->id))
|
||||
return -ENODEV;
|
||||
}
|
||||
ret = pr->throttling.acpi_processor_get_throttling(pr);
|
||||
/* restore the previous state */
|
||||
set_cpus_allowed_ptr(current, saved_mask);
|
||||
free_cpumask_var(saved_mask);
|
||||
|
||||
return ret;
|
||||
return work_on_cpu(pr->id, __acpi_processor_get_throttling, pr);
|
||||
}
|
||||
|
||||
static int acpi_processor_get_fadt_info(struct acpi_processor *pr)
|
||||
|
@ -1080,8 +1076,15 @@ static long acpi_processor_throttling_fn(void *data)
|
|||
arg->target_state, arg->force);
|
||||
}
|
||||
|
||||
int acpi_processor_set_throttling(struct acpi_processor *pr,
|
||||
int state, bool force)
|
||||
static int call_on_cpu(int cpu, long (*fn)(void *), void *arg, bool direct)
|
||||
{
|
||||
if (direct)
|
||||
return fn(arg);
|
||||
return work_on_cpu(cpu, fn, arg);
|
||||
}
|
||||
|
||||
static int __acpi_processor_set_throttling(struct acpi_processor *pr,
|
||||
int state, bool force, bool direct)
|
||||
{
|
||||
int ret = 0;
|
||||
unsigned int i;
|
||||
|
@ -1130,7 +1133,8 @@ int acpi_processor_set_throttling(struct acpi_processor *pr,
|
|||
arg.pr = pr;
|
||||
arg.target_state = state;
|
||||
arg.force = force;
|
||||
ret = work_on_cpu(pr->id, acpi_processor_throttling_fn, &arg);
|
||||
ret = call_on_cpu(pr->id, acpi_processor_throttling_fn, &arg,
|
||||
direct);
|
||||
} else {
|
||||
/*
|
||||
* When the T-state coordination is SW_ALL or HW_ALL,
|
||||
|
@ -1163,8 +1167,8 @@ int acpi_processor_set_throttling(struct acpi_processor *pr,
|
|||
arg.pr = match_pr;
|
||||
arg.target_state = state;
|
||||
arg.force = force;
|
||||
ret = work_on_cpu(pr->id, acpi_processor_throttling_fn,
|
||||
&arg);
|
||||
ret = call_on_cpu(pr->id, acpi_processor_throttling_fn,
|
||||
&arg, direct);
|
||||
}
|
||||
}
|
||||
/*
|
||||
|
@ -1182,6 +1186,12 @@ int acpi_processor_set_throttling(struct acpi_processor *pr,
|
|||
return ret;
|
||||
}
|
||||
|
||||
int acpi_processor_set_throttling(struct acpi_processor *pr, int state,
|
||||
bool force)
|
||||
{
|
||||
return __acpi_processor_set_throttling(pr, state, force, false);
|
||||
}
|
||||
|
||||
int acpi_processor_get_throttling_info(struct acpi_processor *pr)
|
||||
{
|
||||
int result = 0;
|
||||
|
|
|
@ -381,7 +381,7 @@ static int sock_xmit(struct nbd_device *nbd, int index, int send,
|
|||
*sent += result;
|
||||
} while (msg_data_left(&msg));
|
||||
|
||||
tsk_restore_flags(current, pflags, PF_MEMALLOC);
|
||||
current_restore_flags(pflags, PF_MEMALLOC);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
|
|
@ -34,6 +34,11 @@ struct cpufreq_acpi_io {
|
|||
unsigned int resume;
|
||||
};
|
||||
|
||||
struct cpufreq_acpi_req {
|
||||
unsigned int cpu;
|
||||
unsigned int state;
|
||||
};
|
||||
|
||||
static struct cpufreq_acpi_io *acpi_io_data[NR_CPUS];
|
||||
|
||||
static struct cpufreq_driver acpi_cpufreq_driver;
|
||||
|
@ -83,8 +88,7 @@ processor_get_pstate (
|
|||
static unsigned
|
||||
extract_clock (
|
||||
struct cpufreq_acpi_io *data,
|
||||
unsigned value,
|
||||
unsigned int cpu)
|
||||
unsigned value)
|
||||
{
|
||||
unsigned long i;
|
||||
|
||||
|
@ -98,60 +102,43 @@ extract_clock (
|
|||
}
|
||||
|
||||
|
||||
static unsigned int
|
||||
static long
|
||||
processor_get_freq (
|
||||
struct cpufreq_acpi_io *data,
|
||||
unsigned int cpu)
|
||||
void *arg)
|
||||
{
|
||||
int ret = 0;
|
||||
u32 value = 0;
|
||||
cpumask_t saved_mask;
|
||||
unsigned long clock_freq;
|
||||
struct cpufreq_acpi_req *req = arg;
|
||||
unsigned int cpu = req->cpu;
|
||||
struct cpufreq_acpi_io *data = acpi_io_data[cpu];
|
||||
u32 value;
|
||||
int ret;
|
||||
|
||||
pr_debug("processor_get_freq\n");
|
||||
|
||||
saved_mask = current->cpus_allowed;
|
||||
set_cpus_allowed_ptr(current, cpumask_of(cpu));
|
||||
if (smp_processor_id() != cpu)
|
||||
goto migrate_end;
|
||||
return -EAGAIN;
|
||||
|
||||
/* processor_get_pstate gets the instantaneous frequency */
|
||||
ret = processor_get_pstate(&value);
|
||||
|
||||
if (ret) {
|
||||
set_cpus_allowed_ptr(current, &saved_mask);
|
||||
pr_warn("get performance failed with error %d\n", ret);
|
||||
ret = 0;
|
||||
goto migrate_end;
|
||||
return ret;
|
||||
}
|
||||
clock_freq = extract_clock(data, value, cpu);
|
||||
ret = (clock_freq*1000);
|
||||
|
||||
migrate_end:
|
||||
set_cpus_allowed_ptr(current, &saved_mask);
|
||||
return ret;
|
||||
return 1000 * extract_clock(data, value);
|
||||
}
|
||||
|
||||
|
||||
static int
|
||||
static long
|
||||
processor_set_freq (
|
||||
struct cpufreq_acpi_io *data,
|
||||
struct cpufreq_policy *policy,
|
||||
int state)
|
||||
void *arg)
|
||||
{
|
||||
int ret = 0;
|
||||
u32 value = 0;
|
||||
cpumask_t saved_mask;
|
||||
int retval;
|
||||
struct cpufreq_acpi_req *req = arg;
|
||||
unsigned int cpu = req->cpu;
|
||||
struct cpufreq_acpi_io *data = acpi_io_data[cpu];
|
||||
int ret, state = req->state;
|
||||
u32 value;
|
||||
|
||||
pr_debug("processor_set_freq\n");
|
||||
|
||||
saved_mask = current->cpus_allowed;
|
||||
set_cpus_allowed_ptr(current, cpumask_of(policy->cpu));
|
||||
if (smp_processor_id() != policy->cpu) {
|
||||
retval = -EAGAIN;
|
||||
goto migrate_end;
|
||||
}
|
||||
if (smp_processor_id() != cpu)
|
||||
return -EAGAIN;
|
||||
|
||||
if (state == data->acpi_data.state) {
|
||||
if (unlikely(data->resume)) {
|
||||
|
@ -159,8 +146,7 @@ processor_set_freq (
|
|||
data->resume = 0;
|
||||
} else {
|
||||
pr_debug("Already at target state (P%d)\n", state);
|
||||
retval = 0;
|
||||
goto migrate_end;
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -171,7 +157,6 @@ processor_set_freq (
|
|||
* First we write the target state's 'control' value to the
|
||||
* control_register.
|
||||
*/
|
||||
|
||||
value = (u32) data->acpi_data.states[state].control;
|
||||
|
||||
pr_debug("Transitioning to state: 0x%08x\n", value);
|
||||
|
@ -179,17 +164,11 @@ processor_set_freq (
|
|||
ret = processor_set_pstate(value);
|
||||
if (ret) {
|
||||
pr_warn("Transition failed with error %d\n", ret);
|
||||
retval = -ENODEV;
|
||||
goto migrate_end;
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
data->acpi_data.state = state;
|
||||
|
||||
retval = 0;
|
||||
|
||||
migrate_end:
|
||||
set_cpus_allowed_ptr(current, &saved_mask);
|
||||
return (retval);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
@ -197,11 +176,13 @@ static unsigned int
|
|||
acpi_cpufreq_get (
|
||||
unsigned int cpu)
|
||||
{
|
||||
struct cpufreq_acpi_io *data = acpi_io_data[cpu];
|
||||
struct cpufreq_acpi_req req;
|
||||
long ret;
|
||||
|
||||
pr_debug("acpi_cpufreq_get\n");
|
||||
req.cpu = cpu;
|
||||
ret = work_on_cpu(cpu, processor_get_freq, &req);
|
||||
|
||||
return processor_get_freq(data, cpu);
|
||||
return ret > 0 ? (unsigned int) ret : 0;
|
||||
}
|
||||
|
||||
|
||||
|
@ -210,7 +191,12 @@ acpi_cpufreq_target (
|
|||
struct cpufreq_policy *policy,
|
||||
unsigned int index)
|
||||
{
|
||||
return processor_set_freq(acpi_io_data[policy->cpu], policy, index);
|
||||
struct cpufreq_acpi_req req;
|
||||
|
||||
req.cpu = policy->cpu;
|
||||
req.state = index;
|
||||
|
||||
return work_on_cpu(req.cpu, processor_set_freq, &req);
|
||||
}
|
||||
|
||||
static int
|
||||
|
|
|
@ -30,11 +30,51 @@
|
|||
|
||||
static DEFINE_PER_CPU(struct clk, sh_cpuclk);
|
||||
|
||||
struct cpufreq_target {
|
||||
struct cpufreq_policy *policy;
|
||||
unsigned int freq;
|
||||
};
|
||||
|
||||
static unsigned int sh_cpufreq_get(unsigned int cpu)
|
||||
{
|
||||
return (clk_get_rate(&per_cpu(sh_cpuclk, cpu)) + 500) / 1000;
|
||||
}
|
||||
|
||||
static long __sh_cpufreq_target(void *arg)
|
||||
{
|
||||
struct cpufreq_target *target = arg;
|
||||
struct cpufreq_policy *policy = target->policy;
|
||||
int cpu = policy->cpu;
|
||||
struct clk *cpuclk = &per_cpu(sh_cpuclk, cpu);
|
||||
struct cpufreq_freqs freqs;
|
||||
struct device *dev;
|
||||
long freq;
|
||||
|
||||
if (smp_processor_id() != cpu)
|
||||
return -ENODEV;
|
||||
|
||||
dev = get_cpu_device(cpu);
|
||||
|
||||
/* Convert target_freq from kHz to Hz */
|
||||
freq = clk_round_rate(cpuclk, target->freq * 1000);
|
||||
|
||||
if (freq < (policy->min * 1000) || freq > (policy->max * 1000))
|
||||
return -EINVAL;
|
||||
|
||||
dev_dbg(dev, "requested frequency %u Hz\n", target->freq * 1000);
|
||||
|
||||
freqs.old = sh_cpufreq_get(cpu);
|
||||
freqs.new = (freq + 500) / 1000;
|
||||
freqs.flags = 0;
|
||||
|
||||
cpufreq_freq_transition_begin(target->policy, &freqs);
|
||||
clk_set_rate(cpuclk, freq);
|
||||
cpufreq_freq_transition_end(target->policy, &freqs, 0);
|
||||
|
||||
dev_dbg(dev, "set frequency %lu Hz\n", freq);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Here we notify other drivers of the proposed change and the final change.
