mirror of https://gitee.com/openkylin/linux.git
Merge branch 'xfs-4.7-inode-reclaim' into for-next
This commit is contained in:
commit
555b67e4e7
|
@ -1518,6 +1518,24 @@ xfs_iext_indirect_to_direct(
|
|||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Remove all records from the indirection array.
|
||||
*/
|
||||
STATIC void
|
||||
xfs_iext_irec_remove_all(
|
||||
struct xfs_ifork *ifp)
|
||||
{
|
||||
int nlists;
|
||||
int i;
|
||||
|
||||
ASSERT(ifp->if_flags & XFS_IFEXTIREC);
|
||||
nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
|
||||
for (i = 0; i < nlists; i++)
|
||||
kmem_free(ifp->if_u1.if_ext_irec[i].er_extbuf);
|
||||
kmem_free(ifp->if_u1.if_ext_irec);
|
||||
ifp->if_flags &= ~XFS_IFEXTIREC;
|
||||
}
|
||||
|
||||
/*
|
||||
* Free incore file extents.
|
||||
*/
|
||||
|
@ -1526,14 +1544,7 @@ xfs_iext_destroy(
|
|||
xfs_ifork_t *ifp) /* inode fork pointer */
|
||||
{
|
||||
if (ifp->if_flags & XFS_IFEXTIREC) {
|
||||
int erp_idx;
|
||||
int nlists;
|
||||
|
||||
nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
|
||||
for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
|
||||
xfs_iext_irec_remove(ifp, erp_idx);
|
||||
}
|
||||
ifp->if_flags &= ~XFS_IFEXTIREC;
|
||||
xfs_iext_irec_remove_all(ifp);
|
||||
} else if (ifp->if_real_bytes) {
|
||||
kmem_free(ifp->if_u1.if_extents);
|
||||
} else if (ifp->if_bytes) {
|
||||
|
|
|
@ -37,9 +37,6 @@
|
|||
#include <linux/kthread.h>
|
||||
#include <linux/freezer.h>
|
||||
|
||||
STATIC void __xfs_inode_clear_reclaim_tag(struct xfs_mount *mp,
|
||||
struct xfs_perag *pag, struct xfs_inode *ip);
|
||||
|
||||
/*
|
||||
* Allocate and initialise an xfs_inode.
|
||||
*/
|
||||
|
@ -94,13 +91,6 @@ xfs_inode_free_callback(
|
|||
struct inode *inode = container_of(head, struct inode, i_rcu);
|
||||
struct xfs_inode *ip = XFS_I(inode);
|
||||
|
||||
kmem_zone_free(xfs_inode_zone, ip);
|
||||
}
|
||||
|
||||
void
|
||||
xfs_inode_free(
|
||||
struct xfs_inode *ip)
|
||||
{
|
||||
switch (VFS_I(ip)->i_mode & S_IFMT) {
|
||||
case S_IFREG:
|
||||
case S_IFDIR:
|
||||
|
@ -118,6 +108,25 @@ xfs_inode_free(
|
|||
ip->i_itemp = NULL;
|
||||
}
|
||||
|
||||
kmem_zone_free(xfs_inode_zone, ip);
|
||||
}
|
||||
|
||||
static void
|
||||
__xfs_inode_free(
|
||||
struct xfs_inode *ip)
|
||||
{
|
||||
/* asserts to verify all state is correct here */
|
||||
ASSERT(atomic_read(&ip->i_pincount) == 0);
|
||||
ASSERT(!xfs_isiflocked(ip));
|
||||
XFS_STATS_DEC(ip->i_mount, vn_active);
|
||||
|
||||
call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
|
||||
}
|
||||
|
||||
void
|
||||
xfs_inode_free(
|
||||
struct xfs_inode *ip)
|
||||
{
|
||||
/*
|
||||
* Because we use RCU freeing we need to ensure the inode always
|
||||
* appears to be reclaimed with an invalid inode number when in the
|
||||
|
@ -129,12 +138,123 @@ xfs_inode_free(
|
|||
ip->i_ino = 0;
|
||||
spin_unlock(&ip->i_flags_lock);
|
||||
|
||||
/* asserts to verify all state is correct here */
|
||||
ASSERT(atomic_read(&ip->i_pincount) == 0);
|
||||
ASSERT(!xfs_isiflocked(ip));
|
||||
XFS_STATS_DEC(ip->i_mount, vn_active);
|
||||
__xfs_inode_free(ip);
|
||||
}
|
||||
|
||||
call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
|
||||
/*
|
||||
* Queue a new inode reclaim pass if there are reclaimable inodes and there
|
||||
* isn't a reclaim pass already in progress. By default it runs every 5s based
|
||||
* on the xfs periodic sync default of 30s. Perhaps this should have it's own
|
||||
* tunable, but that can be done if this method proves to be ineffective or too
|
||||
* aggressive.
