mirror of https://gitee.com/openkylin/linux.git
media: dt-bindings: Convert video-interfaces.txt properties to schemas
Convert video-interfaces.txt to DT schema. As it contains a mixture of device level and endpoint properties, split it up into 2 schemas. Binding schemas will need to reference both the graph.yaml and video-interfaces.yaml schemas. The exact schema depends on how many ports and endpoints for the binding. A single port with a single endpoint looks similar to this: port: $ref: /schemas/graph.yaml#/$defs/port-base properties: endpoint: $ref: video-interfaces.yaml# unevaluatedProperties: false properties: bus-width: enum: [ 8, 10, 12, 16 ] pclk-sample: true hsync-active: true vsync-active: true required: - bus-width additionalProperties: false Acked-by: Sakari Ailus <sakari.ailus@linux.intel.com> Acked-by: Jacopo Mondi <jacopo@jmondi.org> Acked-by: Guennadi Liakhovetski <g.liakhovetski@gmx.de> Acked-by: Hans Verkuil <hverkuil-cisco@xs4all.nl> Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Signed-off-by: Rob Herring <robh@kernel.org> Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
This commit is contained in:
parent
321af22a3d
commit
41f42b6e69
|
@ -0,0 +1,406 @@
|
|||
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
|
||||
%YAML 1.2
|
||||
---
|
||||
$id: http://devicetree.org/schemas/media/video-interface-devices.yaml#
|
||||
$schema: http://devicetree.org/meta-schemas/core.yaml#
|
||||
|
||||
title: Common bindings for video receiver and transmitter devices
|
||||
|
||||
maintainers:
|
||||
- Jacopo Mondi <jacopo@jmondi.org>
|
||||
- Sakari Ailus <sakari.ailus@linux.intel.com>
|
||||
|
||||
properties:
|
||||
flash-leds:
|
||||
$ref: /schemas/types.yaml#/definitions/phandle-array
|
||||
description:
|
||||
An array of phandles, each referring to a flash LED, a sub-node of the LED
|
||||
driver device node.
|
||||
|
||||
lens-focus:
|
||||
$ref: /schemas/types.yaml#/definitions/phandle
|
||||
description:
|
||||
A phandle to the node of the focus lens controller.
|
||||
|
||||
rotation:
|
||||
$ref: /schemas/types.yaml#/definitions/uint32
|
||||
enum: [ 0, 90, 180, 270 ]
|
||||
description: |
|
||||
The camera rotation is expressed as the angular difference in degrees
|
||||
between two reference systems, one relative to the camera module, and one
|
||||
defined on the external world scene to be captured when projected on the
|
||||
image sensor pixel array.
|
||||
|
||||
A camera sensor has a 2-dimensional reference system 'Rc' defined by its
|
||||
pixel array read-out order. The origin is set to the first pixel being
|
||||
read out, the X-axis points along the column read-out direction towards
|
||||
the last columns, and the Y-axis along the row read-out direction towards
|
||||
the last row.
|
||||
|
||||
A typical example for a sensor with a 2592x1944 pixel array matrix
|
||||
observed from the front is:
|
||||
|
||||
2591 X-axis 0
|
||||
<------------------------+ 0
|
||||
.......... ... ..........!
|
||||
.......... ... ..........! Y-axis
|
||||
... !
|
||||
.......... ... ..........!
|
||||
.......... ... ..........! 1943
|
||||
V
|
||||
|
||||
The external world scene reference system 'Rs' is a 2-dimensional
|
||||
reference system on the focal plane of the camera module. The origin is
|
||||
placed on the top-left corner of the visible scene, the X-axis points
|
||||
towards the right, and the Y-axis points towards the bottom of the scene.
|
||||
The top, bottom, left and right directions are intentionally not defined
|
||||
and depend on the environment in which the camera is used.
|
||||
|
||||
A typical example of a (very common) picture of a shark swimming from left
|
||||
to right, as seen from the camera, is:
|
||||
|
||||
0 X-axis
|
||||
0 +------------------------------------->
|
||||
!
|
||||
!
|
||||
!
|
||||
! |\____)\___
|
||||
! ) _____ __`<
|
||||
! |/ )/
|
||||
!
|
||||
!
|
||||
!
|
||||
V
|
||||
Y-axis
|
||||
|
||||
with the reference system 'Rs' placed on the camera focal plane:
|
||||
|
||||
¸.·˙!
|
||||
¸.·˙ !
|
||||
_ ¸.·˙ !
|
||||
+-/ \-+¸.·˙ !
|
||||
| (o) | ! Camera focal plane
|
||||
+-----+˙·.¸ !
|
||||
˙·.¸ !
|
||||
˙·.¸ !
|
||||
˙·.¸!
|
||||
|
||||
When projected on the sensor's pixel array, the image and the associated
|
||||
reference system 'Rs' are typically (but not always) inverted, due to the
|
||||
camera module's lens optical inversion effect.
|
||||
|
||||
Assuming the above represented scene of the swimming shark, the lens
|
||||
inversion projects the scene and its reference system onto the sensor
|
||||
pixel array, seen from the front of the camera sensor, as follows:
|
||||
|
||||
Y-axis
|
||||
^
|
||||
!
|
||||
!
|
||||
!
|
||||
! |\_____)\__
|
||||
! ) ____ ___.<
|
||||
! |/ )/
|
||||
!
|
||||
!
|
||||
!
|
||||
0 +------------------------------------->
|
||||
0 X-axis
|
||||
|
||||
Note the shark being upside-down.
|
||||
|
||||
The resulting projected reference system is named 'Rp'.
|
||||
|
||||
The camera rotation property is then defined as the angular difference in
|
||||
the counter-clockwise direction between the camera reference system 'Rc'
|
||||
and the projected scene reference system 'Rp'. It is expressed in degrees
|
||||
as a number in the range [0, 360[.
|
||||
|
||||
Examples
|
||||
|
||||
0 degrees camera rotation:
|
||||
|
||||
|
||||
Y-Rp
|
||||
^
|
||||
Y-Rc !
|
||||
^ !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! 0 +------------------------------------->
|
||||
! 0 X-Rp
|
||||
0 +------------------------------------->
|
||||
0 X-Rc
|
||||
|
||||
|
||||
X-Rc 0
|
||||
<------------------------------------+ 0
|
||||
X-Rp 0 !