|
||||
*/
|
||||
|
@ -42,40 +82,9 @@ static int sh_cpufreq_target(struct cpufreq_policy *policy,
|
|||
unsigned int target_freq,
|
||||
unsigned int relation)
|
||||
{
|
||||
unsigned int cpu = policy->cpu;
|
||||
struct clk *cpuclk = &per_cpu(sh_cpuclk, cpu);
|
||||
cpumask_t cpus_allowed;
|
||||
struct cpufreq_freqs freqs;
|
||||
struct device *dev;
|
||||
long freq;
|
||||
struct cpufreq_target data = { .policy = policy, .freq = target_freq };
|
||||
|
||||
cpus_allowed = current->cpus_allowed;
|
||||
set_cpus_allowed_ptr(current, cpumask_of(cpu));
|
||||
|
||||
BUG_ON(smp_processor_id() != cpu);
|
||||
|
||||
dev = get_cpu_device(cpu);
|
||||
|
||||
/* Convert target_freq from kHz to Hz */
|
||||
freq = clk_round_rate(cpuclk, target_freq * 1000);
|
||||
|
||||
if (freq < (policy->min * 1000) || freq > (policy->max * 1000))
|
||||
return -EINVAL;
|
||||
|
||||
dev_dbg(dev, "requested frequency %u Hz\n", target_freq * 1000);
|
||||
|
||||
freqs.old = sh_cpufreq_get(cpu);
|
||||
freqs.new = (freq + 500) / 1000;
|
||||
freqs.flags = 0;
|
||||
|
||||
cpufreq_freq_transition_begin(policy, &freqs);
|
||||
set_cpus_allowed_ptr(current, &cpus_allowed);
|
||||
clk_set_rate(cpuclk, freq);
|
||||
cpufreq_freq_transition_end(policy, &freqs, 0);
|
||||
|
||||
dev_dbg(dev, "set frequency %lu Hz\n", freq);
|
||||
|
||||
return 0;
|
||||
return work_on_cpu(policy->cpu, __sh_cpufreq_target, &data);
|
||||
}
|
||||
|
||||
static int sh_cpufreq_verify(struct cpufreq_policy *policy)
|
||||
|
|
|
@ -118,10 +118,6 @@ static void us2e_transition(unsigned long estar, unsigned long new_bits,
|
|||
unsigned long clock_tick,
|
||||
unsigned long old_divisor, unsigned long divisor)
|
||||
{
|
||||
unsigned long flags;
|
||||
|
||||
local_irq_save(flags);
|
||||
|
||||
estar &= ~ESTAR_MODE_DIV_MASK;
|
||||
|
||||
/* This is based upon the state transition diagram in the IIe manual. */
|
||||
|
@ -152,8 +148,6 @@ static void us2e_transition(unsigned long estar, unsigned long new_bits,
|
|||
} else {
|
||||
BUG();
|
||||
}
|
||||
|
||||
local_irq_restore(flags);
|
||||
}
|
||||
|
||||
static unsigned long index_to_estar_mode(unsigned int index)
|
||||
|
@ -229,48 +223,51 @@ static unsigned long estar_to_divisor(unsigned long estar)
|
|||
return ret;
|
||||
}
|
||||
|
||||
static void __us2e_freq_get(void *arg)
|
||||
{
|
||||
unsigned long *estar = arg;
|
||||
|
||||
*estar = read_hbreg(HBIRD_ESTAR_MODE_ADDR);
|
||||
}
|
||||
|
||||
static unsigned int us2e_freq_get(unsigned int cpu)
|
||||
{
|
||||
cpumask_t cpus_allowed;
|
||||
unsigned long clock_tick, estar;
|
||||
|
||||
cpumask_copy(&cpus_allowed, ¤t->cpus_allowed);
|
||||
set_cpus_allowed_ptr(current, cpumask_of(cpu));
|
||||
|
||||
clock_tick = sparc64_get_clock_tick(cpu) / 1000;
|
||||
estar = read_hbreg(HBIRD_ESTAR_MODE_ADDR);
|
||||
|
||||
set_cpus_allowed_ptr(current, &cpus_allowed);
|
||||
if (smp_call_function_single(cpu, __us2e_freq_get, &estar, 1))
|
||||
return 0;
|
||||
|
||||
return clock_tick / estar_to_divisor(estar);
|
||||
}
|
||||
|
||||
static int us2e_freq_target(struct cpufreq_policy *policy, unsigned int index)
|
||||
static void __us2e_freq_target(void *arg)
|
||||
{
|
||||
unsigned int cpu = policy->cpu;
|
||||
unsigned int cpu = smp_processor_id();
|
||||
unsigned int *index = arg;
|
||||
unsigned long new_bits, new_freq;
|
||||
unsigned long clock_tick, divisor, old_divisor, estar;
|
||||
cpumask_t cpus_allowed;
|
||||
|
||||
cpumask_copy(&cpus_allowed, ¤t->cpus_allowed);
|
||||
set_cpus_allowed_ptr(current, cpumask_of(cpu));
|
||||
|
||||
new_freq = clock_tick = sparc64_get_clock_tick(cpu) / 1000;
|
||||
new_bits = index_to_estar_mode(index);
|
||||
divisor = index_to_divisor(index);
|
||||
new_bits = index_to_estar_mode(*index);
|
||||
divisor = index_to_divisor(*index);
|
||||
new_freq /= divisor;
|
||||
|
||||
estar = read_hbreg(HBIRD_ESTAR_MODE_ADDR);
|
||||
|
||||
old_divisor = estar_to_divisor(estar);
|
||||
|
||||
if (old_divisor != divisor)
|
||||
if (old_divisor != divisor) {
|
||||
us2e_transition(estar, new_bits, clock_tick * 1000,
|
||||
old_divisor, divisor);
|
||||
}
|
||||
}
|
||||
|
||||
set_cpus_allowed_ptr(current, &cpus_allowed);
|
||||
static int us2e_freq_target(struct cpufreq_policy *policy, unsigned int index)
|
||||
{
|
||||
unsigned int cpu = policy->cpu;
|
||||
|
||||
return 0;
|
||||
return smp_call_function_single(cpu, __us2e_freq_target, &index, 1);
|
||||
}
|
||||
|
||||
static int __init us2e_freq_cpu_init(struct cpufreq_policy *policy)
|
||||
|
|
|
@ -35,22 +35,28 @@ static struct us3_freq_percpu_info *us3_freq_table;
|
|||
#define SAFARI_CFG_DIV_32 0x0000000080000000UL
|
||||
#define SAFARI_CFG_DIV_MASK 0x00000000C0000000UL
|
||||
|
||||
static unsigned long read_safari_cfg(void)
|
||||
static void read_safari_cfg(void *arg)
|
||||
{
|
||||
unsigned long ret;
|
||||
unsigned long ret, *val = arg;
|
||||
|
||||
__asm__ __volatile__("ldxa [%%g0] %1, %0"
|
||||
: "=&r" (ret)
|
||||
: "i" (ASI_SAFARI_CONFIG));
|
||||
return ret;
|
||||
*val = ret;
|
||||
}
|
||||
|
||||
static void write_safari_cfg(unsigned long val)
|
||||
static void update_safari_cfg(void *arg)
|
||||
{
|
||||
unsigned long reg, *new_bits = arg;
|
||||
|
||||
read_safari_cfg(®);
|
||||
reg &= ~SAFARI_CFG_DIV_MASK;
|
||||
reg |= *new_bits;
|
||||
|
||||
__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
|
||||
"membar #Sync"
|
||||
: /* no outputs */
|
||||
: "r" (val), "i" (ASI_SAFARI_CONFIG)
|
||||
: "r" (reg), "i" (ASI_SAFARI_CONFIG)
|
||||
: "memory");
|
||||
}
|
||||
|
||||
|
@ -78,29 +84,17 @@ static unsigned long get_current_freq(unsigned int cpu, unsigned long safari_cfg
|
|||
|
||||
static unsigned int us3_freq_get(unsigned int cpu)
|
||||
{
|
||||
cpumask_t cpus_allowed;
|
||||
unsigned long reg;
|
||||
unsigned int ret;
|
||||
|
||||
cpumask_copy(&cpus_allowed, ¤t->cpus_allowed);
|
||||
set_cpus_allowed_ptr(current, cpumask_of(cpu));
|
||||
|
||||
reg = read_safari_cfg();
|
||||
ret = get_current_freq(cpu, reg);
|
||||
|
||||
set_cpus_allowed_ptr(current, &cpus_allowed);
|
||||
|
||||
return ret;
|
||||
if (smp_call_function_single(cpu, read_safari_cfg, ®, 1))
|
||||
return 0;
|
||||
return get_current_freq(cpu, reg);
|
||||
}
|
||||
|
||||
static int us3_freq_target(struct cpufreq_policy *policy, unsigned int index)
|
||||
{
|
||||
unsigned int cpu = policy->cpu;
|
||||
unsigned long new_bits, new_freq, reg;
|
||||
cpumask_t cpus_allowed;
|
||||
|
||||
cpumask_copy(&cpus_allowed, ¤t->cpus_allowed);
|
||||
set_cpus_allowed_ptr(current, cpumask_of(cpu));
|
||||
unsigned long new_bits, new_freq;
|
||||
|
||||
new_freq = sparc64_get_clock_tick(cpu) / 1000;
|
||||
switch (index) {
|
||||
|
@ -121,15 +115,7 @@ static int us3_freq_target(struct cpufreq_policy *policy, unsigned int index)
|
|||
BUG();
|
||||
}
|
||||
|
||||
reg = read_safari_cfg();
|
||||
|
||||
reg &= ~SAFARI_CFG_DIV_MASK;
|
||||
reg |= new_bits;
|
||||
write_safari_cfg(reg);
|
||||
|
||||
set_cpus_allowed_ptr(current, &cpus_allowed);
|
||||
|
||||
return 0;
|
||||
return smp_call_function_single(cpu, update_safari_cfg, &new_bits, 1);
|
||||
}
|
||||
|
||||
static int __init us3_freq_cpu_init(struct cpufreq_policy *policy)
|
||||
|
|
|
@ -65,6 +65,11 @@ struct spu_queue {
|
|||
struct list_head list;
|
||||
};
|
||||
|
||||
struct spu_qreg {
|
||||
struct spu_queue *queue;
|
||||
unsigned long type;
|
||||
};
|
||||
|
||||
static struct spu_queue **cpu_to_cwq;
|
||||
static struct spu_queue **cpu_to_mau;
|
||||
|
||||
|
@ -1631,31 +1636,27 @@ static void queue_cache_destroy(void)
|
|||
kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
|
||||
}
|
||||
|
||||
static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
|
||||
static long spu_queue_register_workfn(void *arg)
|
||||
{
|
||||
cpumask_var_t old_allowed;
|
||||
struct spu_qreg *qr = arg;
|
||||
struct spu_queue *p = qr->queue;
|
||||
unsigned long q_type = qr->type;
|
||||
unsigned long hv_ret;
|
||||
|
||||
if (cpumask_empty(&p->sharing))
|
||||
return -EINVAL;
|
||||
|
||||
if (!alloc_cpumask_var(&old_allowed, GFP_KERNEL))
|
||||
return -ENOMEM;
|
||||
|
||||
cpumask_copy(old_allowed, ¤t->cpus_allowed);
|
||||
|
||||
set_cpus_allowed_ptr(current, &p->sharing);
|
||||
|
||||
hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
|
||||
CWQ_NUM_ENTRIES, &p->qhandle);
|
||||
if (!hv_ret)
|
||||
sun4v_ncs_sethead_marker(p->qhandle, 0);
|
||||
|
||||
set_cpus_allowed_ptr(current, old_allowed);
|
||||
return hv_ret ? -EINVAL : 0;
|
||||
}
|
||||
|
||||
free_cpumask_var(old_allowed);
|
||||
static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
|
||||
{
|
||||
int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
|
||||
struct spu_qreg qr = { .queue = p, .type = q_type };
|
||||
|
||||
return (hv_ret ? -EINVAL : 0);
|
||||
return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
|
||||
}
|
||||
|
||||
static int spu_queue_setup(struct spu_queue *p)
|
||||
|
|
|
@ -387,7 +387,7 @@ static int iscsi_sw_tcp_pdu_xmit(struct iscsi_task *task)
|
|||
rc = 0;
|
||||
}
|
||||
|
||||
tsk_restore_flags(current, pflags, PF_MEMALLOC);
|
||||
current_restore_flags(pflags, PF_MEMALLOC);
|
||||
return rc;
|
||||
}
|
||||
|
||||
|
|
|
@ -1004,7 +1004,7 @@ nfsd_vfs_write(struct svc_rqst *rqstp, struct svc_fh *fhp, struct file *file,
|
|||
else
|
||||
err = nfserrno(host_err);
|
||||
if (test_bit(RQ_LOCAL, &rqstp->rq_flags))
|
||||
tsk_restore_flags(current, pflags, PF_LESS_THROTTLE);
|
||||
current_restore_flags(pflags, PF_LESS_THROTTLE);
|
||||
return err;
|
||||
}
|
||||
|
||||
|
|
|
@ -1290,10 +1290,10 @@ TASK_PFA_TEST(LMK_WAITING, lmk_waiting)
|
|||
TASK_PFA_SET(LMK_WAITING, lmk_waiting)
|
||||
|
||||
static inline void
|
||||
tsk_restore_flags(struct task_struct *task, unsigned long orig_flags, unsigned long flags)
|
||||
current_restore_flags(unsigned long orig_flags, unsigned long flags)
|
||||
{
|
||||
task->flags &= ~flags;
|
||||
task->flags |= orig_flags & flags;
|
||||
current->flags &= ~flags;
|
||||
current->flags |= orig_flags & flags;
|
||||
}
|
||||
|
||||
extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
|
||||
|
|
|
@ -608,8 +608,13 @@ static inline long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
|
|||
{
|
||||
return fn(arg);
|
||||
}
|
||||
static inline long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
|
||||
{
|
||||
return fn(arg);
|
||||
}
|
||||
#else
|
||||
long work_on_cpu(int cpu, long (*fn)(void *), void *arg);
|
||||
long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg);
|
||||
#endif /* CONFIG_SMP */
|
||||
|
||||
#ifdef CONFIG_FREEZER
|
||||
|
|
|
@ -85,21 +85,6 @@ int sysctl_sched_rt_runtime = 950000;
|
|||
/* CPUs with isolated domains */
|
||||
cpumask_var_t cpu_isolated_map;
|
||||
|
||||
/*
|
||||
* this_rq_lock - lock this runqueue and disable interrupts.