|
||||
*/
|
||||
static void
|
||||
xfs_reclaim_work_queue(
|
||||
struct xfs_mount *mp)
|
||||
{
|
||||
|
||||
rcu_read_lock();
|
||||
if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
|
||||
queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
|
||||
msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
|
||||
}
|
||||
rcu_read_unlock();
|
||||
}
|
||||
|
||||
/*
|
||||
* This is a fast pass over the inode cache to try to get reclaim moving on as
|
||||
* many inodes as possible in a short period of time. It kicks itself every few
|
||||
* seconds, as well as being kicked by the inode cache shrinker when memory
|
||||
* goes low. It scans as quickly as possible avoiding locked inodes or those
|
||||
* already being flushed, and once done schedules a future pass.
|
||||
*/
|
||||
void
|
||||
xfs_reclaim_worker(
|
||||
struct work_struct *work)
|
||||
{
|
||||
struct xfs_mount *mp = container_of(to_delayed_work(work),
|
||||
struct xfs_mount, m_reclaim_work);
|
||||
|
||||
xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
|
||||
xfs_reclaim_work_queue(mp);
|
||||
}
|
||||
|
||||
static void
|
||||
xfs_perag_set_reclaim_tag(
|
||||
struct xfs_perag *pag)
|
||||
{
|
||||
struct xfs_mount *mp = pag->pag_mount;
|
||||
|
||||
ASSERT(spin_is_locked(&pag->pag_ici_lock));
|
||||
if (pag->pag_ici_reclaimable++)
|
||||
return;
|
||||
|
||||
/* propagate the reclaim tag up into the perag radix tree */
|
||||
spin_lock(&mp->m_perag_lock);
|
||||
radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
|
||||
XFS_ICI_RECLAIM_TAG);
|
||||
spin_unlock(&mp->m_perag_lock);
|
||||
|
||||
/* schedule periodic background inode reclaim */
|
||||
xfs_reclaim_work_queue(mp);
|
||||
|
||||
trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
|
||||
}
|
||||
|
||||
static void
|
||||
xfs_perag_clear_reclaim_tag(
|
||||
struct xfs_perag *pag)
|
||||
{
|
||||
struct xfs_mount *mp = pag->pag_mount;
|
||||
|
||||
ASSERT(spin_is_locked(&pag->pag_ici_lock));
|
||||
if (--pag->pag_ici_reclaimable)
|
||||
return;
|
||||
|
||||
/* clear the reclaim tag from the perag radix tree */
|
||||
spin_lock(&mp->m_perag_lock);
|
||||
radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
|
||||
XFS_ICI_RECLAIM_TAG);
|
||||
spin_unlock(&mp->m_perag_lock);
|
||||
trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* We set the inode flag atomically with the radix tree tag.
|
||||
* Once we get tag lookups on the radix tree, this inode flag
|
||||
* can go away.
