mirror of https://gitee.com/openkylin/linux.git
Bluetooth: convert smp and selftest to crypto kpp API
* Convert both smp and selftest to crypto kpp API * Remove module ecc as no more required * Add ecdh_helper functions for wrapping kpp async calls This patch has been tested *only* with selftest, which is called on module loading. Signed-off-by: Salvatore Benedetto <salvatore.benedetto@intel.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
This commit is contained in:
parent
e3a724edee
commit
58771c1cb0
|
@ -13,6 +13,7 @@ menuconfig BT
|
|||
select CRYPTO_CMAC
|
||||
select CRYPTO_ECB
|
||||
select CRYPTO_SHA256
|
||||
select CRYPTO_ECDH
|
||||
help
|
||||
Bluetooth is low-cost, low-power, short-range wireless technology.
|
||||
It was designed as a replacement for cables and other short-range
|
||||
|
|
|
@ -13,7 +13,7 @@ bluetooth_6lowpan-y := 6lowpan.o
|
|||
|
||||
bluetooth-y := af_bluetooth.o hci_core.o hci_conn.o hci_event.o mgmt.o \
|
||||
hci_sock.o hci_sysfs.o l2cap_core.o l2cap_sock.o smp.o lib.o \
|
||||
ecc.o hci_request.o mgmt_util.o
|
||||
ecdh_helper.o hci_request.o mgmt_util.o
|
||||
|
||||
bluetooth-$(CONFIG_BT_BREDR) += sco.o
|
||||
bluetooth-$(CONFIG_BT_HS) += a2mp.o amp.o
|
||||
|
|
|
@ -1,816 +0,0 @@
|
|||
/*
|
||||
* Copyright (c) 2013, Kenneth MacKay
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are
|
||||
* met:
|
||||
* * Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <linux/random.h>
|
||||
|
||||
#include "ecc.h"
|
||||
|
||||
/* 256-bit curve */
|
||||
#define ECC_BYTES 32
|
||||
|
||||
#define MAX_TRIES 16
|
||||
|
||||
/* Number of u64's needed */
|
||||
#define NUM_ECC_DIGITS (ECC_BYTES / 8)
|
||||
|
||||
struct ecc_point {
|
||||
u64 x[NUM_ECC_DIGITS];
|
||||
u64 y[NUM_ECC_DIGITS];
|
||||
};
|
||||
|
||||
typedef struct {
|
||||
u64 m_low;
|
||||
u64 m_high;
|
||||
} uint128_t;
|
||||
|
||||
#define CURVE_P_32 { 0xFFFFFFFFFFFFFFFFull, 0x00000000FFFFFFFFull, \
|
||||
0x0000000000000000ull, 0xFFFFFFFF00000001ull }
|
||||
|
||||
#define CURVE_G_32 { \
|
||||
{ 0xF4A13945D898C296ull, 0x77037D812DEB33A0ull, \
|
||||
0xF8BCE6E563A440F2ull, 0x6B17D1F2E12C4247ull }, \
|
||||
{ 0xCBB6406837BF51F5ull, 0x2BCE33576B315ECEull, \
|
||||
0x8EE7EB4A7C0F9E16ull, 0x4FE342E2FE1A7F9Bull } \
|
||||
}
|
||||
|
||||
#define CURVE_N_32 { 0xF3B9CAC2FC632551ull, 0xBCE6FAADA7179E84ull, \
|
||||
0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFF00000000ull }
|
||||
|
||||
static u64 curve_p[NUM_ECC_DIGITS] = CURVE_P_32;
|
||||
static struct ecc_point curve_g = CURVE_G_32;
|
||||
static u64 curve_n[NUM_ECC_DIGITS] = CURVE_N_32;
|
||||
|
||||
static void vli_clear(u64 *vli)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < NUM_ECC_DIGITS; i++)
|
||||
vli[i] = 0;
|
||||
}
|
||||
|
||||
/* Returns true if vli == 0, false otherwise. */
|
||||
static bool vli_is_zero(const u64 *vli)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < NUM_ECC_DIGITS; i++) {
|
||||
if (vli[i])
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/* Returns nonzero if bit bit of vli is set. */
|
||||
static u64 vli_test_bit(const u64 *vli, unsigned int bit)
|
||||
{
|
||||
return (vli[bit / 64] & ((u64) 1 << (bit % 64)));
|
||||
}
|
||||
|
||||
/* Counts the number of 64-bit "digits" in vli. */
|
||||
static unsigned int vli_num_digits(const u64 *vli)
|
||||
{
|
||||
int i;
|
||||
|
||||
/* Search from the end until we find a non-zero digit.
|
||||
* We do it in reverse because we expect that most digits will
|
||||
* be nonzero.
|
||||
*/
|
||||
for (i = NUM_ECC_DIGITS - 1; i >= 0 && vli[i] == 0; i--);
|
||||
|
||||
return (i + 1);
|
||||
}
|
||||
|
||||
/* Counts the number of bits required for vli. */
|
||||
static unsigned int vli_num_bits(const u64 *vli)
|
||||
{
|
||||
unsigned int i, num_digits;
|
||||
u64 digit;
|
||||
|
||||
num_digits = vli_num_digits(vli);
|
||||
if (num_digits == 0)
|
||||
return 0;
|
||||
|
||||
digit = vli[num_digits - 1];
|
||||
for (i = 0; digit; i++)
|
||||
digit >>= 1;
|
||||
|
||||
return ((num_digits - 1) * 64 + i);
|
||||
}
|
||||
|
||||
/* Sets dest = src. */
|
||||
static void vli_set(u64 *dest, const u64 *src)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < NUM_ECC_DIGITS; i++)
|
||||
dest[i] = src[i];
|
||||
}
|
||||
|
||||
/* Returns sign of left - right. */
|
||||
static int vli_cmp(const u64 *left, const u64 *right)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = NUM_ECC_DIGITS - 1; i >= 0; i--) {
|
||||
if (left[i] > right[i])
|
||||
return 1;
|
||||
else if (left[i] < right[i])
|
||||
return -1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Computes result = in << c, returning carry. Can modify in place
|
||||
* (if result == in). 0 < shift < 64.
