mirror of https://gitee.com/openkylin/linux.git
[PATCH] Time: i386 Conversion - part 2: Rework TSC Support
As part of the i386 conversion to the generic timekeeping infrastructure, this introduces a new tsc.c file. The code in this file replaces the TSC initialization, management and access code currently in timer_tsc.c (which will be removed) that we want to preserve. The code also introduces the following functionality: o tsc_khz: like cpu_khz but stores the TSC frequency on systems that do not change TSC frequency w/ CPU frequency o check/mark_tsc_unstable: accessor/modifier flag for TSC timekeeping usability o minor cleanups to calibration math. This patch also includes a one line __cpuinitdata fix from Zwane Mwaikambo. Signed-off-by: John Stultz <johnstul@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This commit is contained in:
parent
8d016ef138
commit
539eb11e6e
|
@ -7,7 +7,7 @@ extra-y := head.o init_task.o vmlinux.lds
|
|||
obj-y := process.o semaphore.o signal.o entry.o traps.o irq.o \
|
||||
ptrace.o time.o ioport.o ldt.o setup.o i8259.o sys_i386.o \
|
||||
pci-dma.o i386_ksyms.o i387.o bootflag.o \
|
||||
quirks.o i8237.o topology.o alternative.o i8253.o
|
||||
quirks.o i8237.o topology.o alternative.o i8253.o tsc.o
|
||||
|
||||
obj-y += cpu/
|
||||
obj-y += timers/
|
||||
|
|
|
@ -79,10 +79,12 @@ int __init get_memcfg_numaq(void)
|
|||
return 1;
|
||||
}
|
||||
|
||||
static int __init numaq_dsc_disable(void)
|
||||
static int __init numaq_tsc_disable(void)
|
||||
{
|
||||
printk(KERN_DEBUG "NUMAQ: disabling TSC\n");
|
||||
tsc_disable = 1;
|
||||
if (num_online_nodes() > 1) {
|
||||
printk(KERN_DEBUG "NUMAQ: disabling TSC\n");
|
||||
tsc_disable = 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
core_initcall(numaq_dsc_disable);
|
||||
arch_initcall(numaq_tsc_disable);
|
||||
|
|
|
@ -1575,6 +1575,7 @@ void __init setup_arch(char **cmdline_p)
|
|||
conswitchp = &dummy_con;
|
||||
#endif
|
||||
#endif
|
||||
tsc_init();
|
||||
}
|
||||
|
||||
static __init int add_pcspkr(void)
|
||||
|
|
|
@ -32,10 +32,6 @@ static unsigned long hpet_last;
|
|||
static struct timer_opts timer_tsc;
|
||||
#endif
|
||||
|
||||
static inline void cpufreq_delayed_get(void);
|
||||
|
||||
int tsc_disable __devinitdata = 0;
|
||||
|
||||
static int use_tsc;
|
||||
/* Number of usecs that the last interrupt was delayed */
|
||||
static int delay_at_last_interrupt;
|
||||
|
@ -144,30 +140,6 @@ static unsigned long long monotonic_clock_tsc(void)
|
|||
return base + cycles_2_ns(this_offset - last_offset);
|
||||
}
|
||||
|
||||
/*
|
||||
* Scheduler clock - returns current time in nanosec units.
|
||||
*/
|
||||
unsigned long long sched_clock(void)
|
||||
{
|
||||
unsigned long long this_offset;
|
||||
|
||||
/*
|
||||
* In the NUMA case we dont use the TSC as they are not
|
||||
* synchronized across all CPUs.