|
||||
*/
|
||||
static struct rq *this_rq_lock(void)
|
||||
__acquires(rq->lock)
|
||||
{
|
||||
struct rq *rq;
|
||||
|
||||
local_irq_disable();
|
||||
rq = this_rq();
|
||||
raw_spin_lock(&rq->lock);
|
||||
|
||||
return rq;
|
||||
}
|
||||
|
||||
/*
|
||||
* __task_rq_lock - lock the rq @p resides on.
|
||||
*/
|
||||
|
@ -233,8 +218,11 @@ void update_rq_clock(struct rq *rq)
|
|||
return;
|
||||
|
||||
#ifdef CONFIG_SCHED_DEBUG
|
||||
if (sched_feat(WARN_DOUBLE_CLOCK))
|
||||
SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
|
||||
rq->clock_update_flags |= RQCF_UPDATED;
|
||||
#endif
|
||||
|
||||
delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
|
||||
if (delta < 0)
|
||||
return;
|
||||
|
@ -261,13 +249,14 @@ static void hrtick_clear(struct rq *rq)
|
|||
static enum hrtimer_restart hrtick(struct hrtimer *timer)
|
||||
{
|
||||
struct rq *rq = container_of(timer, struct rq, hrtick_timer);
|
||||
struct rq_flags rf;
|
||||
|
||||
WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
|
||||
|
||||
raw_spin_lock(&rq->lock);
|
||||
rq_lock(rq, &rf);
|
||||
update_rq_clock(rq);
|
||||
rq->curr->sched_class->task_tick(rq, rq->curr, 1);
|
||||
raw_spin_unlock(&rq->lock);
|
||||
rq_unlock(rq, &rf);
|
||||
|
||||
return HRTIMER_NORESTART;
|
||||
}
|
||||
|
@ -287,11 +276,12 @@ static void __hrtick_restart(struct rq *rq)
|
|||
static void __hrtick_start(void *arg)
|
||||
{
|
||||
struct rq *rq = arg;
|
||||
struct rq_flags rf;
|
||||
|
||||
raw_spin_lock(&rq->lock);
|
||||
rq_lock(rq, &rf);
|
||||
__hrtick_restart(rq);
|
||||
rq->hrtick_csd_pending = 0;
|
||||
raw_spin_unlock(&rq->lock);
|
||||
rq_unlock(rq, &rf);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -762,17 +752,23 @@ static void set_load_weight(struct task_struct *p)
|
|||
|
||||
static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
|
||||
{
|
||||
update_rq_clock(rq);
|
||||
if (!(flags & ENQUEUE_NOCLOCK))
|
||||
update_rq_clock(rq);
|
||||
|
||||
if (!(flags & ENQUEUE_RESTORE))
|
||||
sched_info_queued(rq, p);
|
||||
|
||||
p->sched_class->enqueue_task(rq, p, flags);
|
||||
}
|
||||
|
||||
static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
|
||||
{
|
||||
update_rq_clock(rq);
|
||||
if (!(flags & DEQUEUE_NOCLOCK))
|
||||
update_rq_clock(rq);
|
||||
|
||||
if (!(flags & DEQUEUE_SAVE))
|
||||
sched_info_dequeued(rq, p);
|
||||
|
||||
p->sched_class->dequeue_task(rq, p, flags);
|
||||
}
|
||||
|
||||
|
@ -946,18 +942,19 @@ void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
|
|||
*
|
||||
* Returns (locked) new rq. Old rq's lock is released.
|
||||
*/
|
||||
static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
|
||||
static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
|
||||
struct task_struct *p, int new_cpu)
|
||||
{
|
||||
lockdep_assert_held(&rq->lock);
|
||||
|
||||
p->on_rq = TASK_ON_RQ_MIGRATING;
|
||||
dequeue_task(rq, p, 0);
|
||||
dequeue_task(rq, p, DEQUEUE_NOCLOCK);
|
||||
set_task_cpu(p, new_cpu);
|
||||
raw_spin_unlock(&rq->lock);
|
||||
rq_unlock(rq, rf);
|
||||
|
||||
rq = cpu_rq(new_cpu);
|
||||
|
||||
raw_spin_lock(&rq->lock);
|
||||
rq_lock(rq, rf);
|
||||
BUG_ON(task_cpu(p) != new_cpu);
|
||||
enqueue_task(rq, p, 0);
|
||||
p->on_rq = TASK_ON_RQ_QUEUED;
|
||||
|
@ -980,7 +977,8 @@ struct migration_arg {
|
|||
* So we race with normal scheduler movements, but that's OK, as long
|
||||
* as the task is no longer on this CPU.
|
||||
*/
|
||||
static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
|
||||
static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
|
||||
struct task_struct *p, int dest_cpu)
|
||||
{
|
||||
if (unlikely(!cpu_active(dest_cpu)))
|
||||
return rq;
|
||||
|
@ -989,7 +987,8 @@ static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_
|
|||
if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
|
||||
return rq;
|
||||
|
||||
rq = move_queued_task(rq, p, dest_cpu);
|
||||
update_rq_clock(rq);
|
||||
rq = move_queued_task(rq, rf, p, dest_cpu);
|
||||
|
||||
return rq;
|
||||
}
|
||||
|
@ -1004,6 +1003,7 @@ static int migration_cpu_stop(void *data)
|
|||
struct migration_arg *arg = data;
|
||||
struct task_struct *p = arg->task;
|
||||
struct rq *rq = this_rq();
|
||||
struct rq_flags rf;
|
||||
|
||||
/*
|
||||
* The original target CPU might have gone down and we might
|
||||
|
@ -1018,7 +1018,7 @@ static int migration_cpu_stop(void *data)
|
|||
sched_ttwu_pending();
|
||||
|
||||
raw_spin_lock(&p->pi_lock);
|
||||
raw_spin_lock(&rq->lock);
|
||||
rq_lock(rq, &rf);
|
||||
/*
|
||||
* If task_rq(p) != rq, it cannot be migrated here, because we're
|
||||
* holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
|
||||
|
@ -1026,11 +1026,11 @@ static int migration_cpu_stop(void *data)
|
|||
*/
|
||||
if (task_rq(p) == rq) {
|
||||
if (task_on_rq_queued(p))
|
||||
rq = __migrate_task(rq, p, arg->dest_cpu);
|
||||
rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
|
||||
else
|
||||
p->wake_cpu = arg->dest_cpu;
|
||||
}
|
||||
raw_spin_unlock(&rq->lock);
|
||||
rq_unlock(rq, &rf);
|
||||
raw_spin_unlock(&p->pi_lock);
|
||||
|
||||
local_irq_enable();
|
||||
|
@ -1063,7 +1063,7 @@ void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
|
|||
* holding rq->lock.
|
||||
*/
|
||||
lockdep_assert_held(&rq->lock);
|
||||
dequeue_task(rq, p, DEQUEUE_SAVE);
|
||||
dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
|
||||
}
|
||||
if (running)
|
||||
put_prev_task(rq, p);
|
||||
|
@ -1071,7 +1071,7 @@ void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
|
|||
p->sched_class->set_cpus_allowed(p, new_mask);
|
||||
|
||||
if (queued)
|
||||
enqueue_task(rq, p, ENQUEUE_RESTORE);
|
||||
enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
|
||||
if (running)
|
||||
set_curr_task(rq, p);
|
||||
}
|
||||
|
@ -1150,9 +1150,7 @@ static int __set_cpus_allowed_ptr(struct task_struct *p,
|
|||
* OK, since we're going to drop the lock immediately
|
||||
* afterwards anyway.
|
||||
*/
|
||||
rq_unpin_lock(rq, &rf);
|
||||
rq = move_queued_task(rq, p, dest_cpu);
|
||||
rq_repin_lock(rq, &rf);
|
||||
rq = move_queued_task(rq, &rf, p, dest_cpu);
|
||||
}
|
||||
out:
|
||||
task_rq_unlock(rq, p, &rf);
|
||||
|
@ -1217,16 +1215,24 @@ static void __migrate_swap_task(struct task_struct *p, int cpu)
|
|||
{
|
||||
if (task_on_rq_queued(p)) {
|
||||
struct rq *src_rq, *dst_rq;
|
||||
struct rq_flags srf, drf;
|
||||
|
||||
src_rq = task_rq(p);
|
||||
dst_rq = cpu_rq(cpu);
|
||||
|
||||
rq_pin_lock(src_rq, &srf);
|
||||
rq_pin_lock(dst_rq, &drf);
|
||||
|
||||
p->on_rq = TASK_ON_RQ_MIGRATING;
|
||||
deactivate_task(src_rq, p, 0);
|
||||
set_task_cpu(p, cpu);
|
||||
activate_task(dst_rq, p, 0);
|
||||
p->on_rq = TASK_ON_RQ_QUEUED;
|
||||
check_preempt_curr(dst_rq, p, 0);
|
||||
|
||||
rq_unpin_lock(dst_rq, &drf);
|
||||
rq_unpin_lock(src_rq, &srf);
|
||||
|
||||
} else {
|
||||
/*
|
||||
* Task isn't running anymore; make it appear like we migrated
|
||||
|
@ -1680,7 +1686,7 @@ static void
|
|||
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
|
||||
struct rq_flags *rf)
|
||||
{
|
||||
int en_flags = ENQUEUE_WAKEUP;
|
||||
int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
|
||||
|
||||
lockdep_assert_held(&rq->lock);
|
||||
|
||||
|
@ -1726,14 +1732,13 @@ void sched_ttwu_pending(void)
|
|||
struct rq *rq = this_rq();
|
||||
struct llist_node *llist = llist_del_all(&rq->wake_list);
|
||||
struct task_struct *p;
|
||||
unsigned long flags;
|
||||
struct rq_flags rf;
|
||||
|
||||
if (!llist)
|
||||
return;
|
||||
|
||||
raw_spin_lock_irqsave(&rq->lock, flags);
|
||||
rq_pin_lock(rq, &rf);
|
||||
rq_lock_irqsave(rq, &rf);
|
||||
update_rq_clock(rq);
|
||||
|
||||
while (llist) {
|
||||
int wake_flags = 0;
|
||||
|
@ -1747,8 +1752,7 @@ void sched_ttwu_pending(void)
|
|||
ttwu_do_activate(rq, p, wake_flags, &rf);
|
||||
}
|
||||
|
||||
rq_unpin_lock(rq, &rf);
|
||||
raw_spin_unlock_irqrestore(&rq->lock, flags);
|
||||
rq_unlock_irqrestore(rq, &rf);
|
||||
}
|
||||
|
||||
void scheduler_ipi(void)
|
||||
|
@ -1806,7 +1810,7 @@ static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
|
|||
void wake_up_if_idle(int cpu)
|
||||
{
|
||||
struct rq *rq = cpu_rq(cpu);
|
||||
unsigned long flags;
|
||||
struct rq_flags rf;
|
||||
|
||||
rcu_read_lock();
|
||||
|
||||
|
@ -1816,11 +1820,11 @@ void wake_up_if_idle(int cpu)
|
|||
if (set_nr_if_polling(rq->idle)) {
|
||||
trace_sched_wake_idle_without_ipi(cpu);
|
||||
} else {
|
||||
raw_spin_lock_irqsave(&rq->lock, flags);
|
||||
rq_lock_irqsave(rq, &rf);
|
||||
if (is_idle_task(rq->curr))
|
||||
smp_send_reschedule(cpu);
|
||||
/* Else CPU is not idle, do nothing here: */
|
||||
raw_spin_unlock_irqrestore(&rq->lock, flags);
|
||||
rq_unlock_irqrestore(rq, &rf);
|
||||
}
|
||||
|
||||
out:
|
||||
|
@ -1846,11 +1850,10 @@ static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
|
|||
}
|
||||
#endif
|
||||
|
||||
raw_spin_lock(&rq->lock);
|
||||
rq_pin_lock(rq, &rf);
|
||||
rq_lock(rq, &rf);
|
||||
update_rq_clock(rq);
|
||||
ttwu_do_activate(rq, p, wake_flags, &rf);
|
||||
rq_unpin_lock(rq, &rf);
|
||||
raw_spin_unlock(&rq->lock);
|
||||
rq_unlock(rq, &rf);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -2097,11 +2100,9 @@ static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
|
|||
* disabled avoiding further scheduler activity on it and we've
|
||||
* not yet picked a replacement task.