|
||||
<------------------------------------+ 0 !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! V
|
||||
! Y-Rc
|
||||
V
|
||||
Y-Rp
|
||||
|
||||
90 degrees camera rotation:
|
||||
|
||||
0 Y-Rc
|
||||
0 +-------------------->
|
||||
! Y-Rp
|
||||
! ^
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! 0 +------------------------------------->
|
||||
! 0 X-Rp
|
||||
!
|
||||
!
|
||||
!
|
||||
!
|
||||
V
|
||||
X-Rc
|
||||
|
||||
180 degrees camera rotation:
|
||||
|
||||
0
|
||||
<------------------------------------+ 0
|
||||
X-Rc !
|
||||
Y-Rp !
|
||||
^ !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! V
|
||||
! Y-Rc
|
||||
0 +------------------------------------->
|
||||
0 X-Rp
|
||||
|
||||
270 degrees camera rotation:
|
||||
|
||||
0 Y-Rc
|
||||
0 +-------------------->
|
||||
! 0
|
||||
! <-----------------------------------+ 0
|
||||
! X-Rp !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! V
|
||||
! Y-Rp
|
||||
!
|
||||
!
|
||||
!
|
||||
!
|
||||
V
|
||||
X-Rc
|
||||
|
||||
|
||||
Example one - Webcam
|
||||
|
||||
A camera module installed on the user facing part of a laptop screen
|
||||
casing used for video calls. The captured images are meant to be displayed
|
||||
in landscape mode (width > height) on the laptop screen.
|
||||
|
||||
The camera is typically mounted upside-down to compensate the lens optical
|
||||
inversion effect:
|
||||
|
||||
Y-Rp
|
||||
Y-Rc ^
|
||||
^ !
|
||||
! !
|
||||
! ! |\_____)\__
|
||||
! ! ) ____ ___.<
|
||||
! ! |/ )/
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! 0 +------------------------------------->
|
||||
! 0 X-Rp
|
||||
0 +------------------------------------->
|
||||
0 X-Rc
|
||||
|
||||
The two reference systems are aligned, the resulting camera rotation is
|
||||
0 degrees, no rotation correction needs to be applied to the resulting
|
||||
image once captured to memory buffers to correctly display it to users:
|
||||
|
||||
+--------------------------------------+
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! |\____)\___ !
|
||||
! ) _____ __`< !
|
||||
! |/ )/ !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
+--------------------------------------+
|
||||
|
||||
If the camera sensor is not mounted upside-down to compensate for the lens
|
||||
optical inversion, the two reference systems will not be aligned, with
|
||||
'Rp' being rotated 180 degrees relatively to 'Rc':
|
||||
|
||||
|
||||
X-Rc 0
|
||||
<------------------------------------+ 0
|
||||
!
|
||||
Y-Rp !
|
||||
^ !
|
||||
! !
|
||||
! |\_____)\__ !
|
||||
! ) ____ ___.< !
|
||||
! |/ )/ !
|
||||
! !
|
||||
! !
|
||||
! V
|
||||
! Y-Rc
|
||||
0 +------------------------------------->
|
||||
0 X-Rp
|
||||
|
||||
The image once captured to memory will then be rotated by 180 degrees:
|
||||
|
||||
+--------------------------------------+
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! __/(_____/| !
|
||||
! >.___ ____ ( !
|
||||
! \( \| !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
+--------------------------------------+
|
||||
|
||||
A software rotation correction of 180 degrees should be applied to
|
||||
correctly display the image:
|
||||
|
||||
+--------------------------------------+
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! |\____)\___ !
|
||||
! ) _____ __`< !
|
||||
! |/ )/ !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
+--------------------------------------+
|
||||
|
||||
Example two - Phone camera
|
||||
|
||||
A camera installed on the back side of a mobile device facing away from
|
||||
the user. The captured images are meant to be displayed in portrait mode
|
||||
(height > width) to match the device screen orientation and the device
|
||||
usage orientation used when taking the picture.
|
||||
|
||||
The camera sensor is typically mounted with its pixel array longer side
|
||||
aligned to the device longer side, upside-down mounted to compensate for
|
||||
the lens optical inversion effect:
|
||||
|
||||
0 Y-Rc
|
||||
0 +-------------------->
|
||||
! Y-Rp
|
||||
! ^
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! ! |\_____)\__
|
||||
! ! ) ____ ___.<
|
||||
! ! |/ )/
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! 0 +------------------------------------->
|
||||
! 0 X-Rp
|
||||
!
|
||||
!
|
||||
!
|
||||
!
|
||||
V
|
||||
X-Rc
|
||||
|
||||
The two reference systems are not aligned and the 'Rp' reference system is
|
||||
rotated by 90 degrees in the counter-clockwise direction relatively to the
|
||||
'Rc' reference system.
|
||||
|
||||
The image once captured to memory will be rotated:
|
||||
|
||||
+-------------------------------------+
|
||||
| _ _ |
|
||||
| \ / |
|
||||
| | | |
|
||||
| | | |
|
||||
| | > |
|
||||
| < | |
|
||||
| | | |
|
||||
| . |
|
||||
| V |
|
||||
+-------------------------------------+
|
||||
|
||||
A correction of 90 degrees in counter-clockwise direction has to be
|
||||
applied to correctly display the image in portrait mode on the device
|
||||
screen:
|
||||
|
||||
+--------------------+
|
||||
| |
|
||||
| |
|
||||
| |
|
||||
| |
|
||||
| |
|
||||
| |
|
||||
| |\____)\___ |
|
||||
| ) _____ __`< |
|
||||
| |/ )/ |
|
||||
| |
|
||||
| |
|
||||
| |
|
||||
| |
|
||||
| |
|
||||
+--------------------+
|
||||
|
||||
orientation:
|
||||
description:
|
||||
The orientation of a device (typically an image sensor or a flash LED)
|
||||
describing its mounting position relative to the usage orientation of the
|
||||
system where the device is installed on.
|
||||
$ref: /schemas/types.yaml#/definitions/uint32
|
||||
enum:
|
||||
# Front. The device is mounted on the front facing side of the system. For
|
||||
# mobile devices such as smartphones, tablets and laptops the front side
|
||||
# is the user facing side.
|
||||
- 0
|
||||
# Back. The device is mounted on the back side of the system, which is
|
||||
# defined as the opposite side of the front facing one.
|
||||
- 1
|
||||
# External. The device is not attached directly to the system but is
|
||||
# attached in a way that allows it to move freely.
|
||||
- 2
|
||||
|
||||
additionalProperties: true
|
||||
|
||||
...
