drm/amd/powerplay: add Carrizo smu support

This implements the SMU firmware manager interface for CZ.
Some header files are moved from amdgpu folder to powerplay as well.

v3: delete peci sub-module.
v2: use cgs interface directly
    add load_mec_firmware function

Signed-off-by: Rex Zhu <Rex.Zhu@amd.com>
Signed-off-by: Jammy Zhou <Jammy.Zhou@amd.com>
Reviewed-by: Alex Deucher <alexander.deucher@amd.com>
This commit is contained in:
Jammy Zhou 2015-07-22 09:54:16 +08:00 committed by Alex Deucher
parent 3bace35914
commit 4630f0faae
8 changed files with 963 additions and 2 deletions

View File

@ -2,7 +2,7 @@
# Makefile for the 'smu manager' sub-component of powerplay.
# It provides the smu management services for the driver.
SMU_MGR = smumgr.o
SMU_MGR = smumgr.o cz_smumgr.o
AMD_PP_SMUMGR = $(addprefix $(AMD_PP_PATH)/smumgr/,$(SMU_MGR))

View File

@ -0,0 +1,858 @@
/*
* Copyright 2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/gfp.h>
#include "linux/delay.h"
#include "cgs_common.h"
#include "smu/smu_8_0_d.h"
#include "smu/smu_8_0_sh_mask.h"
#include "smu8.h"
#include "smu8_fusion.h"
#include "cz_smumgr.h"
#include "cz_ppsmc.h"
#include "smu_ucode_xfer_cz.h"
#include "gca/gfx_8_0_d.h"
#include "gca/gfx_8_0_sh_mask.h"
#include "smumgr.h"
#define SIZE_ALIGN_32(x) (((x) + 31) / 32 * 32)
static enum cz_scratch_entry firmware_list[] = {
CZ_SCRATCH_ENTRY_UCODE_ID_SDMA0,
CZ_SCRATCH_ENTRY_UCODE_ID_SDMA1,
CZ_SCRATCH_ENTRY_UCODE_ID_CP_CE,
CZ_SCRATCH_ENTRY_UCODE_ID_CP_PFP,
CZ_SCRATCH_ENTRY_UCODE_ID_CP_ME,
CZ_SCRATCH_ENTRY_UCODE_ID_CP_MEC_JT1,
CZ_SCRATCH_ENTRY_UCODE_ID_CP_MEC_JT2,
CZ_SCRATCH_ENTRY_UCODE_ID_RLC_G,
};
static int cz_smum_get_argument(struct pp_smumgr *smumgr)
{
if (smumgr == NULL || smumgr->device == NULL)
return -EINVAL;
return cgs_read_register(smumgr->device,
mmSMU_MP1_SRBM2P_ARG_0);
}
static int cz_send_msg_to_smc_async(struct pp_smumgr *smumgr,
uint16_t msg)
{
int result = 0;
if (smumgr == NULL || smumgr->device == NULL)
return -EINVAL;
result = SMUM_WAIT_FIELD_UNEQUAL(smumgr,
SMU_MP1_SRBM2P_RESP_0, CONTENT, 0);
if (result != 0) {
printk(KERN_ERR "[ powerplay ] cz_send_msg_to_smc_async failed\n");
return result;
}
cgs_write_register(smumgr->device, mmSMU_MP1_SRBM2P_RESP_0, 0);
cgs_write_register(smumgr->device, mmSMU_MP1_SRBM2P_MSG_0, msg);
return 0;
}
/* Send a message to the SMC, and wait for its response.*/
static int cz_send_msg_to_smc(struct pp_smumgr *smumgr, uint16_t msg)
{
int result = 0;
result = cz_send_msg_to_smc_async(smumgr, msg);
if (result != 0)
return result;
result = SMUM_WAIT_FIELD_UNEQUAL(smumgr,
SMU_MP1_SRBM2P_RESP_0, CONTENT, 0);
if (result != 0)
return result;
return 0;
}
static int cz_set_smc_sram_address(struct pp_smumgr *smumgr,
uint32_t smc_address, uint32_t limit)
{
if (smumgr == NULL || smumgr->device == NULL)
return -EINVAL;
if (0 != (3 & smc_address)) {
printk(KERN_ERR "[ powerplay ] SMC address must be 4 byte aligned\n");
return -1;
}
if (limit <= (smc_address + 3)) {
printk(KERN_ERR "[ powerplay ] SMC address beyond the SMC RAM area\n");
return -1;
}
cgs_write_register(smumgr->device, mmMP0PUB_IND_INDEX_0,
SMN_MP1_SRAM_START_ADDR + smc_address);
return 0;
}
static int cz_write_smc_sram_dword(struct pp_smumgr *smumgr,