|
||||
*/
|
||||
static u64 vli_lshift(u64 *result, const u64 *in,
|
||||
unsigned int shift)
|
||||
{
|
||||
u64 carry = 0;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < NUM_ECC_DIGITS; i++) {
|
||||
u64 temp = in[i];
|
||||
|
||||
result[i] = (temp << shift) | carry;
|
||||
carry = temp >> (64 - shift);
|
||||
}
|
||||
|
||||
return carry;
|
||||
}
|
||||
|
||||
/* Computes vli = vli >> 1. */
|
||||
static void vli_rshift1(u64 *vli)
|
||||
{
|
||||
u64 *end = vli;
|
||||
u64 carry = 0;
|
||||
|
||||
vli += NUM_ECC_DIGITS;
|
||||
|
||||
while (vli-- > end) {
|
||||
u64 temp = *vli;
|
||||
*vli = (temp >> 1) | carry;
|
||||
carry = temp << 63;
|
||||
}
|
||||
}
|
||||
|
||||
/* Computes result = left + right, returning carry. Can modify in place. */
|
||||
static u64 vli_add(u64 *result, const u64 *left,
|
||||
const u64 *right)
|
||||
{
|
||||
u64 carry = 0;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < NUM_ECC_DIGITS; i++) {
|
||||
u64 sum;
|
||||
|
||||
sum = left[i] + right[i] + carry;
|
||||
if (sum != left[i])
|
||||
carry = (sum < left[i]);
|
||||
|
||||
result[i] = sum;
|
||||
}
|
||||
|
||||
return carry;
|
||||
}
|
||||
|
||||
/* Computes result = left - right, returning borrow. Can modify in place. */
|
||||
static u64 vli_sub(u64 *result, const u64 *left, const u64 *right)
|
||||
{
|
||||
u64 borrow = 0;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < NUM_ECC_DIGITS; i++) {
|
||||
u64 diff;
|
||||
|
||||
diff = left[i] - right[i] - borrow;
|
||||
if (diff != left[i])
|
||||
borrow = (diff > left[i]);
|
||||
|
||||
result[i] = diff;
|
||||
}
|
||||
|
||||
return borrow;
|
||||
}
|
||||
|
||||
static uint128_t mul_64_64(u64 left, u64 right)
|
||||
{
|
||||
u64 a0 = left & 0xffffffffull;
|
||||
u64 a1 = left >> 32;
|
||||
u64 b0 = right & 0xffffffffull;
|
||||
u64 b1 = right >> 32;
|
||||
u64 m0 = a0 * b0;
|
||||
u64 m1 = a0 * b1;
|
||||
u64 m2 = a1 * b0;
|
||||
u64 m3 = a1 * b1;
|
||||
uint128_t result;
|
||||
|
||||
m2 += (m0 >> 32);
|
||||
m2 += m1;
|
||||
|
||||
/* Overflow */
|
||||
if (m2 < m1)
|
||||
m3 += 0x100000000ull;
|
||||
|
||||
result.m_low = (m0 & 0xffffffffull) | (m2 << 32);
|
||||
result.m_high = m3 + (m2 >> 32);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
static uint128_t add_128_128(uint128_t a, uint128_t b)
|
||||
{
|
||||
uint128_t result;
|
||||
|
||||
result.m_low = a.m_low + b.m_low;
|
||||
result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
static void vli_mult(u64 *result, const u64 *left, const u64 *right)
|
||||
{
|
||||
uint128_t r01 = { 0, 0 };
|
||||
u64 r2 = 0;
|
||||
unsigned int i, k;
|
||||
|
||||
/* Compute each digit of result in sequence, maintaining the
|
||||
* carries.