|
|
@ -1,639 +1 @@
|
|||
Common bindings for video receiver and transmitter interfaces
|
||||
|
||||
General concept
|
||||
---------------
|
||||
|
||||
Video data pipelines usually consist of external devices, e.g. camera sensors,
|
||||
controlled over an I2C, SPI or UART bus, and SoC internal IP blocks, including
|
||||
video DMA engines and video data processors.
|
||||
|
||||
SoC internal blocks are described by DT nodes, placed similarly to other SoC
|
||||
blocks. External devices are represented as child nodes of their respective
|
||||
bus controller nodes, e.g. I2C.
|
||||
|
||||
Data interfaces on all video devices are described by their child 'port' nodes.
|
||||
Configuration of a port depends on other devices participating in the data
|
||||
transfer and is described by 'endpoint' subnodes.
|
||||
|
||||
device {
|
||||
...
|
||||
ports {
|
||||
#address-cells = <1>;
|
||||
#size-cells = <0>;
|
||||
|
||||
port@0 {
|
||||
...
|
||||
endpoint@0 { ... };
|
||||
endpoint@1 { ... };
|
||||
};
|
||||
port@1 { ... };
|
||||
};
|
||||
};
|
||||
|
||||
If a port can be configured to work with more than one remote device on the same
|
||||
bus, an 'endpoint' child node must be provided for each of them. If more than
|
||||
one port is present in a device node or there is more than one endpoint at a
|
||||
port, or port node needs to be associated with a selected hardware interface,
|
||||
a common scheme using '#address-cells', '#size-cells' and 'reg' properties is
|
||||
used.
|
||||
|
||||
All 'port' nodes can be grouped under optional 'ports' node, which allows to
|
||||
specify #address-cells, #size-cells properties independently for the 'port'
|
||||
and 'endpoint' nodes and any child device nodes a device might have.
|
||||
|
||||
Two 'endpoint' nodes are linked with each other through their 'remote-endpoint'
|
||||
phandles. An endpoint subnode of a device contains all properties needed for
|
||||
configuration of this device for data exchange with other device. In most
|
||||
cases properties at the peer 'endpoint' nodes will be identical, however they
|
||||
might need to be different when there is any signal modifications on the bus
|
||||
between two devices, e.g. there are logic signal inverters on the lines.
|
||||
|
||||
It is allowed for multiple endpoints at a port to be active simultaneously,
|
||||
where supported by a device. For example, in case where a data interface of
|
||||
a device is partitioned into multiple data busses, e.g. 16-bit input port
|
||||
divided into two separate ITU-R BT.656 8-bit busses. In such case bus-width
|
||||
and data-shift properties can be used to assign physical data lines to each
|
||||
endpoint node (logical bus).
|
||||
|
||||
Documenting bindings for devices
|
||||
--------------------------------
|
||||
|
||||
All required and optional bindings the device supports shall be explicitly
|
||||
documented in device DT binding documentation. This also includes port and
|
||||
endpoint nodes for the device, including unit-addresses and reg properties where
|
||||
relevant.
|
||||
|
||||
Please also see Documentation/devicetree/bindings/graph.txt .
|
||||
|
||||
Required properties
|
||||
-------------------
|
||||
|
||||
If there is more than one 'port' or more than one 'endpoint' node or 'reg'
|
||||
property is present in port and/or endpoint nodes the following properties
|
||||
are required in a relevant parent node:
|
||||
|
||||
- #address-cells : number of cells required to define port/endpoint
|
||||
identifier, should be 1.
|
||||
- #size-cells : should be zero.
|
||||
|
||||
|
||||
Optional properties
|
||||
-------------------
|
||||
|
||||
- flash-leds: An array of phandles, each referring to a flash LED, a sub-node
|
||||
of the LED driver device node.
|
||||
|
||||
- lens-focus: A phandle to the node of the focus lens controller.
|
||||
|
||||
- rotation: The camera rotation is expressed as the angular difference in
|
||||
degrees between two reference systems, one relative to the camera module, and
|
||||
one defined on the external world scene to be captured when projected on the
|
||||
image sensor pixel array.
|
||||
|
||||
A camera sensor has a 2-dimensional reference system 'Rc' defined by
|
||||
its pixel array read-out order. The origin is set to the first pixel
|
||||
being read out, the X-axis points along the column read-out direction
|
||||
towards the last columns, and the Y-axis along the row read-out
|
||||
direction towards the last row.
|
||||
|
||||
A typical example for a sensor with a 2592x1944 pixel array matrix
|
||||
observed from the front is:
|
||||
|
||||
2591 X-axis 0
|
||||
<------------------------+ 0
|
||||
.......... ... ..........!
|
||||
.......... ... ..........! Y-axis
|
||||
... !
|
||||
.......... ... ..........!
|
||||
.......... ... ..........! 1943
|
||||
V
|
||||
|
||||
The external world scene reference system 'Rs' is a 2-dimensional
|
||||
reference system on the focal plane of the camera module. The origin is
|
||||
placed on the top-left corner of the visible scene, the X-axis points
|
||||
towards the right, and the Y-axis points towards the bottom of the
|
||||
scene. The top, bottom, left and right directions are intentionally not
|
||||
defined and depend on the environment in which the camera is used.
|
||||
|
||||
A typical example of a (very common) picture of a shark swimming from
|
||||
left to right, as seen from the camera, is:
|
||||
|
||||
0 X-axis
|
||||
0 +------------------------------------->
|
||||
!
|
||||
!
|
||||
!
|
||||
! |\____)\___
|
||||
! ) _____ __`<
|
||||
! |/ )/
|
||||
!
|
||||
!
|
||||
!
|
||||
V
|
||||
Y-axis
|
||||
|
||||
with the reference system 'Rs' placed on the camera focal plane:
|
||||
|
||||
¸.·˙!
|
||||
¸.·˙ !
|
||||
_ ¸.·˙ !
|
||||
+-/ \-+¸.·˙ !
|
||||
| (o) | ! Camera focal plane
|
||||
+-----+˙·.¸ !
|
||||
˙·.¸ !
|
||||
˙·.¸ !
|
||||
˙·.¸!
|
||||
|
||||
When projected on the sensor's pixel array, the image and the associated
|
||||
reference system 'Rs' are typically (but not always) inverted, due to
|
||||
the camera module's lens optical inversion effect.