uint32_t smc_address, uint32_t value, uint32_t limit)
{
int result;
if (smumgr == NULL || smumgr->device == NULL)
return -EINVAL;
result = cz_set_smc_sram_address(smumgr, smc_address, limit);
cgs_write_register(smumgr->device, mmMP0PUB_IND_DATA_0, value);
return 0;
}
static int cz_send_msg_to_smc_with_parameter(struct pp_smumgr *smumgr,
uint16_t msg, uint32_t parameter)
{
if (smumgr == NULL || smumgr->device == NULL)
return -EINVAL;
cgs_write_register(smumgr->device, mmSMU_MP1_SRBM2P_ARG_0, parameter);
return cz_send_msg_to_smc(smumgr, msg);
}
static int cz_request_smu_load_fw(struct pp_smumgr *smumgr)
{
struct cz_smumgr *cz_smu = (struct cz_smumgr *)(smumgr->backend);
int result = 0;
uint32_t smc_address;
if (!smumgr->reload_fw) {
printk(KERN_INFO "[ powerplay ] skip reloading...\n");
return 0;
}
smc_address = SMU8_FIRMWARE_HEADER_LOCATION +
offsetof(struct SMU8_Firmware_Header, UcodeLoadStatus);
cz_write_smc_sram_dword(smumgr, smc_address, 0, smc_address+4);
cz_send_msg_to_smc_with_parameter(smumgr,
PPSMC_MSG_DriverDramAddrHi,
cz_smu->toc_buffer.mc_addr_high);
cz_send_msg_to_smc_with_parameter(smumgr,
PPSMC_MSG_DriverDramAddrLo,
cz_smu->toc_buffer.mc_addr_low);
cz_send_msg_to_smc(smumgr, PPSMC_MSG_InitJobs);
cz_send_msg_to_smc_with_parameter(smumgr,
PPSMC_MSG_ExecuteJob,
cz_smu->toc_entry_aram);
cz_send_msg_to_smc_with_parameter(smumgr, PPSMC_MSG_ExecuteJob,
cz_smu->toc_entry_power_profiling_index);
result = cz_send_msg_to_smc_with_parameter(smumgr,
PPSMC_MSG_ExecuteJob,
cz_smu->toc_entry_initialize_index);
return result;
}
static int cz_check_fw_load_finish(struct pp_smumgr *smumgr,
uint32_t firmware)
{
int i;
uint32_t index = SMN_MP1_SRAM_START_ADDR +
SMU8_FIRMWARE_HEADER_LOCATION +
offsetof(struct SMU8_Firmware_Header, UcodeLoadStatus);
if (smumgr == NULL || smumgr->device == NULL)
return -EINVAL;
return cgs_read_register(smumgr->device,
mmSMU_MP1_SRBM2P_ARG_0);
cgs_write_register(smumgr->device, mmMP0PUB_IND_INDEX, index);
for (i = 0; i < smumgr->usec_timeout; i++) {
if (firmware ==
(cgs_read_register(smumgr->device, mmMP0PUB_IND_DATA) & firmware))
break;
udelay(1);
}
if (i >= smumgr->usec_timeout) {
printk(KERN_ERR "[ powerplay ] SMU check loaded firmware failed.\n");
return -EINVAL;
}
return 0;
}
static int cz_load_mec_firmware(struct pp_smumgr *smumgr)
{
uint32_t reg_data;
uint32_t tmp;
int ret = 0;
struct cgs_firmware_info info = {0};
struct cz_smumgr *cz_smu;
if (smumgr == NULL || smumgr->device == NULL)
return -EINVAL;
cz_smu = (struct cz_smumgr *)smumgr->backend;
ret = cgs_get_firmware_info(smumgr->device,
CGS_UCODE_ID_CP_MEC, &info);
if (ret)
return -EINVAL;
/* Disable MEC parsing/prefetching */
tmp = cgs_read_register(smumgr->device,
mmCP_MEC_CNTL);
tmp = SMUM_SET_FIELD(tmp, CP_MEC_CNTL, MEC_ME1_HALT, 1);
tmp = SMUM_SET_FIELD(tmp, CP_MEC_CNTL, MEC_ME2_HALT, 1);
cgs_write_register(smumgr->device, mmCP_MEC_CNTL, tmp);
tmp = cgs_read_register(smumgr->device,
mmCP_CPC_IC_BASE_CNTL);
tmp = SMUM_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, VMID, 0);
tmp = SMUM_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, ATC, 0);
tmp = SMUM_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, CACHE_POLICY, 0);