|
||||
*/
|
||||
rq_unpin_lock(rq, rf);
|
||||
raw_spin_unlock(&rq->lock);
|
||||
rq_unlock(rq, rf);
|
||||
raw_spin_lock(&p->pi_lock);
|
||||
raw_spin_lock(&rq->lock);
|
||||
rq_repin_lock(rq, rf);
|
||||
rq_relock(rq, rf);
|
||||
}
|
||||
|
||||
if (!(p->state & TASK_NORMAL))
|
||||
|
@ -2114,7 +2115,7 @@ static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
|
|||
delayacct_blkio_end();
|
||||
atomic_dec(&rq->nr_iowait);
|
||||
}
|
||||
ttwu_activate(rq, p, ENQUEUE_WAKEUP);
|
||||
ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
|
||||
}
|
||||
|
||||
ttwu_do_wakeup(rq, p, 0, rf);
|
||||
|
@ -2555,7 +2556,7 @@ void wake_up_new_task(struct task_struct *p)
|
|||
update_rq_clock(rq);
|
||||
post_init_entity_util_avg(&p->se);
|
||||
|
||||
activate_task(rq, p, 0);
|
||||
activate_task(rq, p, ENQUEUE_NOCLOCK);
|
||||
p->on_rq = TASK_ON_RQ_QUEUED;
|
||||
trace_sched_wakeup_new(p);
|
||||
check_preempt_curr(rq, p, WF_FORK);
|
||||
|
@ -3093,15 +3094,18 @@ void scheduler_tick(void)
|
|||
int cpu = smp_processor_id();
|
||||
struct rq *rq = cpu_rq(cpu);
|
||||
struct task_struct *curr = rq->curr;
|
||||
struct rq_flags rf;
|
||||
|
||||
sched_clock_tick();
|
||||
|
||||
raw_spin_lock(&rq->lock);
|
||||
rq_lock(rq, &rf);
|
||||
|
||||
update_rq_clock(rq);
|
||||
curr->sched_class->task_tick(rq, curr, 0);
|
||||
cpu_load_update_active(rq);
|
||||
calc_global_load_tick(rq);
|
||||
raw_spin_unlock(&rq->lock);
|
||||
|
||||
rq_unlock(rq, &rf);
|
||||
|
||||
perf_event_task_tick();
|
||||
|
||||
|
@ -3386,18 +3390,18 @@ static void __sched notrace __schedule(bool preempt)
|
|||
* done by the caller to avoid the race with signal_wake_up().
|
||||
*/
|
||||
smp_mb__before_spinlock();
|
||||
raw_spin_lock(&rq->lock);
|
||||
rq_pin_lock(rq, &rf);
|
||||
rq_lock(rq, &rf);
|
||||
|
||||
/* Promote REQ to ACT */
|
||||
rq->clock_update_flags <<= 1;
|
||||
update_rq_clock(rq);
|
||||
|
||||
switch_count = &prev->nivcsw;
|
||||
if (!preempt && prev->state) {
|
||||
if (unlikely(signal_pending_state(prev->state, prev))) {
|
||||
prev->state = TASK_RUNNING;
|
||||
} else {
|
||||
deactivate_task(rq, prev, DEQUEUE_SLEEP);
|
||||
deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
|
||||
prev->on_rq = 0;
|
||||
|
||||
if (prev->in_iowait) {
|
||||
|
@ -3421,9 +3425,6 @@ static void __sched notrace __schedule(bool preempt)
|
|||
switch_count = &prev->nvcsw;
|
||||
}
|
||||
|
||||
if (task_on_rq_queued(prev))
|
||||
update_rq_clock(rq);
|
||||
|
||||
next = pick_next_task(rq, prev, &rf);
|
||||
clear_tsk_need_resched(prev);
|
||||
clear_preempt_need_resched();
|
||||
|
@ -3439,8 +3440,7 @@ static void __sched notrace __schedule(bool preempt)
|
|||
rq = context_switch(rq, prev, next, &rf);
|
||||
} else {
|
||||
rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
|
||||
rq_unpin_lock(rq, &rf);
|
||||
raw_spin_unlock_irq(&rq->lock);
|
||||
rq_unlock_irq(rq, &rf);
|
||||
}
|
||||
|
||||
balance_callback(rq);
|
||||
|
@ -3684,7 +3684,8 @@ EXPORT_SYMBOL(default_wake_function);
|
|||
*/
|
||||
void rt_mutex_setprio(struct task_struct *p, int prio)
|
||||
{
|
||||
int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
|
||||
int oldprio, queued, running, queue_flag =
|
||||
DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
|
||||
const struct sched_class *prev_class;
|
||||
struct rq_flags rf;
|
||||
struct rq *rq;
|
||||
|
@ -3805,7 +3806,7 @@ void set_user_nice(struct task_struct *p, long nice)
|
|||
queued = task_on_rq_queued(p);
|
||||
running = task_current(rq, p);
|
||||
if (queued)
|
||||
dequeue_task(rq, p, DEQUEUE_SAVE);
|
||||
dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
|
||||
if (running)
|
||||
put_prev_task(rq, p);
|
||||
|
||||
|
@ -3816,7 +3817,7 @@ void set_user_nice(struct task_struct *p, long nice)
|
|||
delta = p->prio - old_prio;
|
||||
|
||||
if (queued) {
|
||||
enqueue_task(rq, p, ENQUEUE_RESTORE);
|
||||
enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
|
||||
/*
|
||||
* If the task increased its priority or is running and
|
||||
* lowered its priority, then reschedule its CPU:
|
||||
|
@ -4126,7 +4127,7 @@ static int __sched_setscheduler(struct task_struct *p,
|
|||
const struct sched_class *prev_class;
|
||||
struct rq_flags rf;
|
||||
int reset_on_fork;
|
||||
int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
|
||||
int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
|
||||
struct rq *rq;
|
||||
|
||||
/* May grab non-irq protected spin_locks: */
|
||||
|
@ -4923,7 +4924,12 @@ SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
|
|||
*/
|
||||
SYSCALL_DEFINE0(sched_yield)
|
||||
{
|
||||
struct rq *rq = this_rq_lock();
|
||||
struct rq_flags rf;
|
||||
struct rq *rq;
|
||||
|
||||
local_irq_disable();
|
||||
rq = this_rq();
|
||||
rq_lock(rq, &rf);
|
||||
|
||||
schedstat_inc(rq->yld_count);
|
||||
current->sched_class->yield_task(rq);
|
||||
|
@ -4932,9 +4938,8 @@ SYSCALL_DEFINE0(sched_yield)
|
|||
* Since we are going to call schedule() anyway, there's
|
||||
* no need to preempt or enable interrupts:
|
||||
*/
|
||||
__release(rq->lock);
|
||||
spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
|
||||
do_raw_spin_unlock(&rq->lock);
|
||||
preempt_disable();
|
||||
rq_unlock(rq, &rf);
|
||||
sched_preempt_enable_no_resched();
|
||||
|
||||
schedule();
|
||||
|
@ -5514,7 +5519,7 @@ void sched_setnuma(struct task_struct *p, int nid)
|
|||
p->numa_preferred_nid = nid;
|
||||
|
||||
if (queued)
|
||||
enqueue_task(rq, p, ENQUEUE_RESTORE);
|
||||
enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
|
||||
if (running)
|
||||
set_curr_task(rq, p);
|
||||
task_rq_unlock(rq, p, &rf);
|
||||
|
@ -5579,11 +5584,11 @@ static struct task_struct fake_task = {
|
|||
* there's no concurrency possible, we hold the required locks anyway
|
||||
* because of lock validation efforts.
|
||||
*/
|
||||
static void migrate_tasks(struct rq *dead_rq)
|
||||
static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
|
||||
{
|
||||
struct rq *rq = dead_rq;
|
||||
struct task_struct *next, *stop = rq->stop;
|
||||
struct rq_flags rf;
|
||||
struct rq_flags orf = *rf;
|
||||
int dest_cpu;
|
||||
|
||||
/*
|
||||
|
@ -5602,9 +5607,7 @@ static void migrate_tasks(struct rq *dead_rq)
|
|||
* class method both need to have an up-to-date
|
||||
* value of rq->clock[_task]
|
||||
*/
|
||||
rq_pin_lock(rq, &rf);
|
||||
update_rq_clock(rq);
|
||||
rq_unpin_lock(rq, &rf);
|
||||
|
||||
for (;;) {
|
||||
/*
|
||||
|
@ -5617,8 +5620,7 @@ static void migrate_tasks(struct rq *dead_rq)
|
|||
/*
|
||||
* pick_next_task() assumes pinned rq->lock:
|
||||
*/
|
||||
rq_repin_lock(rq, &rf);
|
||||
next = pick_next_task(rq, &fake_task, &rf);
|
||||
next = pick_next_task(rq, &fake_task, rf);
|
||||
BUG_ON(!next);
|
||||
next->sched_class->put_prev_task(rq, next);
|
||||
|
||||
|
@ -5631,10 +5633,9 @@ static void migrate_tasks(struct rq *dead_rq)
|
|||
* because !cpu_active at this point, which means load-balance
|
||||
* will not interfere. Also, stop-machine.