|
||||
|
||||
Assuming the above represented scene of the swimming shark, the lens
|
||||
inversion projects the scene and its reference system onto the sensor
|
||||
pixel array, seen from the front of the camera sensor, as follows:
|
||||
|
||||
Y-axis
|
||||
^
|
||||
!
|
||||
!
|
||||
!
|
||||
! |\_____)\__
|
||||
! ) ____ ___.<
|
||||
! |/ )/
|
||||
!
|
||||
!
|
||||
!
|
||||
0 +------------------------------------->
|
||||
0 X-axis
|
||||
|
||||
Note the shark being upside-down.
|
||||
|
||||
The resulting projected reference system is named 'Rp'.
|
||||
|
||||
The camera rotation property is then defined as the angular difference
|
||||
in the counter-clockwise direction between the camera reference system
|
||||
'Rc' and the projected scene reference system 'Rp'. It is expressed in
|
||||
degrees as a number in the range [0, 360[.
|
||||
|
||||
Examples
|
||||
|
||||
0 degrees camera rotation:
|
||||
|
||||
|
||||
Y-Rp
|
||||
^
|
||||
Y-Rc !
|
||||
^ !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! 0 +------------------------------------->
|
||||
! 0 X-Rp
|
||||
0 +------------------------------------->
|
||||
0 X-Rc
|
||||
|
||||
|
||||
X-Rc 0
|
||||
<------------------------------------+ 0
|
||||
X-Rp 0 !
|
||||
<------------------------------------+ 0 !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! V
|
||||
! Y-Rc
|
||||
V
|
||||
Y-Rp
|
||||
|
||||
90 degrees camera rotation:
|
||||
|
||||
0 Y-Rc
|
||||
0 +-------------------->
|
||||
! Y-Rp
|
||||
! ^
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! 0 +------------------------------------->
|
||||
! 0 X-Rp
|
||||
!
|
||||
!
|
||||
!
|
||||
!
|
||||
V
|
||||
X-Rc
|
||||
|
||||
180 degrees camera rotation:
|
||||
|
||||
0
|
||||
<------------------------------------+ 0
|
||||
X-Rc !
|
||||
Y-Rp !
|
||||
^ !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! V
|
||||
! Y-Rc
|
||||
0 +------------------------------------->
|
||||
0 X-Rp
|
||||
|
||||
270 degrees camera rotation:
|
||||
|
||||
0 Y-Rc
|
||||
0 +-------------------->
|
||||
! 0
|
||||
! <-----------------------------------+ 0
|
||||
! X-Rp !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! V
|
||||
! Y-Rp
|
||||
!
|
||||
!
|
||||
!
|
||||
!
|
||||
V
|
||||
X-Rc
|
||||
|
||||
|
||||
Example one - Webcam
|
||||
|
||||
A camera module installed on the user facing part of a laptop screen
|
||||
casing used for video calls. The captured images are meant to be
|
||||
displayed in landscape mode (width > height) on the laptop screen.
|
||||
|
||||
The camera is typically mounted upside-down to compensate the lens
|
||||
optical inversion effect:
|
||||
|
||||
Y-Rp
|
||||
Y-Rc ^
|
||||
^ !
|
||||
! !
|
||||
! ! |\_____)\__
|
||||
! ! ) ____ ___.<
|
||||
! ! |/ )/
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! 0 +------------------------------------->
|
||||
! 0 X-Rp
|
||||
0 +------------------------------------->
|
||||
0 X-Rc
|
||||
|
||||
The two reference systems are aligned, the resulting camera rotation is
|
||||
0 degrees, no rotation correction needs to be applied to the resulting
|
||||
image once captured to memory buffers to correctly display it to users:
|
||||
|
||||
+--------------------------------------+
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! |\____)\___ !
|
||||
! ) _____ __`< !
|
||||
! |/ )/ !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
+--------------------------------------+
|
||||
|
||||
If the camera sensor is not mounted upside-down to compensate for the
|
||||
lens optical inversion, the two reference systems will not be aligned,
|
||||
with 'Rp' being rotated 180 degrees relatively to 'Rc':
|
||||
|
||||
|
||||
X-Rc 0
|
||||
<------------------------------------+ 0
|
||||
!
|
||||
Y-Rp !
|
||||
^ !
|
||||
! !
|
||||
! |\_____)\__ !
|
||||
! ) ____ ___.< !
|
||||
! |/ )/ !
|
||||
! !
|
||||
! !
|
||||
! V
|
||||
! Y-Rc
|
||||
0 +------------------------------------->
|
||||
0 X-Rp
|
||||
|
||||
The image once captured to memory will then be rotated by 180 degrees:
|
||||
|
||||
+--------------------------------------+
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! __/(_____/| !
|
||||
! >.___ ____ ( !
|
||||
! \( \| !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
+--------------------------------------+
|
||||
|
||||
A software rotation correction of 180 degrees should be applied to
|
||||
correctly display the image:
|
||||
|
||||
+--------------------------------------+
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! |\____)\___ !
|
||||
! ) _____ __`< !
|
||||
! |/ )/ !
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
+--------------------------------------+
|
||||
|
||||
Example two - Phone camera
|
||||
|
||||
A camera installed on the back side of a mobile device facing away from
|
||||
the user. The captured images are meant to be displayed in portrait mode
|
||||
(height > width) to match the device screen orientation and the device
|
||||
usage orientation used when taking the picture.
|
||||
|
||||
The camera sensor is typically mounted with its pixel array longer side
|
||||
aligned to the device longer side, upside-down mounted to compensate for
|
||||
the lens optical inversion effect:
|
||||
|
||||
0 Y-Rc
|
||||
0 +-------------------->
|
||||
! Y-Rp
|
||||
! ^
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! ! |\_____)\__
|
||||
! ! ) ____ ___.<
|
||||
! ! |/ )/
|
||||
! !
|
||||
! !
|
||||
! !
|
||||
! 0 +------------------------------------->
|
||||
! 0 X-Rp
|
||||
!
|
||||
!
|
||||
!
|
||||
!
|
||||
V
|
||||
X-Rc
|
||||
|
||||
The two reference systems are not aligned and the 'Rp' reference
|
||||
system is rotated by 90 degrees in the counter-clockwise direction
|
||||
relatively to the 'Rc' reference system.