tmp = SMUM_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, MTYPE, 1);
cgs_write_register(smumgr->device, mmCP_CPC_IC_BASE_CNTL, tmp);
reg_data = smu_lower_32_bits(info.mc_addr) &
SMUM_FIELD_MASK(CP_CPC_IC_BASE_LO, IC_BASE_LO);
cgs_write_register(smumgr->device, mmCP_CPC_IC_BASE_LO, reg_data);
reg_data = smu_upper_32_bits(info.mc_addr) &
SMUM_FIELD_MASK(CP_CPC_IC_BASE_HI, IC_BASE_HI);
cgs_write_register(smumgr->device, mmCP_CPC_IC_BASE_HI, reg_data);
return 0;
}
static int cz_start_smu(struct pp_smumgr *smumgr)
{
int ret = 0;
uint32_t fw_to_check = UCODE_ID_RLC_G_MASK |
UCODE_ID_SDMA0_MASK |
UCODE_ID_SDMA1_MASK |
UCODE_ID_CP_CE_MASK |
UCODE_ID_CP_ME_MASK |
UCODE_ID_CP_PFP_MASK |
UCODE_ID_CP_MEC_JT1_MASK |
UCODE_ID_CP_MEC_JT2_MASK;
cz_request_smu_load_fw(smumgr);
cz_check_fw_load_finish(smumgr, fw_to_check);
ret = cz_load_mec_firmware(smumgr);
if (ret)
printk(KERN_ERR "[ powerplay ] Mec Firmware load failed\n");
return ret;
}
static uint8_t cz_translate_firmware_enum_to_arg(
enum cz_scratch_entry firmware_enum)
{
uint8_t ret = 0;
switch (firmware_enum) {
case CZ_SCRATCH_ENTRY_UCODE_ID_SDMA0:
ret = UCODE_ID_SDMA0;
break;
case CZ_SCRATCH_ENTRY_UCODE_ID_SDMA1:
ret = UCODE_ID_SDMA1;
break;
case CZ_SCRATCH_ENTRY_UCODE_ID_CP_CE:
ret = UCODE_ID_CP_CE;
break;
case CZ_SCRATCH_ENTRY_UCODE_ID_CP_PFP:
ret = UCODE_ID_CP_PFP;
break;
case CZ_SCRATCH_ENTRY_UCODE_ID_CP_ME:
ret = UCODE_ID_CP_ME;
break;
case CZ_SCRATCH_ENTRY_UCODE_ID_CP_MEC_JT1:
ret = UCODE_ID_CP_MEC_JT1;
break;
case CZ_SCRATCH_ENTRY_UCODE_ID_CP_MEC_JT2:
ret = UCODE_ID_CP_MEC_JT2;
break;
case CZ_SCRATCH_ENTRY_UCODE_ID_GMCON_RENG:
ret = UCODE_ID_GMCON_RENG;
break;
case CZ_SCRATCH_ENTRY_UCODE_ID_RLC_G:
ret = UCODE_ID_RLC_G;
break;
case CZ_SCRATCH_ENTRY_UCODE_ID_RLC_SCRATCH:
ret = UCODE_ID_RLC_SCRATCH;
break;
case CZ_SCRATCH_ENTRY_UCODE_ID_RLC_SRM_ARAM:
ret = UCODE_ID_RLC_SRM_ARAM;
break;
case CZ_SCRATCH_ENTRY_UCODE_ID_RLC_SRM_DRAM:
ret = UCODE_ID_RLC_SRM_DRAM;
break;
case CZ_SCRATCH_ENTRY_UCODE_ID_DMCU_ERAM:
ret = UCODE_ID_DMCU_ERAM;
break;
case CZ_SCRATCH_ENTRY_UCODE_ID_DMCU_IRAM:
ret = UCODE_ID_DMCU_IRAM;
break;
case CZ_SCRATCH_ENTRY_UCODE_ID_POWER_PROFILING:
ret = TASK_ARG_INIT_MM_PWR_LOG;
break;
case CZ_SCRATCH_ENTRY_DATA_ID_SDMA_HALT:
case CZ_SCRATCH_ENTRY_DATA_ID_SYS_CLOCKGATING:
case CZ_SCRATCH_ENTRY_DATA_ID_SDMA_RING_REGS:
case CZ_SCRATCH_ENTRY_DATA_ID_NONGFX_REINIT:
case CZ_SCRATCH_ENTRY_DATA_ID_SDMA_START:
case CZ_SCRATCH_ENTRY_DATA_ID_IH_REGISTERS:
ret = TASK_ARG_REG_MMIO;
break;
case CZ_SCRATCH_ENTRY_SMU8_FUSION_CLKTABLE:
ret = TASK_ARG_INIT_CLK_TABLE;
break;
}
return ret;
}
static enum cgs_ucode_id cz_convert_fw_type_to_cgs(uint32_t fw_type)
{
enum cgs_ucode_id result = CGS_UCODE_ID_MAXIMUM;
switch (fw_type) {
case UCODE_ID_SDMA0:
result = CGS_UCODE_ID_SDMA0;
break;
case UCODE_ID_SDMA1:
result = CGS_UCODE_ID_SDMA1;
break;
case UCODE_ID_CP_CE:
result = CGS_UCODE_ID_CP_CE;
break;
case UCODE_ID_CP_PFP:
result = CGS_UCODE_ID_CP_PFP;
break;
case UCODE_ID_CP_ME:
result = CGS_UCODE_ID_CP_ME;
break;
case UCODE_ID_CP_MEC_JT1:
result = CGS_UCODE_ID_CP_MEC_JT1;
break;
case UCODE_ID_CP_MEC_JT2:
result = CGS_UCODE_ID_CP_MEC_JT2;
break;
case UCODE_ID_RLC_G:
result = CGS_UCODE_ID_RLC_G;