|
||||
*/
|
||||
for (k = 0; k < NUM_ECC_DIGITS * 2 - 1; k++) {
|
||||
unsigned int min;
|
||||
|
||||
if (k < NUM_ECC_DIGITS)
|
||||
min = 0;
|
||||
else
|
||||
min = (k + 1) - NUM_ECC_DIGITS;
|
||||
|
||||
for (i = min; i <= k && i < NUM_ECC_DIGITS; i++) {
|
||||
uint128_t product;
|
||||
|
||||
product = mul_64_64(left[i], right[k - i]);
|
||||
|
||||
r01 = add_128_128(r01, product);
|
||||
r2 += (r01.m_high < product.m_high);
|
||||
}
|
||||
|
||||
result[k] = r01.m_low;
|
||||
r01.m_low = r01.m_high;
|
||||
r01.m_high = r2;
|
||||
r2 = 0;
|
||||
}
|
||||
|
||||
result[NUM_ECC_DIGITS * 2 - 1] = r01.m_low;
|
||||
}
|
||||
|
||||
static void vli_square(u64 *result, const u64 *left)
|
||||
{
|
||||
uint128_t r01 = { 0, 0 };
|
||||
u64 r2 = 0;
|
||||
int i, k;
|
||||
|
||||
for (k = 0; k < NUM_ECC_DIGITS * 2 - 1; k++) {
|
||||
unsigned int min;
|
||||
|
||||
if (k < NUM_ECC_DIGITS)
|
||||
min = 0;
|
||||
else
|
||||
min = (k + 1) - NUM_ECC_DIGITS;
|
||||
|
||||
for (i = min; i <= k && i <= k - i; i++) {
|
||||
uint128_t product;
|
||||
|
||||
product = mul_64_64(left[i], left[k - i]);
|
||||
|
||||
if (i < k - i) {
|
||||
r2 += product.m_high >> 63;
|
||||
product.m_high = (product.m_high << 1) |
|
||||
(product.m_low >> 63);
|
||||
product.m_low <<= 1;
|
||||
}
|
||||
|
||||
r01 = add_128_128(r01, product);
|
||||
r2 += (r01.m_high < product.m_high);
|
||||
}
|
||||
|
||||
result[k] = r01.m_low;
|
||||
r01.m_low = r01.m_high;
|
||||
r01.m_high = r2;
|
||||
r2 = 0;
|
||||
}
|
||||
|
||||
result[NUM_ECC_DIGITS * 2 - 1] = r01.m_low;
|
||||
}
|
||||
|
||||
/* Computes result = (left + right) % mod.
|
||||
* Assumes that left < mod and right < mod, result != mod.
|
||||
*/
|
||||
static void vli_mod_add(u64 *result, const u64 *left, const u64 *right,
|
||||
const u64 *mod)
|
||||
{
|
||||
u64 carry;
|
||||
|
||||
carry = vli_add(result, left, right);
|
||||
|
||||
/* result > mod (result = mod + remainder), so subtract mod to
|
||||
* get remainder.
|
||||
*/
|
||||
if (carry || vli_cmp(result, mod) >= 0)
|
||||
vli_sub(result, result, mod);
|
||||
}
|
||||
|
||||
/* Computes result = (left - right) % mod.
|
||||
* Assumes that left < mod and right < mod, result != mod.
|
||||
*/
|
||||
static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right,
|
||||
const u64 *mod)
|
||||
{
|
||||
u64 borrow = vli_sub(result, left, right);
|
||||
|
||||
/* In this case, p_result == -diff == (max int) - diff.
|
||||
* Since -x % d == d - x, we can get the correct result from
|
||||
* result + mod (with overflow).
|
||||
*/
|
||||
if (borrow)
|
||||
vli_add(result, result, mod);
|
||||
}
|
||||
|
||||
/* Computes result = product % curve_p
|
||||
from http://www.nsa.gov/ia/_files/nist-routines.pdf */
|
||||
static void vli_mmod_fast(u64 *result, const u64 *product)
|
||||
{
|
||||
u64 tmp[NUM_ECC_DIGITS];
|
||||
int carry;
|
||||
|
||||
/* t */
|
||||
vli_set(result, product);
|
||||
|
||||
/* s1 */
|
||||
tmp[0] = 0;
|
||||
tmp[1] = product[5] & 0xffffffff00000000ull;
|
||||
tmp[2] = product[6];
|
||||
tmp[3] = product[7];
|
||||
carry = vli_lshift(tmp, tmp, 1);
|
||||
carry += vli_add(result, result, tmp);
|
||||
|
||||
/* s2 */
|
||||
tmp[1] = product[6] << 32;
|
||||
tmp[2] = (product[6] >> 32) | (product[7] << 32);
|
||||
tmp[3] = product[7] >> 32;
|
||||
carry += vli_lshift(tmp, tmp, 1);
|
||||
carry += vli_add(result, result, tmp);
|
||||
|
||||
/* s3 */
|
||||
tmp[0] = product[4];
|
||||
tmp[1] = product[5] & 0xffffffff;
|
||||
tmp[2] = 0;
|
||||
tmp[3] = product[7];
|
||||
carry += vli_add(result, result, tmp);
|
||||
|
||||
/* s4 */
|
||||
tmp[0] = (product[4] >> 32) | (product[5] << 32);
|
||||
tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull);
|
||||
tmp[2] = product[7];
|
||||
tmp[3] = (product[6] >> 32) | (product[4] << 32);
|
||||
carry += vli_add(result, result, tmp);
|
||||
|
||||
/* d1 */
|
||||
tmp[0] = (product[5] >> 32) | (product[6] << 32);
|
||||
tmp[1] = (product[6] >> 32);
|
||||
tmp[2] = 0;
|
||||
tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32);
|
||||
carry -= vli_sub(result, result, tmp);
|
||||
|
||||
/* d2 */
|
||||
tmp[0] = product[6];
|
||||
tmp[1] = product[7];
|
||||
tmp[2] = 0;
|
||||
tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull);
|
||||
carry -= vli_sub(result, result, tmp);
|
||||
|
||||
/* d3 */
|
||||
tmp[0] = (product[6] >> 32) | (product[7] << 32);
|
||||
tmp[1] = (product[7] >> 32) | (product[4] << 32);
|
||||
tmp[2] = (product[4] >> 32) | (product[5] << 32);
|
||||
tmp[3] = (product[6] << 32);
|
||||
carry -= vli_sub(result, result, tmp);
|
||||
|
||||
/* d4 */
|
||||
tmp[0] = product[7];
|
||||
tmp[1] = product[4] & 0xffffffff00000000ull;
|
||||
tmp[2] = product[5];
|
||||
tmp[3] = product[6] & 0xffffffff00000000ull;
|
||||
carry -= vli_sub(result, result, tmp);
|
||||
|
||||
if (carry < 0) {
|
||||
do {
|
||||
carry += vli_add(result, result, curve_p);
|
||||
} while (carry < 0);
|
||||
} else {
|
||||
while (carry || vli_cmp(curve_p, result) != 1)
|
||||
carry -= vli_sub(result, result, curve_p);
|
||||
}
|
||||
}
|
||||
|
||||
/* Computes result = (left * right) % curve_p. */
|
||||
static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right)
|
||||
{
|
||||
u64 product[2 * NUM_ECC_DIGITS];
|
||||
|
||||
vli_mult(product, left, right);
|
||||
vli_mmod_fast(result, product);
|
||||
}
|
||||
|
||||
/* Computes result = left^2 % curve_p. */
|
||||
static void vli_mod_square_fast(u64 *result, const u64 *left)
|
||||
{
|
||||
u64 product[2 * NUM_ECC_DIGITS];
|
||||
|
||||
vli_square(product, left);
|
||||
vli_mmod_fast(result, product);
|
||||
}
|
||||
|
||||
#define EVEN(vli) (!(vli[0] & 1))
|
||||
/* Computes result = (1 / p_input) % mod. All VLIs are the same size.