|
||||
*/
|
||||
#ifndef CONFIG_NUMA
|
||||
if (!use_tsc)
|
||||
#endif
|
||||
/* no locking but a rare wrong value is not a big deal */
|
||||
return jiffies_64 * (1000000000 / HZ);
|
||||
|
||||
/* Read the Time Stamp Counter */
|
||||
rdtscll(this_offset);
|
||||
|
||||
/* return the value in ns */
|
||||
return cycles_2_ns(this_offset);
|
||||
}
|
||||
|
||||
static void delay_tsc(unsigned long loops)
|
||||
{
|
||||
unsigned long bclock, now;
|
||||
|
@ -231,136 +203,6 @@ static void mark_offset_tsc_hpet(void)
|
|||
}
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef CONFIG_CPU_FREQ
|
||||
#include <linux/workqueue.h>
|
||||
|
||||
static unsigned int cpufreq_delayed_issched = 0;
|
||||
static unsigned int cpufreq_init = 0;
|
||||
static struct work_struct cpufreq_delayed_get_work;
|
||||
|
||||
static void handle_cpufreq_delayed_get(void *v)
|
||||
{
|
||||
unsigned int cpu;
|
||||
for_each_online_cpu(cpu) {
|
||||
cpufreq_get(cpu);
|
||||
}
|
||||
cpufreq_delayed_issched = 0;
|
||||
}
|
||||
|
||||
/* if we notice lost ticks, schedule a call to cpufreq_get() as it tries
|
||||
* to verify the CPU frequency the timing core thinks the CPU is running
|
||||
* at is still correct.
|
||||
*/
|
||||
static inline void cpufreq_delayed_get(void)
|
||||
{
|
||||
if (cpufreq_init && !cpufreq_delayed_issched) {
|
||||
cpufreq_delayed_issched = 1;
|
||||
printk(KERN_DEBUG "Losing some ticks... checking if CPU frequency changed.\n");
|
||||
schedule_work(&cpufreq_delayed_get_work);
|
||||
}
|
||||
}
|
||||
|
||||
/* If the CPU frequency is scaled, TSC-based delays will need a different
|
||||
* loops_per_jiffy value to function properly.
|
||||
*/
|
||||
|
||||
static unsigned int ref_freq = 0;
|
||||
static unsigned long loops_per_jiffy_ref = 0;
|
||||
|
||||
#ifndef CONFIG_SMP
|
||||
static unsigned long fast_gettimeoffset_ref = 0;
|
||||
static unsigned int cpu_khz_ref = 0;
|
||||
#endif
|
||||
|
||||
static int
|
||||
time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
|
||||
void *data)
|
||||
{
|
||||
struct cpufreq_freqs *freq = data;
|
||||
|
||||
if (val != CPUFREQ_RESUMECHANGE && val != CPUFREQ_SUSPENDCHANGE)
|
||||
write_seqlock_irq(&xtime_lock);
|
||||
if (!ref_freq) {
|
||||
if (!freq->old){
|
||||
ref_freq = freq->new;
|
||||
goto end;
|
||||
}
|
||||
ref_freq = freq->old;
|
||||
loops_per_jiffy_ref = cpu_data[freq->cpu].loops_per_jiffy;
|
||||
#ifndef CONFIG_SMP
|
||||
fast_gettimeoffset_ref = fast_gettimeoffset_quotient;
|
||||
cpu_khz_ref = cpu_khz;
|
||||
#endif
|
||||
}
|
||||
|
||||
if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
|
||||
(val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
|
||||
(val == CPUFREQ_RESUMECHANGE)) {
|
||||
if (!(freq->flags & CPUFREQ_CONST_LOOPS))
|
||||
cpu_data[freq->cpu].loops_per_jiffy = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
|
||||
#ifndef CONFIG_SMP
|
||||
if (cpu_khz)
|
||||
cpu_khz = cpufreq_scale(cpu_khz_ref, ref_freq, freq->new);
|
||||
if (use_tsc) {
|
||||
if (!(freq->flags & CPUFREQ_CONST_LOOPS)) {
|
||||
fast_gettimeoffset_quotient = cpufreq_scale(fast_gettimeoffset_ref, freq->new, ref_freq);
|
||||
set_cyc2ns_scale(cpu_khz);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
end:
|
||||
if (val != CPUFREQ_RESUMECHANGE && val != CPUFREQ_SUSPENDCHANGE)
|
||||
write_sequnlock_irq(&xtime_lock);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static struct notifier_block time_cpufreq_notifier_block = {
|
||||
.notifier_call = time_cpufreq_notifier
|
||||
};
|
||||
|
||||
|
||||
static int __init cpufreq_tsc(void)
|
||||
{
|
||||
int ret;
|
||||
INIT_WORK(&cpufreq_delayed_get_work, handle_cpufreq_delayed_get, NULL);
|
||||
ret = cpufreq_register_notifier(&time_cpufreq_notifier_block,
|
||||
CPUFREQ_TRANSITION_NOTIFIER);
|
||||
if (!ret)
|
||||
cpufreq_init = 1;
|
||||
return ret;
|
||||
}
|
||||
core_initcall(cpufreq_tsc);