break;
default:
break;
}
return result;
}
static int cz_smu_populate_single_scratch_task(
struct pp_smumgr *smumgr,
enum cz_scratch_entry fw_enum,
uint8_t type, bool is_last)
{
uint8_t i;
struct cz_smumgr *cz_smu = (struct cz_smumgr *)smumgr->backend;
struct TOC *toc = (struct TOC *)cz_smu->toc_buffer.kaddr;
struct SMU_Task *task = &toc->tasks[cz_smu->toc_entry_used_count++];
task->type = type;
task->arg = cz_translate_firmware_enum_to_arg(fw_enum);
task->next = is_last ? END_OF_TASK_LIST : cz_smu->toc_entry_used_count;
for (i = 0; i < cz_smu->scratch_buffer_length; i++)
if (cz_smu->scratch_buffer[i].firmware_ID == fw_enum)
break;
if (i >= cz_smu->scratch_buffer_length) {
printk(KERN_ERR "[ powerplay ] Invalid Firmware Type\n");
return -EINVAL;
}
task->addr.low = cz_smu->scratch_buffer[i].mc_addr_low;
task->addr.high = cz_smu->scratch_buffer[i].mc_addr_high;
task->size_bytes = cz_smu->scratch_buffer[i].data_size;
if (CZ_SCRATCH_ENTRY_DATA_ID_IH_REGISTERS == fw_enum) {
struct cz_ih_meta_data *pIHReg_restore =
(struct cz_ih_meta_data *)cz_smu->scratch_buffer[i].kaddr;
pIHReg_restore->command =
METADATA_CMD_MODE0 | METADATA_PERFORM_ON_LOAD;
}
return 0;
}
static int cz_smu_populate_single_ucode_load_task(
struct pp_smumgr *smumgr,
enum cz_scratch_entry fw_enum,
bool is_last)
{
uint8_t i;
struct cz_smumgr *cz_smu = (struct cz_smumgr *)smumgr->backend;
struct TOC *toc = (struct TOC *)cz_smu->toc_buffer.kaddr;
struct SMU_Task *task = &toc->tasks[cz_smu->toc_entry_used_count++];
task->type = TASK_TYPE_UCODE_LOAD;
task->arg = cz_translate_firmware_enum_to_arg(fw_enum);
task->next = is_last ? END_OF_TASK_LIST : cz_smu->toc_entry_used_count;
for (i = 0; i < cz_smu->driver_buffer_length; i++)
if (cz_smu->driver_buffer[i].firmware_ID == fw_enum)
break;
if (i >= cz_smu->driver_buffer_length) {
printk(KERN_ERR "[ powerplay ] Invalid Firmware Type\n");
return -EINVAL;
}
task->addr.low = cz_smu->driver_buffer[i].mc_addr_low;
task->addr.high = cz_smu->driver_buffer[i].mc_addr_high;
task->size_bytes = cz_smu->driver_buffer[i].data_size;
return 0;
}
static int cz_smu_construct_toc_for_rlc_aram_save(struct pp_smumgr *smumgr)
{
struct cz_smumgr *cz_smu = (struct cz_smumgr *)smumgr->backend;
cz_smu->toc_entry_aram = cz_smu->toc_entry_used_count;
cz_smu_populate_single_scratch_task(smumgr,
CZ_SCRATCH_ENTRY_UCODE_ID_RLC_SRM_ARAM,
TASK_TYPE_UCODE_SAVE, true);
return 0;
}
static int cz_smu_initialize_toc_empty_job_list(struct pp_smumgr *smumgr)
{
int i;
struct cz_smumgr *cz_smu = (struct cz_smumgr *)smumgr->backend;
struct TOC *toc = (struct TOC *)cz_smu->toc_buffer.kaddr;
for (i = 0; i < NUM_JOBLIST_ENTRIES; i++)
toc->JobList[i] = (uint8_t)IGNORE_JOB;
return 0;
}
static int cz_smu_construct_toc_for_vddgfx_enter(struct pp_smumgr *smumgr)
{
struct cz_smumgr *cz_smu = (struct cz_smumgr *)smumgr->backend;
struct TOC *toc = (struct TOC *)cz_smu->toc_buffer.kaddr;
toc->JobList[JOB_GFX_SAVE] = (uint8_t)cz_smu->toc_entry_used_count;
cz_smu_populate_single_scratch_task(smumgr,
CZ_SCRATCH_ENTRY_UCODE_ID_RLC_SCRATCH,
TASK_TYPE_UCODE_SAVE, false);
cz_smu_populate_single_scratch_task(smumgr,
CZ_SCRATCH_ENTRY_UCODE_ID_RLC_SRM_DRAM,
TASK_TYPE_UCODE_SAVE, true);