|
||||
*/
|
||||
rq_unpin_lock(rq, &rf);
|
||||
raw_spin_unlock(&rq->lock);
|
||||
rq_unlock(rq, rf);
|
||||
raw_spin_lock(&next->pi_lock);
|
||||
raw_spin_lock(&rq->lock);
|
||||
rq_relock(rq, rf);
|
||||
|
||||
/*
|
||||
* Since we're inside stop-machine, _nothing_ should have
|
||||
|
@ -5648,12 +5649,12 @@ static void migrate_tasks(struct rq *dead_rq)
|
|||
|
||||
/* Find suitable destination for @next, with force if needed. */
|
||||
dest_cpu = select_fallback_rq(dead_rq->cpu, next);
|
||||
|
||||
rq = __migrate_task(rq, next, dest_cpu);
|
||||
rq = __migrate_task(rq, rf, next, dest_cpu);
|
||||
if (rq != dead_rq) {
|
||||
raw_spin_unlock(&rq->lock);
|
||||
rq_unlock(rq, rf);
|
||||
rq = dead_rq;
|
||||
raw_spin_lock(&rq->lock);
|
||||
*rf = orf;
|
||||
rq_relock(rq, rf);
|
||||
}
|
||||
raw_spin_unlock(&next->pi_lock);
|
||||
}
|
||||
|
@ -5766,7 +5767,7 @@ static int cpuset_cpu_inactive(unsigned int cpu)
|
|||
int sched_cpu_activate(unsigned int cpu)
|
||||
{
|
||||
struct rq *rq = cpu_rq(cpu);
|
||||
unsigned long flags;
|
||||
struct rq_flags rf;
|
||||
|
||||
set_cpu_active(cpu, true);
|
||||
|
||||
|
@ -5784,12 +5785,12 @@ int sched_cpu_activate(unsigned int cpu)
|
|||
* 2) At runtime, if cpuset_cpu_active() fails to rebuild the
|
||||
* domains.
|
||||
*/
|
||||
raw_spin_lock_irqsave(&rq->lock, flags);
|
||||
rq_lock_irqsave(rq, &rf);
|
||||
if (rq->rd) {
|
||||
BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
|
||||
set_rq_online(rq);
|
||||
}
|
||||
raw_spin_unlock_irqrestore(&rq->lock, flags);
|
||||
rq_unlock_irqrestore(rq, &rf);
|
||||
|
||||
update_max_interval();
|
||||
|
||||
|
@ -5847,18 +5848,20 @@ int sched_cpu_starting(unsigned int cpu)
|
|||
int sched_cpu_dying(unsigned int cpu)
|
||||
{
|
||||
struct rq *rq = cpu_rq(cpu);
|
||||
unsigned long flags;
|
||||
struct rq_flags rf;
|
||||
|
||||
/* Handle pending wakeups and then migrate everything off */
|
||||
sched_ttwu_pending();
|
||||
raw_spin_lock_irqsave(&rq->lock, flags);
|
||||
|
||||
rq_lock_irqsave(rq, &rf);
|
||||
if (rq->rd) {
|
||||
BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
|
||||
set_rq_offline(rq);
|
||||
}
|
||||
migrate_tasks(rq);
|
||||
migrate_tasks(rq, &rf);
|
||||
BUG_ON(rq->nr_running != 1);
|
||||
raw_spin_unlock_irqrestore(&rq->lock, flags);
|
||||
rq_unlock_irqrestore(rq, &rf);
|
||||
|
||||
calc_load_migrate(rq);
|
||||
update_max_interval();
|
||||
nohz_balance_exit_idle(cpu);
|
||||
|
@ -6412,7 +6415,8 @@ static void sched_change_group(struct task_struct *tsk, int type)
|
|||
*/
|
||||
void sched_move_task(struct task_struct *tsk)
|
||||
{
|
||||
int queued, running;
|
||||
int queued, running, queue_flags =
|
||||
DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
|
||||
struct rq_flags rf;
|
||||
struct rq *rq;
|
||||
|
||||
|
@ -6423,14 +6427,14 @@ void sched_move_task(struct task_struct *tsk)
|
|||
queued = task_on_rq_queued(tsk);
|
||||
|
||||
if (queued)
|
||||
dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
|
||||
dequeue_task(rq, tsk, queue_flags);
|
||||
if (running)
|
||||
put_prev_task(rq, tsk);
|
||||
|
||||
sched_change_group(tsk, TASK_MOVE_GROUP);
|
||||
|
||||
if (queued)
|
||||
enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
|
||||
enqueue_task(rq, tsk, queue_flags);
|
||||
if (running)
|
||||
set_curr_task(rq, tsk);
|
||||
|
||||
|
@ -7008,14 +7012,15 @@ static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
|
|||
for_each_online_cpu(i) {
|
||||
struct cfs_rq *cfs_rq = tg->cfs_rq[i];
|
||||
struct rq *rq = cfs_rq->rq;
|
||||
struct rq_flags rf;
|
||||
|
||||
raw_spin_lock_irq(&rq->lock);
|
||||
rq_lock_irq(rq, &rf);
|
||||
cfs_rq->runtime_enabled = runtime_enabled;
|
||||
cfs_rq->runtime_remaining = 0;
|
||||
|
||||
if (cfs_rq->throttled)
|
||||
unthrottle_cfs_rq(cfs_rq);
|
||||
raw_spin_unlock_irq(&rq->lock);
|
||||
rq_unlock_irq(rq, &rf);
|
||||
}
|
||||
if (runtime_was_enabled && !runtime_enabled)
|
||||
cfs_bandwidth_usage_dec();
|
||||
|
|
|
@ -717,18 +717,12 @@ static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
|||
}
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
|
||||
#include "sched-pelt.h"
|
||||
|
||||
static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
|
||||
static unsigned long task_h_load(struct task_struct *p);
|
||||
|
||||
/*
|
||||
* We choose a half-life close to 1 scheduling period.
|
||||
* Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
|
||||
* dependent on this value.
|
||||
*/
|
||||
#define LOAD_AVG_PERIOD 32
|
||||
#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
|
||||
#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
|
||||
|
||||
/* Give new sched_entity start runnable values to heavy its load in infant time */
|
||||
void init_entity_runnable_average(struct sched_entity *se)
|
||||
{
|
||||
|
@ -2733,47 +2727,15 @@ static inline void update_cfs_shares(struct sched_entity *se)
|
|||
#endif /* CONFIG_FAIR_GROUP_SCHED */
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
/* Precomputed fixed inverse multiplies for multiplication by y^n */
|
||||
static const u32 runnable_avg_yN_inv[] = {
|
||||
0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
|
||||
0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
|
||||
0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
|
||||
0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
|
||||
0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
|
||||
0x85aac367, 0x82cd8698,
|
||||
};
|
||||
|
||||
/*
|
||||
* Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
|
||||
* over-estimates when re-combining.
|
||||
*/
|
||||
static const u32 runnable_avg_yN_sum[] = {
|
||||
0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
|
||||
9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
|
||||
17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
|
||||
};
|
||||
|
||||
/*
|
||||
* Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
|
||||
* lower integers. See Documentation/scheduler/sched-avg.txt how these
|
||||
* were generated:
|
||||
*/
|
||||
static const u32 __accumulated_sum_N32[] = {
|
||||
0, 23371, 35056, 40899, 43820, 45281,
|
||||
46011, 46376, 46559, 46650, 46696, 46719,
|
||||
};
|
||||
|
||||
/*
|
||||
* Approximate:
|
||||
* val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
|
||||
*/
|
||||
static __always_inline u64 decay_load(u64 val, u64 n)
|
||||
static u64 decay_load(u64 val, u64 n)
|
||||
{
|
||||
unsigned int local_n;
|
||||
|
||||
if (!n)
|
||||
return val;
|
||||
else if (unlikely(n > LOAD_AVG_PERIOD * 63))
|
||||
if (unlikely(n > LOAD_AVG_PERIOD * 63))
|
||||
return 0;
|
||||
|
||||
/* after bounds checking we can collapse to 32-bit */
|
||||
|
@ -2795,31 +2757,98 @@ static __always_inline u64 decay_load(u64 val, u64 n)
|
|||
return val;
|
||||
}
|
||||
|
||||
/*
|
||||
* For updates fully spanning n periods, the contribution to runnable
|
||||
* average will be: \Sum 1024*y^n
|
||||
*
|
||||
* We can compute this reasonably efficiently by combining:
|
||||
* y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
|
||||
*/
|
||||
static u32 __compute_runnable_contrib(u64 n)
|
||||
static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
|
||||
{
|
||||
u32 contrib = 0;
|
||||
u32 c1, c2, c3 = d3; /* y^0 == 1 */
|
||||
|
||||
if (likely(n <= LOAD_AVG_PERIOD))
|
||||
return runnable_avg_yN_sum[n];
|
||||
else if (unlikely(n >= LOAD_AVG_MAX_N))
|
||||
return LOAD_AVG_MAX;
|
||||
/*
|
||||
* c1 = d1 y^p
|
||||
*/
|
||||
c1 = decay_load((u64)d1, periods);
|
||||
|
||||
/* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
|
||||
contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
|
||||
n %= LOAD_AVG_PERIOD;
|
||||
contrib = decay_load(contrib, n);
|
||||
return contrib + runnable_avg_yN_sum[n];
|
||||
/*
|
||||
* p-1
|
||||
* c2 = 1024 \Sum y^n
|
||||
* n=1
|
||||
*
|
||||
* inf inf
|
||||
* = 1024 ( \Sum y^n - \Sum y^n - y^0 )
|
||||
* n=0 n=p
|
||||
*/
|
||||
c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
|
||||
|
||||
return c1 + c2 + c3;
|
||||
}
|
||||
|
||||
#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
|
||||
|
||||
/*
|
||||
* Accumulate the three separate parts of the sum; d1 the remainder
|
||||
* of the last (incomplete) period, d2 the span of full periods and d3
|
||||
* the remainder of the (incomplete) current period.
|
||||
*
|
||||
* d1 d2 d3
|
||||
* ^ ^ ^
|
||||
* | | |
|
||||
* |<->|<----------------->|<--->|
|
||||
* ... |---x---|------| ... |------|-----x (now)
|
||||
*
|
||||
* p-1
|
||||
* u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
|
||||
* n=1
|
||||
*
|
||||
* = u y^p + (Step 1)
|
||||
*
|
||||
* p-1
|
||||
* d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2)
|
||||
* n=1
|
||||
*/
|
||||
static __always_inline u32
|
||||
accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
|
||||
unsigned long weight, int running, struct cfs_rq *cfs_rq)
|
||||
{
|
||||
unsigned long scale_freq, scale_cpu;
|
||||
u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
|
||||
u64 periods;
|
||||
|
||||
scale_freq = arch_scale_freq_capacity(NULL, cpu);
|
||||
scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
|
||||
|
||||
delta += sa->period_contrib;
|
||||
periods = delta / 1024; /* A period is 1024us (~1ms) */
|
||||
|
||||
/*
|
||||
* Step 1: decay old *_sum if we crossed period boundaries.
|
||||
*/
|
||||
if (periods) {
|
||||
sa->load_sum = decay_load(sa->load_sum, periods);
|
||||
if (cfs_rq) {
|
||||
cfs_rq->runnable_load_sum =
|
||||
decay_load(cfs_rq->runnable_load_sum, periods);
|
||||
}
|
||||
sa->util_sum = decay_load((u64)(sa->util_sum), periods);
|
||||
|
||||
/*
|
||||
* Step 2
|
||||
*/
|
||||
delta %= 1024;
|
||||
contrib = __accumulate_pelt_segments(periods,
|
||||
1024 - sa->period_contrib, delta);
|
||||
}
|
||||
sa->period_contrib = delta;
|
||||
|
||||
contrib = cap_scale(contrib, scale_freq);
|
||||
if (weight) {
|
||||
sa->load_sum += weight * contrib;
|
||||
if (cfs_rq)
|
||||
cfs_rq->runnable_load_sum += weight * contrib;
|
||||
}
|
||||
if (running)
|
||||
sa->util_sum += contrib * scale_cpu;
|
||||
|
||||
return periods;
|
||||
}
|
||||
|
||||
/*
|
||||
* We can represent the historical contribution to runnable average as the
|
||||
* coefficients of a geometric series. To do this we sub-divide our runnable
|
||||
|
@ -2849,13 +2878,10 @@ static u32 __compute_runnable_contrib(u64 n)
|
|||
* = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
|
||||
*/
|
||||
static __always_inline int
|
||||
__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
|
||||
___update_load_avg(u64 now, int cpu, struct sched_avg *sa,
|
||||
unsigned long weight, int running, struct cfs_rq *cfs_rq)
|
||||
{
|
||||
u64 delta, scaled_delta, periods;
|
||||
u32 contrib;
|
||||
unsigned int delta_w, scaled_delta_w, decayed = 0;
|
||||
unsigned long scale_freq, scale_cpu;
|
||||
u64 delta;
|
||||
|
||||
delta = now - sa->last_update_time;
|
||||
/*
|
||||
|
@ -2874,83 +2900,52 @@ __update_load_avg(u64 now, int cpu, struct sched_avg *sa,
|
|||
delta >>= 10;
|
||||
if (!delta)
|
||||
return 0;
|
||||
sa->last_update_time = now;
|
||||
|
||||
scale_freq = arch_scale_freq_capacity(NULL, cpu);
|
||||
scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
|
||||
sa->last_update_time += delta << 10;
|
||||
|
||||
/* delta_w is the amount already accumulated against our next period */
|
||||
delta_w = sa->period_contrib;
|
||||
if (delta + delta_w >= 1024) {
|
||||
decayed = 1;
|
||||
/*
|
||||
* Now we know we crossed measurement unit boundaries. The *_avg
|
||||
* accrues by two steps:
|
||||
*
|
||||
* Step 1: accumulate *_sum since last_update_time. If we haven't
|
||||
* crossed period boundaries, finish.