|
||||
*/
|
||||
void
|
||||
xfs_inode_set_reclaim_tag(
|
||||
struct xfs_inode *ip)
|
||||
{
|
||||
struct xfs_mount *mp = ip->i_mount;
|
||||
struct xfs_perag *pag;
|
||||
|
||||
pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
|
||||
spin_lock(&pag->pag_ici_lock);
|
||||
spin_lock(&ip->i_flags_lock);
|
||||
|
||||
radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
|
||||
XFS_ICI_RECLAIM_TAG);
|
||||
xfs_perag_set_reclaim_tag(pag);
|
||||
__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
|
||||
|
||||
spin_unlock(&ip->i_flags_lock);
|
||||
spin_unlock(&pag->pag_ici_lock);
|
||||
xfs_perag_put(pag);
|
||||
}
|
||||
|
||||
STATIC void
|
||||
xfs_inode_clear_reclaim_tag(
|
||||
struct xfs_perag *pag,
|
||||
xfs_ino_t ino)
|
||||
{
|
||||
radix_tree_tag_clear(&pag->pag_ici_root,
|
||||
XFS_INO_TO_AGINO(pag->pag_mount, ino),
|
||||
XFS_ICI_RECLAIM_TAG);
|
||||
xfs_perag_clear_reclaim_tag(pag);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -264,7 +384,7 @@ xfs_iget_cache_hit(
|
|||
*/
|
||||
ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
|
||||
ip->i_flags |= XFS_INEW;
|
||||
__xfs_inode_clear_reclaim_tag(mp, pag, ip);
|
||||
xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
|
||||
inode->i_state = I_NEW;
|
||||
|
||||
ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
|
||||
|
@ -722,121 +842,6 @@ xfs_inode_ag_iterator_tag(
|
|||
return last_error;
|
||||
}
|
||||
|
||||
/*
|
||||
* Queue a new inode reclaim pass if there are reclaimable inodes and there
|
||||
* isn't a reclaim pass already in progress. By default it runs every 5s based
|
||||
* on the xfs periodic sync default of 30s. Perhaps this should have it's own
|
||||
* tunable, but that can be done if this method proves to be ineffective or too
|
||||
* aggressive.
|
||||
*/
|
||||
static void
|
||||
xfs_reclaim_work_queue(
|
||||
struct xfs_mount *mp)
|
||||
{
|
||||
|
||||
rcu_read_lock();
|
||||
if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
|
||||
queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
|
||||
msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
|
||||
}
|
||||
rcu_read_unlock();
|
||||
}
|
||||
|
||||
/*
|
||||
* This is a fast pass over the inode cache to try to get reclaim moving on as
|
||||
* many inodes as possible in a short period of time. It kicks itself every few
|
||||
* seconds, as well as being kicked by the inode cache shrinker when memory
|
||||
* goes low. It scans as quickly as possible avoiding locked inodes or those
|
||||
* already being flushed, and once done schedules a future pass.
|
||||
*/
|
||||
void
|
||||
xfs_reclaim_worker(
|
||||
struct work_struct *work)
|
||||
{
|
||||
struct xfs_mount *mp = container_of(to_delayed_work(work),
|
||||
struct xfs_mount, m_reclaim_work);
|
||||
|
||||
xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
|
||||
xfs_reclaim_work_queue(mp);
|
||||
}
|
||||
|
||||
static void
|
||||
__xfs_inode_set_reclaim_tag(
|
||||
struct xfs_perag *pag,
|
||||
struct xfs_inode *ip)
|
||||
{
|
||||
radix_tree_tag_set(&pag->pag_ici_root,
|
||||
XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
|
||||
XFS_ICI_RECLAIM_TAG);
|
||||
|
||||
if (!pag->pag_ici_reclaimable) {
|
||||
/* propagate the reclaim tag up into the perag radix tree */
|
||||
spin_lock(&ip->i_mount->m_perag_lock);
|
||||
radix_tree_tag_set(&ip->i_mount->m_perag_tree,
|
||||
XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
|
||||
XFS_ICI_RECLAIM_TAG);
|
||||
spin_unlock(&ip->i_mount->m_perag_lock);
|
||||
|
||||
/* schedule periodic background inode reclaim */
|
||||
xfs_reclaim_work_queue(ip->i_mount);
|
||||
|
||||
trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
|
||||
-1, _RET_IP_);
|
||||
}
|
||||
pag->pag_ici_reclaimable++;
|
||||
}
|
||||
|
||||
/*
|
||||
* We set the inode flag atomically with the radix tree tag.