return 0;
}
static int cz_smu_construct_toc_for_vddgfx_exit(struct pp_smumgr *smumgr)
{
struct cz_smumgr *cz_smu = (struct cz_smumgr *)smumgr->backend;
struct TOC *toc = (struct TOC *)cz_smu->toc_buffer.kaddr;
toc->JobList[JOB_GFX_RESTORE] = (uint8_t)cz_smu->toc_entry_used_count;
cz_smu_populate_single_ucode_load_task(smumgr,
CZ_SCRATCH_ENTRY_UCODE_ID_CP_CE, false);
cz_smu_populate_single_ucode_load_task(smumgr,
CZ_SCRATCH_ENTRY_UCODE_ID_CP_PFP, false);
cz_smu_populate_single_ucode_load_task(smumgr,
CZ_SCRATCH_ENTRY_UCODE_ID_CP_ME, false);
cz_smu_populate_single_ucode_load_task(smumgr,
CZ_SCRATCH_ENTRY_UCODE_ID_CP_MEC_JT1, false);
cz_smu_populate_single_ucode_load_task(smumgr,
CZ_SCRATCH_ENTRY_UCODE_ID_CP_MEC_JT2, false);
cz_smu_populate_single_ucode_load_task(smumgr,
CZ_SCRATCH_ENTRY_UCODE_ID_RLC_G, false);
/* populate scratch */
cz_smu_populate_single_scratch_task(smumgr,
CZ_SCRATCH_ENTRY_UCODE_ID_RLC_SCRATCH,
TASK_TYPE_UCODE_LOAD, false);
cz_smu_populate_single_scratch_task(smumgr,
CZ_SCRATCH_ENTRY_UCODE_ID_RLC_SRM_ARAM,
TASK_TYPE_UCODE_LOAD, false);
cz_smu_populate_single_scratch_task(smumgr,
CZ_SCRATCH_ENTRY_UCODE_ID_RLC_SRM_DRAM,
TASK_TYPE_UCODE_LOAD, true);
return 0;
}
static int cz_smu_construct_toc_for_power_profiling(
struct pp_smumgr *smumgr)
{
struct cz_smumgr *cz_smu = (struct cz_smumgr *)smumgr->backend;
cz_smu->toc_entry_power_profiling_index = cz_smu->toc_entry_used_count;
cz_smu_populate_single_scratch_task(smumgr,
CZ_SCRATCH_ENTRY_UCODE_ID_POWER_PROFILING,
TASK_TYPE_INITIALIZE, true);
return 0;
}
static int cz_smu_construct_toc_for_bootup(struct pp_smumgr *smumgr)
{
struct cz_smumgr *cz_smu = (struct cz_smumgr *)smumgr->backend;
cz_smu->toc_entry_initialize_index = cz_smu->toc_entry_used_count;
cz_smu_populate_single_ucode_load_task(smumgr,
CZ_SCRATCH_ENTRY_UCODE_ID_SDMA0, false);
cz_smu_populate_single_ucode_load_task(smumgr,
CZ_SCRATCH_ENTRY_UCODE_ID_SDMA1, false);
cz_smu_populate_single_ucode_load_task(smumgr,
CZ_SCRATCH_ENTRY_UCODE_ID_CP_CE, false);
cz_smu_populate_single_ucode_load_task(smumgr,
CZ_SCRATCH_ENTRY_UCODE_ID_CP_PFP, false);
cz_smu_populate_single_ucode_load_task(smumgr,
CZ_SCRATCH_ENTRY_UCODE_ID_CP_ME, false);
cz_smu_populate_single_ucode_load_task(smumgr,
CZ_SCRATCH_ENTRY_UCODE_ID_CP_MEC_JT1, false);
cz_smu_populate_single_ucode_load_task(smumgr,
CZ_SCRATCH_ENTRY_UCODE_ID_CP_MEC_JT2, false);
cz_smu_populate_single_ucode_load_task(smumgr,
CZ_SCRATCH_ENTRY_UCODE_ID_RLC_G, true);
return 0;
}
static int cz_smu_construct_toc_for_clock_table(struct pp_smumgr *smumgr)
{
struct cz_smumgr *cz_smu = (struct cz_smumgr *)smumgr->backend;
cz_smu->toc_entry_clock_table = cz_smu->toc_entry_used_count;
cz_smu_populate_single_scratch_task(smumgr,
CZ_SCRATCH_ENTRY_SMU8_FUSION_CLKTABLE,
TASK_TYPE_INITIALIZE, true);
return 0;
}
static int cz_smu_construct_toc(struct pp_smumgr *smumgr)
{
struct cz_smumgr *cz_smu = (struct cz_smumgr *)smumgr->backend;
cz_smu->toc_entry_used_count = 0;
cz_smu_initialize_toc_empty_job_list(smumgr);
cz_smu_construct_toc_for_rlc_aram_save(smumgr);
cz_smu_construct_toc_for_vddgfx_enter(smumgr);
cz_smu_construct_toc_for_vddgfx_exit(smumgr);
cz_smu_construct_toc_for_power_profiling(smumgr);