|
||||
|
||||
#else /* CONFIG_CPU_FREQ */
|
||||
static inline void cpufreq_delayed_get(void) { return; }
|
||||
#endif
|
||||
|
||||
int recalibrate_cpu_khz(void)
|
||||
{
|
||||
#ifndef CONFIG_SMP
|
||||
unsigned int cpu_khz_old = cpu_khz;
|
||||
|
||||
if (cpu_has_tsc) {
|
||||
local_irq_disable();
|
||||
init_cpu_khz();
|
||||
local_irq_enable();
|
||||
cpu_data[0].loops_per_jiffy =
|
||||
cpufreq_scale(cpu_data[0].loops_per_jiffy,
|
||||
cpu_khz_old,
|
||||
cpu_khz);
|
||||
return 0;
|
||||
} else
|
||||
return -ENODEV;
|
||||
#else
|
||||
return -ENODEV;
|
||||
#endif
|
||||
}
|
||||
EXPORT_SYMBOL(recalibrate_cpu_khz);
|
||||
|
||||
static void mark_offset_tsc(void)
|
||||
{
|
||||
unsigned long lost,delay;
|
||||
|
@ -451,9 +293,6 @@ static void mark_offset_tsc(void)
|
|||
|
||||
clock_fallback();
|
||||
}
|
||||
/* ... but give the TSC a fair chance */
|
||||
if (lost_count > 25)
|
||||
cpufreq_delayed_get();
|
||||
} else
|
||||
lost_count = 0;
|
||||
/* update the monotonic base value */
|
||||
|
@ -578,23 +417,6 @@ static int tsc_resume(void)
|
|||
return 0;
|
||||
}
|
||||
|
||||
#ifndef CONFIG_X86_TSC
|
||||
/* disable flag for tsc. Takes effect by clearing the TSC cpu flag
|
||||
* in cpu/common.c */
|
||||
static int __init tsc_setup(char *str)
|
||||
{
|
||||
tsc_disable = 1;
|
||||
return 1;
|
||||
}
|
||||
#else
|
||||
static int __init tsc_setup(char *str)
|
||||
{
|
||||
printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
|
||||
"cannot disable TSC.\n");
|
||||
return 1;
|
||||
}
|
||||
#endif
|
||||
__setup("notsc", tsc_setup);
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -0,0 +1,316 @@
|
|||
/*
|
||||
* This code largely moved from arch/i386/kernel/timer/timer_tsc.c
|
||||
* which was originally moved from arch/i386/kernel/time.c.
|
||||
* See comments there for proper credits.
|
||||
*/
|
||||
|
||||
#include <linux/workqueue.h>
|
||||
#include <linux/cpufreq.h>
|
||||
#include <linux/jiffies.h>
|
||||
#include <linux/init.h>
|
||||
|
||||
#include <asm/tsc.h>
|
||||
#include <asm/io.h>
|
||||
|
||||
#include "mach_timer.h"
|
||||
|
||||
/*
|
||||
* On some systems the TSC frequency does not
|
||||
* change with the cpu frequency. So we need
|
||||
* an extra value to store the TSC freq
|
||||
*/
|
||||
unsigned int tsc_khz;
|
||||
|
||||
int tsc_disable __cpuinitdata = 0;
|
||||
|
||||
#ifdef CONFIG_X86_TSC
|
||||
static int __init tsc_setup(char *str)
|
||||
{
|
||||
printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
|
||||
"cannot disable TSC.\n");
|
||||
return 1;
|
||||
}
|
||||
#else
|
||||
/*
|
||||
* disable flag for tsc. Takes effect by clearing the TSC cpu flag
|
||||
* in cpu/common.c
|
||||
*/
|
||||
static int __init tsc_setup(char *str)
|
||||
{
|
||||
tsc_disable = 1;
|
||||
|
||||
return 1;
|
||||
}
|
||||
#endif
|
||||
|
||||
__setup("notsc", tsc_setup);
|
||||
|
||||
|
||||
/*
|
||||
* code to mark and check if the TSC is unstable
|
||||
* due to cpufreq or due to unsynced TSCs
|
||||
*/
|
||||
static int tsc_unstable;
|
||||
|
||||
static inline int check_tsc_unstable(void)
|
||||
{
|
||||
return tsc_unstable;
|
||||
}
|
||||
|
||||
void mark_tsc_unstable(void)
|
||||
{
|
||||
tsc_unstable = 1;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(mark_tsc_unstable);
|
||||
|
||||
/* Accellerators for sched_clock()
|
||||
* convert from cycles(64bits) => nanoseconds (64bits)
|
||||
* basic equation:
|
||||
* ns = cycles / (freq / ns_per_sec)
|
||||
* ns = cycles * (ns_per_sec / freq)
|
||||
* ns = cycles * (10^9 / (cpu_khz * 10^3))
|
||||
* ns = cycles * (10^6 / cpu_khz)
|
||||
*
|
||||
* Then we use scaling math (suggested by george@mvista.com) to get:
|
||||
* ns = cycles * (10^6 * SC / cpu_khz) / SC
|
||||
* ns = cycles * cyc2ns_scale / SC
|
||||
*
|
||||
* And since SC is a constant power of two, we can convert the div
|
||||
* into a shift.
