platform/chrome: cros_ec_spi: Transfer messages at high priority

The software running on the Chrome OS Embedded Controller (cros_ec)
handles SPI transfers in a bit of a wonky way.  Specifically if the EC
sees too long of a delay in a SPI transfer it will give up and the
transfer will be counted as failed.  Unfortunately the timeout is
fairly short, though the actual number may be different for different
EC codebases.

We can end up tripping the timeout pretty easily if we happen to
preempt the task running the SPI transfer and don't get back to it for
a little while.

Historically this hasn't been a _huge_ deal because:
1. On old devices Chrome OS used to run PREEMPT_VOLUNTARY.  That meant
   we were pretty unlikely to take a big break from the transfer.
2. On recent devices we had faster / more processors.
3. Recent devices didn't use "cros-ec-spi-pre-delay".  Using that
   delay makes us more likely to trip this use case.
4. For whatever reasons (I didn't dig) old kernels seem to be less
   likely to trip this.
5. For the most part it's kinda OK if a few transfers to the EC fail.
   Mostly we're just polling the battery or doing some other task
   where we'll try again.

Even with the above things, this issue has reared its ugly head
periodically.  We could solve this in a nice way by adding reliable
retries to the EC protocol [1] or by re-designing the code in the EC
codebase to allow it to wait longer, but that code doesn't ever seem
to get changed.  ...and even if it did, it wouldn't help old devices.

It's now time to finally take a crack at making this a little better.
This patch isn't guaranteed to make every cros_ec SPI transfer
perfect, but it should improve things by a few orders of magnitude.
Specifically you can try this on a rk3288-veyron Chromebook (which is
slower and also _does_ need "cros-ec-spi-pre-delay"):
  md5sum /dev/zero &
  md5sum /dev/zero &
  md5sum /dev/zero &
  md5sum /dev/zero &
  while true; do
    cat /sys/class/power_supply/sbs-20-000b/charge_now > /dev/null;
  done
...before this patch you'll see boatloads of errors.  After this patch I
don't see any in the testing I did.

The way this patch works is by effectively boosting the priority of
the cros_ec transfers.  As far as I know there is no simple way to
just boost the priority of the current process temporarily so the way
we accomplish this is by queuing the work on the system_highpri_wq.

NOTE: this patch relies on the fact that the SPI framework attempts to
push the messages out on the calling context (which is the one that is
boosted to high priority).  As I understand from earlier (long ago)
discussions with Mark Brown this should be a fine assumption.  Even if
it isn't true sometimes this patch will still not make things worse.

[1] https://crbug.com/678675

Signed-off-by: Douglas Anderson <dianders@chromium.org>
Reviewed-by: Matthias Kaehlcke <mka@chromium.org>
Reviewed-by: Brian Norris <briannorris@chromium.org>
Signed-off-by: Enric Balletbo i Serra <enric.balletbo@collabora.com>
This commit is contained in:
Douglas Anderson 2019-04-03 13:31:37 -07:00 committed by Enric Balletbo i Serra
parent b18e606ff3
commit 37a186225a
1 changed files with 74 additions and 6 deletions

View File

@ -75,6 +75,27 @@ struct cros_ec_spi {
unsigned int end_of_msg_delay;
};
typedef int (*cros_ec_xfer_fn_t) (struct cros_ec_device *ec_dev,
struct cros_ec_command *ec_msg);
/**
* struct cros_ec_xfer_work_params - params for our high priority workers
*
* @work: The work_struct needed to queue work
* @fn: The function to use to transfer
* @ec_dev: ChromeOS EC device
* @ec_msg: Message to transfer
* @ret: The return value of the function
*/
struct cros_ec_xfer_work_params {
struct work_struct work;
cros_ec_xfer_fn_t fn;
struct cros_ec_device *ec_dev;
struct cros_ec_command *ec_msg;
int ret;
};
static void debug_packet(struct device *dev, const char *name, u8 *ptr,
int len)
{
@ -350,13 +371,13 @@ static int cros_ec_spi_receive_response(struct cros_ec_device *ec_dev,
}
/**
* cros_ec_pkt_xfer_spi - Transfer a packet over SPI and receive the reply
* do_cros_ec_pkt_xfer_spi - Transfer a packet over SPI and receive the reply
*
* @ec_dev: ChromeOS EC device
* @ec_msg: Message to transfer
*/
static int cros_ec_pkt_xfer_spi(struct cros_ec_device *ec_dev,
struct cros_ec_command *ec_msg)
static int do_cros_ec_pkt_xfer_spi(struct cros_ec_device *ec_dev,
struct cros_ec_command *ec_msg)
{
struct ec_host_response *response;
struct cros_ec_spi *ec_spi = ec_dev->priv;
@ -493,13 +514,13 @@ static int cros_ec_pkt_xfer_spi(struct cros_ec_device *ec_dev,
}
/**
* cros_ec_cmd_xfer_spi - Transfer a message over SPI and receive the reply
* do_cros_ec_cmd_xfer_spi - Transfer a message over SPI and receive the reply
*
* @ec_dev: ChromeOS EC device
* @ec_msg: Message to transfer
*/
static int cros_ec_cmd_xfer_spi(struct cros_ec_device *ec_dev,
struct cros_ec_command *ec_msg)
static int do_cros_ec_cmd_xfer_spi(struct cros_ec_device *ec_dev,
struct cros_ec_command *ec_msg)
{
struct cros_ec_spi *ec_spi = ec_dev->priv;
struct spi_transfer trans;
@ -611,6 +632,53 @@ static int cros_ec_cmd_xfer_spi(struct cros_ec_device *ec_dev,
return ret;
}
static void cros_ec_xfer_high_pri_work(struct work_struct *work)
{
struct cros_ec_xfer_work_params *params;
params = container_of(work, struct cros_ec_xfer_work_params, work);
params->ret = params->fn(params->ec_dev, params->ec_msg);
}
static int cros_ec_xfer_high_pri(struct cros_ec_device *ec_dev,
struct cros_ec_command *ec_msg,
cros_ec_xfer_fn_t fn)
{
struct cros_ec_xfer_work_params params;
INIT_WORK_ONSTACK(&params.work, cros_ec_xfer_high_pri_work);
params.ec_dev = ec_dev;
params.ec_msg = ec_msg;
params.fn = fn;
/*
* This looks a bit ridiculous. Why do the work on a
* different thread if we're just going to block waiting for
* the thread to finish? The key here is that the thread is
* running at high priority but the calling context might not
* be. We need to be at high priority to avoid getting
* context switched out for too long and the EC giving up on
* the transfer.
*/
queue_work(system_highpri_wq, &params.work);
flush_work(&params.work);
destroy_work_on_stack(&params.work);
return params.ret;
}
static int cros_ec_pkt_xfer_spi(struct cros_ec_device *ec_dev,
struct cros_ec_command *ec_msg)
{
return cros_ec_xfer_high_pri(ec_dev, ec_msg, do_cros_ec_pkt_xfer_spi);
}
static int cros_ec_cmd_xfer_spi(struct cros_ec_device *ec_dev,
struct cros_ec_command *ec_msg)
{
return cros_ec_xfer_high_pri(ec_dev, ec_msg, do_cros_ec_cmd_xfer_spi);
}
static void cros_ec_spi_dt_probe(struct cros_ec_spi *ec_spi, struct device *dev)
{
struct device_node *np = dev->of_node;