|
||||
|
||||
The image once captured to memory will be rotated:
|
||||
|
||||
+-------------------------------------+
|
||||
| _ _ |
|
||||
| \ / |
|
||||
| | | |
|
||||
| | | |
|
||||
| | > |
|
||||
| < | |
|
||||
| | | |
|
||||
| . |
|
||||
| V |
|
||||
+-------------------------------------+
|
||||
|
||||
A correction of 90 degrees in counter-clockwise direction has to be
|
||||
applied to correctly display the image in portrait mode on the device
|
||||
screen:
|
||||
|
||||
+--------------------+
|
||||
| |
|
||||
| |
|
||||
| |
|
||||
| |
|
||||
| |
|
||||
| |
|
||||
| |\____)\___ |
|
||||
| ) _____ __`< |
|
||||
| |/ )/ |
|
||||
| |
|
||||
| |
|
||||
| |
|
||||
| |
|
||||
| |
|
||||
+--------------------+
|
||||
|
||||
- orientation: The orientation of a device (typically an image sensor or a flash
|
||||
LED) describing its mounting position relative to the usage orientation of the
|
||||
system where the device is installed on.
|
||||
Possible values are:
|
||||
0 - Front. The device is mounted on the front facing side of the system.
|
||||
For mobile devices such as smartphones, tablets and laptops the front side is
|
||||
the user facing side.
|
||||
1 - Back. The device is mounted on the back side of the system, which is
|
||||
defined as the opposite side of the front facing one.
|
||||
2 - External. The device is not attached directly to the system but is
|
||||
attached in a way that allows it to move freely.
|
||||
|
||||
Optional endpoint properties
|
||||
----------------------------
|
||||
|
||||
- remote-endpoint: phandle to an 'endpoint' subnode of a remote device node.
|
||||
- slave-mode: a boolean property indicating that the link is run in slave mode.
|
||||
The default when this property is not specified is master mode. In the slave
|
||||
mode horizontal and vertical synchronization signals are provided to the
|
||||
slave device (data source) by the master device (data sink). In the master
|
||||
mode the data source device is also the source of the synchronization signals.
|
||||
- bus-type: data bus type. Possible values are:
|
||||
1 - MIPI CSI-2 C-PHY
|
||||
2 - MIPI CSI1
|
||||
3 - CCP2
|
||||
4 - MIPI CSI-2 D-PHY
|
||||
5 - Parallel
|
||||
6 - Bt.656
|
||||
- bus-width: number of data lines actively used, valid for the parallel busses.
|
||||
- data-shift: on the parallel data busses, if bus-width is used to specify the
|
||||
number of data lines, data-shift can be used to specify which data lines are
|
||||
used, e.g. "bus-width=<8>; data-shift=<2>;" means, that lines 9:2 are used.
|
||||
- hsync-active: active state of the HSYNC signal, 0/1 for LOW/HIGH respectively.
|
||||
- vsync-active: active state of the VSYNC signal, 0/1 for LOW/HIGH respectively.
|
||||
Note, that if HSYNC and VSYNC polarities are not specified, embedded
|
||||
synchronization may be required, where supported.
|
||||
- data-active: similar to HSYNC and VSYNC, specifies data line polarity.
|
||||
- data-enable-active: similar to HSYNC and VSYNC, specifies the data enable
|
||||
signal polarity.
|
||||
- field-even-active: field signal level during the even field data transmission.
|
||||
- pclk-sample: sample data on rising (1) or falling (0) edge of the pixel clock
|
||||
signal.
|
||||
- sync-on-green-active: active state of Sync-on-green (SoG) signal, 0/1 for
|
||||
LOW/HIGH respectively.
|
||||
- data-lanes: an array of physical data lane indexes. Position of an entry
|
||||
determines the logical lane number, while the value of an entry indicates
|
||||
physical lane, e.g. for 2-lane MIPI CSI-2 bus we could have
|
||||
"data-lanes = <1 2>;", assuming the clock lane is on hardware lane 0.
|
||||
If the hardware does not support lane reordering, monotonically
|
||||
incremented values shall be used from 0 or 1 onwards, depending on
|
||||
whether or not there is also a clock lane. This property is valid for
|
||||
serial busses only (e.g. MIPI CSI-2).
|
||||
- clock-lanes: an array of physical clock lane indexes. Position of an entry
|
||||
determines the logical lane number, while the value of an entry indicates
|
||||
physical lane, e.g. for a MIPI CSI-2 bus we could have "clock-lanes = <0>;",
|
||||
which places the clock lane on hardware lane 0. This property is valid for
|
||||
serial busses only (e.g. MIPI CSI-2). Note that for the MIPI CSI-2 bus this
|
||||
array contains only one entry.
|
||||
- clock-noncontinuous: a boolean property to allow MIPI CSI-2 non-continuous
|
||||
clock mode.
|
||||
- link-frequencies: Allowed data bus frequencies. For MIPI CSI-2, for
|
||||
instance, this is the actual frequency of the bus, not bits per clock per
|
||||
lane value. An array of 64-bit unsigned integers.
|
||||
- lane-polarities: an array of polarities of the lanes starting from the clock
|
||||
lane and followed by the data lanes in the same order as in data-lanes.
|
||||
Valid values are 0 (normal) and 1 (inverted). The length of the array
|
||||
should be the combined length of data-lanes and clock-lanes properties.
|
||||
If the lane-polarities property is omitted, the value must be interpreted
|
||||
as 0 (normal). This property is valid for serial busses only.
|
||||
- strobe: Whether the clock signal is used as clock (0) or strobe (1). Used
|
||||
with CCP2, for instance.
|
||||
|
||||
Example
|
||||
-------
|
||||
|
||||
The example snippet below describes two data pipelines. ov772x and imx074 are
|
||||
camera sensors with a parallel and serial (MIPI CSI-2) video bus respectively.
|
||||
Both sensors are on the I2C control bus corresponding to the i2c0 controller
|
||||
node. ov772x sensor is linked directly to the ceu0 video host interface.
|
||||
imx074 is linked to ceu0 through the MIPI CSI-2 receiver (csi2). ceu0 has a
|
||||
(single) DMA engine writing captured data to memory. ceu0 node has a single
|
||||
'port' node which may indicate that at any time only one of the following data
|
||||
pipelines can be active: ov772x -> ceu0 or imx074 -> csi2 -> ceu0.