|
||||
* Once we get tag lookups on the radix tree, this inode flag
|
||||
* can go away.
|
||||
*/
|
||||
void
|
||||
xfs_inode_set_reclaim_tag(
|
||||
xfs_inode_t *ip)
|
||||
{
|
||||
struct xfs_mount *mp = ip->i_mount;
|
||||
struct xfs_perag *pag;
|
||||
|
||||
pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
|
||||
spin_lock(&pag->pag_ici_lock);
|
||||
spin_lock(&ip->i_flags_lock);
|
||||
__xfs_inode_set_reclaim_tag(pag, ip);
|
||||
__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
|
||||
spin_unlock(&ip->i_flags_lock);
|
||||
spin_unlock(&pag->pag_ici_lock);
|
||||
xfs_perag_put(pag);
|
||||
}
|
||||
|
||||
STATIC void
|
||||
__xfs_inode_clear_reclaim(
|
||||
xfs_perag_t *pag,
|
||||
xfs_inode_t *ip)
|
||||
{
|
||||
pag->pag_ici_reclaimable--;
|
||||
if (!pag->pag_ici_reclaimable) {
|
||||
/* clear the reclaim tag from the perag radix tree */
|
||||
spin_lock(&ip->i_mount->m_perag_lock);
|
||||
radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
|
||||
XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
|
||||
XFS_ICI_RECLAIM_TAG);
|
||||
spin_unlock(&ip->i_mount->m_perag_lock);
|
||||
trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
|
||||
-1, _RET_IP_);
|
||||
}
|
||||
}
|
||||
|
||||
STATIC void
|
||||
__xfs_inode_clear_reclaim_tag(
|
||||
xfs_mount_t *mp,
|
||||
xfs_perag_t *pag,
|
||||
xfs_inode_t *ip)
|
||||
{
|
||||
radix_tree_tag_clear(&pag->pag_ici_root,
|
||||
XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
|
||||
__xfs_inode_clear_reclaim(pag, ip);
|
||||
}
|
||||
|
||||
/*
|
||||
* Grab the inode for reclaim exclusively.
|
||||
* Return 0 if we grabbed it, non-zero otherwise.
|
||||
|
@ -929,6 +934,7 @@ xfs_reclaim_inode(
|
|||
int sync_mode)
|
||||
{
|
||||
struct xfs_buf *bp = NULL;
|
||||
xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */
|
||||
int error;
|
||||
|
||||
restart:
|
||||
|
@ -993,6 +999,22 @@ xfs_reclaim_inode(
|
|||
|
||||
xfs_iflock(ip);
|
||||
reclaim:
|
||||
/*
|
||||
* Because we use RCU freeing we need to ensure the inode always appears
|
||||
* to be reclaimed with an invalid inode number when in the free state.
|
||||
* We do this as early as possible under the ILOCK and flush lock so
|
||||
* that xfs_iflush_cluster() can be guaranteed to detect races with us
|
||||
* here. By doing this, we guarantee that once xfs_iflush_cluster has
|
||||
* locked both the XFS_ILOCK and the flush lock that it will see either
|
||||
* a valid, flushable inode that will serialise correctly against the
|
||||
* locks below, or it will see a clean (and invalid) inode that it can
|
||||
* skip.