|
||||
* See "From Euclid's GCD to Montgomery Multiplication to the Great Divide"
|
||||
* https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf
|
||||
*/
|
||||
static void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod)
|
||||
{
|
||||
u64 a[NUM_ECC_DIGITS], b[NUM_ECC_DIGITS];
|
||||
u64 u[NUM_ECC_DIGITS], v[NUM_ECC_DIGITS];
|
||||
u64 carry;
|
||||
int cmp_result;
|
||||
|
||||
if (vli_is_zero(input)) {
|
||||
vli_clear(result);
|
||||
return;
|
||||
}
|
||||
|
||||
vli_set(a, input);
|
||||
vli_set(b, mod);
|
||||
vli_clear(u);
|
||||
u[0] = 1;
|
||||
vli_clear(v);
|
||||
|
||||
while ((cmp_result = vli_cmp(a, b)) != 0) {
|
||||
carry = 0;
|
||||
|
||||
if (EVEN(a)) {
|
||||
vli_rshift1(a);
|
||||
|
||||
if (!EVEN(u))
|
||||
carry = vli_add(u, u, mod);
|
||||
|
||||
vli_rshift1(u);
|
||||
if (carry)
|
||||
u[NUM_ECC_DIGITS - 1] |= 0x8000000000000000ull;
|
||||
} else if (EVEN(b)) {
|
||||
vli_rshift1(b);
|
||||
|
||||
if (!EVEN(v))
|
||||
carry = vli_add(v, v, mod);
|
||||
|
||||
vli_rshift1(v);
|
||||
if (carry)
|
||||
v[NUM_ECC_DIGITS - 1] |= 0x8000000000000000ull;
|
||||
} else if (cmp_result > 0) {
|
||||
vli_sub(a, a, b);
|
||||
vli_rshift1(a);
|
||||
|
||||
if (vli_cmp(u, v) < 0)
|
||||
vli_add(u, u, mod);
|
||||
|
||||
vli_sub(u, u, v);
|
||||
if (!EVEN(u))
|
||||
carry = vli_add(u, u, mod);
|
||||
|
||||
vli_rshift1(u);
|
||||
if (carry)
|
||||
u[NUM_ECC_DIGITS - 1] |= 0x8000000000000000ull;
|
||||
} else {
|
||||
vli_sub(b, b, a);
|
||||
vli_rshift1(b);
|
||||
|
||||
if (vli_cmp(v, u) < 0)
|
||||
vli_add(v, v, mod);
|
||||
|
||||
vli_sub(v, v, u);
|
||||
if (!EVEN(v))
|
||||
carry = vli_add(v, v, mod);
|
||||
|
||||
vli_rshift1(v);
|
||||
if (carry)
|
||||
v[NUM_ECC_DIGITS - 1] |= 0x8000000000000000ull;
|
||||
}
|
||||
}
|
||||
|
||||
vli_set(result, u);
|
||||
}
|
||||
|
||||
/* ------ Point operations ------ */
|
||||
|
||||
/* Returns true if p_point is the point at infinity, false otherwise. */
|
||||
static bool ecc_point_is_zero(const struct ecc_point *point)
|
||||
{
|
||||
return (vli_is_zero(point->x) && vli_is_zero(point->y));
|
||||
}
|
||||
|
||||
/* Point multiplication algorithm using Montgomery's ladder with co-Z
|
||||
* coordinates. From http://eprint.iacr.org/2011/338.pdf
|
||||
*/
|
||||
|
||||
/* Double in place */
|
||||
static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1)
|
||||
{
|
||||
/* t1 = x, t2 = y, t3 = z */
|
||||
u64 t4[NUM_ECC_DIGITS];
|
||||
u64 t5[NUM_ECC_DIGITS];
|
||||
|
||||
if (vli_is_zero(z1))
|
||||
return;
|
||||
|
||||
vli_mod_square_fast(t4, y1); /* t4 = y1^2 */
|
||||
vli_mod_mult_fast(t5, x1, t4); /* t5 = x1*y1^2 = A */
|
||||
vli_mod_square_fast(t4, t4); /* t4 = y1^4 */
|
||||
vli_mod_mult_fast(y1, y1, z1); /* t2 = y1*z1 = z3 */
|
||||
vli_mod_square_fast(z1, z1); /* t3 = z1^2 */
|
||||
|
||||
vli_mod_add(x1, x1, z1, curve_p); /* t1 = x1 + z1^2 */
|
||||
vli_mod_add(z1, z1, z1, curve_p); /* t3 = 2*z1^2 */
|
||||
vli_mod_sub(z1, x1, z1, curve_p); /* t3 = x1 - z1^2 */
|
||||
vli_mod_mult_fast(x1, x1, z1); /* t1 = x1^2 - z1^4 */
|
||||
|
||||
vli_mod_add(z1, x1, x1, curve_p); /* t3 = 2*(x1^2 - z1^4) */
|
||||
vli_mod_add(x1, x1, z1, curve_p); /* t1 = 3*(x1^2 - z1^4) */
|
||||
if (vli_test_bit(x1, 0)) {
|
||||
u64 carry = vli_add(x1, x1, curve_p);
|
||||
vli_rshift1(x1);
|
||||
x1[NUM_ECC_DIGITS - 1] |= carry << 63;
|
||||
} else {
|
||||
vli_rshift1(x1);
|
||||
}
|
||||
/* t1 = 3/2*(x1^2 - z1^4) = B */
|
||||
|
||||