|
||||
*/
|
||||
if (!accumulate_sum(delta, cpu, sa, weight, running, cfs_rq))
|
||||
return 0;
|
||||
|
||||
/* how much left for next period will start over, we don't know yet */
|
||||
sa->period_contrib = 0;
|
||||
|
||||
/*
|
||||
* Now that we know we're crossing a period boundary, figure
|
||||
* out how much from delta we need to complete the current
|
||||
* period and accrue it.
|
||||
*/
|
||||
delta_w = 1024 - delta_w;
|
||||
scaled_delta_w = cap_scale(delta_w, scale_freq);
|
||||
if (weight) {
|
||||
sa->load_sum += weight * scaled_delta_w;
|
||||
if (cfs_rq) {
|
||||
cfs_rq->runnable_load_sum +=
|
||||
weight * scaled_delta_w;
|
||||
}
|
||||
}
|
||||
if (running)
|
||||
sa->util_sum += scaled_delta_w * scale_cpu;
|
||||
|
||||
delta -= delta_w;
|
||||
|
||||
/* Figure out how many additional periods this update spans */
|
||||
periods = delta / 1024;
|
||||
delta %= 1024;
|
||||
|
||||
sa->load_sum = decay_load(sa->load_sum, periods + 1);
|
||||
if (cfs_rq) {
|
||||
cfs_rq->runnable_load_sum =
|
||||
decay_load(cfs_rq->runnable_load_sum, periods + 1);
|
||||
}
|
||||
sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
|
||||
|
||||
/* Efficiently calculate \sum (1..n_period) 1024*y^i */
|
||||
contrib = __compute_runnable_contrib(periods);
|
||||
contrib = cap_scale(contrib, scale_freq);
|
||||
if (weight) {
|
||||
sa->load_sum += weight * contrib;
|
||||
if (cfs_rq)
|
||||
cfs_rq->runnable_load_sum += weight * contrib;
|
||||
}
|
||||
if (running)
|
||||
sa->util_sum += contrib * scale_cpu;
|
||||
/*
|
||||
* Step 2: update *_avg.
|
||||
*/
|
||||
sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
|
||||
if (cfs_rq) {
|
||||
cfs_rq->runnable_load_avg =
|
||||
div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
|
||||
}
|
||||
sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
|
||||
|
||||
/* Remainder of delta accrued against u_0` */
|
||||
scaled_delta = cap_scale(delta, scale_freq);
|
||||
if (weight) {
|
||||
sa->load_sum += weight * scaled_delta;
|
||||
if (cfs_rq)
|
||||
cfs_rq->runnable_load_sum += weight * scaled_delta;
|
||||
}
|
||||
if (running)
|
||||
sa->util_sum += scaled_delta * scale_cpu;
|
||||
return 1;
|
||||
}
|
||||
|
||||
sa->period_contrib += delta;
|
||||
static int
|
||||
__update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
|
||||
{
|
||||
return ___update_load_avg(now, cpu, &se->avg, 0, 0, NULL);
|
||||
}
|
||||
|
||||
if (decayed) {
|
||||
sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
|
||||
if (cfs_rq) {
|
||||
cfs_rq->runnable_load_avg =
|
||||
div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
|
||||
}
|
||||
sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
|
||||
}
|
||||
static int
|
||||
__update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
|
||||
{
|
||||
return ___update_load_avg(now, cpu, &se->avg,
|
||||
se->on_rq * scale_load_down(se->load.weight),
|
||||
cfs_rq->curr == se, NULL);
|
||||
}
|
||||
|
||||
return decayed;
|
||||
static int
|
||||
__update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
|
||||
{
|
||||
return ___update_load_avg(now, cpu, &cfs_rq->avg,
|
||||
scale_load_down(cfs_rq->load.weight),
|
||||
cfs_rq->curr != NULL, cfs_rq);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -3014,6 +3009,9 @@ static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
|
|||
void set_task_rq_fair(struct sched_entity *se,
|
||||
struct cfs_rq *prev, struct cfs_rq *next)
|
||||
{
|
||||
u64 p_last_update_time;
|
||||
u64 n_last_update_time;
|
||||
|
||||
if (!sched_feat(ATTACH_AGE_LOAD))
|
||||
return;
|
||||
|
||||
|
@ -3024,11 +3022,11 @@ void set_task_rq_fair(struct sched_entity *se,
|
|||
* time. This will result in the wakee task is less decayed, but giving
|
||||
* the wakee more load sounds not bad.
|
||||
*/
|
||||
if (se->avg.last_update_time && prev) {
|
||||
u64 p_last_update_time;
|
||||
u64 n_last_update_time;
|
||||
if (!(se->avg.last_update_time && prev))
|
||||
return;
|
||||
|
||||
#ifndef CONFIG_64BIT
|
||||
{
|
||||
u64 p_last_update_time_copy;
|
||||
u64 n_last_update_time_copy;
|
||||
|
||||
|
@ -3043,14 +3041,13 @@ void set_task_rq_fair(struct sched_entity *se,
|
|||
|
||||
} while (p_last_update_time != p_last_update_time_copy ||
|
||||
n_last_update_time != n_last_update_time_copy);
|
||||
#else
|
||||
p_last_update_time = prev->avg.last_update_time;
|
||||
n_last_update_time = next->avg.last_update_time;
|
||||
#endif
|
||||
__update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
|
||||
&se->avg, 0, 0, NULL);
|
||||
se->avg.last_update_time = n_last_update_time;
|
||||
}
|
||||
#else
|
||||
p_last_update_time = prev->avg.last_update_time;
|
||||
n_last_update_time = next->avg.last_update_time;
|
||||
#endif
|
||||
__update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
|
||||
se->avg.last_update_time = n_last_update_time;
|
||||
}
|
||||
|
||||
/* Take into account change of utilization of a child task group */
|
||||
|
@ -3173,6 +3170,36 @@ static inline int propagate_entity_load_avg(struct sched_entity *se)
|
|||
return 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* Check if we need to update the load and the utilization of a blocked
|
||||
* group_entity:
|
||||
*/
|
||||
static inline bool skip_blocked_update(struct sched_entity *se)
|
||||
{
|
||||
struct cfs_rq *gcfs_rq = group_cfs_rq(se);
|
||||
|
||||
/*
|
||||
* If sched_entity still have not zero load or utilization, we have to
|
||||
* decay it:
|
||||
*/
|
||||
if (se->avg.load_avg || se->avg.util_avg)
|
||||
return false;
|
||||
|
||||
/*
|
||||
* If there is a pending propagation, we have to update the load and
|
||||
* the utilization of the sched_entity:
|
||||
*/
|
||||
if (gcfs_rq->propagate_avg)
|
||||
return false;
|
||||
|
||||
/*
|
||||
* Otherwise, the load and the utilization of the sched_entity is
|
||||
* already zero and there is no pending propagation, so it will be a
|
||||
* waste of time to try to decay it:
|
||||
*/
|
||||
return true;
|
||||
}
|
||||
|
||||
#else /* CONFIG_FAIR_GROUP_SCHED */
|
||||
|
||||
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
|
||||
|
@ -3265,8 +3292,7 @@ update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
|
|||
set_tg_cfs_propagate(cfs_rq);
|
||||
}
|
||||
|
||||
decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
|
||||
scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
|
||||
decayed = __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
|
||||
|
||||
#ifndef CONFIG_64BIT
|
||||
smp_wmb();
|
||||
|
@ -3298,11 +3324,8 @@ static inline void update_load_avg(struct sched_entity *se, int flags)
|
|||
* Track task load average for carrying it to new CPU after migrated, and
|
||||
* track group sched_entity load average for task_h_load calc in migration
|
||||
*/
|
||||
if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) {
|
||||
__update_load_avg(now, cpu, &se->avg,
|
||||
se->on_rq * scale_load_down(se->load.weight),
|
||||
cfs_rq->curr == se, NULL);
|
||||
}
|
||||
if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
|
||||
__update_load_avg_se(now, cpu, cfs_rq, se);
|
||||
|
||||
decayed = update_cfs_rq_load_avg(now, cfs_rq, true);
|
||||
decayed |= propagate_entity_load_avg(se);
|
||||
|
@ -3407,7 +3430,7 @@ void sync_entity_load_avg(struct sched_entity *se)
|
|||
u64 last_update_time;
|
||||
|
||||
last_update_time = cfs_rq_last_update_time(cfs_rq);
|
||||
__update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
|
||||
__update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -4271,8 +4294,9 @@ static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
|
|||
list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
|
||||
throttled_list) {
|
||||
struct rq *rq = rq_of(cfs_rq);
|
||||
struct rq_flags rf;
|
||||
|
||||
raw_spin_lock(&rq->lock);
|
||||
rq_lock(rq, &rf);
|
||||
if (!cfs_rq_throttled(cfs_rq))
|
||||
goto next;
|
||||
|
||||
|
@ -4289,7 +4313,7 @@ static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
|
|||
unthrottle_cfs_rq(cfs_rq);
|
||||
|
||||
next:
|
||||
raw_spin_unlock(&rq->lock);
|
||||
rq_unlock(rq, &rf);
|
||||
|
||||
if (!remaining)
|
||||
break;
|
||||
|
@ -5097,15 +5121,16 @@ void cpu_load_update_nohz_stop(void)
|
|||
unsigned long curr_jiffies = READ_ONCE(jiffies);
|
||||
struct rq *this_rq = this_rq();
|
||||
unsigned long load;
|
||||
struct rq_flags rf;
|
||||
|
||||
if (curr_jiffies == this_rq->last_load_update_tick)
|
||||
return;
|
||||
|
||||
load = weighted_cpuload(cpu_of(this_rq));
|
||||
raw_spin_lock(&this_rq->lock);
|
||||
rq_lock(this_rq, &rf);
|
||||
update_rq_clock(this_rq);
|
||||
cpu_load_update_nohz(this_rq, curr_jiffies, load);
|
||||
raw_spin_unlock(&this_rq->lock);
|
||||
rq_unlock(this_rq, &rf);
|
||||
}
|
||||
#else /* !CONFIG_NO_HZ_COMMON */
|
||||
static inline void cpu_load_update_nohz(struct rq *this_rq,
|
||||
|
@ -6769,7 +6794,7 @@ static void detach_task(struct task_struct *p, struct lb_env *env)
|
|||
lockdep_assert_held(&env->src_rq->lock);
|
||||
|
||||
p->on_rq = TASK_ON_RQ_MIGRATING;
|
||||
deactivate_task(env->src_rq, p, 0);
|
||||
deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
|
||||
set_task_cpu(p, env->dst_cpu);
|
||||
}
|
||||
|
||||
|
@ -6902,7 +6927,7 @@ static void attach_task(struct rq *rq, struct task_struct *p)
|
|||
lockdep_assert_held(&rq->lock);
|
||||
|
||||
BUG_ON(task_rq(p) != rq);
|
||||
activate_task(rq, p, 0);
|
||||
activate_task(rq, p, ENQUEUE_NOCLOCK);
|
||||
p->on_rq = TASK_ON_RQ_QUEUED;
|
||||
check_preempt_curr(rq, p, 0);
|
||||
}
|
||||
|
@ -6913,9 +6938,12 @@ static void attach_task(struct rq *rq, struct task_struct *p)
|
|||
*/
|
||||
static void attach_one_task(struct rq *rq, struct task_struct *p)
|
||||
{
|
||||
raw_spin_lock(&rq->lock);
|
||||
struct rq_flags rf;
|
||||
|
||||
rq_lock(rq, &rf);
|
||||
update_rq_clock(rq);
|
||||
attach_task(rq, p);
|
||||
raw_spin_unlock(&rq->lock);
|
||||
rq_unlock(rq, &rf);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -6926,8 +6954,10 @@ static void attach_tasks(struct lb_env *env)
|
|||
{
|
||||
struct list_head *tasks = &env->tasks;
|
||||
struct task_struct *p;
|
||||
struct rq_flags rf;
|
||||
|
||||
raw_spin_lock(&env->dst_rq->lock);
|
||||
rq_lock(env->dst_rq, &rf);
|
||||
update_rq_clock(env->dst_rq);
|
||||
|
||||
while (!list_empty(tasks)) {
|
||||
p = list_first_entry(tasks, struct task_struct, se.group_node);
|
||||
|
@ -6936,7 +6966,7 @@ static void attach_tasks(struct lb_env *env)
|
|||
attach_task(env->dst_rq, p);
|
||||
}
|
||||
|
||||
raw_spin_unlock(&env->dst_rq->lock);
|
||||
rq_unlock(env->dst_rq, &rf);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_FAIR_GROUP_SCHED
|
||||
|
@ -6944,9 +6974,9 @@ static void update_blocked_averages(int cpu)
|
|||
{
|
||||
struct rq *rq = cpu_rq(cpu);
|
||||
struct cfs_rq *cfs_rq;
|
||||
unsigned long flags;
|
||||
struct rq_flags rf;
|
||||
|
||||
raw_spin_lock_irqsave(&rq->lock, flags);
|
||||
rq_lock_irqsave(rq, &rf);
|
||||
update_rq_clock(rq);
|
||||
|
||||
/*
|
||||
|
@ -6954,6 +6984,8 @@ static void update_blocked_averages(int cpu)
|
|||
* list_add_leaf_cfs_rq() for details.