cz_smu_construct_toc_for_bootup(smumgr);
cz_smu_construct_toc_for_clock_table(smumgr);
return 0;
}
static int cz_smu_populate_firmware_entries(struct pp_smumgr *smumgr)
{
struct cz_smumgr *cz_smu = (struct cz_smumgr *)smumgr->backend;
uint32_t firmware_type;
uint32_t i;
int ret;
enum cgs_ucode_id ucode_id;
struct cgs_firmware_info info = {0};
cz_smu->driver_buffer_length = 0;
for (i = 0; i < sizeof(firmware_list)/sizeof(*firmware_list); i++) {
firmware_type = cz_translate_firmware_enum_to_arg(
firmware_list[i]);
ucode_id = cz_convert_fw_type_to_cgs(firmware_type);
ret = cgs_get_firmware_info(smumgr->device,
ucode_id, &info);
if (ret == 0) {
cz_smu->driver_buffer[i].mc_addr_high =
smu_upper_32_bits(info.mc_addr);
cz_smu->driver_buffer[i].mc_addr_low =
smu_lower_32_bits(info.mc_addr);
cz_smu->driver_buffer[i].data_size = info.image_size;
cz_smu->driver_buffer[i].firmware_ID = firmware_list[i];
cz_smu->driver_buffer_length++;
}
}
return 0;
}
static int cz_smu_populate_single_scratch_entry(
struct pp_smumgr *smumgr,
enum cz_scratch_entry scratch_type,
uint32_t ulsize_byte,
struct cz_buffer_entry *entry)
{
struct cz_smumgr *cz_smu = (struct cz_smumgr *)smumgr->backend;
long long mc_addr =
((long long)(cz_smu->smu_buffer.mc_addr_high) << 32)
| cz_smu->smu_buffer.mc_addr_low;
uint32_t ulsize_aligned = SIZE_ALIGN_32(ulsize_byte);
mc_addr += cz_smu->smu_buffer_used_bytes;
entry->data_size = ulsize_byte;
entry->kaddr = (char *) cz_smu->smu_buffer.kaddr +
cz_smu->smu_buffer_used_bytes;
entry->mc_addr_low = smu_lower_32_bits(mc_addr);
entry->mc_addr_high = smu_upper_32_bits(mc_addr);
entry->firmware_ID = scratch_type;
cz_smu->smu_buffer_used_bytes += ulsize_aligned;
return 0;
}
static int cz_download_pptable_settings(struct pp_smumgr *smumgr, void **table)
{
struct cz_smumgr *cz_smu = (struct cz_smumgr *)smumgr->backend;
unsigned long i;
for (i = 0; i < cz_smu->scratch_buffer_length; i++) {
if (cz_smu->scratch_buffer[i].firmware_ID
== CZ_SCRATCH_ENTRY_SMU8_FUSION_CLKTABLE)
break;
}
*table = (struct SMU8_Fusion_ClkTable *)cz_smu->scratch_buffer[i].kaddr;
cz_send_msg_to_smc_with_parameter(smumgr,
PPSMC_MSG_SetClkTableAddrHi,
cz_smu->scratch_buffer[i].mc_addr_high);
cz_send_msg_to_smc_with_parameter(smumgr,
PPSMC_MSG_SetClkTableAddrLo,
cz_smu->scratch_buffer[i].mc_addr_low);
cz_send_msg_to_smc_with_parameter(smumgr, PPSMC_MSG_ExecuteJob,
cz_smu->toc_entry_clock_table);
cz_send_msg_to_smc(smumgr, PPSMC_MSG_ClkTableXferToDram);
return 0;
}
static int cz_upload_pptable_settings(struct pp_smumgr *smumgr)
{
struct cz_smumgr *cz_smu = (struct cz_smumgr *)smumgr->backend;
unsigned long i;
for (i = 0; i < cz_smu->scratch_buffer_length; i++) {
if (cz_smu->scratch_buffer[i].firmware_ID
== CZ_SCRATCH_ENTRY_SMU8_FUSION_CLKTABLE)
break;
}
cz_send_msg_to_smc_with_parameter(smumgr,
PPSMC_MSG_SetClkTableAddrHi,
cz_smu->scratch_buffer[i].mc_addr_high);
cz_send_msg_to_smc_with_parameter(smumgr,
PPSMC_MSG_SetClkTableAddrLo,
cz_smu->scratch_buffer[i].mc_addr_low);
cz_send_msg_to_smc_with_parameter(smumgr, PPSMC_MSG_ExecuteJob,
cz_smu->toc_entry_clock_table);
cz_send_msg_to_smc(smumgr, PPSMC_MSG_ClkTableXferToSmu);
return 0;
}
static int cz_smu_init(struct pp_smumgr *smumgr)
{