vli_mod_square_fast(z1, x1); /* t3 = B^2 */
|
||||
vli_mod_sub(z1, z1, t5, curve_p); /* t3 = B^2 - A */
|
||||
vli_mod_sub(z1, z1, t5, curve_p); /* t3 = B^2 - 2A = x3 */
|
||||
vli_mod_sub(t5, t5, z1, curve_p); /* t5 = A - x3 */
|
||||
vli_mod_mult_fast(x1, x1, t5); /* t1 = B * (A - x3) */
|
||||
vli_mod_sub(t4, x1, t4, curve_p); /* t4 = B * (A - x3) - y1^4 = y3 */
|
||||
|
||||
vli_set(x1, z1);
|
||||
vli_set(z1, y1);
|
||||
vli_set(y1, t4);
|
||||
}
|
||||
|
||||
/* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */
|
||||
static void apply_z(u64 *x1, u64 *y1, u64 *z)
|
||||
{
|
||||
u64 t1[NUM_ECC_DIGITS];
|
||||
|
||||
vli_mod_square_fast(t1, z); /* z^2 */
|
||||
vli_mod_mult_fast(x1, x1, t1); /* x1 * z^2 */
|
||||
vli_mod_mult_fast(t1, t1, z); /* z^3 */
|
||||
vli_mod_mult_fast(y1, y1, t1); /* y1 * z^3 */
|
||||
}
|
||||
|
||||
/* P = (x1, y1) => 2P, (x2, y2) => P' */
|
||||
static void xycz_initial_double(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
|
||||
u64 *p_initial_z)
|
||||
{
|
||||
u64 z[NUM_ECC_DIGITS];
|
||||
|
||||
vli_set(x2, x1);
|
||||
vli_set(y2, y1);
|
||||
|
||||
vli_clear(z);
|
||||
z[0] = 1;
|
||||
|
||||
if (p_initial_z)
|
||||
vli_set(z, p_initial_z);
|
||||
|
||||
apply_z(x1, y1, z);
|
||||
|
||||
ecc_point_double_jacobian(x1, y1, z);
|
||||
|
||||
apply_z(x2, y2, z);
|
||||
}
|
||||
|
||||
/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
|
||||
* Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3)
|
||||
* or P => P', Q => P + Q
|
||||
*/
|
||||
static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2)
|
||||
{
|
||||
/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
|
||||
u64 t5[NUM_ECC_DIGITS];
|
||||
|
||||
vli_mod_sub(t5, x2, x1, curve_p); /* t5 = x2 - x1 */
|
||||
vli_mod_square_fast(t5, t5); /* t5 = (x2 - x1)^2 = A */
|
||||
vli_mod_mult_fast(x1, x1, t5); /* t1 = x1*A = B */
|
||||
vli_mod_mult_fast(x2, x2, t5); /* t3 = x2*A = C */
|
||||
vli_mod_sub(y2, y2, y1, curve_p); /* t4 = y2 - y1 */
|
||||
vli_mod_square_fast(t5, y2); /* t5 = (y2 - y1)^2 = D */
|
||||
|
||||
vli_mod_sub(t5, t5, x1, curve_p); /* t5 = D - B */
|
||||
vli_mod_sub(t5, t5, x2, curve_p); /* t5 = D - B - C = x3 */
|
||||
vli_mod_sub(x2, x2, x1, curve_p); /* t3 = C - B */
|
||||
vli_mod_mult_fast(y1, y1, x2); /* t2 = y1*(C - B) */
|
||||
vli_mod_sub(x2, x1, t5, curve_p); /* t3 = B - x3 */
|
||||
vli_mod_mult_fast(y2, y2, x2); /* t4 = (y2 - y1)*(B - x3) */
|
||||
vli_mod_sub(y2, y2, y1, curve_p); /* t4 = y3 */
|
||||
|
||||
vli_set(x2, t5);
|
||||
}
|
||||
|
||||
/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
|
||||
* Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
|
||||
* or P => P - Q, Q => P + Q
|
||||
*/
|
||||
static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2)
|
||||
{
|
||||
/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
|
||||
u64 t5[NUM_ECC_DIGITS];
|
||||
u64 t6[NUM_ECC_DIGITS];
|
||||
u64 t7[NUM_ECC_DIGITS];
|
||||
|
||||
vli_mod_sub(t5, x2, x1, curve_p); /* t5 = x2 - x1 */
|
||||
vli_mod_square_fast(t5, t5); /* t5 = (x2 - x1)^2 = A */
|
||||
vli_mod_mult_fast(x1, x1, t5); /* t1 = x1*A = B */
|
||||
vli_mod_mult_fast(x2, x2, t5); /* t3 = x2*A = C */
|
||||
vli_mod_add(t5, y2, y1, curve_p); /* t4 = y2 + y1 */
|
||||
vli_mod_sub(y2, y2, y1, curve_p); /* t4 = y2 - y1 */
|
||||
|
||||
vli_mod_sub(t6, x2, x1, curve_p); /* t6 = C - B */
|
||||
vli_mod_mult_fast(y1, y1, t6); /* t2 = y1 * (C - B) */
|
||||
vli_mod_add(t6, x1, x2, curve_p); /* t6 = B + C */