|
||||
*
|
||||
* We can use khz divisor instead of mhz to keep a better percision, since
|
||||
* cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
|
||||
* (mathieu.desnoyers@polymtl.ca)
|
||||
*
|
||||
* -johnstul@us.ibm.com "math is hard, lets go shopping!"
|
||||
*/
|
||||
static unsigned long cyc2ns_scale __read_mostly;
|
||||
|
||||
#define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
|
||||
|
||||
static inline void set_cyc2ns_scale(unsigned long cpu_khz)
|
||||
{
|
||||
cyc2ns_scale = (1000000 << CYC2NS_SCALE_FACTOR)/cpu_khz;
|
||||
}
|
||||
|
||||
static inline unsigned long long cycles_2_ns(unsigned long long cyc)
|
||||
{
|
||||
return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR;
|
||||
}
|
||||
|
||||
/*
|
||||
* Scheduler clock - returns current time in nanosec units.
|
||||
*/
|
||||
unsigned long long sched_clock(void)
|
||||
{
|
||||
unsigned long long this_offset;
|
||||
|
||||
/*
|
||||
* in the NUMA case we dont use the TSC as they are not
|
||||
* synchronized across all CPUs.
|
||||
*/
|
||||
#ifndef CONFIG_NUMA
|
||||
if (!cpu_khz || check_tsc_unstable())
|
||||
#endif
|
||||
/* no locking but a rare wrong value is not a big deal */
|
||||
return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
|
||||
|
||||
/* read the Time Stamp Counter: */
|
||||
rdtscll(this_offset);
|
||||
|
||||
/* return the value in ns */
|
||||
return cycles_2_ns(this_offset);
|
||||
}
|
||||
|
||||
static unsigned long calculate_cpu_khz(void)
|
||||
{
|
||||
unsigned long long start, end;
|
||||
unsigned long count;
|
||||
u64 delta64;
|
||||
int i;
|
||||
unsigned long flags;
|
||||
|
||||
local_irq_save(flags);
|
||||
|
||||
/* run 3 times to ensure the cache is warm */
|
||||
for (i = 0; i < 3; i++) {
|
||||
mach_prepare_counter();
|
||||
rdtscll(start);
|
||||
mach_countup(&count);
|
||||
rdtscll(end);
|
||||
}
|
||||
/*
|
||||
* Error: ECTCNEVERSET
|
||||
* The CTC wasn't reliable: we got a hit on the very first read,
|
||||
* or the CPU was so fast/slow that the quotient wouldn't fit in
|
||||
* 32 bits..