|
||||
*/
|
||||
for_each_leaf_cfs_rq(rq, cfs_rq) {
|
||||
struct sched_entity *se;
|
||||
|
||||
/* throttled entities do not contribute to load */
|
||||
if (throttled_hierarchy(cfs_rq))
|
||||
continue;
|
||||
|
@ -6961,11 +6993,12 @@ static void update_blocked_averages(int cpu)
|
|||
if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
|
||||
update_tg_load_avg(cfs_rq, 0);
|
||||
|
||||
/* Propagate pending load changes to the parent */
|
||||
if (cfs_rq->tg->se[cpu])
|
||||
update_load_avg(cfs_rq->tg->se[cpu], 0);
|
||||
/* Propagate pending load changes to the parent, if any: */
|
||||
se = cfs_rq->tg->se[cpu];
|
||||
if (se && !skip_blocked_update(se))
|
||||
update_load_avg(se, 0);
|
||||
}
|
||||
raw_spin_unlock_irqrestore(&rq->lock, flags);
|
||||
rq_unlock_irqrestore(rq, &rf);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -7019,12 +7052,12 @@ static inline void update_blocked_averages(int cpu)
|
|||
{
|
||||
struct rq *rq = cpu_rq(cpu);
|
||||
struct cfs_rq *cfs_rq = &rq->cfs;
|
||||
unsigned long flags;
|
||||
struct rq_flags rf;
|
||||
|
||||
raw_spin_lock_irqsave(&rq->lock, flags);
|
||||
rq_lock_irqsave(rq, &rf);
|
||||
update_rq_clock(rq);
|
||||
update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
|
||||
raw_spin_unlock_irqrestore(&rq->lock, flags);
|
||||
rq_unlock_irqrestore(rq, &rf);
|
||||
}
|
||||
|
||||
static unsigned long task_h_load(struct task_struct *p)
|
||||
|
@ -7525,6 +7558,7 @@ static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sd
|
|||
{
|
||||
struct sched_domain *child = env->sd->child;
|
||||
struct sched_group *sg = env->sd->groups;
|
||||
struct sg_lb_stats *local = &sds->local_stat;
|
||||
struct sg_lb_stats tmp_sgs;
|
||||
int load_idx, prefer_sibling = 0;
|
||||
bool overload = false;
|
||||
|
@ -7541,7 +7575,7 @@ static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sd
|
|||
local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
|
||||
if (local_group) {
|
||||
sds->local = sg;
|
||||
sgs = &sds->local_stat;
|
||||
sgs = local;
|
||||
|
||||
if (env->idle != CPU_NEWLY_IDLE ||
|
||||
time_after_eq(jiffies, sg->sgc->next_update))
|
||||
|
@ -7565,8 +7599,8 @@ static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sd
|
|||
* the tasks on the system).
|
||||
*/
|
||||
if (prefer_sibling && sds->local &&
|
||||
group_has_capacity(env, &sds->local_stat) &&
|
||||
(sgs->sum_nr_running > 1)) {
|
||||
group_has_capacity(env, local) &&
|
||||
(sgs->sum_nr_running > local->sum_nr_running + 1)) {
|
||||
sgs->group_no_capacity = 1;
|
||||
sgs->group_type = group_classify(sg, sgs);
|
||||
}
|
||||
|
@ -8042,7 +8076,7 @@ static int load_balance(int this_cpu, struct rq *this_rq,
|
|||
struct sched_domain *sd_parent = sd->parent;
|
||||
struct sched_group *group;
|
||||
struct rq *busiest;
|
||||
unsigned long flags;
|
||||
struct rq_flags rf;
|
||||
struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
|
||||
|
||||
struct lb_env env = {
|
||||
|
@ -8105,7 +8139,7 @@ static int load_balance(int this_cpu, struct rq *this_rq,
|
|||
env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
|
||||
|
||||
more_balance:
|
||||
raw_spin_lock_irqsave(&busiest->lock, flags);
|
||||
rq_lock_irqsave(busiest, &rf);
|
||||
update_rq_clock(busiest);
|
||||
|
||||
/*
|
||||
|
@ -8122,14 +8156,14 @@ static int load_balance(int this_cpu, struct rq *this_rq,
|
|||
* See task_rq_lock() family for the details.
|
||||
*/
|
||||
|
||||
raw_spin_unlock(&busiest->lock);
|
||||
rq_unlock(busiest, &rf);
|
||||
|
||||
if (cur_ld_moved) {
|
||||
attach_tasks(&env);
|
||||
ld_moved += cur_ld_moved;
|
||||
}
|
||||
|
||||
local_irq_restore(flags);
|
||||
local_irq_restore(rf.flags);
|
||||
|
||||
if (env.flags & LBF_NEED_BREAK) {
|
||||
env.flags &= ~LBF_NEED_BREAK;
|
||||
|
@ -8207,6 +8241,8 @@ static int load_balance(int this_cpu, struct rq *this_rq,
|
|||
sd->nr_balance_failed++;
|
||||
|
||||
if (need_active_balance(&env)) {
|
||||
unsigned long flags;
|
||||
|
||||
raw_spin_lock_irqsave(&busiest->lock, flags);
|
||||
|
||||
/* don't kick the active_load_balance_cpu_stop,
|
||||
|
@ -8444,8 +8480,9 @@ static int active_load_balance_cpu_stop(void *data)
|
|||
struct rq *target_rq = cpu_rq(target_cpu);
|
||||
struct sched_domain *sd;
|
||||
struct task_struct *p = NULL;
|
||||
struct rq_flags rf;
|
||||
|
||||
raw_spin_lock_irq(&busiest_rq->lock);
|
||||
rq_lock_irq(busiest_rq, &rf);
|
||||
|
||||
/* make sure the requested cpu hasn't gone down in the meantime */
|
||||
if (unlikely(busiest_cpu != smp_processor_id() ||
|
||||
|
@ -8496,7 +8533,7 @@ static int active_load_balance_cpu_stop(void *data)
|
|||
rcu_read_unlock();
|
||||
out_unlock:
|
||||
busiest_rq->active_balance = 0;
|
||||
raw_spin_unlock(&busiest_rq->lock);
|
||||
rq_unlock(busiest_rq, &rf);
|
||||
|
||||
if (p)
|
||||
attach_one_task(target_rq, p);
|
||||
|
@ -8794,10 +8831,13 @@ static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
|
|||
* do the balance.
|
||||
*/
|
||||
if (time_after_eq(jiffies, rq->next_balance)) {
|
||||
raw_spin_lock_irq(&rq->lock);
|
||||
struct rq_flags rf;
|
||||
|
||||
rq_lock_irq(rq, &rf);
|
||||
update_rq_clock(rq);
|
||||
cpu_load_update_idle(rq);
|
||||
raw_spin_unlock_irq(&rq->lock);
|
||||
rq_unlock_irq(rq, &rf);
|
||||
|
||||
rebalance_domains(rq, CPU_IDLE);
|
||||
}
|
||||
|
||||
|
@ -8988,8 +9028,9 @@ static void task_fork_fair(struct task_struct *p)
|
|||
struct cfs_rq *cfs_rq;
|
||||
struct sched_entity *se = &p->se, *curr;
|
||||
struct rq *rq = this_rq();
|
||||
struct rq_flags rf;
|
||||
|
||||
raw_spin_lock(&rq->lock);
|
||||
rq_lock(rq, &rf);
|
||||
update_rq_clock(rq);
|
||||
|
||||
cfs_rq = task_cfs_rq(current);
|
||||
|
@ -9010,7 +9051,7 @@ static void task_fork_fair(struct task_struct *p)
|
|||
}
|
||||
|
||||
se->vruntime -= cfs_rq->min_vruntime;
|
||||
raw_spin_unlock(&rq->lock);
|
||||
rq_unlock(rq, &rf);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -9372,7 +9413,6 @@ static DEFINE_MUTEX(shares_mutex);
|
|||
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
|
||||
{
|
||||
int i;
|
||||
unsigned long flags;
|
||||
|
||||
/*
|
||||
* We can't change the weight of the root cgroup.
|
||||
|
@ -9389,19 +9429,17 @@ int sched_group_set_shares(struct task_group *tg, unsigned long shares)
|
|||
tg->shares = shares;
|
||||
for_each_possible_cpu(i) {
|
||||
struct rq *rq = cpu_rq(i);
|
||||
struct sched_entity *se;
|
||||
struct sched_entity *se = tg->se[i];
|
||||
struct rq_flags rf;
|
||||
|
||||
se = tg->se[i];
|
||||
/* Propagate contribution to hierarchy */
|
||||
raw_spin_lock_irqsave(&rq->lock, flags);
|
||||
|
||||
/* Possible calls to update_curr() need rq clock */
|
||||
rq_lock_irqsave(rq, &rf);
|
||||
update_rq_clock(rq);
|
||||
for_each_sched_entity(se) {
|
||||
update_load_avg(se, UPDATE_TG);
|
||||
update_cfs_shares(se);
|
||||
}
|
||||
raw_spin_unlock_irqrestore(&rq->lock, flags);
|
||||
rq_unlock_irqrestore(rq, &rf);
|
||||
}
|
||||
|
||||
done:
|
||||
|
|
|
@ -56,6 +56,13 @@ SCHED_FEAT(TTWU_QUEUE, true)
|
|||
*/
|
||||
SCHED_FEAT(SIS_AVG_CPU, false)
|
||||
|
||||
/*
|
||||
* Issue a WARN when we do multiple update_rq_clock() calls
|
||||
* in a single rq->lock section. Default disabled because the
|
||||
* annotations are not complete.