|
||||
vli_mod_square_fast(x2, y2); /* t3 = (y2 - y1)^2 */
|
||||
vli_mod_sub(x2, x2, t6, curve_p); /* t3 = x3 */
|
||||
|
||||
vli_mod_sub(t7, x1, x2, curve_p); /* t7 = B - x3 */
|
||||
vli_mod_mult_fast(y2, y2, t7); /* t4 = (y2 - y1)*(B - x3) */
|
||||
vli_mod_sub(y2, y2, y1, curve_p); /* t4 = y3 */
|
||||
|
||||
vli_mod_square_fast(t7, t5); /* t7 = (y2 + y1)^2 = F */
|
||||
vli_mod_sub(t7, t7, t6, curve_p); /* t7 = x3' */
|
||||
vli_mod_sub(t6, t7, x1, curve_p); /* t6 = x3' - B */
|
||||
vli_mod_mult_fast(t6, t6, t5); /* t6 = (y2 + y1)*(x3' - B) */
|
||||
vli_mod_sub(y1, t6, y1, curve_p); /* t2 = y3' */
|
||||
|
||||
vli_set(x1, t7);
|
||||
}
|
||||
|
||||
static void ecc_point_mult(struct ecc_point *result,
|
||||
const struct ecc_point *point, u64 *scalar,
|
||||
u64 *initial_z, int num_bits)
|
||||
{
|
||||
/* R0 and R1 */
|
||||
u64 rx[2][NUM_ECC_DIGITS];
|
||||
u64 ry[2][NUM_ECC_DIGITS];
|
||||
u64 z[NUM_ECC_DIGITS];
|
||||
int i, nb;
|
||||
|
||||
vli_set(rx[1], point->x);
|
||||
vli_set(ry[1], point->y);
|
||||
|
||||
xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z);
|
||||
|
||||
for (i = num_bits - 2; i > 0; i--) {
|
||||
nb = !vli_test_bit(scalar, i);
|
||||
xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb]);
|
||||
xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb]);
|
||||
}
|
||||
|
||||
nb = !vli_test_bit(scalar, 0);
|
||||
xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb]);
|
||||
|
||||
/* Find final 1/Z value. */
|
||||
vli_mod_sub(z, rx[1], rx[0], curve_p); /* X1 - X0 */
|
||||
vli_mod_mult_fast(z, z, ry[1 - nb]); /* Yb * (X1 - X0) */
|
||||
vli_mod_mult_fast(z, z, point->x); /* xP * Yb * (X1 - X0) */
|
||||
vli_mod_inv(z, z, curve_p); /* 1 / (xP * Yb * (X1 - X0)) */
|
||||
vli_mod_mult_fast(z, z, point->y); /* yP / (xP * Yb * (X1 - X0)) */
|
||||
vli_mod_mult_fast(z, z, rx[1 - nb]); /* Xb * yP / (xP * Yb * (X1 - X0)) */
|
||||
/* End 1/Z calculation */
|
||||
|
||||
xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb]);
|
||||
|
||||
apply_z(rx[0], ry[0], z);
|
||||
|
||||
vli_set(result->x, rx[0]);
|
||||
vli_set(result->y, ry[0]);
|
||||
}
|
||||
|
||||
static void ecc_bytes2native(const u8 bytes[ECC_BYTES],
|
||||
u64 native[NUM_ECC_DIGITS])
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < NUM_ECC_DIGITS; i++) {
|
||||
const u8 *digit = bytes + 8 * (NUM_ECC_DIGITS - 1 - i);
|
||||
|
||||
native[NUM_ECC_DIGITS - 1 - i] =
|
||||
((u64) digit[0] << 0) |
|
||||
((u64) digit[1] << 8) |
|
||||
((u64) digit[2] << 16) |
|
||||
((u64) digit[3] << 24) |
|
||||
((u64) digit[4] << 32) |
|
||||
((u64) digit[5] << 40) |
|
||||
((u64) digit[6] << 48) |
|
||||
((u64) digit[7] << 56);
|
||||
}
|
||||
}
|
||||
|
||||
static void ecc_native2bytes(const u64 native[NUM_ECC_DIGITS],
|
||||
u8 bytes[ECC_BYTES])
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < NUM_ECC_DIGITS; i++) {
|
||||
u8 *digit = bytes + 8 * (NUM_ECC_DIGITS - 1 - i);
|
||||
|
||||
digit[0] = native[NUM_ECC_DIGITS - 1 - i] >> 0;
|
||||
digit[1] = native[NUM_ECC_DIGITS - 1 - i] >> 8;
|
||||
digit[2] = native[NUM_ECC_DIGITS - 1 - i] >> 16;
|
||||
digit[3] = native[NUM_ECC_DIGITS - 1 - i] >> 24;
|
||||
digit[4] = native[NUM_ECC_DIGITS - 1 - i] >> 32;
|
||||
digit[5] = native[NUM_ECC_DIGITS - 1 - i] >> 40;
|
||||
digit[6] = native[NUM_ECC_DIGITS - 1 - i] >> 48;
|
||||
digit[7] = native[NUM_ECC_DIGITS - 1 - i] >> 56;
|
||||
}
|
||||
}
|
||||
|
||||
bool ecc_make_key(u8 public_key[64], u8 private_key[32])