|
||||
|
||||
ceu0: ceu@fe910000 {
|
||||
compatible = "renesas,sh-mobile-ceu";
|
||||
reg = <0xfe910000 0xa0>;
|
||||
interrupts = <0x880>;
|
||||
|
||||
mclk: master_clock {
|
||||
compatible = "renesas,ceu-clock";
|
||||
#clock-cells = <1>;
|
||||
clock-frequency = <50000000>; /* Max clock frequency */
|
||||
clock-output-names = "mclk";
|
||||
};
|
||||
|
||||
port {
|
||||
#address-cells = <1>;
|
||||
#size-cells = <0>;
|
||||
|
||||
/* Parallel bus endpoint */
|
||||
ceu0_1: endpoint@1 {
|
||||
reg = <1>; /* Local endpoint # */
|
||||
remote = <&ov772x_1_1>; /* Remote phandle */
|
||||
bus-width = <8>; /* Used data lines */
|
||||
data-shift = <2>; /* Lines 9:2 are used */
|
||||
|
||||
/* If hsync-active/vsync-active are missing,
|
||||
embedded BT.656 sync is used */
|
||||
hsync-active = <0>; /* Active low */
|
||||
vsync-active = <0>; /* Active low */
|
||||
data-active = <1>; /* Active high */
|
||||
pclk-sample = <1>; /* Rising */
|
||||
};
|
||||
|
||||
/* MIPI CSI-2 bus endpoint */
|
||||
ceu0_0: endpoint@0 {
|
||||
reg = <0>;
|
||||
remote = <&csi2_2>;
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
i2c0: i2c@fff20000 {
|
||||
...
|
||||
ov772x_1: camera@21 {
|
||||
compatible = "ovti,ov772x";
|
||||
reg = <0x21>;
|
||||
vddio-supply = <®ulator1>;
|
||||
vddcore-supply = <®ulator2>;
|
||||
|
||||
clock-frequency = <20000000>;
|
||||
clocks = <&mclk 0>;
|
||||
clock-names = "xclk";
|
||||
|
||||
port {
|
||||
/* With 1 endpoint per port no need for addresses. */
|
||||
ov772x_1_1: endpoint {
|
||||
bus-width = <8>;
|
||||
remote-endpoint = <&ceu0_1>;
|
||||
hsync-active = <1>;
|
||||
vsync-active = <0>; /* Who came up with an
|
||||
inverter here ?... */
|
||||
data-active = <1>;
|
||||
pclk-sample = <1>;
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
imx074: camera@1a {
|
||||
compatible = "sony,imx074";
|
||||
reg = <0x1a>;
|
||||
vddio-supply = <®ulator1>;
|
||||
vddcore-supply = <®ulator2>;
|
||||
|
||||
clock-frequency = <30000000>; /* Shared clock with ov772x_1 */
|
||||
clocks = <&mclk 0>;
|
||||
clock-names = "sysclk"; /* Assuming this is the
|
||||
name in the datasheet */
|
||||
port {
|
||||
imx074_1: endpoint {
|
||||
clock-lanes = <0>;
|
||||
data-lanes = <1 2>;
|
||||
remote-endpoint = <&csi2_1>;
|
||||
};
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
csi2: csi2@ffc90000 {
|
||||
compatible = "renesas,sh-mobile-csi2";
|
||||
reg = <0xffc90000 0x1000>;
|
||||
interrupts = <0x17a0>;
|
||||
#address-cells = <1>;
|
||||
#size-cells = <0>;
|
||||
|
||||
port@1 {
|
||||
compatible = "renesas,csi2c"; /* One of CSI2I and CSI2C. */
|
||||
reg = <1>; /* CSI-2 PHY #1 of 2: PHY_S,
|
||||
PHY_M has port address 0,
|
||||
is unused. */
|
||||
csi2_1: endpoint {
|
||||
clock-lanes = <0>;
|
||||
data-lanes = <2 1>;
|
||||
remote-endpoint = <&imx074_1>;
|
||||
};
|
||||
};
|
||||
port@2 {
|
||||
reg = <2>; /* port 2: link to the CEU */
|
||||
|
||||
csi2_2: endpoint {
|
||||
remote-endpoint = <&ceu0_0>;
|
||||
};
|
||||
};
|
||||
};
|
||||
This file has moved to video-interfaces.yaml and video-interface-devices.yaml.
|
||||
|
|
|
@ -0,0 +1,344 @@
|
|||
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
|
||||
%YAML 1.2
|
||||
---
|
||||
$id: http://devicetree.org/schemas/media/video-interfaces.yaml#
|
||||
$schema: http://devicetree.org/meta-schemas/core.yaml#
|
||||
|
||||
title: Common bindings for video receiver and transmitter interface endpoints
|
||||
|
||||
maintainers:
|
||||
- Sakari Ailus <sakari.ailus@linux.intel.com>
|
||||
- Laurent Pinchart <laurent.pinchart@ideasonboard.com>
|
||||
|
||||
description: |
|
||||
Video data pipelines usually consist of external devices, e.g. camera sensors,
|
||||
controlled over an I2C, SPI or UART bus, and SoC internal IP blocks, including
|
||||
video DMA engines and video data processors.
|
||||
|
||||
SoC internal blocks are described by DT nodes, placed similarly to other SoC
|
||||
blocks. External devices are represented as child nodes of their respective
|
||||
bus controller nodes, e.g. I2C.
|
||||
|
||||
Data interfaces on all video devices are described by their child 'port' nodes.
|
||||
Configuration of a port depends on other devices participating in the data
|
||||
transfer and is described by 'endpoint' subnodes.
|
||||
|
||||
device {
|
||||
...
|
||||
ports {
|
||||
#address-cells = <1>;
|
||||
#size-cells = <0>;
|
||||
|
||||
port@0 {
|
||||
...
|
||||
endpoint@0 { ... };
|
||||
endpoint@1 { ... };
|
||||
};
|
||||
port@1 { ... };
|
||||
};
|
||||
};
|
||||
|
||||
If a port can be configured to work with more than one remote device on the same
|
||||
bus, an 'endpoint' child node must be provided for each of them. If more than
|
||||
one port is present in a device node or there is more than one endpoint at a
|
||||
port, or port node needs to be associated with a selected hardware interface,
|
||||
a common scheme using '#address-cells', '#size-cells' and 'reg' properties is
|
||||
used.
|
||||
|
||||
All 'port' nodes can be grouped under optional 'ports' node, which allows to
|
||||
specify #address-cells, #size-cells properties independently for the 'port'
|
||||
and 'endpoint' nodes and any child device nodes a device might have.