|
||||
*/
|
||||
spin_lock(&ip->i_flags_lock);
|
||||
ip->i_flags = XFS_IRECLAIM;
|
||||
ip->i_ino = 0;
|
||||
spin_unlock(&ip->i_flags_lock);
|
||||
|
||||
xfs_ifunlock(ip);
|
||||
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
||||
|
||||
|
@ -1006,9 +1028,9 @@ xfs_reclaim_inode(
|
|||
*/
|
||||
spin_lock(&pag->pag_ici_lock);
|
||||
if (!radix_tree_delete(&pag->pag_ici_root,
|
||||
XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
|
||||
XFS_INO_TO_AGINO(ip->i_mount, ino)))
|
||||
ASSERT(0);
|
||||
__xfs_inode_clear_reclaim(pag, ip);
|
||||
xfs_perag_clear_reclaim_tag(pag);
|
||||
spin_unlock(&pag->pag_ici_lock);
|
||||
|
||||
/*
|
||||
|
@ -1023,7 +1045,7 @@ xfs_reclaim_inode(
|
|||
xfs_qm_dqdetach(ip);
|
||||
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
||||
|
||||
xfs_inode_free(ip);
|
||||
__xfs_inode_free(ip);
|
||||
return error;
|
||||
|
||||
out_ifunlock:
|
||||
|
|
|
@ -3149,16 +3149,16 @@ xfs_rename(
|
|||
|
||||
STATIC int
|
||||
xfs_iflush_cluster(
|
||||
xfs_inode_t *ip,
|
||||
xfs_buf_t *bp)
|
||||
struct xfs_inode *ip,
|
||||
struct xfs_buf *bp)
|
||||
{
|
||||
xfs_mount_t *mp = ip->i_mount;
|
||||
struct xfs_mount *mp = ip->i_mount;
|
||||
struct xfs_perag *pag;
|
||||
unsigned long first_index, mask;
|
||||
unsigned long inodes_per_cluster;
|
||||
int ilist_size;
|
||||
xfs_inode_t **ilist;
|
||||
xfs_inode_t *iq;
|
||||
int cilist_size;
|
||||
struct xfs_inode **cilist;
|
||||
struct xfs_inode *cip;
|
||||
int nr_found;
|
||||
int clcount = 0;
|
||||
int bufwasdelwri;
|
||||
|
@ -3167,23 +3167,23 @@ xfs_iflush_cluster(
|
|||
pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
|
||||
|
||||
inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
|
||||
ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
|
||||
ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
|
||||
if (!ilist)
|
||||
cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
|
||||
cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
|
||||
if (!cilist)
|
||||
goto out_put;
|
||||
|
||||
mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
|
||||
first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
|
||||
rcu_read_lock();
|
||||
/* really need a gang lookup range call here */
|
||||
nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
|
||||
nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
|
||||
first_index, inodes_per_cluster);
|
||||
if (nr_found == 0)
|
||||
goto out_free;
|
||||
|
||||
for (i = 0; i < nr_found; i++) {
|
||||
iq = ilist[i];
|
||||
if (iq == ip)
|
||||
cip = cilist[i];
|
||||
if (cip == ip)
|
||||
continue;
|
||||
|
||||
/*
|
||||
|
@ -3192,20 +3192,30 @@ xfs_iflush_cluster(
|
|||
* We need to check under the i_flags_lock for a valid inode
|
||||
* here. Skip it if it is not valid or the wrong inode.
|
||||
*/
|
||||
spin_lock(&ip->i_flags_lock);
|
||||
if (!ip->i_ino ||
|
||||
(XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
|
||||
spin_unlock(&ip->i_flags_lock);
|
||||
spin_lock(&cip->i_flags_lock);
|
||||
if (!cip->i_ino ||
|
||||
__xfs_iflags_test(cip, XFS_ISTALE)) {
|
||||
spin_unlock(&cip->i_flags_lock);
|
||||
continue;
|
||||
}
|
||||
spin_unlock(&ip->i_flags_lock);
|
||||
|
||||
/*
|
||||
* Once we fall off the end of the cluster, no point checking
|
||||
* any more inodes in the list because they will also all be
|
||||
* outside the cluster.
|
||||
*/
|
||||
if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
|
||||
spin_unlock(&cip->i_flags_lock);
|
||||
break;
|
||||
}
|
||||
spin_unlock(&cip->i_flags_lock);
|
||||
|
||||
/*
|
||||
* Do an un-protected check to see if the inode is dirty and
|
||||
* is a candidate for flushing. These checks will be repeated
|
||||
* later after the appropriate locks are acquired.
|
||||
*/
|
||||
if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
|
||||
if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
|
||||
continue;
|
||||
|
||||
/*
|
||||
|
@ -3213,15 +3223,28 @@ xfs_iflush_cluster(
|
|||
* then this inode cannot be flushed and is skipped.
|
||||
*/
|
||||
|
||||
if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
|
||||
if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
|
||||
continue;
|
||||
if (!xfs_iflock_nowait(iq)) {
|
||||
xfs_iunlock(iq, XFS_ILOCK_SHARED);
|
||||
if (!xfs_iflock_nowait(cip)) {
|
||||
xfs_iunlock(cip, XFS_ILOCK_SHARED);
|
||||
continue;
|
||||
}
|
||||
if (xfs_ipincount(iq)) {
|
||||
xfs_ifunlock(iq);
|
||||
xfs_iunlock(iq, XFS_ILOCK_SHARED);
|
||||
if (xfs_ipincount(cip)) {
|
||||
xfs_ifunlock(cip);
|
||||
xfs_iunlock(cip, XFS_ILOCK_SHARED);
|
||||
continue;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Check the inode number again, just to be certain we are not
|
||||
* racing with freeing in xfs_reclaim_inode(). See the comments
|
||||
* in that function for more information as to why the initial
|
||||
* check is not sufficient.
|
||||
*/
|
||||
if (!cip->i_ino) {
|
||||
xfs_ifunlock(cip);
|
||||
xfs_iunlock(cip, XFS_ILOCK_SHARED);
|
||||
continue;
|
||||
}
|
||||
|
||||
|
@ -3229,18 +3252,18 @@ xfs_iflush_cluster(
|
|||
* arriving here means that this inode can be flushed. First
|
||||
* re-check that it's dirty before flushing.
|
||||
*/
|
||||
if (!xfs_inode_clean(iq)) {
|
||||
if (!xfs_inode_clean(cip)) {
|
||||
int error;
|
||||
error = xfs_iflush_int(iq, bp);
|
||||
error = xfs_iflush_int(cip, bp);
|
||||
if (error) {
|
||||
xfs_iunlock(iq, XFS_ILOCK_SHARED);
|
||||
xfs_iunlock(cip, XFS_ILOCK_SHARED);
|
||||
goto cluster_corrupt_out;
|
||||
}
|
||||
clcount++;
|
||||
} else {
|
||||
xfs_ifunlock(iq);
|
||||
xfs_ifunlock(cip);
|
||||
}
|
||||
xfs_iunlock(iq, XFS_ILOCK_SHARED);
|
||||
xfs_iunlock(cip, XFS_ILOCK_SHARED);
|
||||
}
|
||||
|
||||
if (clcount) {
|
||||
|
@ -3250,7 +3273,7 @@ xfs_iflush_cluster(
|
|||
|
||||
out_free:
|
||||
rcu_read_unlock();
|
||||
kmem_free(ilist);
|
||||
kmem_free(cilist);
|
||||
out_put:
|
||||
xfs_perag_put(pag);
|
||||
return 0;
|
||||
|
@ -3293,8 +3316,8 @@ xfs_iflush_cluster(
|
|||
/*
|
||||
* Unlocks the flush lock
|
||||
*/
|
||||
xfs_iflush_abort(iq, false);
|
||||
kmem_free(ilist);
|
||||
xfs_iflush_abort(cip, false);
|
||||
kmem_free(cilist);
|
||||
xfs_perag_put(pag);
|
||||
return -EFSCORRUPTED;
|
||||
}
|
||||
|
@ -3314,7 +3337,7 @@ xfs_iflush(
|
|||
struct xfs_buf **bpp)
|
||||
{
|
||||
struct xfs_mount *mp = ip->i_mount;
|
||||
struct xfs_buf *bp;
|
||||
struct xfs_buf *bp = NULL;
|
||||
struct xfs_dinode *dip;
|
||||
int error;
|
||||
|
||||
|
@ -3356,14 +3379,22 @@ xfs_iflush(
|
|||
}
|
||||
|
||||
/*
|
||||
* Get the buffer containing the on-disk inode.
|
||||
* Get the buffer containing the on-disk inode. We are doing a try-lock
|
||||
* operation here, so we may get an EAGAIN error. In that case, we
|
||||
* simply want to return with the inode still dirty.
|
||||
*
|
||||
* If we get any other error, we effectively have a corruption situation
|
||||
* and we cannot flush the inode, so we treat it the same as failing
|
||||
* xfs_iflush_int().
|
||||
*/
|
||||
error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
|
||||
0);
|
||||
if (error || !bp) {
|
||||
if (error == -EAGAIN) {
|
||||
xfs_ifunlock(ip);
|
||||
return error;
|
||||
}
|
||||
if (error)
|
||||
goto corrupt_out;
|
||||
|
||||
/*
|
||||
* First flush out the inode that xfs_iflush was called with.
|
||||
|
@ -3391,6 +3422,7 @@ xfs_iflush(
|
|||
return 0;
|
||||
|
||||
corrupt_out:
|
||||
if (bp)
|
||||
xfs_buf_relse(bp);
|
||||
xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
|
||||
cluster_corrupt_out:
|
||||
|
|
|
@ -928,7 +928,7 @@ xfs_fs_alloc_inode(
|
|||
|
||||
/*
|
||||
* Now that the generic code is guaranteed not to be accessing
|
||||
* the linux inode, we can reclaim the inode.
|
||||
* the linux inode, we can inactivate and reclaim the inode.
|
||||
*/
|
||||
STATIC void
|
||||
xfs_fs_destroy_inode(
|
||||
|
@ -938,9 +938,14 @@ xfs_fs_destroy_inode(
|
|||
|
||||
trace_xfs_destroy_inode(ip);
|
||||
|
||||
XFS_STATS_INC(ip->i_mount, vn_reclaim);
|
||||
ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
|
||||
XFS_STATS_INC(ip->i_mount, vn_rele);
|
||||
XFS_STATS_INC(ip->i_mount, vn_remove);
|
||||
|
||||
xfs_inactive(ip);
|
||||
|
||||
ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) || ip->i_delayed_blks == 0);
|
||||
XFS_STATS_INC(ip->i_mount, vn_reclaim);
|
||||
|
||||
/*
|
||||
* We should never get here with one of the reclaim flags already set.
|
||||
|
@ -987,24 +992,6 @@ xfs_fs_inode_init_once(
|
|||
"xfsino", ip->i_ino);
|
||||
}
|
||||
|
||||
STATIC void
|
||||
xfs_fs_evict_inode(
|
||||
struct inode *inode)
|
||||
{
|
||||
xfs_inode_t *ip = XFS_I(inode);
|
||||
|
||||
ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
|
||||
|
||||
trace_xfs_evict_inode(ip);
|
||||
|
||||
truncate_inode_pages_final(&inode->i_data);
|
||||
clear_inode(inode);
|
||||
XFS_STATS_INC(ip->i_mount, vn_rele);
|
||||
XFS_STATS_INC(ip->i_mount, vn_remove);
|
||||
|
||||
xfs_inactive(ip);
|
||||
}
|
||||
|
||||
/*
|
||||
* We do an unlocked check for XFS_IDONTCACHE here because we are already
|
||||
* serialised against cache hits here via the inode->i_lock and igrab() in
|
||||
|
@ -1673,7 +1660,6 @@ xfs_fs_free_cached_objects(
|
|||
static const struct super_operations xfs_super_operations = {
|
||||
.alloc_inode = xfs_fs_alloc_inode,
|
||||
.destroy_inode = xfs_fs_destroy_inode,
|
||||
.evict_inode = xfs_fs_evict_inode,
|
||||
.drop_inode = xfs_fs_drop_inode,
|
||||
.put_super = xfs_fs_put_super,
|
||||
.sync_fs = xfs_fs_sync_fs,
|
||||
|
|
Loading…
Reference in New Issue