|
||||
{
|
||||
struct ecc_point pk;
|
||||
u64 priv[NUM_ECC_DIGITS];
|
||||
unsigned int tries = 0;
|
||||
|
||||
do {
|
||||
if (tries++ >= MAX_TRIES)
|
||||
return false;
|
||||
|
||||
get_random_bytes(priv, ECC_BYTES);
|
||||
|
||||
if (vli_is_zero(priv))
|
||||
continue;
|
||||
|
||||
/* Make sure the private key is in the range [1, n-1]. */
|
||||
if (vli_cmp(curve_n, priv) != 1)
|
||||
continue;
|
||||
|
||||
ecc_point_mult(&pk, &curve_g, priv, NULL, vli_num_bits(priv));
|
||||
} while (ecc_point_is_zero(&pk));
|
||||
|
||||
ecc_native2bytes(priv, private_key);
|
||||
ecc_native2bytes(pk.x, public_key);
|
||||
ecc_native2bytes(pk.y, &public_key[32]);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool ecdh_shared_secret(const u8 public_key[64], const u8 private_key[32],
|
||||
u8 secret[32])
|
||||
{
|
||||
u64 priv[NUM_ECC_DIGITS];
|
||||
u64 rand[NUM_ECC_DIGITS];
|
||||
struct ecc_point product, pk;
|
||||
|
||||
get_random_bytes(rand, ECC_BYTES);
|
||||
|
||||
ecc_bytes2native(public_key, pk.x);
|
||||
ecc_bytes2native(&public_key[32], pk.y);
|
||||
ecc_bytes2native(private_key, priv);
|
||||
|
||||
ecc_point_mult(&product, &pk, priv, rand, vli_num_bits(priv));
|
||||
|
||||
ecc_native2bytes(product.x, secret);
|
||||
|
||||
return !ecc_point_is_zero(&product);
|
||||
}
|
|
@ -1,54 +0,0 @@
|
|||
/*
|
||||
* Copyright (c) 2013, Kenneth MacKay
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are
|
||||
* met:
|
||||
* * Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
/* Create a public/private key pair.
|
||||
* Outputs:
|
||||
* public_key - Will be filled in with the public key.
|
||||
* private_key - Will be filled in with the private key.
|
||||
*
|
||||
* Returns true if the key pair was generated successfully, false
|
||||
* if an error occurred. The keys are with the LSB first.
|
||||
*/
|
||||
bool ecc_make_key(u8 public_key[64], u8 private_key[32]);
|
||||
|
||||
/* Compute a shared secret given your secret key and someone else's
|
||||
* public key.
|
||||
* Note: It is recommended that you hash the result of ecdh_shared_secret
|
||||
* before using it for symmetric encryption or HMAC.
|
||||
*
|
||||
* Inputs:
|
||||
* public_key - The public key of the remote party
|
||||
* private_key - Your private key.
|
||||
*
|
||||
* Outputs:
|
||||
* secret - Will be filled in with the shared secret value.
|
||||
*
|
||||
* Returns true if the shared secret was generated successfully, false
|
||||
* if an error occurred. Both input and output parameters are with the
|
||||
* LSB first.
|
||||
*/
|
||||
bool ecdh_shared_secret(const u8 public_key[64], const u8 private_key[32],
|
||||
u8 secret[32]);
|
|
@ -0,0 +1,223 @@
|
|||
/*
|
||||
* ECDH helper functions - KPP wrappings
|
||||
*
|
||||
* Copyright (C) 2017 Intel Corporation
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation;
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
||||
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
|
||||
* IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
|
||||
* CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
|
||||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
||||
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
||||
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
||||
*
|
||||
* ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
|
||||
* COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
|
||||
* SOFTWARE IS DISCLAIMED.