|
||||
*/
|
||||
SCHED_FEAT(WARN_DOUBLE_CLOCK, false)
|
||||
|
||||
#ifdef HAVE_RT_PUSH_IPI
|
||||
/*
|
||||
* In order to avoid a thundering herd attack of CPUs that are
|
||||
|
|
|
@ -1927,6 +1927,87 @@ static int find_next_push_cpu(struct rq *rq)
|
|||
#define RT_PUSH_IPI_EXECUTING 1
|
||||
#define RT_PUSH_IPI_RESTART 2
|
||||
|
||||
/*
|
||||
* When a high priority task schedules out from a CPU and a lower priority
|
||||
* task is scheduled in, a check is made to see if there's any RT tasks
|
||||
* on other CPUs that are waiting to run because a higher priority RT task
|
||||
* is currently running on its CPU. In this case, the CPU with multiple RT
|
||||
* tasks queued on it (overloaded) needs to be notified that a CPU has opened
|
||||
* up that may be able to run one of its non-running queued RT tasks.
|
||||
*
|
||||
* On large CPU boxes, there's the case that several CPUs could schedule
|
||||
* a lower priority task at the same time, in which case it will look for
|
||||
* any overloaded CPUs that it could pull a task from. To do this, the runqueue
|
||||
* lock must be taken from that overloaded CPU. Having 10s of CPUs all fighting
|
||||
* for a single overloaded CPU's runqueue lock can produce a large latency.
|
||||
* (This has actually been observed on large boxes running cyclictest).
|
||||
* Instead of taking the runqueue lock of the overloaded CPU, each of the
|
||||
* CPUs that scheduled a lower priority task simply sends an IPI to the
|
||||
* overloaded CPU. An IPI is much cheaper than taking an runqueue lock with
|
||||
* lots of contention. The overloaded CPU will look to push its non-running
|
||||
* RT task off, and if it does, it can then ignore the other IPIs coming
|
||||
* in, and just pass those IPIs off to any other overloaded CPU.
|
||||
*
|
||||
* When a CPU schedules a lower priority task, it only sends an IPI to
|
||||
* the "next" CPU that has overloaded RT tasks. This prevents IPI storms,
|
||||
* as having 10 CPUs scheduling lower priority tasks and 10 CPUs with
|
||||
* RT overloaded tasks, would cause 100 IPIs to go out at once.
|
||||
*
|
||||
* The overloaded RT CPU, when receiving an IPI, will try to push off its
|
||||
* overloaded RT tasks and then send an IPI to the next CPU that has
|
||||
* overloaded RT tasks. This stops when all CPUs with overloaded RT tasks
|
||||
* have completed. Just because a CPU may have pushed off its own overloaded
|
||||
* RT task does not mean it should stop sending the IPI around to other
|
||||
* overloaded CPUs. There may be another RT task waiting to run on one of
|
||||
* those CPUs that are of higher priority than the one that was just
|
||||
* pushed.
|
||||
*
|
||||
* An optimization that could possibly be made is to make a CPU array similar
|
||||
* to the cpupri array mask of all running RT tasks, but for the overloaded
|
||||
* case, then the IPI could be sent to only the CPU with the highest priority
|
||||
* RT task waiting, and that CPU could send off further IPIs to the CPU with
|
||||
* the next highest waiting task. Since the overloaded case is much less likely
|
||||
* to happen, the complexity of this implementation may not be worth it.
|
||||
* Instead, just send an IPI around to all overloaded CPUs.
|
||||
*
|
||||
* The rq->rt.push_flags holds the status of the IPI that is going around.
|
||||
* A run queue can only send out a single IPI at a time. The possible flags
|
||||
* for rq->rt.push_flags are:
|
||||
*
|
||||
* (None or zero): No IPI is going around for the current rq
|
||||
* RT_PUSH_IPI_EXECUTING: An IPI for the rq is being passed around
|
||||
* RT_PUSH_IPI_RESTART: The priority of the running task for the rq
|
||||
* has changed, and the IPI should restart
|
||||
* circulating the overloaded CPUs again.
|
||||
*
|
||||
* rq->rt.push_cpu contains the CPU that is being sent the IPI. It is updated
|
||||
* before sending to the next CPU.
|
||||
*
|
||||
* Instead of having all CPUs that schedule a lower priority task send
|
||||
* an IPI to the same "first" CPU in the RT overload mask, they send it
|
||||
* to the next overloaded CPU after their own CPU. This helps distribute
|
||||
* the work when there's more than one overloaded CPU and multiple CPUs
|
||||
* scheduling in lower priority tasks.
|
||||
*
|
||||
* When a rq schedules a lower priority task than what was currently
|
||||
* running, the next CPU with overloaded RT tasks is examined first.
|
||||
* That is, if CPU 1 and 5 are overloaded, and CPU 3 schedules a lower
|
||||
* priority task, it will send an IPI first to CPU 5, then CPU 5 will
|
||||
* send to CPU 1 if it is still overloaded. CPU 1 will clear the
|
||||
* rq->rt.push_flags if RT_PUSH_IPI_RESTART is not set.
|
||||
*
|
||||
* The first CPU to notice IPI_RESTART is set, will clear that flag and then
|
||||
* send an IPI to the next overloaded CPU after the rq->cpu and not the next
|
||||
* CPU after push_cpu. That is, if CPU 1, 4 and 5 are overloaded when CPU 3
|
||||
* schedules a lower priority task, and the IPI_RESTART gets set while the
|
||||
* handling is being done on CPU 5, it will clear the flag and send it back to
|
||||
* CPU 4 instead of CPU 1.
|
||||
*
|
||||
* Note, the above logic can be disabled by turning off the sched_feature
|
||||
* RT_PUSH_IPI. Then the rq lock of the overloaded CPU will simply be
|
||||
* taken by the CPU requesting a pull and the waiting RT task will be pulled
|
||||
* by that CPU. This may be fine for machines with few CPUs.
|
||||
*/
|
||||
static void tell_cpu_to_push(struct rq *rq)
|
||||
{
|
||||
int cpu;
|
||||
|
|
|
@ -0,0 +1,13 @@
|
|||
/* Generated by Documentation/scheduler/sched-pelt; do not modify. */
|
||||
|
||||
static const u32 runnable_avg_yN_inv[] = {
|
||||
0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
|
||||
0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
|
||||
0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
|
||||
0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
|
||||
0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
|
||||
0x85aac367, 0x82cd8698,
|
||||
};
|
||||
|
||||
#define LOAD_AVG_PERIOD 32
|
||||
#define LOAD_AVG_MAX 47742
|
|
@ -1331,15 +1331,17 @@ extern const u32 sched_prio_to_wmult[40];
|
|||
#define DEQUEUE_SLEEP 0x01
|
||||
#define DEQUEUE_SAVE 0x02 /* matches ENQUEUE_RESTORE */
|
||||
#define DEQUEUE_MOVE 0x04 /* matches ENQUEUE_MOVE */
|
||||
#define DEQUEUE_NOCLOCK 0x08 /* matches ENQUEUE_NOCLOCK */
|
||||
|
||||
#define ENQUEUE_WAKEUP 0x01
|
||||
#define ENQUEUE_RESTORE 0x02
|
||||
#define ENQUEUE_MOVE 0x04
|
||||
#define ENQUEUE_NOCLOCK 0x08
|
||||
|
||||
#define ENQUEUE_HEAD 0x08
|
||||
#define ENQUEUE_REPLENISH 0x10
|
||||
#define ENQUEUE_HEAD 0x10
|
||||
#define ENQUEUE_REPLENISH 0x20
|
||||
#ifdef CONFIG_SMP
|
||||
#define ENQUEUE_MIGRATED 0x20
|
||||
#define ENQUEUE_MIGRATED 0x40
|
||||
#else
|
||||
#define ENQUEUE_MIGRATED 0x00
|
||||
#endif
|
||||
|
@ -1624,6 +1626,7 @@ static inline void sched_avg_update(struct rq *rq) { }
|
|||
|
||||
struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
|
||||
__acquires(rq->lock);
|
||||
|
||||
struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
|
||||
__acquires(p->pi_lock)
|
||||
__acquires(rq->lock);
|
||||
|
@ -1645,6 +1648,62 @@ task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
|
|||
raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
|
||||
}
|
||||
|
||||
static inline void
|
||||
rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
|
||||
__acquires(rq->lock)
|
||||
{
|
||||
raw_spin_lock_irqsave(&rq->lock, rf->flags);
|
||||
rq_pin_lock(rq, rf);
|
||||
}
|
||||
|
||||
static inline void
|
||||
rq_lock_irq(struct rq *rq, struct rq_flags *rf)
|
||||
__acquires(rq->lock)
|
||||
{
|
||||
raw_spin_lock_irq(&rq->lock);
|
||||
rq_pin_lock(rq, rf);
|
||||
}
|
||||
|
||||
static inline void
|
||||
rq_lock(struct rq *rq, struct rq_flags *rf)
|
||||
__acquires(rq->lock)
|
||||
{
|
||||
raw_spin_lock(&rq->lock);
|
||||
rq_pin_lock(rq, rf);
|
||||
}
|
||||
|
||||
static inline void
|
||||
rq_relock(struct rq *rq, struct rq_flags *rf)
|
||||
__acquires(rq->lock)
|
||||
{
|
||||
raw_spin_lock(&rq->lock);
|
||||
rq_repin_lock(rq, rf);
|
||||
}
|
||||
|
||||
static inline void
|
||||
rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
|
||||
__releases(rq->lock)
|
||||
{
|
||||
rq_unpin_lock(rq, rf);
|
||||
raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
|
||||
}
|
||||
|
||||
static inline void
|
||||
rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
|
||||
__releases(rq->lock)
|
||||
{
|
||||
rq_unpin_lock(rq, rf);
|
||||
raw_spin_unlock_irq(&rq->lock);
|
||||
}
|
||||
|
||||
static inline void
|
||||
rq_unlock(struct rq *rq, struct rq_flags *rf)
|
||||
__releases(rq->lock)
|
||||
{
|
||||
rq_unpin_lock(rq, rf);
|
||||
raw_spin_unlock(&rq->lock);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
#ifdef CONFIG_PREEMPT
|
||||
|
||||
|
|
|
@ -309,7 +309,7 @@ asmlinkage __visible void __softirq_entry __do_softirq(void)
|
|||
account_irq_exit_time(current);
|
||||
__local_bh_enable(SOFTIRQ_OFFSET);
|
||||
WARN_ON_ONCE(in_interrupt());
|
||||
tsk_restore_flags(current, old_flags, PF_MEMALLOC);
|
||||
current_restore_flags(old_flags, PF_MEMALLOC);
|
||||
}
|
||||
|
||||
asmlinkage __visible void do_softirq(void)
|
||||
|
|
|
@ -4734,6 +4734,29 @@ long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
|
|||
return wfc.ret;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(work_on_cpu);
|
||||
|
||||
/**
|
||||
* work_on_cpu_safe - run a function in thread context on a particular cpu
|
||||
* @cpu: the cpu to run on
|
||||
* @fn: the function to run
|
||||
* @arg: the function argument
|
||||
*
|
||||
* Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
|
||||
* any locks which would prevent @fn from completing.
|
||||
*
|
||||
* Return: The value @fn returns.
|
||||
*/
|
||||
long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
|
||||
{
|
||||
long ret = -ENODEV;
|
||||
|
||||
get_online_cpus();
|
||||
if (cpu_online(cpu))
|
||||
ret = work_on_cpu(cpu, fn, arg);
|
||||
put_online_cpus();
|
||||
return ret;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(work_on_cpu_safe);
|
||||
#endif /* CONFIG_SMP */
|
||||
|
||||
#ifdef CONFIG_FREEZER
|
||||
|
|
|
@ -4243,7 +4243,7 @@ static int __netif_receive_skb(struct sk_buff *skb)
|
|||
*/
|
||||
current->flags |= PF_MEMALLOC;
|
||||
ret = __netif_receive_skb_core(skb, true);
|
||||
tsk_restore_flags(current, pflags, PF_MEMALLOC);
|
||||
current_restore_flags(pflags, PF_MEMALLOC);
|
||||
} else
|
||||
ret = __netif_receive_skb_core(skb, false);
|
||||
|
||||
|
|
|
@ -325,7 +325,7 @@ int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
|
|||
|
||||
current->flags |= PF_MEMALLOC;
|
||||
ret = sk->sk_backlog_rcv(sk, skb);
|
||||
tsk_restore_flags(current, pflags, PF_MEMALLOC);
|
||||
current_restore_flags(pflags, PF_MEMALLOC);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue