mirror of https://gitee.com/openkylin/linux.git
media: dt-bindings: Convert video-interfaces.txt properties to schemas
Convert video-interfaces.txt to DT schema. As it contains a mixture of device level and endpoint properties, split it up into 2 schemas. Binding schemas will need to reference both the graph.yaml and video-interfaces.yaml schemas. The exact schema depends on how many ports and endpoints for the binding. A single port with a single endpoint looks similar to this: port: $ref: /schemas/graph.yaml#/$defs/port-base properties: endpoint: $ref: video-interfaces.yaml# unevaluatedProperties: false properties: bus-width: enum: [ 8, 10, 12, 16 ] pclk-sample: true hsync-active: true vsync-active: true required: - bus-width additionalProperties: false Acked-by: Sakari Ailus <sakari.ailus@linux.intel.com> Acked-by: Jacopo Mondi <jacopo@jmondi.org> Acked-by: Guennadi Liakhovetski <g.liakhovetski@gmx.de> Acked-by: Hans Verkuil <hverkuil-cisco@xs4all.nl> Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Signed-off-by: Rob Herring <robh@kernel.org> Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
This commit is contained in:
parent
321af22a3d
commit
41f42b6e69
|
@ -0,0 +1,406 @@
|
||||||
|
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
|
||||||
|
%YAML 1.2
|
||||||
|
---
|
||||||
|
$id: http://devicetree.org/schemas/media/video-interface-devices.yaml#
|
||||||
|
$schema: http://devicetree.org/meta-schemas/core.yaml#
|
||||||
|
|
||||||
|
title: Common bindings for video receiver and transmitter devices
|
||||||
|
|
||||||
|
maintainers:
|
||||||
|
- Jacopo Mondi <jacopo@jmondi.org>
|
||||||
|
- Sakari Ailus <sakari.ailus@linux.intel.com>
|
||||||
|
|
||||||
|
properties:
|
||||||
|
flash-leds:
|
||||||
|
$ref: /schemas/types.yaml#/definitions/phandle-array
|
||||||
|
description:
|
||||||
|
An array of phandles, each referring to a flash LED, a sub-node of the LED
|
||||||
|
driver device node.
|
||||||
|
|
||||||
|
lens-focus:
|
||||||
|
$ref: /schemas/types.yaml#/definitions/phandle
|
||||||
|
description:
|
||||||
|
A phandle to the node of the focus lens controller.
|
||||||
|
|
||||||
|
rotation:
|
||||||
|
$ref: /schemas/types.yaml#/definitions/uint32
|
||||||
|
enum: [ 0, 90, 180, 270 ]
|
||||||
|
description: |
|
||||||
|
The camera rotation is expressed as the angular difference in degrees
|
||||||
|
between two reference systems, one relative to the camera module, and one
|
||||||
|
defined on the external world scene to be captured when projected on the
|
||||||
|
image sensor pixel array.
|
||||||
|
|
||||||
|
A camera sensor has a 2-dimensional reference system 'Rc' defined by its
|
||||||
|
pixel array read-out order. The origin is set to the first pixel being
|
||||||
|
read out, the X-axis points along the column read-out direction towards
|
||||||
|
the last columns, and the Y-axis along the row read-out direction towards
|
||||||
|
the last row.
|
||||||
|
|
||||||
|
A typical example for a sensor with a 2592x1944 pixel array matrix
|
||||||
|
observed from the front is:
|
||||||
|
|
||||||
|
2591 X-axis 0
|
||||||
|
<------------------------+ 0
|
||||||
|
.......... ... ..........!
|
||||||
|
.......... ... ..........! Y-axis
|
||||||
|
... !
|
||||||
|
.......... ... ..........!
|
||||||
|
.......... ... ..........! 1943
|
||||||
|
V
|
||||||
|
|
||||||
|
The external world scene reference system 'Rs' is a 2-dimensional
|
||||||
|
reference system on the focal plane of the camera module. The origin is
|
||||||
|
placed on the top-left corner of the visible scene, the X-axis points
|
||||||
|
towards the right, and the Y-axis points towards the bottom of the scene.
|
||||||
|
The top, bottom, left and right directions are intentionally not defined
|
||||||
|
and depend on the environment in which the camera is used.
|
||||||
|
|
||||||
|
A typical example of a (very common) picture of a shark swimming from left
|
||||||
|
to right, as seen from the camera, is:
|
||||||
|
|
||||||
|
0 X-axis
|
||||||
|
0 +------------------------------------->
|
||||||
|
!
|
||||||
|
!
|
||||||
|
!
|
||||||
|
! |\____)\___
|
||||||
|
! ) _____ __`<
|
||||||
|
! |/ )/
|
||||||
|
!
|
||||||
|
!
|
||||||
|
!
|
||||||
|
V
|
||||||
|
Y-axis
|
||||||
|
|
||||||
|
with the reference system 'Rs' placed on the camera focal plane:
|
||||||
|
|
||||||
|
¸.·˙!
|
||||||
|
¸.·˙ !
|
||||||
|
_ ¸.·˙ !
|
||||||
|
+-/ \-+¸.·˙ !
|
||||||
|
| (o) | ! Camera focal plane
|
||||||
|
+-----+˙·.¸ !
|
||||||
|
˙·.¸ !
|
||||||
|
˙·.¸ !
|
||||||
|
˙·.¸!
|
||||||
|
|
||||||
|
When projected on the sensor's pixel array, the image and the associated
|
||||||
|
reference system 'Rs' are typically (but not always) inverted, due to the
|
||||||
|
camera module's lens optical inversion effect.
|
||||||
|
|
||||||
|
Assuming the above represented scene of the swimming shark, the lens
|
||||||
|
inversion projects the scene and its reference system onto the sensor
|
||||||
|
pixel array, seen from the front of the camera sensor, as follows:
|
||||||
|
|
||||||
|
Y-axis
|
||||||
|
^
|
||||||
|
!
|
||||||
|
!
|
||||||
|
!
|
||||||
|
! |\_____)\__
|
||||||
|
! ) ____ ___.<
|
||||||
|
! |/ )/
|
||||||
|
!
|
||||||
|
!
|
||||||
|
!
|
||||||
|
0 +------------------------------------->
|
||||||
|
0 X-axis
|
||||||
|
|
||||||
|
Note the shark being upside-down.
|
||||||
|
|
||||||
|
The resulting projected reference system is named 'Rp'.
|
||||||
|
|
||||||
|
The camera rotation property is then defined as the angular difference in
|
||||||
|
the counter-clockwise direction between the camera reference system 'Rc'
|
||||||
|
and the projected scene reference system 'Rp'. It is expressed in degrees
|
||||||
|
as a number in the range [0, 360[.
|
||||||
|
|
||||||
|
Examples
|
||||||
|
|
||||||
|
0 degrees camera rotation:
|
||||||
|
|
||||||
|
|
||||||
|
Y-Rp
|
||||||
|
^
|
||||||
|
Y-Rc !
|
||||||
|
^ !
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! 0 +------------------------------------->
|
||||||
|
! 0 X-Rp
|
||||||
|
0 +------------------------------------->
|
||||||
|
0 X-Rc
|
||||||
|
|
||||||
|
|
||||||
|
X-Rc 0
|
||||||
|
<------------------------------------+ 0
|
||||||
|
X-Rp 0 !
|
||||||
|
<------------------------------------+ 0 !
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! V
|
||||||
|
! Y-Rc
|
||||||
|
V
|
||||||
|
Y-Rp
|
||||||
|
|
||||||
|
90 degrees camera rotation:
|
||||||
|
|
||||||
|
0 Y-Rc
|
||||||
|
0 +-------------------->
|
||||||
|
! Y-Rp
|
||||||
|
! ^
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! 0 +------------------------------------->
|
||||||
|
! 0 X-Rp
|
||||||
|
!
|
||||||
|
!
|
||||||
|
!
|
||||||
|
!
|
||||||
|
V
|
||||||
|
X-Rc
|
||||||
|
|
||||||
|
180 degrees camera rotation:
|
||||||
|
|
||||||
|
0
|
||||||
|
<------------------------------------+ 0
|
||||||
|
X-Rc !
|
||||||
|
Y-Rp !
|
||||||
|
^ !
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! V
|
||||||
|
! Y-Rc
|
||||||
|
0 +------------------------------------->
|
||||||
|
0 X-Rp
|
||||||
|
|
||||||
|
270 degrees camera rotation:
|
||||||
|
|
||||||
|
0 Y-Rc
|
||||||
|
0 +-------------------->
|
||||||
|
! 0
|
||||||
|
! <-----------------------------------+ 0
|
||||||
|
! X-Rp !
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! V
|
||||||
|
! Y-Rp
|
||||||
|
!
|
||||||
|
!
|
||||||
|
!
|
||||||
|
!
|
||||||
|
V
|
||||||
|
X-Rc
|
||||||
|
|
||||||
|
|
||||||
|
Example one - Webcam
|
||||||
|
|
||||||
|
A camera module installed on the user facing part of a laptop screen
|
||||||
|
casing used for video calls. The captured images are meant to be displayed
|
||||||
|
in landscape mode (width > height) on the laptop screen.
|
||||||
|
|
||||||
|
The camera is typically mounted upside-down to compensate the lens optical
|
||||||
|
inversion effect:
|
||||||
|
|
||||||
|
Y-Rp
|
||||||
|
Y-Rc ^
|
||||||
|
^ !
|
||||||
|
! !
|
||||||
|
! ! |\_____)\__
|
||||||
|
! ! ) ____ ___.<
|
||||||
|
! ! |/ )/
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! 0 +------------------------------------->
|
||||||
|
! 0 X-Rp
|
||||||
|
0 +------------------------------------->
|
||||||
|
0 X-Rc
|
||||||
|
|
||||||
|
The two reference systems are aligned, the resulting camera rotation is
|
||||||
|
0 degrees, no rotation correction needs to be applied to the resulting
|
||||||
|
image once captured to memory buffers to correctly display it to users:
|
||||||
|
|
||||||
|
+--------------------------------------+
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! |\____)\___ !
|
||||||
|
! ) _____ __`< !
|
||||||
|
! |/ )/ !
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
+--------------------------------------+
|
||||||
|
|
||||||
|
If the camera sensor is not mounted upside-down to compensate for the lens
|
||||||
|
optical inversion, the two reference systems will not be aligned, with
|
||||||
|
'Rp' being rotated 180 degrees relatively to 'Rc':
|
||||||
|
|
||||||
|
|
||||||
|
X-Rc 0
|
||||||
|
<------------------------------------+ 0
|
||||||
|
!
|
||||||
|
Y-Rp !
|
||||||
|
^ !
|
||||||
|
! !
|
||||||
|
! |\_____)\__ !
|
||||||
|
! ) ____ ___.< !
|
||||||
|
! |/ )/ !
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! V
|
||||||
|
! Y-Rc
|
||||||
|
0 +------------------------------------->
|
||||||
|
0 X-Rp
|
||||||
|
|
||||||
|
The image once captured to memory will then be rotated by 180 degrees:
|
||||||
|
|
||||||
|
+--------------------------------------+
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! __/(_____/| !
|
||||||
|
! >.___ ____ ( !
|
||||||
|
! \( \| !
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
+--------------------------------------+
|
||||||
|
|
||||||
|
A software rotation correction of 180 degrees should be applied to
|
||||||
|
correctly display the image:
|
||||||
|
|
||||||
|
+--------------------------------------+
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! |\____)\___ !
|
||||||
|
! ) _____ __`< !
|
||||||
|
! |/ )/ !
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
+--------------------------------------+
|
||||||
|
|
||||||
|
Example two - Phone camera
|
||||||
|
|
||||||
|
A camera installed on the back side of a mobile device facing away from
|
||||||
|
the user. The captured images are meant to be displayed in portrait mode
|
||||||
|
(height > width) to match the device screen orientation and the device
|
||||||
|
usage orientation used when taking the picture.
|
||||||
|
|
||||||
|
The camera sensor is typically mounted with its pixel array longer side
|
||||||
|
aligned to the device longer side, upside-down mounted to compensate for
|
||||||
|
the lens optical inversion effect:
|
||||||
|
|
||||||
|
0 Y-Rc
|
||||||
|
0 +-------------------->
|
||||||
|
! Y-Rp
|
||||||
|
! ^
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! ! |\_____)\__
|
||||||
|
! ! ) ____ ___.<
|
||||||
|
! ! |/ )/
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! !
|
||||||
|
! 0 +------------------------------------->
|
||||||
|
! 0 X-Rp
|
||||||
|
!
|
||||||
|
!
|
||||||
|
!
|
||||||
|
!
|
||||||
|
V
|
||||||
|
X-Rc
|
||||||
|
|
||||||
|
The two reference systems are not aligned and the 'Rp' reference system is
|
||||||
|
rotated by 90 degrees in the counter-clockwise direction relatively to the
|
||||||
|
'Rc' reference system.
|
||||||
|
|
||||||
|
The image once captured to memory will be rotated:
|
||||||
|
|
||||||
|
+-------------------------------------+
|
||||||
|
| _ _ |
|
||||||
|
| \ / |
|
||||||
|
| | | |
|
||||||
|
| | | |
|
||||||
|
| | > |
|
||||||
|
| < | |
|
||||||
|
| | | |
|
||||||
|
| . |
|
||||||
|
| V |
|
||||||
|
+-------------------------------------+
|
||||||
|
|
||||||
|
A correction of 90 degrees in counter-clockwise direction has to be
|
||||||
|
applied to correctly display the image in portrait mode on the device
|
||||||
|
screen:
|
||||||
|
|
||||||
|
+--------------------+
|
||||||
|
| |
|
||||||
|
| |
|
||||||
|
| |
|
||||||
|
| |
|
||||||
|
| |
|
||||||
|
| |
|
||||||
|
| |\____)\___ |
|
||||||
|
| ) _____ __`< |
|
||||||
|
| |/ )/ |
|
||||||
|
| |
|
||||||
|
| |
|
||||||
|
| |
|
||||||
|
| |
|
||||||
|
| |
|
||||||
|
+--------------------+
|
||||||
|
|
||||||
|
orientation:
|
||||||
|
description:
|
||||||
|
The orientation of a device (typically an image sensor or a flash LED)
|
||||||
|
describing its mounting position relative to the usage orientation of the
|
||||||
|
system where the device is installed on.
|
||||||
|
$ref: /schemas/types.yaml#/definitions/uint32
|
||||||
|
enum:
|
||||||
|
# Front. The device is mounted on the front facing side of the system. For
|
||||||
|
# mobile devices such as smartphones, tablets and laptops the front side
|
||||||
|
# is the user facing side.
|
||||||
|
- 0
|
||||||
|
# Back. The device is mounted on the back side of the system, which is
|
||||||
|
# defined as the opposite side of the front facing one.
|
||||||
|
- 1
|
||||||
|
# External. The device is not attached directly to the system but is
|
||||||
|
# attached in a way that allows it to move freely.
|
||||||
|
- 2
|
||||||
|
|
||||||
|
additionalProperties: true
|
||||||
|
|
||||||
|
...
|
|
@ -1,639 +1 @@
|
||||||
Common bindings for video receiver and transmitter interfaces
|
This file has moved to video-interfaces.yaml and video-interface-devices.yaml.
|
||||||
|
|
||||||
General concept
|
|
||||||
---------------
|
|
||||||
|
|
||||||
Video data pipelines usually consist of external devices, e.g. camera sensors,
|
|
||||||
controlled over an I2C, SPI or UART bus, and SoC internal IP blocks, including
|
|
||||||
video DMA engines and video data processors.
|
|
||||||
|
|
||||||
SoC internal blocks are described by DT nodes, placed similarly to other SoC
|
|
||||||
blocks. External devices are represented as child nodes of their respective
|
|
||||||
bus controller nodes, e.g. I2C.
|
|
||||||
|
|
||||||
Data interfaces on all video devices are described by their child 'port' nodes.
|
|
||||||
Configuration of a port depends on other devices participating in the data
|
|
||||||
transfer and is described by 'endpoint' subnodes.
|
|
||||||
|
|
||||||
device {
|
|
||||||
...
|
|
||||||
ports {
|
|
||||||
#address-cells = <1>;
|
|
||||||
#size-cells = <0>;
|
|
||||||
|
|
||||||
port@0 {
|
|
||||||
...
|
|
||||||
endpoint@0 { ... };
|
|
||||||
endpoint@1 { ... };
|
|
||||||
};
|
|
||||||
port@1 { ... };
|
|
||||||
};
|
|
||||||
};
|
|
||||||
|
|
||||||
If a port can be configured to work with more than one remote device on the same
|
|
||||||
bus, an 'endpoint' child node must be provided for each of them. If more than
|
|
||||||
one port is present in a device node or there is more than one endpoint at a
|
|
||||||
port, or port node needs to be associated with a selected hardware interface,
|
|
||||||
a common scheme using '#address-cells', '#size-cells' and 'reg' properties is
|
|
||||||
used.
|
|
||||||
|
|
||||||
All 'port' nodes can be grouped under optional 'ports' node, which allows to
|
|
||||||
specify #address-cells, #size-cells properties independently for the 'port'
|
|
||||||
and 'endpoint' nodes and any child device nodes a device might have.
|
|
||||||
|
|
||||||
Two 'endpoint' nodes are linked with each other through their 'remote-endpoint'
|
|
||||||
phandles. An endpoint subnode of a device contains all properties needed for
|
|
||||||
configuration of this device for data exchange with other device. In most
|
|
||||||
cases properties at the peer 'endpoint' nodes will be identical, however they
|
|
||||||
might need to be different when there is any signal modifications on the bus
|
|
||||||
between two devices, e.g. there are logic signal inverters on the lines.
|
|
||||||
|
|
||||||
It is allowed for multiple endpoints at a port to be active simultaneously,
|
|
||||||
where supported by a device. For example, in case where a data interface of
|
|
||||||
a device is partitioned into multiple data busses, e.g. 16-bit input port
|
|
||||||
divided into two separate ITU-R BT.656 8-bit busses. In such case bus-width
|
|
||||||
and data-shift properties can be used to assign physical data lines to each
|
|
||||||
endpoint node (logical bus).
|
|
||||||
|
|
||||||
Documenting bindings for devices
|
|
||||||
--------------------------------
|
|
||||||
|
|
||||||
All required and optional bindings the device supports shall be explicitly
|
|
||||||
documented in device DT binding documentation. This also includes port and
|
|
||||||
endpoint nodes for the device, including unit-addresses and reg properties where
|
|
||||||
relevant.
|
|
||||||
|
|
||||||
Please also see Documentation/devicetree/bindings/graph.txt .
|
|
||||||
|
|
||||||
Required properties
|
|
||||||
-------------------
|
|
||||||
|
|
||||||
If there is more than one 'port' or more than one 'endpoint' node or 'reg'
|
|
||||||
property is present in port and/or endpoint nodes the following properties
|
|
||||||
are required in a relevant parent node:
|
|
||||||
|
|
||||||
- #address-cells : number of cells required to define port/endpoint
|
|
||||||
identifier, should be 1.
|
|
||||||
- #size-cells : should be zero.
|
|
||||||
|
|
||||||
|
|
||||||
Optional properties
|
|
||||||
-------------------
|
|
||||||
|
|
||||||
- flash-leds: An array of phandles, each referring to a flash LED, a sub-node
|
|
||||||
of the LED driver device node.
|
|
||||||
|
|
||||||
- lens-focus: A phandle to the node of the focus lens controller.
|
|
||||||
|
|
||||||
- rotation: The camera rotation is expressed as the angular difference in
|
|
||||||
degrees between two reference systems, one relative to the camera module, and
|
|
||||||
one defined on the external world scene to be captured when projected on the
|
|
||||||
image sensor pixel array.
|
|
||||||
|
|
||||||
A camera sensor has a 2-dimensional reference system 'Rc' defined by
|
|
||||||
its pixel array read-out order. The origin is set to the first pixel
|
|
||||||
being read out, the X-axis points along the column read-out direction
|
|
||||||
towards the last columns, and the Y-axis along the row read-out
|
|
||||||
direction towards the last row.
|
|
||||||
|
|
||||||
A typical example for a sensor with a 2592x1944 pixel array matrix
|
|
||||||
observed from the front is:
|
|
||||||
|
|
||||||
2591 X-axis 0
|
|
||||||
<------------------------+ 0
|
|
||||||
.......... ... ..........!
|
|
||||||
.......... ... ..........! Y-axis
|
|
||||||
... !
|
|
||||||
.......... ... ..........!
|
|
||||||
.......... ... ..........! 1943
|
|
||||||
V
|
|
||||||
|
|
||||||
The external world scene reference system 'Rs' is a 2-dimensional
|
|
||||||
reference system on the focal plane of the camera module. The origin is
|
|
||||||
placed on the top-left corner of the visible scene, the X-axis points
|
|
||||||
towards the right, and the Y-axis points towards the bottom of the
|
|
||||||
scene. The top, bottom, left and right directions are intentionally not
|
|
||||||
defined and depend on the environment in which the camera is used.
|
|
||||||
|
|
||||||
A typical example of a (very common) picture of a shark swimming from
|
|
||||||
left to right, as seen from the camera, is:
|
|
||||||
|
|
||||||
0 X-axis
|
|
||||||
0 +------------------------------------->
|
|
||||||
!
|
|
||||||
!
|
|
||||||
!
|
|
||||||
! |\____)\___
|
|
||||||
! ) _____ __`<
|
|
||||||
! |/ )/
|
|
||||||
!
|
|
||||||
!
|
|
||||||
!
|
|
||||||
V
|
|
||||||
Y-axis
|
|
||||||
|
|
||||||
with the reference system 'Rs' placed on the camera focal plane:
|
|
||||||
|
|
||||||
¸.·˙!
|
|
||||||
¸.·˙ !
|
|
||||||
_ ¸.·˙ !
|
|
||||||
+-/ \-+¸.·˙ !
|
|
||||||
| (o) | ! Camera focal plane
|
|
||||||
+-----+˙·.¸ !
|
|
||||||
˙·.¸ !
|
|
||||||
˙·.¸ !
|
|
||||||
˙·.¸!
|
|
||||||
|
|
||||||
When projected on the sensor's pixel array, the image and the associated
|
|
||||||
reference system 'Rs' are typically (but not always) inverted, due to
|
|
||||||
the camera module's lens optical inversion effect.
|
|
||||||
|
|
||||||
Assuming the above represented scene of the swimming shark, the lens
|
|
||||||
inversion projects the scene and its reference system onto the sensor
|
|
||||||
pixel array, seen from the front of the camera sensor, as follows:
|
|
||||||
|
|
||||||
Y-axis
|
|
||||||
^
|
|
||||||
!
|
|
||||||
!
|
|
||||||
!
|
|
||||||
! |\_____)\__
|
|
||||||
! ) ____ ___.<
|
|
||||||
! |/ )/
|
|
||||||
!
|
|
||||||
!
|
|
||||||
!
|
|
||||||
0 +------------------------------------->
|
|
||||||
0 X-axis
|
|
||||||
|
|
||||||
Note the shark being upside-down.
|
|
||||||
|
|
||||||
The resulting projected reference system is named 'Rp'.
|
|
||||||
|
|
||||||
The camera rotation property is then defined as the angular difference
|
|
||||||
in the counter-clockwise direction between the camera reference system
|
|
||||||
'Rc' and the projected scene reference system 'Rp'. It is expressed in
|
|
||||||
degrees as a number in the range [0, 360[.
|
|
||||||
|
|
||||||
Examples
|
|
||||||
|
|
||||||
0 degrees camera rotation:
|
|
||||||
|
|
||||||
|
|
||||||
Y-Rp
|
|
||||||
^
|
|
||||||
Y-Rc !
|
|
||||||
^ !
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! 0 +------------------------------------->
|
|
||||||
! 0 X-Rp
|
|
||||||
0 +------------------------------------->
|
|
||||||
0 X-Rc
|
|
||||||
|
|
||||||
|
|
||||||
X-Rc 0
|
|
||||||
<------------------------------------+ 0
|
|
||||||
X-Rp 0 !
|
|
||||||
<------------------------------------+ 0 !
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! V
|
|
||||||
! Y-Rc
|
|
||||||
V
|
|
||||||
Y-Rp
|
|
||||||
|
|
||||||
90 degrees camera rotation:
|
|
||||||
|
|
||||||
0 Y-Rc
|
|
||||||
0 +-------------------->
|
|
||||||
! Y-Rp
|
|
||||||
! ^
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! 0 +------------------------------------->
|
|
||||||
! 0 X-Rp
|
|
||||||
!
|
|
||||||
!
|
|
||||||
!
|
|
||||||
!
|
|
||||||
V
|
|
||||||
X-Rc
|
|
||||||
|
|
||||||
180 degrees camera rotation:
|
|
||||||
|
|
||||||
0
|
|
||||||
<------------------------------------+ 0
|
|
||||||
X-Rc !
|
|
||||||
Y-Rp !
|
|
||||||
^ !
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! V
|
|
||||||
! Y-Rc
|
|
||||||
0 +------------------------------------->
|
|
||||||
0 X-Rp
|
|
||||||
|
|
||||||
270 degrees camera rotation:
|
|
||||||
|
|
||||||
0 Y-Rc
|
|
||||||
0 +-------------------->
|
|
||||||
! 0
|
|
||||||
! <-----------------------------------+ 0
|
|
||||||
! X-Rp !
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! V
|
|
||||||
! Y-Rp
|
|
||||||
!
|
|
||||||
!
|
|
||||||
!
|
|
||||||
!
|
|
||||||
V
|
|
||||||
X-Rc
|
|
||||||
|
|
||||||
|
|
||||||
Example one - Webcam
|
|
||||||
|
|
||||||
A camera module installed on the user facing part of a laptop screen
|
|
||||||
casing used for video calls. The captured images are meant to be
|
|
||||||
displayed in landscape mode (width > height) on the laptop screen.
|
|
||||||
|
|
||||||
The camera is typically mounted upside-down to compensate the lens
|
|
||||||
optical inversion effect:
|
|
||||||
|
|
||||||
Y-Rp
|
|
||||||
Y-Rc ^
|
|
||||||
^ !
|
|
||||||
! !
|
|
||||||
! ! |\_____)\__
|
|
||||||
! ! ) ____ ___.<
|
|
||||||
! ! |/ )/
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! 0 +------------------------------------->
|
|
||||||
! 0 X-Rp
|
|
||||||
0 +------------------------------------->
|
|
||||||
0 X-Rc
|
|
||||||
|
|
||||||
The two reference systems are aligned, the resulting camera rotation is
|
|
||||||
0 degrees, no rotation correction needs to be applied to the resulting
|
|
||||||
image once captured to memory buffers to correctly display it to users:
|
|
||||||
|
|
||||||
+--------------------------------------+
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! |\____)\___ !
|
|
||||||
! ) _____ __`< !
|
|
||||||
! |/ )/ !
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
+--------------------------------------+
|
|
||||||
|
|
||||||
If the camera sensor is not mounted upside-down to compensate for the
|
|
||||||
lens optical inversion, the two reference systems will not be aligned,
|
|
||||||
with 'Rp' being rotated 180 degrees relatively to 'Rc':
|
|
||||||
|
|
||||||
|
|
||||||
X-Rc 0
|
|
||||||
<------------------------------------+ 0
|
|
||||||
!
|
|
||||||
Y-Rp !
|
|
||||||
^ !
|
|
||||||
! !
|
|
||||||
! |\_____)\__ !
|
|
||||||
! ) ____ ___.< !
|
|
||||||
! |/ )/ !
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! V
|
|
||||||
! Y-Rc
|
|
||||||
0 +------------------------------------->
|
|
||||||
0 X-Rp
|
|
||||||
|
|
||||||
The image once captured to memory will then be rotated by 180 degrees:
|
|
||||||
|
|
||||||
+--------------------------------------+
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! __/(_____/| !
|
|
||||||
! >.___ ____ ( !
|
|
||||||
! \( \| !
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
+--------------------------------------+
|
|
||||||
|
|
||||||
A software rotation correction of 180 degrees should be applied to
|
|
||||||
correctly display the image:
|
|
||||||
|
|
||||||
+--------------------------------------+
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! |\____)\___ !
|
|
||||||
! ) _____ __`< !
|
|
||||||
! |/ )/ !
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
+--------------------------------------+
|
|
||||||
|
|
||||||
Example two - Phone camera
|
|
||||||
|
|
||||||
A camera installed on the back side of a mobile device facing away from
|
|
||||||
the user. The captured images are meant to be displayed in portrait mode
|
|
||||||
(height > width) to match the device screen orientation and the device
|
|
||||||
usage orientation used when taking the picture.
|
|
||||||
|
|
||||||
The camera sensor is typically mounted with its pixel array longer side
|
|
||||||
aligned to the device longer side, upside-down mounted to compensate for
|
|
||||||
the lens optical inversion effect:
|
|
||||||
|
|
||||||
0 Y-Rc
|
|
||||||
0 +-------------------->
|
|
||||||
! Y-Rp
|
|
||||||
! ^
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! ! |\_____)\__
|
|
||||||
! ! ) ____ ___.<
|
|
||||||
! ! |/ )/
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! !
|
|
||||||
! 0 +------------------------------------->
|
|
||||||
! 0 X-Rp
|
|
||||||
!
|
|
||||||
!
|
|
||||||
!
|
|
||||||
!
|
|
||||||
V
|
|
||||||
X-Rc
|
|
||||||
|
|
||||||
The two reference systems are not aligned and the 'Rp' reference
|
|
||||||
system is rotated by 90 degrees in the counter-clockwise direction
|
|
||||||
relatively to the 'Rc' reference system.
|
|
||||||
|
|
||||||
The image once captured to memory will be rotated:
|
|
||||||
|
|
||||||
+-------------------------------------+
|
|
||||||
| _ _ |
|
|
||||||
| \ / |
|
|
||||||
| | | |
|
|
||||||
| | | |
|
|
||||||
| | > |
|
|
||||||
| < | |
|
|
||||||
| | | |
|
|
||||||
| . |
|
|
||||||
| V |
|
|
||||||
+-------------------------------------+
|
|
||||||
|
|
||||||
A correction of 90 degrees in counter-clockwise direction has to be
|
|
||||||
applied to correctly display the image in portrait mode on the device
|
|
||||||
screen:
|
|
||||||
|
|
||||||
+--------------------+
|
|
||||||
| |
|
|
||||||
| |
|
|
||||||
| |
|
|
||||||
| |
|
|
||||||
| |
|
|
||||||
| |
|
|
||||||
| |\____)\___ |
|
|
||||||
| ) _____ __`< |
|
|
||||||
| |/ )/ |
|
|
||||||
| |
|
|
||||||
| |
|
|
||||||
| |
|
|
||||||
| |
|
|
||||||
| |
|
|
||||||
+--------------------+
|
|
||||||
|
|
||||||
- orientation: The orientation of a device (typically an image sensor or a flash
|
|
||||||
LED) describing its mounting position relative to the usage orientation of the
|
|
||||||
system where the device is installed on.
|
|
||||||
Possible values are:
|
|
||||||
0 - Front. The device is mounted on the front facing side of the system.
|
|
||||||
For mobile devices such as smartphones, tablets and laptops the front side is
|
|
||||||
the user facing side.
|
|
||||||
1 - Back. The device is mounted on the back side of the system, which is
|
|
||||||
defined as the opposite side of the front facing one.
|
|
||||||
2 - External. The device is not attached directly to the system but is
|
|
||||||
attached in a way that allows it to move freely.
|
|
||||||
|
|
||||||
Optional endpoint properties
|
|
||||||
----------------------------
|
|
||||||
|
|
||||||
- remote-endpoint: phandle to an 'endpoint' subnode of a remote device node.
|
|
||||||
- slave-mode: a boolean property indicating that the link is run in slave mode.
|
|
||||||
The default when this property is not specified is master mode. In the slave
|
|
||||||
mode horizontal and vertical synchronization signals are provided to the
|
|
||||||
slave device (data source) by the master device (data sink). In the master
|
|
||||||
mode the data source device is also the source of the synchronization signals.
|
|
||||||
- bus-type: data bus type. Possible values are:
|
|
||||||
1 - MIPI CSI-2 C-PHY
|
|
||||||
2 - MIPI CSI1
|
|
||||||
3 - CCP2
|
|
||||||
4 - MIPI CSI-2 D-PHY
|
|
||||||
5 - Parallel
|
|
||||||
6 - Bt.656
|
|
||||||
- bus-width: number of data lines actively used, valid for the parallel busses.
|
|
||||||
- data-shift: on the parallel data busses, if bus-width is used to specify the
|
|
||||||
number of data lines, data-shift can be used to specify which data lines are
|
|
||||||
used, e.g. "bus-width=<8>; data-shift=<2>;" means, that lines 9:2 are used.
|
|
||||||
- hsync-active: active state of the HSYNC signal, 0/1 for LOW/HIGH respectively.
|
|
||||||
- vsync-active: active state of the VSYNC signal, 0/1 for LOW/HIGH respectively.
|
|
||||||
Note, that if HSYNC and VSYNC polarities are not specified, embedded
|
|
||||||
synchronization may be required, where supported.
|
|
||||||
- data-active: similar to HSYNC and VSYNC, specifies data line polarity.
|
|
||||||
- data-enable-active: similar to HSYNC and VSYNC, specifies the data enable
|
|
||||||
signal polarity.
|
|
||||||
- field-even-active: field signal level during the even field data transmission.
|
|
||||||
- pclk-sample: sample data on rising (1) or falling (0) edge of the pixel clock
|
|
||||||
signal.
|
|
||||||
- sync-on-green-active: active state of Sync-on-green (SoG) signal, 0/1 for
|
|
||||||
LOW/HIGH respectively.
|
|
||||||
- data-lanes: an array of physical data lane indexes. Position of an entry
|
|
||||||
determines the logical lane number, while the value of an entry indicates
|
|
||||||
physical lane, e.g. for 2-lane MIPI CSI-2 bus we could have
|
|
||||||
"data-lanes = <1 2>;", assuming the clock lane is on hardware lane 0.
|
|
||||||
If the hardware does not support lane reordering, monotonically
|
|
||||||
incremented values shall be used from 0 or 1 onwards, depending on
|
|
||||||
whether or not there is also a clock lane. This property is valid for
|
|
||||||
serial busses only (e.g. MIPI CSI-2).
|
|
||||||
- clock-lanes: an array of physical clock lane indexes. Position of an entry
|
|
||||||
determines the logical lane number, while the value of an entry indicates
|
|
||||||
physical lane, e.g. for a MIPI CSI-2 bus we could have "clock-lanes = <0>;",
|
|
||||||
which places the clock lane on hardware lane 0. This property is valid for
|
|
||||||
serial busses only (e.g. MIPI CSI-2). Note that for the MIPI CSI-2 bus this
|
|
||||||
array contains only one entry.
|
|
||||||
- clock-noncontinuous: a boolean property to allow MIPI CSI-2 non-continuous
|
|
||||||
clock mode.
|
|
||||||
- link-frequencies: Allowed data bus frequencies. For MIPI CSI-2, for
|
|
||||||
instance, this is the actual frequency of the bus, not bits per clock per
|
|
||||||
lane value. An array of 64-bit unsigned integers.
|
|
||||||
- lane-polarities: an array of polarities of the lanes starting from the clock
|
|
||||||
lane and followed by the data lanes in the same order as in data-lanes.
|
|
||||||
Valid values are 0 (normal) and 1 (inverted). The length of the array
|
|
||||||
should be the combined length of data-lanes and clock-lanes properties.
|
|
||||||
If the lane-polarities property is omitted, the value must be interpreted
|
|
||||||
as 0 (normal). This property is valid for serial busses only.
|
|
||||||
- strobe: Whether the clock signal is used as clock (0) or strobe (1). Used
|
|
||||||
with CCP2, for instance.
|
|
||||||
|
|
||||||
Example
|
|
||||||
-------
|
|
||||||
|
|
||||||
The example snippet below describes two data pipelines. ov772x and imx074 are
|
|
||||||
camera sensors with a parallel and serial (MIPI CSI-2) video bus respectively.
|
|
||||||
Both sensors are on the I2C control bus corresponding to the i2c0 controller
|
|
||||||
node. ov772x sensor is linked directly to the ceu0 video host interface.
|
|
||||||
imx074 is linked to ceu0 through the MIPI CSI-2 receiver (csi2). ceu0 has a
|
|
||||||
(single) DMA engine writing captured data to memory. ceu0 node has a single
|
|
||||||
'port' node which may indicate that at any time only one of the following data
|
|
||||||
pipelines can be active: ov772x -> ceu0 or imx074 -> csi2 -> ceu0.
|
|
||||||
|
|
||||||
ceu0: ceu@fe910000 {
|
|
||||||
compatible = "renesas,sh-mobile-ceu";
|
|
||||||
reg = <0xfe910000 0xa0>;
|
|
||||||
interrupts = <0x880>;
|
|
||||||
|
|
||||||
mclk: master_clock {
|
|
||||||
compatible = "renesas,ceu-clock";
|
|
||||||
#clock-cells = <1>;
|
|
||||||
clock-frequency = <50000000>; /* Max clock frequency */
|
|
||||||
clock-output-names = "mclk";
|
|
||||||
};
|
|
||||||
|
|
||||||
port {
|
|
||||||
#address-cells = <1>;
|
|
||||||
#size-cells = <0>;
|
|
||||||
|
|
||||||
/* Parallel bus endpoint */
|
|
||||||
ceu0_1: endpoint@1 {
|
|
||||||
reg = <1>; /* Local endpoint # */
|
|
||||||
remote = <&ov772x_1_1>; /* Remote phandle */
|
|
||||||
bus-width = <8>; /* Used data lines */
|
|
||||||
data-shift = <2>; /* Lines 9:2 are used */
|
|
||||||
|
|
||||||
/* If hsync-active/vsync-active are missing,
|
|
||||||
embedded BT.656 sync is used */
|
|
||||||
hsync-active = <0>; /* Active low */
|
|
||||||
vsync-active = <0>; /* Active low */
|
|
||||||
data-active = <1>; /* Active high */
|
|
||||||
pclk-sample = <1>; /* Rising */
|
|
||||||
};
|
|
||||||
|
|
||||||
/* MIPI CSI-2 bus endpoint */
|
|
||||||
ceu0_0: endpoint@0 {
|
|
||||||
reg = <0>;
|
|
||||||
remote = <&csi2_2>;
|
|
||||||
};
|
|
||||||
};
|
|
||||||
};
|
|
||||||
|
|
||||||
i2c0: i2c@fff20000 {
|
|
||||||
...
|
|
||||||
ov772x_1: camera@21 {
|
|
||||||
compatible = "ovti,ov772x";
|
|
||||||
reg = <0x21>;
|
|
||||||
vddio-supply = <®ulator1>;
|
|
||||||
vddcore-supply = <®ulator2>;
|
|
||||||
|
|
||||||
clock-frequency = <20000000>;
|
|
||||||
clocks = <&mclk 0>;
|
|
||||||
clock-names = "xclk";
|
|
||||||
|
|
||||||
port {
|
|
||||||
/* With 1 endpoint per port no need for addresses. */
|
|
||||||
ov772x_1_1: endpoint {
|
|
||||||
bus-width = <8>;
|
|
||||||
remote-endpoint = <&ceu0_1>;
|
|
||||||
hsync-active = <1>;
|
|
||||||
vsync-active = <0>; /* Who came up with an
|
|
||||||
inverter here ?... */
|
|
||||||
data-active = <1>;
|
|
||||||
pclk-sample = <1>;
|
|
||||||
};
|
|
||||||
};
|
|
||||||
};
|
|
||||||
|
|
||||||
imx074: camera@1a {
|
|
||||||
compatible = "sony,imx074";
|
|
||||||
reg = <0x1a>;
|
|
||||||
vddio-supply = <®ulator1>;
|
|
||||||
vddcore-supply = <®ulator2>;
|
|
||||||
|
|
||||||
clock-frequency = <30000000>; /* Shared clock with ov772x_1 */
|
|
||||||
clocks = <&mclk 0>;
|
|
||||||
clock-names = "sysclk"; /* Assuming this is the
|
|
||||||
name in the datasheet */
|
|
||||||
port {
|
|
||||||
imx074_1: endpoint {
|
|
||||||
clock-lanes = <0>;
|
|
||||||
data-lanes = <1 2>;
|
|
||||||
remote-endpoint = <&csi2_1>;
|
|
||||||
};
|
|
||||||
};
|
|
||||||
};
|
|
||||||
};
|
|
||||||
|
|
||||||
csi2: csi2@ffc90000 {
|
|
||||||
compatible = "renesas,sh-mobile-csi2";
|
|
||||||
reg = <0xffc90000 0x1000>;
|
|
||||||
interrupts = <0x17a0>;
|
|
||||||
#address-cells = <1>;
|
|
||||||
#size-cells = <0>;
|
|
||||||
|
|
||||||
port@1 {
|
|
||||||
compatible = "renesas,csi2c"; /* One of CSI2I and CSI2C. */
|
|
||||||
reg = <1>; /* CSI-2 PHY #1 of 2: PHY_S,
|
|
||||||
PHY_M has port address 0,
|
|
||||||
is unused. */
|
|
||||||
csi2_1: endpoint {
|
|
||||||
clock-lanes = <0>;
|
|
||||||
data-lanes = <2 1>;
|
|
||||||
remote-endpoint = <&imx074_1>;
|
|
||||||
};
|
|
||||||
};
|
|
||||||
port@2 {
|
|
||||||
reg = <2>; /* port 2: link to the CEU */
|
|
||||||
|
|
||||||
csi2_2: endpoint {
|
|
||||||
remote-endpoint = <&ceu0_0>;
|
|
||||||
};
|
|
||||||
};
|
|
||||||
};
|
|
||||||
|
|
|
@ -0,0 +1,344 @@
|
||||||
|
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
|
||||||
|
%YAML 1.2
|
||||||
|
---
|
||||||
|
$id: http://devicetree.org/schemas/media/video-interfaces.yaml#
|
||||||
|
$schema: http://devicetree.org/meta-schemas/core.yaml#
|
||||||
|
|
||||||
|
title: Common bindings for video receiver and transmitter interface endpoints
|
||||||
|
|
||||||
|
maintainers:
|
||||||
|
- Sakari Ailus <sakari.ailus@linux.intel.com>
|
||||||
|
- Laurent Pinchart <laurent.pinchart@ideasonboard.com>
|
||||||
|
|
||||||
|
description: |
|
||||||
|
Video data pipelines usually consist of external devices, e.g. camera sensors,
|
||||||
|
controlled over an I2C, SPI or UART bus, and SoC internal IP blocks, including
|
||||||
|
video DMA engines and video data processors.
|
||||||
|
|
||||||
|
SoC internal blocks are described by DT nodes, placed similarly to other SoC
|
||||||
|
blocks. External devices are represented as child nodes of their respective
|
||||||
|
bus controller nodes, e.g. I2C.
|
||||||
|
|
||||||
|
Data interfaces on all video devices are described by their child 'port' nodes.
|
||||||
|
Configuration of a port depends on other devices participating in the data
|
||||||
|
transfer and is described by 'endpoint' subnodes.
|
||||||
|
|
||||||
|
device {
|
||||||
|
...
|
||||||
|
ports {
|
||||||
|
#address-cells = <1>;
|
||||||
|
#size-cells = <0>;
|
||||||
|
|
||||||
|
port@0 {
|
||||||
|
...
|
||||||
|
endpoint@0 { ... };
|
||||||
|
endpoint@1 { ... };
|
||||||
|
};
|
||||||
|
port@1 { ... };
|
||||||
|
};
|
||||||
|
};
|
||||||
|
|
||||||
|
If a port can be configured to work with more than one remote device on the same
|
||||||
|
bus, an 'endpoint' child node must be provided for each of them. If more than
|
||||||
|
one port is present in a device node or there is more than one endpoint at a
|
||||||
|
port, or port node needs to be associated with a selected hardware interface,
|
||||||
|
a common scheme using '#address-cells', '#size-cells' and 'reg' properties is
|
||||||
|
used.
|
||||||
|
|
||||||
|
All 'port' nodes can be grouped under optional 'ports' node, which allows to
|
||||||
|
specify #address-cells, #size-cells properties independently for the 'port'
|
||||||
|
and 'endpoint' nodes and any child device nodes a device might have.
|
||||||
|
|
||||||
|
Two 'endpoint' nodes are linked with each other through their 'remote-endpoint'
|
||||||
|
phandles. An endpoint subnode of a device contains all properties needed for
|
||||||
|
configuration of this device for data exchange with other device. In most
|
||||||
|
cases properties at the peer 'endpoint' nodes will be identical, however they
|
||||||
|
might need to be different when there is any signal modifications on the bus
|
||||||
|
between two devices, e.g. there are logic signal inverters on the lines.
|
||||||
|
|
||||||
|
It is allowed for multiple endpoints at a port to be active simultaneously,
|
||||||
|
where supported by a device. For example, in case where a data interface of
|
||||||
|
a device is partitioned into multiple data busses, e.g. 16-bit input port
|
||||||
|
divided into two separate ITU-R BT.656 8-bit busses. In such case bus-width
|
||||||
|
and data-shift properties can be used to assign physical data lines to each
|
||||||
|
endpoint node (logical bus).
|
||||||
|
|
||||||
|
Documenting bindings for devices
|
||||||
|
--------------------------------
|
||||||
|
|
||||||
|
All required and optional bindings the device supports shall be explicitly
|
||||||
|
documented in device DT binding documentation. This also includes port and
|
||||||
|
endpoint nodes for the device, including unit-addresses and reg properties
|
||||||
|
where relevant.
|
||||||
|
|
||||||
|
allOf:
|
||||||
|
- $ref: /schemas/graph.yaml#/$defs/endpoint-base
|
||||||
|
|
||||||
|
properties:
|
||||||
|
slave-mode:
|
||||||
|
type: boolean
|
||||||
|
description:
|
||||||
|
Indicates that the link is run in slave mode. The default when this
|
||||||
|
property is not specified is master mode. In the slave mode horizontal and
|
||||||
|
vertical synchronization signals are provided to the slave device (data
|
||||||
|
source) by the master device (data sink). In the master mode the data
|
||||||
|
source device is also the source of the synchronization signals.
|
||||||
|
|
||||||
|
bus-type:
|
||||||
|
$ref: /schemas/types.yaml#/definitions/uint32
|
||||||
|
enum:
|
||||||
|
- 1 # MIPI CSI-2 C-PHY
|
||||||
|
- 2 # MIPI CSI1
|
||||||
|
- 3 # CCP2
|
||||||
|
- 4 # MIPI CSI-2 D-PHY
|
||||||
|
- 5 # Parallel
|
||||||
|
- 6 # BT.656
|
||||||
|
description:
|
||||||
|
Data bus type.
|
||||||
|
|
||||||
|
bus-width:
|
||||||
|
$ref: /schemas/types.yaml#/definitions/uint32
|
||||||
|
maximum: 64
|
||||||
|
description:
|
||||||
|
Number of data lines actively used, valid for the parallel busses.
|
||||||
|
|
||||||
|
data-shift:
|
||||||
|
$ref: /schemas/types.yaml#/definitions/uint32
|
||||||
|
maximum: 64
|
||||||
|
description:
|
||||||
|
On the parallel data busses, if bus-width is used to specify the number of
|
||||||
|
data lines, data-shift can be used to specify which data lines are used,
|
||||||
|
e.g. "bus-width=<8>; data-shift=<2>;" means, that lines 9:2 are used.
|
||||||
|
|
||||||
|
hsync-active:
|
||||||
|
$ref: /schemas/types.yaml#/definitions/uint32
|
||||||
|
enum: [ 0, 1 ]
|
||||||
|
description:
|
||||||
|
Active state of the HSYNC signal, 0/1 for LOW/HIGH respectively.
|
||||||
|
|
||||||
|
vsync-active:
|
||||||
|
$ref: /schemas/types.yaml#/definitions/uint32
|
||||||
|
enum: [ 0, 1 ]
|
||||||
|
description:
|
||||||
|
Active state of the VSYNC signal, 0/1 for LOW/HIGH respectively. Note,
|
||||||
|
that if HSYNC and VSYNC polarities are not specified, embedded
|
||||||
|
synchronization may be required, where supported.
|
||||||
|
|
||||||
|
data-active:
|
||||||
|
$ref: /schemas/types.yaml#/definitions/uint32
|
||||||
|
enum: [ 0, 1 ]
|
||||||
|
description:
|
||||||
|
Similar to HSYNC and VSYNC, specifies data line polarity.
|
||||||
|
|
||||||
|
data-enable-active:
|
||||||
|
$ref: /schemas/types.yaml#/definitions/uint32
|
||||||
|
enum: [ 0, 1 ]
|
||||||
|
description:
|
||||||
|
Similar to HSYNC and VSYNC, specifies the data enable signal polarity.
|
||||||
|
|
||||||
|
field-even-active:
|
||||||
|
$ref: /schemas/types.yaml#/definitions/uint32
|
||||||
|
enum: [ 0, 1 ]
|
||||||
|
description:
|
||||||
|
Field signal level during the even field data transmission.
|
||||||
|
|
||||||
|
pclk-sample:
|
||||||
|
$ref: /schemas/types.yaml#/definitions/uint32
|
||||||
|
enum: [ 0, 1 ]
|
||||||
|
description:
|
||||||
|
Sample data on rising (1) or falling (0) edge of the pixel clock signal.
|
||||||
|
|
||||||
|
sync-on-green-active:
|
||||||
|
$ref: /schemas/types.yaml#/definitions/uint32
|
||||||
|
enum: [ 0, 1 ]
|
||||||
|
description:
|
||||||
|
Active state of Sync-on-green (SoG) signal, 0/1 for LOW/HIGH respectively.
|
||||||
|
|
||||||
|
data-lanes:
|
||||||
|
$ref: /schemas/types.yaml#/definitions/uint32-array
|
||||||
|
minItems: 1
|
||||||
|
maxItems: 8
|
||||||
|
items:
|
||||||
|
# Assume up to 9 physical lane indices
|
||||||
|
maximum: 8
|
||||||
|
description:
|
||||||
|
An array of physical data lane indexes. Position of an entry determines
|
||||||
|
the logical lane number, while the value of an entry indicates physical
|
||||||
|
lane, e.g. for 2-lane MIPI CSI-2 bus we could have "data-lanes = <1 2>;",
|
||||||
|
assuming the clock lane is on hardware lane 0. If the hardware does not
|
||||||
|
support lane reordering, monotonically incremented values shall be used
|
||||||
|
from 0 or 1 onwards, depending on whether or not there is also a clock
|
||||||
|
lane. This property is valid for serial busses only (e.g. MIPI CSI-2).
|
||||||
|
|
||||||
|
clock-lanes:
|
||||||
|
$ref: /schemas/types.yaml#/definitions/uint32
|
||||||
|
# Assume up to 9 physical lane indices
|
||||||
|
maximum: 8
|
||||||
|
description:
|
||||||
|
Physical clock lane index. Position of an entry determines the logical
|
||||||
|
lane number, while the value of an entry indicates physical lane, e.g. for
|
||||||
|
a MIPI CSI-2 bus we could have "clock-lanes = <0>;", which places the
|
||||||
|
clock lane on hardware lane 0. This property is valid for serial busses
|
||||||
|
only (e.g. MIPI CSI-2).
|
||||||
|
|
||||||
|
clock-noncontinuous:
|
||||||
|
type: boolean
|
||||||
|
description:
|
||||||
|
Allow MIPI CSI-2 non-continuous clock mode.
|
||||||
|
|
||||||
|
link-frequencies:
|
||||||
|
$ref: /schemas/types.yaml#/definitions/uint64-array
|
||||||
|
description:
|
||||||
|
Allowed data bus frequencies. For MIPI CSI-2, for instance, this is the
|
||||||
|
actual frequency of the bus, not bits per clock per lane value. An array
|
||||||
|
of 64-bit unsigned integers.