struct cz_smumgr *cz_smu = (struct cz_smumgr *)smumgr->backend;
uint64_t mc_addr = 0;
int ret = 0;
cz_smu->toc_buffer.data_size = 4096;
cz_smu->smu_buffer.data_size =
ALIGN(UCODE_ID_RLC_SCRATCH_SIZE_BYTE, 32) +
ALIGN(UCODE_ID_RLC_SRM_ARAM_SIZE_BYTE, 32) +
ALIGN(UCODE_ID_RLC_SRM_DRAM_SIZE_BYTE, 32) +
ALIGN(sizeof(struct SMU8_MultimediaPowerLogData), 32) +
ALIGN(sizeof(struct SMU8_Fusion_ClkTable), 32);
ret = smu_allocate_memory(smumgr->device,
cz_smu->toc_buffer.data_size,
CGS_GPU_MEM_TYPE__GART_CACHEABLE,
PAGE_SIZE,
&mc_addr,
&cz_smu->toc_buffer.kaddr,
&cz_smu->toc_buffer.handle);
if (ret != 0)
return -1;
cz_smu->toc_buffer.mc_addr_high = smu_upper_32_bits(mc_addr);
cz_smu->toc_buffer.mc_addr_low = smu_lower_32_bits(mc_addr);
ret = smu_allocate_memory(smumgr->device,
cz_smu->smu_buffer.data_size,
CGS_GPU_MEM_TYPE__GART_CACHEABLE,
PAGE_SIZE,
&mc_addr,
&cz_smu->smu_buffer.kaddr,
&cz_smu->smu_buffer.handle);
if (ret != 0)
return -1;
cz_smu->smu_buffer.mc_addr_high = smu_upper_32_bits(mc_addr);
cz_smu->smu_buffer.mc_addr_low = smu_lower_32_bits(mc_addr);
cz_smu_populate_firmware_entries(smumgr);
if (0 != cz_smu_populate_single_scratch_entry(smumgr,
CZ_SCRATCH_ENTRY_UCODE_ID_RLC_SCRATCH,
UCODE_ID_RLC_SCRATCH_SIZE_BYTE,
&cz_smu->scratch_buffer[cz_smu->scratch_buffer_length++])) {
printk(KERN_ERR "[ powerplay ] Error when Populate Firmware Entry.\n");
return -1;
}
if (0 != cz_smu_populate_single_scratch_entry(smumgr,
CZ_SCRATCH_ENTRY_UCODE_ID_RLC_SRM_ARAM,
UCODE_ID_RLC_SRM_ARAM_SIZE_BYTE,
&cz_smu->scratch_buffer[cz_smu->scratch_buffer_length++])) {
printk(KERN_ERR "[ powerplay ] Error when Populate Firmware Entry.\n");
return -1;
}
if (0 != cz_smu_populate_single_scratch_entry(smumgr,
CZ_SCRATCH_ENTRY_UCODE_ID_RLC_SRM_DRAM,
UCODE_ID_RLC_SRM_DRAM_SIZE_BYTE,
&cz_smu->scratch_buffer[cz_smu->scratch_buffer_length++])) {
printk(KERN_ERR "[ powerplay ] Error when Populate Firmware Entry.\n");
return -1;
}
if (0 != cz_smu_populate_single_scratch_entry(smumgr,
CZ_SCRATCH_ENTRY_UCODE_ID_POWER_PROFILING,
sizeof(struct SMU8_MultimediaPowerLogData),
&cz_smu->scratch_buffer[cz_smu->scratch_buffer_length++])) {
printk(KERN_ERR "[ powerplay ] Error when Populate Firmware Entry.\n");
return -1;
}
if (0 != cz_smu_populate_single_scratch_entry(smumgr,
CZ_SCRATCH_ENTRY_SMU8_FUSION_CLKTABLE,
sizeof(struct SMU8_Fusion_ClkTable),
&cz_smu->scratch_buffer[cz_smu->scratch_buffer_length++])) {
printk(KERN_ERR "[ powerplay ] Error when Populate Firmware Entry.\n");
return -1;
}
cz_smu_construct_toc(smumgr);
return 0;
}
static int cz_smu_fini(struct pp_smumgr *smumgr)
{
struct cz_smumgr *cz_smu;
if (smumgr == NULL || smumgr->device == NULL)
return -EINVAL;
cz_smu = (struct cz_smumgr *)smumgr->backend;
if (!cz_smu) {
cgs_free_gpu_mem(smumgr->device,
cz_smu->toc_buffer.handle);
cgs_free_gpu_mem(smumgr->device,
cz_smu->smu_buffer.handle);
kfree(cz_smu);
kfree(smumgr);
}
return 0;
}
static const struct pp_smumgr_func cz_smu_funcs = {
.smu_init = cz_smu_init,
.smu_fini = cz_smu_fini,
.start_smu = cz_start_smu,
.check_fw_load_finish = cz_check_fw_load_finish,
.request_smu_load_fw = NULL,
.request_smu_load_specific_fw = NULL,
.get_argument = cz_smum_get_argument,
.send_msg_to_smc = cz_send_msg_to_smc,