|
||||
*/
|
||||
if (count <= 1)
|
||||
goto err;
|
||||
|
||||
delta64 = end - start;
|
||||
|
||||
/* cpu freq too fast: */
|
||||
if (delta64 > (1ULL<<32))
|
||||
goto err;
|
||||
|
||||
/* cpu freq too slow: */
|
||||
if (delta64 <= CALIBRATE_TIME_MSEC)
|
||||
goto err;
|
||||
|
||||
delta64 += CALIBRATE_TIME_MSEC/2; /* round for do_div */
|
||||
do_div(delta64,CALIBRATE_TIME_MSEC);
|
||||
|
||||
local_irq_restore(flags);
|
||||
return (unsigned long)delta64;
|
||||
err:
|
||||
local_irq_restore(flags);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int recalibrate_cpu_khz(void)
|
||||
{
|
||||
#ifndef CONFIG_SMP
|
||||
unsigned long cpu_khz_old = cpu_khz;
|
||||
|
||||
if (cpu_has_tsc) {
|
||||
cpu_khz = calculate_cpu_khz();
|
||||
tsc_khz = cpu_khz;
|
||||
cpu_data[0].loops_per_jiffy =
|
||||
cpufreq_scale(cpu_data[0].loops_per_jiffy,
|
||||
cpu_khz_old, cpu_khz);
|
||||
return 0;
|
||||
} else
|
||||
return -ENODEV;
|
||||
#else
|
||||
return -ENODEV;
|
||||
#endif
|
||||
}
|
||||
|
||||
EXPORT_SYMBOL(recalibrate_cpu_khz);
|
||||
|
||||
void tsc_init(void)
|
||||
{
|
||||
if (!cpu_has_tsc || tsc_disable)
|
||||
return;
|
||||
|
||||
cpu_khz = calculate_cpu_khz();
|
||||
tsc_khz = cpu_khz;
|
||||
|
||||
if (!cpu_khz)
|
||||
return;
|
||||
|
||||
printk("Detected %lu.%03lu MHz processor.\n",
|
||||
(unsigned long)cpu_khz / 1000,
|
||||
(unsigned long)cpu_khz % 1000);
|
||||
|
||||
set_cyc2ns_scale(cpu_khz);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_CPU_FREQ
|
||||
|
||||
static unsigned int cpufreq_delayed_issched = 0;
|
||||
static unsigned int cpufreq_init = 0;
|
||||
static struct work_struct cpufreq_delayed_get_work;
|
||||
|
||||
static void handle_cpufreq_delayed_get(void *v)
|
||||
{
|
||||
unsigned int cpu;
|
||||
|
||||
for_each_online_cpu(cpu)
|
||||
cpufreq_get(cpu);
|
||||
|
||||
cpufreq_delayed_issched = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* if we notice cpufreq oddness, schedule a call to cpufreq_get() as it tries
|
||||
* to verify the CPU frequency the timing core thinks the CPU is running
|
||||
* at is still correct.
|
||||
*/
|
||||
static inline void cpufreq_delayed_get(void)
|
||||
{
|
||||
if (cpufreq_init && !cpufreq_delayed_issched) {
|
||||
cpufreq_delayed_issched = 1;
|
||||
printk(KERN_DEBUG "Checking if CPU frequency changed.\n");
|
||||
schedule_work(&cpufreq_delayed_get_work);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* if the CPU frequency is scaled, TSC-based delays will need a different
|
||||
* loops_per_jiffy value to function properly.
|
||||
*/
|
||||
static unsigned int ref_freq = 0;
|
||||
static unsigned long loops_per_jiffy_ref = 0;
|
||||
static unsigned long cpu_khz_ref = 0;
|
||||
|
||||
static int
|
||||
time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, void *data)
|
||||
{
|
||||
struct cpufreq_freqs *freq = data;
|
||||
|
||||
if (val != CPUFREQ_RESUMECHANGE && val != CPUFREQ_SUSPENDCHANGE)
|
||||
write_seqlock_irq(&xtime_lock);
|
||||
|
||||
if (!ref_freq) {
|
||||
if (!freq->old){
|
||||
ref_freq = freq->new;
|
||||
goto end;
|
||||
}
|
||||
ref_freq = freq->old;
|
||||
loops_per_jiffy_ref = cpu_data[freq->cpu].loops_per_jiffy;
|
||||
cpu_khz_ref = cpu_khz;
|
||||
}
|
||||
|
||||
if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
|
||||
(val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
|
||||
(val == CPUFREQ_RESUMECHANGE)) {
|
||||
if (!(freq->flags & CPUFREQ_CONST_LOOPS))
|
||||
cpu_data[freq->cpu].loops_per_jiffy =
|
||||
cpufreq_scale(loops_per_jiffy_ref,
|
||||
ref_freq, freq->new);
|
||||
|
||||
if (cpu_khz) {
|
||||
|
||||
if (num_online_cpus() == 1)
|
||||
cpu_khz = cpufreq_scale(cpu_khz_ref,
|
||||
ref_freq, freq->new);
|
||||
if (!(freq->flags & CPUFREQ_CONST_LOOPS)) {
|
||||
tsc_khz = cpu_khz;
|
||||
set_cyc2ns_scale(cpu_khz);
|
||||
/*
|
||||
* TSC based sched_clock turns
|
||||
* to junk w/ cpufreq
|
||||
*/
|
||||
mark_tsc_unstable();
|
||||
}
|
||||
}
|
||||
}
|
||||
end:
|
||||
if (val != CPUFREQ_RESUMECHANGE && val != CPUFREQ_SUSPENDCHANGE)
|
||||
write_sequnlock_irq(&xtime_lock);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static struct notifier_block time_cpufreq_notifier_block = {
|
||||
.notifier_call = time_cpufreq_notifier
|
||||
};
|
||||
|
||||
static int __init cpufreq_tsc(void)
|
||||
{
|
||||
int ret;
|
||||
|
||||
INIT_WORK(&cpufreq_delayed_get_work, handle_cpufreq_delayed_get, NULL);
|
||||
ret = cpufreq_register_notifier(&time_cpufreq_notifier_block,
|
||||
CPUFREQ_TRANSITION_NOTIFIER);
|
||||
if (!ret)
|
||||
cpufreq_init = 1;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
core_initcall(cpufreq_tsc);
|
||||
|
||||
#endif
|
|
@ -369,6 +369,11 @@ static void acpi_processor_idle(void)
|
|||
t2 = inl(acpi_fadt.xpm_tmr_blk.address);
|
||||
/* Get end time (ticks) */
|
||||
t2 = inl(acpi_fadt.xpm_tmr_blk.address);
|
||||
|
||||
#ifdef CONFIG_GENERIC_TIME
|
||||
/* TSC halts in C2, so notify users */
|
||||
mark_tsc_unstable();
|
||||
#endif
|
||||
/* Re-enable interrupts */
|
||||
local_irq_enable();
|
||||
set_thread_flag(TIF_POLLING_NRFLAG);
|
||||
|
@ -409,6 +414,10 @@ static void acpi_processor_idle(void)
|
|||
ACPI_MTX_DO_NOT_LOCK);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_GENERIC_TIME
|
||||
/* TSC halts in C3, so notify users */
|
||||
mark_tsc_unstable();
|
||||
#endif
|
||||
/* Re-enable interrupts */
|
||||
local_irq_enable();
|
||||
set_thread_flag(TIF_POLLING_NRFLAG);
|
||||
|
|
|
@ -15,7 +15,9 @@
|
|||
#ifndef _MACH_TIMER_H
|
||||
#define _MACH_TIMER_H
|
||||
|
||||
#define CALIBRATE_LATCH (5 * LATCH)
|
||||
#define CALIBRATE_TIME_MSEC 30 /* 30 msecs */
|
||||
#define CALIBRATE_LATCH \
|
||||
((CLOCK_TICK_RATE * CALIBRATE_TIME_MSEC + 1000/2)/1000)
|
||||
|
||||
static inline void mach_prepare_counter(void)
|
||||
{
|
||||
|
|
|
@ -2,6 +2,7 @@
|
|||
#define __ASM_MACH_MPPARSE_H
|
||||
|
||||
#include <mach_apic.h>
|
||||
#include <asm/tsc.h>
|
||||
|
||||
extern int use_cyclone;
|
||||
|
||||
|
@ -29,6 +30,7 @@ static inline int mps_oem_check(struct mp_config_table *mpc, char *oem,
|
|||
(!strncmp(productid, "VIGIL SMP", 9)
|
||||
|| !strncmp(productid, "EXA", 3)
|
||||
|| !strncmp(productid, "RUTHLESS SMP", 12))){
|
||||
mark_tsc_unstable();
|
||||
use_cyclone = 1; /*enable cyclone-timer*/
|
||||
setup_summit();
|
||||
return 1;
|
||||
|
@ -42,6 +44,7 @@ static inline int acpi_madt_oem_check(char *oem_id, char *oem_table_id)
|
|||
if (!strncmp(oem_id, "IBM", 3) &&
|
||||
(!strncmp(oem_table_id, "SERVIGIL", 8)
|
||||
|| !strncmp(oem_table_id, "EXA", 3))){
|
||||
mark_tsc_unstable();
|
||||
use_cyclone = 1; /*enable cyclone-timer*/
|
||||
setup_summit();
|
||||
return 1;
|
||||
|
|
|
@ -7,6 +7,7 @@
|
|||
#define _ASMi386_TIMEX_H
|
||||
|
||||
#include <asm/processor.h>
|
||||
#include <asm/tsc.h>
|
||||
|
||||
#ifdef CONFIG_X86_ELAN
|
||||
# define CLOCK_TICK_RATE 1189200 /* AMD Elan has different frequency! */
|
||||
|
@ -15,39 +16,6 @@
|
|||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Standard way to access the cycle counter on i586+ CPUs.