|
||||
|
||||
Two 'endpoint' nodes are linked with each other through their 'remote-endpoint'
|
||||
phandles. An endpoint subnode of a device contains all properties needed for
|
||||
configuration of this device for data exchange with other device. In most
|
||||
cases properties at the peer 'endpoint' nodes will be identical, however they
|
||||
might need to be different when there is any signal modifications on the bus
|
||||
between two devices, e.g. there are logic signal inverters on the lines.
|
||||
|
||||
It is allowed for multiple endpoints at a port to be active simultaneously,
|
||||
where supported by a device. For example, in case where a data interface of
|
||||
a device is partitioned into multiple data busses, e.g. 16-bit input port
|
||||
divided into two separate ITU-R BT.656 8-bit busses. In such case bus-width
|
||||
and data-shift properties can be used to assign physical data lines to each
|
||||
endpoint node (logical bus).
|
||||
|
||||
Documenting bindings for devices
|
||||
--------------------------------
|
||||
|
||||
All required and optional bindings the device supports shall be explicitly
|
||||
documented in device DT binding documentation. This also includes port and
|
||||
endpoint nodes for the device, including unit-addresses and reg properties
|
||||
where relevant.
|
||||
|
||||
allOf:
|
||||
- $ref: /schemas/graph.yaml#/$defs/endpoint-base
|
||||
|
||||
properties:
|
||||
slave-mode:
|
||||
type: boolean
|
||||
description:
|
||||
Indicates that the link is run in slave mode. The default when this
|
||||
property is not specified is master mode. In the slave mode horizontal and
|
||||
vertical synchronization signals are provided to the slave device (data
|
||||
source) by the master device (data sink). In the master mode the data
|
||||
source device is also the source of the synchronization signals.
|
||||
|
||||
bus-type:
|
||||
$ref: /schemas/types.yaml#/definitions/uint32
|
||||
enum:
|
||||
- 1 # MIPI CSI-2 C-PHY
|
||||
- 2 # MIPI CSI1
|
||||
- 3 # CCP2
|
||||
- 4 # MIPI CSI-2 D-PHY
|
||||
- 5 # Parallel
|
||||
- 6 # BT.656
|
||||
description:
|
||||
Data bus type.
|
||||
|
||||
bus-width:
|
||||
$ref: /schemas/types.yaml#/definitions/uint32
|
||||
maximum: 64
|
||||
description:
|
||||
Number of data lines actively used, valid for the parallel busses.
|
||||
|
||||
data-shift:
|
||||
$ref: /schemas/types.yaml#/definitions/uint32
|
||||
maximum: 64
|
||||
description:
|
||||
On the parallel data busses, if bus-width is used to specify the number of
|
||||
data lines, data-shift can be used to specify which data lines are used,
|
||||
e.g. "bus-width=<8>; data-shift=<2>;" means, that lines 9:2 are used.
|
||||
|
||||
hsync-active:
|
||||
$ref: /schemas/types.yaml#/definitions/uint32
|
||||
enum: [ 0, 1 ]
|
||||
description:
|
||||
Active state of the HSYNC signal, 0/1 for LOW/HIGH respectively.
|
||||
|
||||
vsync-active:
|
||||
$ref: /schemas/types.yaml#/definitions/uint32
|
||||
enum: [ 0, 1 ]
|
||||
description:
|
||||
Active state of the VSYNC signal, 0/1 for LOW/HIGH respectively. Note,
|
||||
that if HSYNC and VSYNC polarities are not specified, embedded
|
||||
synchronization may be required, where supported.
|
||||
|
||||
data-active:
|
||||
$ref: /schemas/types.yaml#/definitions/uint32
|
||||
enum: [ 0, 1 ]
|
||||
description:
|
||||
Similar to HSYNC and VSYNC, specifies data line polarity.
|
||||
|
||||
data-enable-active:
|
||||
$ref: /schemas/types.yaml#/definitions/uint32
|
||||
enum: [ 0, 1 ]
|
||||
description:
|
||||
Similar to HSYNC and VSYNC, specifies the data enable signal polarity.
|
||||
|
||||
field-even-active:
|
||||
$ref: /schemas/types.yaml#/definitions/uint32
|
||||
enum: [ 0, 1 ]
|
||||
description:
|
||||
Field signal level during the even field data transmission.
|
||||
|
||||
pclk-sample:
|
||||
$ref: /schemas/types.yaml#/definitions/uint32
|
||||
enum: [ 0, 1 ]
|
||||
description:
|
||||
Sample data on rising (1) or falling (0) edge of the pixel clock signal.
|
||||
|
||||
sync-on-green-active:
|
||||
$ref: /schemas/types.yaml#/definitions/uint32
|
||||
enum: [ 0, 1 ]
|
||||
description:
|
||||
Active state of Sync-on-green (SoG) signal, 0/1 for LOW/HIGH respectively.
|
||||
|
||||
data-lanes:
|
||||
$ref: /schemas/types.yaml#/definitions/uint32-array
|
||||
minItems: 1
|
||||
maxItems: 8
|
||||
items:
|
||||
# Assume up to 9 physical lane indices
|
||||
maximum: 8
|
||||
description:
|
||||
An array of physical data lane indexes. Position of an entry determines
|
||||
the logical lane number, while the value of an entry indicates physical
|
||||
lane, e.g. for 2-lane MIPI CSI-2 bus we could have "data-lanes = <1 2>;",
|
||||
assuming the clock lane is on hardware lane 0. If the hardware does not
|
||||
support lane reordering, monotonically incremented values shall be used
|
||||
from 0 or 1 onwards, depending on whether or not there is also a clock
|
||||
lane. This property is valid for serial busses only (e.g. MIPI CSI-2).
|
||||
|
||||
clock-lanes:
|
||||
$ref: /schemas/types.yaml#/definitions/uint32
|
||||
# Assume up to 9 physical lane indices
|
||||
maximum: 8
|
||||
description:
|
||||
Physical clock lane index. Position of an entry determines the logical
|
||||
lane number, while the value of an entry indicates physical lane, e.g. for
|
||||
a MIPI CSI-2 bus we could have "clock-lanes = <0>;", which places the
|
||||
clock lane on hardware lane 0. This property is valid for serial busses
|
||||
only (e.g. MIPI CSI-2).
|
||||
|
||||
clock-noncontinuous:
|
||||
type: boolean
|
||||
description:
|
||||
Allow MIPI CSI-2 non-continuous clock mode.