.send_msg_to_smc_with_parameter = cz_send_msg_to_smc_with_parameter,
.download_pptable_settings = cz_download_pptable_settings,
.upload_pptable_settings = cz_upload_pptable_settings,
};
int cz_smum_init(struct pp_smumgr *smumgr)
{
struct cz_smumgr *cz_smu;
cz_smu = kzalloc(sizeof(struct cz_smumgr), GFP_KERNEL);
if (cz_smu == NULL)
return -ENOMEM;
smumgr->backend = cz_smu;
smumgr->smumgr_funcs = &cz_smu_funcs;
return 0;
}

View File

@ -0,0 +1,102 @@
/*
* Copyright 2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#ifndef _CZ_SMUMGR_H_
#define _CZ_SMUMGR_H_
#define MAX_NUM_FIRMWARE 8
#define MAX_NUM_SCRATCH 11
#define CZ_SCRATCH_SIZE_NONGFX_CLOCKGATING 1024
#define CZ_SCRATCH_SIZE_NONGFX_GOLDENSETTING 2048
#define CZ_SCRATCH_SIZE_SDMA_METADATA 1024
#define CZ_SCRATCH_SIZE_IH ((2*256+1)*4)
enum cz_scratch_entry {
CZ_SCRATCH_ENTRY_UCODE_ID_SDMA0 = 0,
CZ_SCRATCH_ENTRY_UCODE_ID_SDMA1,
CZ_SCRATCH_ENTRY_UCODE_ID_CP_CE,
CZ_SCRATCH_ENTRY_UCODE_ID_CP_PFP,
CZ_SCRATCH_ENTRY_UCODE_ID_CP_ME,
CZ_SCRATCH_ENTRY_UCODE_ID_CP_MEC_JT1,
CZ_SCRATCH_ENTRY_UCODE_ID_CP_MEC_JT2,
CZ_SCRATCH_ENTRY_UCODE_ID_GMCON_RENG,
CZ_SCRATCH_ENTRY_UCODE_ID_RLC_G,
CZ_SCRATCH_ENTRY_UCODE_ID_RLC_SCRATCH,
CZ_SCRATCH_ENTRY_UCODE_ID_RLC_SRM_ARAM,
CZ_SCRATCH_ENTRY_UCODE_ID_RLC_SRM_DRAM,
CZ_SCRATCH_ENTRY_UCODE_ID_DMCU_ERAM,
CZ_SCRATCH_ENTRY_UCODE_ID_DMCU_IRAM,
CZ_SCRATCH_ENTRY_UCODE_ID_POWER_PROFILING,
CZ_SCRATCH_ENTRY_DATA_ID_SDMA_HALT,
CZ_SCRATCH_ENTRY_DATA_ID_SYS_CLOCKGATING,
CZ_SCRATCH_ENTRY_DATA_ID_SDMA_RING_REGS,
CZ_SCRATCH_ENTRY_DATA_ID_NONGFX_REINIT,
CZ_SCRATCH_ENTRY_DATA_ID_SDMA_START,
CZ_SCRATCH_ENTRY_DATA_ID_IH_REGISTERS,
CZ_SCRATCH_ENTRY_SMU8_FUSION_CLKTABLE
};
struct cz_buffer_entry {
uint32_t data_size;
uint32_t mc_addr_low;
uint32_t mc_addr_high;
void *kaddr;
enum cz_scratch_entry firmware_ID;
unsigned long handle; /* as bo handle used when release bo */
};
struct cz_register_index_data_pair {
uint32_t offset;
uint32_t value;
};
struct cz_ih_meta_data {
uint32_t command;
struct cz_register_index_data_pair register_index_value_pair[1];
};
struct cz_smumgr {
uint8_t driver_buffer_length;
uint8_t scratch_buffer_length;
uint16_t toc_entry_used_count;
uint16_t toc_entry_initialize_index;
uint16_t toc_entry_power_profiling_index;
uint16_t toc_entry_aram;
uint16_t toc_entry_ih_register_restore_task_index;
uint16_t toc_entry_clock_table;
uint16_t ih_register_restore_task_size;
uint16_t smu_buffer_used_bytes;
struct cz_buffer_entry toc_buffer;
struct cz_buffer_entry smu_buffer;
struct cz_buffer_entry firmware_buffer;
struct cz_buffer_entry driver_buffer[MAX_NUM_FIRMWARE];
struct cz_buffer_entry meta_data_buffer[MAX_NUM_FIRMWARE];
struct cz_buffer_entry scratch_buffer[MAX_NUM_SCRATCH];
};
struct pp_smumgr;
extern int cz_smum_init(struct pp_smumgr *smumgr);
#endif

View File

@ -27,6 +27,7 @@
#include "smumgr.h"
#include "cgs_common.h"
#include "linux/delay.h"
#include "cz_smumgr.h"
int smum_init(struct amd_pp_init *pp_init, struct pp_instance *handle)
{
@ -49,7 +50,7 @@ int smum_init(struct amd_pp_init *pp_init, struct pp_instance *handle)
switch (smumgr->chip_family) {
case AMD_FAMILY_CZ:
/* TODO */
cz_smum_init(smumgr);
break;
case AMD_FAMILY_VI:
/* TODO */