|
||||||
|
|
||||||
|
lane-polarities:
|
||||||
|
$ref: /schemas/types.yaml#/definitions/uint32-array
|
||||||
|
minItems: 1
|
||||||
|
maxItems: 9
|
||||||
|
items:
|
||||||
|
enum: [ 0, 1 ]
|
||||||
|
description:
|
||||||
|
An array of polarities of the lanes starting from the clock lane and
|
||||||
|
followed by the data lanes in the same order as in data-lanes. Valid
|
||||||
|
values are 0 (normal) and 1 (inverted). The length of the array should be
|
||||||
|
the combined length of data-lanes and clock-lanes properties. If the
|
||||||
|
lane-polarities property is omitted, the value must be interpreted as 0
|
||||||
|
(normal). This property is valid for serial busses only.
|
||||||
|
|
||||||
|
strobe:
|
||||||
|
$ref: /schemas/types.yaml#/definitions/uint32
|
||||||
|
enum: [ 0, 1 ]
|
||||||
|
description:
|
||||||
|
Whether the clock signal is used as clock (0) or strobe (1). Used with
|
||||||
|
CCP2, for instance.
|
||||||
|
|
||||||
|
additionalProperties: true
|
||||||
|
|
||||||
|
examples:
|
||||||
|
# The example snippet below describes two data pipelines. ov772x and imx074
|
||||||
|
# are camera sensors with a parallel and serial (MIPI CSI-2) video bus
|
||||||
|
# respectively. Both sensors are on the I2C control bus corresponding to the
|
||||||
|
# i2c0 controller node. ov772x sensor is linked directly to the ceu0 video
|
||||||
|
# host interface. imx074 is linked to ceu0 through the MIPI CSI-2 receiver
|
||||||
|
# (csi2). ceu0 has a (single) DMA engine writing captured data to memory.
|
||||||
|
# ceu0 node has a single 'port' node which may indicate that at any time
|
||||||
|
# only one of the following data pipelines can be active:
|
||||||
|
# ov772x -> ceu0 or imx074 -> csi2 -> ceu0.
|
||||||
|
- |
|
||||||
|
ceu@fe910000 {
|
||||||
|
compatible = "renesas,sh-mobile-ceu";
|
||||||
|
reg = <0xfe910000 0xa0>;
|
||||||
|
interrupts = <0x880>;
|
||||||
|
|
||||||
|
mclk: master_clock {
|
||||||
|
compatible = "renesas,ceu-clock";
|
||||||
|
#clock-cells = <1>;
|
||||||
|
clock-frequency = <50000000>; /* Max clock frequency */
|
||||||
|
clock-output-names = "mclk";
|
||||||
|
};
|
||||||
|
|
||||||
|
port {
|
||||||
|
#address-cells = <1>;
|
||||||
|
#size-cells = <0>;
|
||||||
|
|
||||||
|
/* Parallel bus endpoint */
|
||||||
|
ceu0_1: endpoint@1 {
|
||||||
|
reg = <1>; /* Local endpoint # */
|
||||||
|
remote-endpoint = <&ov772x_1_1>; /* Remote phandle */
|
||||||
|
bus-width = <8>; /* Used data lines */
|
||||||
|
data-shift = <2>; /* Lines 9:2 are used */
|
||||||
|
|
||||||
|
/* If hsync-active/vsync-active are missing,
|
||||||
|
embedded BT.656 sync is used */
|
||||||
|
hsync-active = <0>; /* Active low */
|
||||||
|
vsync-active = <0>; /* Active low */
|
||||||
|
data-active = <1>; /* Active high */
|
||||||
|
pclk-sample = <1>; /* Rising */
|
||||||
|
};
|
||||||
|
|
||||||
|
/* MIPI CSI-2 bus endpoint */
|
||||||
|
ceu0_0: endpoint@0 {
|
||||||
|
reg = <0>;
|
||||||
|
remote-endpoint = <&csi2_2>;
|
||||||
|
};
|
||||||
|
};
|
||||||
|
};
|
||||||
|
|
||||||
|
i2c {
|
||||||
|
#address-cells = <1>;
|
||||||
|
#size-cells = <0>;
|
||||||
|
|
||||||
|
camera@21 {
|
||||||
|
compatible = "ovti,ov772x";
|
||||||
|
reg = <0x21>;
|
||||||
|
vddio-supply = <®ulator1>;
|
||||||
|
vddcore-supply = <®ulator2>;
|
||||||
|
|
||||||
|
clock-frequency = <20000000>;
|
||||||
|
clocks = <&mclk 0>;
|
||||||
|
clock-names = "xclk";
|
||||||
|
|
||||||
|
port {
|
||||||
|
/* With 1 endpoint per port no need for addresses. */
|
||||||
|
ov772x_1_1: endpoint {
|
||||||
|
bus-width = <8>;
|
||||||
|
remote-endpoint = <&ceu0_1>;
|
||||||
|
hsync-active = <1>;
|
||||||
|
vsync-active = <0>; /* Who came up with an
|
||||||
|
inverter here ?... */
|
||||||
|
data-active = <1>;
|
||||||
|
pclk-sample = <1>;
|
||||||
|
};
|
||||||
|
};
|
||||||
|
};
|
||||||
|
|
||||||
|
camera@1a {
|
||||||
|
compatible = "sony,imx074";
|
||||||
|
reg = <0x1a>;
|
||||||
|
vddio-supply = <®ulator1>;
|
||||||
|
vddcore-supply = <®ulator2>;
|
||||||
|
|
||||||
|
clock-frequency = <30000000>; /* Shared clock with ov772x_1 */
|
||||||
|
clocks = <&mclk 0>;
|
||||||
|
clock-names = "sysclk"; /* Assuming this is the
|
||||||
|
name in the datasheet */
|
||||||
|
port {
|
||||||
|
imx074_1: endpoint {
|
||||||
|
clock-lanes = <0>;
|
||||||
|
data-lanes = <1 2>;
|
||||||
|
remote-endpoint = <&csi2_1>;
|
||||||
|
};
|
||||||
|
};
|
||||||
|
};
|
||||||
|
};
|
||||||
|
|
||||||
|
csi2: csi2@ffc90000 {
|
||||||
|
compatible = "renesas,sh-mobile-csi2";
|
||||||
|
reg = <0xffc90000 0x1000>;
|
||||||
|
interrupts = <0x17a0>;
|
||||||
|
#address-cells = <1>;
|
||||||
|
#size-cells = <0>;
|
||||||
|
|
||||||
|
port@1 {
|
||||||
|
compatible = "renesas,csi2c"; /* One of CSI2I and CSI2C. */
|
||||||
|
reg = <1>; /* CSI-2 PHY #1 of 2: PHY_S,
|
||||||
|
PHY_M has port address 0,
|
||||||
|
is unused. */
|
||||||
|
csi2_1: endpoint {
|
||||||
|
clock-lanes = <0>;
|
||||||
|
data-lanes = <2 1>;
|
||||||
|
remote-endpoint = <&imx074_1>;
|
||||||
|
};
|
||||||
|
};
|
||||||
|
port@2 {
|
||||||
|
reg = <2>; /* port 2: link to the CEU */
|
||||||
|
|
||||||
|
csi2_2: endpoint {
|
||||||
|
remote-endpoint = <&ceu0_0>;
|
||||||
|
};
|
||||||
|
};
|
||||||
|
};
|
||||||
|
|
||||||
|
...
|
Loading…
Reference in New Issue