|
||||
|
||||
link-frequencies:
|
||||
$ref: /schemas/types.yaml#/definitions/uint64-array
|
||||
description:
|
||||
Allowed data bus frequencies. For MIPI CSI-2, for instance, this is the
|
||||
actual frequency of the bus, not bits per clock per lane value. An array
|
||||
of 64-bit unsigned integers.
|
||||
|
||||
lane-polarities:
|
||||
$ref: /schemas/types.yaml#/definitions/uint32-array
|
||||
minItems: 1
|
||||
maxItems: 9
|
||||
items:
|
||||
enum: [ 0, 1 ]
|
||||
description:
|
||||
An array of polarities of the lanes starting from the clock lane and
|
||||
followed by the data lanes in the same order as in data-lanes. Valid
|
||||
values are 0 (normal) and 1 (inverted). The length of the array should be
|
||||
the combined length of data-lanes and clock-lanes properties. If the
|
||||
lane-polarities property is omitted, the value must be interpreted as 0
|
||||
(normal). This property is valid for serial busses only.
|
||||
|
||||
strobe:
|
||||
$ref: /schemas/types.yaml#/definitions/uint32
|
||||
enum: [ 0, 1 ]
|
||||
description:
|
||||
Whether the clock signal is used as clock (0) or strobe (1). Used with
|
||||
CCP2, for instance.
|
||||
|
||||
additionalProperties: true
|
||||
|
||||
examples:
|
||||
# The example snippet below describes two data pipelines. ov772x and imx074
|
||||
# are camera sensors with a parallel and serial (MIPI CSI-2) video bus
|
||||
# respectively. Both sensors are on the I2C control bus corresponding to the
|
||||
# i2c0 controller node. ov772x sensor is linked directly to the ceu0 video
|
||||
# host interface. imx074 is linked to ceu0 through the MIPI CSI-2 receiver
|
||||
# (csi2). ceu0 has a (single) DMA engine writing captured data to memory.
|
||||
# ceu0 node has a single 'port' node which may indicate that at any time
|
||||
# only one of the following data pipelines can be active:
|
||||
# ov772x -> ceu0 or imx074 -> csi2 -> ceu0.
|
||||
- |
|
||||
ceu@fe910000 {
|
||||
compatible = "renesas,sh-mobile-ceu";
|
||||
reg = <0xfe910000 0xa0>;
|
||||
interrupts = <0x880>;
|
||||
|
||||
mclk: master_clock {
|
||||
compatible = "renesas,ceu-clock";
|
||||
#clock-cells = <1>;
|
||||
clock-frequency = <50000000>; /* Max clock frequency */
|
||||
clock-output-names = "mclk";
|
||||
};
|
||||
|
||||
port {
|
||||
#address-cells = <1>;
|
||||
#size-cells = <0>;
|
||||
|
||||
/* Parallel bus endpoint */
|
||||
ceu0_1: endpoint@1 {
|
||||
reg = <1>; /* Local endpoint # */
|
||||
remote-endpoint = <&ov772x_1_1>; /* Remote phandle */
|
||||
bus-width = <8>; /* Used data lines */
|
||||
data-shift = <2>; /* Lines 9:2 are used */
|
||||
|
||||
/* If hsync-active/vsync-active are missing,
|
||||
embedded BT.656 sync is used */
|
||||
hsync-active = <0>; /* Active low */
|
||||
vsync-active = <0>; /* Active low */
|
||||
data-active = <1>; /* Active high */
|
||||
pclk-sample = <1>; /* Rising */
|
||||
};
|
||||
|
||||
/* MIPI CSI-2 bus endpoint */
|
||||
ceu0_0: endpoint@0 {
|
||||
reg = <0>;
|
||||
remote-endpoint = <&csi2_2>;
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
i2c {
|
||||
#address-cells = <1>;
|
||||
#size-cells = <0>;
|
||||
|
||||
camera@21 {
|
||||
compatible = "ovti,ov772x";
|
||||
reg = <0x21>;
|
||||
vddio-supply = <®ulator1>;
|
||||
vddcore-supply = <®ulator2>;
|
||||
|
||||
clock-frequency = <20000000>;
|
||||
clocks = <&mclk 0>;
|
||||
clock-names = "xclk";
|
||||
|
||||
port {
|
||||
/* With 1 endpoint per port no need for addresses. */
|
||||
ov772x_1_1: endpoint {
|
||||
bus-width = <8>;
|
||||
remote-endpoint = <&ceu0_1>;
|
||||
hsync-active = <1>;
|
||||
vsync-active = <0>; /* Who came up with an
|
||||
inverter here ?... */
|
||||
data-active = <1>;
|
||||
pclk-sample = <1>;
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
camera@1a {
|
||||
compatible = "sony,imx074";
|
||||
reg = <0x1a>;
|
||||
vddio-supply = <®ulator1>;
|
||||
vddcore-supply = <®ulator2>;
|
||||
|
||||
clock-frequency = <30000000>; /* Shared clock with ov772x_1 */
|
||||
clocks = <&mclk 0>;
|
||||
clock-names = "sysclk"; /* Assuming this is the
|
||||
name in the datasheet */
|
||||
port {
|
||||
imx074_1: endpoint {
|
||||
clock-lanes = <0>;
|
||||
data-lanes = <1 2>;
|
||||
remote-endpoint = <&csi2_1>;
|
||||
};
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
csi2: csi2@ffc90000 {
|
||||
compatible = "renesas,sh-mobile-csi2";
|
||||
reg = <0xffc90000 0x1000>;
|
||||
interrupts = <0x17a0>;
|
||||
#address-cells = <1>;
|
||||
#size-cells = <0>;
|
||||
|
||||
port@1 {
|
||||
compatible = "renesas,csi2c"; /* One of CSI2I and CSI2C. */
|
||||
reg = <1>; /* CSI-2 PHY #1 of 2: PHY_S,
|
||||
PHY_M has port address 0,
|
||||
is unused. */
|
||||
csi2_1: endpoint {
|
||||
clock-lanes = <0>;
|
||||
data-lanes = <2 1>;
|
||||
remote-endpoint = <&imx074_1>;
|
||||
};
|
||||
};
|
||||
port@2 {
|
||||
reg = <2>; /* port 2: link to the CEU */
|
||||
|
||||
csi2_2: endpoint {
|
||||
remote-endpoint = <&ceu0_0>;
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
...
|
Loading…
Reference in New Issue