|
||||
* Currently only used on SMP.
|
||||
*
|
||||
* If you really have a SMP machine with i486 chips or older,
|
||||
* compile for that, and this will just always return zero.
|
||||
* That's ok, it just means that the nicer scheduling heuristics
|
||||
* won't work for you.
|
||||
*
|
||||
* We only use the low 32 bits, and we'd simply better make sure
|
||||
* that we reschedule before that wraps. Scheduling at least every
|
||||
* four billion cycles just basically sounds like a good idea,
|
||||
* regardless of how fast the machine is.
|
||||
*/
|
||||
typedef unsigned long long cycles_t;
|
||||
|
||||
static inline cycles_t get_cycles (void)
|
||||
{
|
||||
unsigned long long ret=0;
|
||||
|
||||
#ifndef CONFIG_X86_TSC
|
||||
if (!cpu_has_tsc)
|
||||
return 0;
|
||||
#endif
|
||||
|
||||
#if defined(CONFIG_X86_GENERIC) || defined(CONFIG_X86_TSC)
|
||||
rdtscll(ret);
|
||||
#endif
|
||||
return ret;
|
||||
}
|
||||
|
||||
extern unsigned int cpu_khz;
|
||||
|
||||
extern int read_current_timer(unsigned long *timer_value);
|
||||
#define ARCH_HAS_READ_CURRENT_TIMER 1
|
||||
|
||||
|
|
|
@ -0,0 +1,49 @@
|
|||
/*
|
||||
* linux/include/asm-i386/tsc.h
|
||||
*
|
||||
* i386 TSC related functions
|
||||
*/
|
||||
#ifndef _ASM_i386_TSC_H
|
||||
#define _ASM_i386_TSC_H
|
||||
|
||||
#include <linux/config.h>
|
||||
#include <asm/processor.h>
|
||||
|
||||
/*
|
||||
* Standard way to access the cycle counter on i586+ CPUs.
|
||||
* Currently only used on SMP.
|
||||
*
|
||||
* If you really have a SMP machine with i486 chips or older,
|
||||
* compile for that, and this will just always return zero.
|
||||
* That's ok, it just means that the nicer scheduling heuristics
|
||||
* won't work for you.
|
||||
*
|
||||
* We only use the low 32 bits, and we'd simply better make sure
|
||||
* that we reschedule before that wraps. Scheduling at least every
|
||||
* four billion cycles just basically sounds like a good idea,
|
||||
* regardless of how fast the machine is.
|
||||
*/
|
||||
typedef unsigned long long cycles_t;
|
||||
|
||||
extern unsigned int cpu_khz;
|
||||
extern unsigned int tsc_khz;
|
||||
|
||||
static inline cycles_t get_cycles(void)
|
||||
{
|
||||
unsigned long long ret = 0;
|
||||
|
||||
#ifndef CONFIG_X86_TSC
|
||||
if (!cpu_has_tsc)
|
||||
return 0;
|
||||
#endif
|
||||
|
||||
#if defined(CONFIG_X86_GENERIC) || defined(CONFIG_X86_TSC)
|
||||
rdtscll(ret);
|
||||
#endif
|
||||
return ret;
|
||||
}
|
||||
|
||||
extern void tsc_init(void);
|
||||
extern void mark_tsc_unstable(void);
|
||||
|
||||
#endif
|
Loading…
Reference in New Issue