|
||||
*/
|
||||
#include "ecdh_helper.h"
|
||||
|
||||
#include <linux/random.h>
|
||||
#include <linux/scatterlist.h>
|
||||
#include <crypto/kpp.h>
|
||||
#include <crypto/ecdh.h>
|
||||
|
||||
struct ecdh_completion {
|
||||
struct completion completion;
|
||||
int err;
|
||||
};
|
||||
|
||||
static void ecdh_complete(struct crypto_async_request *req, int err)
|
||||
{
|
||||
struct ecdh_completion *res = req->data;
|
||||
|
||||
if (err == -EINPROGRESS)
|
||||
return;
|
||||
|
||||
res->err = err;
|
||||
complete(&res->completion);
|
||||
}
|
||||
|
||||
static inline void swap_digits(u64 *in, u64 *out, unsigned int ndigits)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < ndigits; i++)
|
||||
out[i] = __swab64(in[ndigits - 1 - i]);
|
||||
}
|
||||
|
||||
bool compute_ecdh_secret(const u8 public_key[64], const u8 private_key[32],
|
||||
u8 secret[32])
|
||||
{
|
||||
struct crypto_kpp *tfm;
|
||||
struct kpp_request *req;
|
||||
struct ecdh p;
|
||||
struct ecdh_completion result;
|
||||
struct scatterlist src, dst;
|
||||
u8 tmp[64];
|
||||
u8 *buf;
|
||||
unsigned int buf_len;
|
||||
int err = -ENOMEM;
|
||||
|
||||
tfm = crypto_alloc_kpp("ecdh", CRYPTO_ALG_INTERNAL, 0);
|
||||
if (IS_ERR(tfm)) {
|
||||
pr_err("alg: kpp: Failed to load tfm for kpp: %ld\n",
|
||||
PTR_ERR(tfm));
|
||||
return false;
|
||||
}
|
||||
|
||||
req = kpp_request_alloc(tfm, GFP_KERNEL);
|
||||
if (!req)
|
||||
goto free_kpp;
|
||||
|
||||
init_completion(&result.completion);
|
||||
|
||||
/* Security Manager Protocol holds digits in litte-endian order
|
||||
* while ECC API expect big-endian data
|
||||
*/
|
||||
swap_digits((u64 *)private_key, (u64 *)tmp, 4);
|
||||
p.key = (char *)tmp;
|
||||
p.key_size = 32;
|
||||
/* Set curve_id */
|
||||
p.curve_id = ECC_CURVE_NIST_P256;
|
||||
buf_len = crypto_ecdh_key_len(&p);
|
||||
buf = kmalloc(buf_len, GFP_KERNEL);
|
||||
if (!buf) {
|
||||
pr_err("alg: kpp: Failed to allocate %d bytes for buf\n",
|
||||
buf_len);
|
||||
goto free_req;
|
||||
}
|
||||
crypto_ecdh_encode_key(buf, buf_len, &p);
|
||||
|
||||
/* Set A private Key */
|
||||
err = crypto_kpp_set_secret(tfm, (void *)buf, buf_len);
|
||||
if (err)
|
||||
goto free_all;
|
||||
|
||||
swap_digits((u64 *)public_key, (u64 *)tmp, 4); /* x */
|
||||
swap_digits((u64 *)&public_key[32], (u64 *)&tmp[32], 4); /* y */
|
||||
|
||||
sg_init_one(&src, tmp, 64);
|
||||
sg_init_one(&dst, secret, 32);
|
||||
kpp_request_set_input(req, &src, 64);
|
||||
kpp_request_set_output(req, &dst, 32);
|
||||
kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
|
||||
ecdh_complete, &result);
|
||||
err = crypto_kpp_compute_shared_secret(req);
|
||||
if (err == -EINPROGRESS) {
|
||||
wait_for_completion(&result.completion);
|
||||
err = result.err;
|
||||
}
|
||||
if (err < 0) {
|
||||
pr_err("alg: ecdh: compute shared secret failed. err %d\n",
|
||||
err);
|
||||
goto free_all;
|
||||
}
|
||||
|
||||
swap_digits((u64 *)secret, (u64 *)tmp, 4);
|
||||
memcpy(secret, tmp, 32);
|
||||
|
||||
free_all:
|
||||
kzfree(buf);
|
||||
free_req:
|
||||
kpp_request_free(req);
|
||||
free_kpp:
|
||||
crypto_free_kpp(tfm);
|
||||
return (err == 0);
|
||||
}
|
||||
|
||||
bool generate_ecdh_keys(u8 public_key[64], u8 private_key[32])
|
||||
{
|
||||
struct crypto_kpp *tfm;
|
||||
struct kpp_request *req;
|
||||
struct ecdh p;
|
||||
struct ecdh_completion result;
|
||||
struct scatterlist dst;
|
||||
u8 tmp[64];
|
||||
u8 *buf;
|
||||
unsigned int buf_len;
|
||||
int err = -ENOMEM;
|
||||
const unsigned short max_tries = 16;
|
||||
unsigned short tries = 0;
|
||||
|
||||
tfm = crypto_alloc_kpp("ecdh", CRYPTO_ALG_INTERNAL, 0);
|
||||
if (IS_ERR(tfm)) {
|
||||
pr_err("alg: kpp: Failed to load tfm for kpp: %ld\n",
|
||||
PTR_ERR(tfm));
|
||||
return false;
|
||||
}
|
||||
|
||||
req = kpp_request_alloc(tfm, GFP_KERNEL);
|
||||
if (!req)
|
||||
goto free_kpp;
|
||||
|
||||
init_completion(&result.completion);
|
||||
|
||||
/* Set curve_id */
|
||||
p.curve_id = ECC_CURVE_NIST_P256;
|
||||
p.key_size = 32;
|
||||
buf_len = crypto_ecdh_key_len(&p);
|
||||
buf = kmalloc(buf_len, GFP_KERNEL);
|
||||
if (!buf) {
|
||||
pr_err("alg: kpp: Failed to allocate %d bytes for buf\n",
|
||||
buf_len);
|
||||
goto free_req;
|
||||
}
|
||||
|
||||
do {
|
||||
if (tries++ >= max_tries)
|
||||
goto free_all;
|
||||
|
||||
get_random_bytes(private_key, 32);
|
||||
|
||||
/* Set private Key */
|
||||
p.key = (char *)private_key;
|
||||
crypto_ecdh_encode_key(buf, buf_len, &p);
|
||||
err = crypto_kpp_set_secret(tfm, buf, buf_len);
|
||||
if (err)
|
||||
goto free_all;
|
||||
|
||||
sg_init_one(&dst, tmp, 64);
|
||||
kpp_request_set_output(req, &dst, 64);
|
||||
kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
|
||||
ecdh_complete, &result);
|
||||
|
||||
err = crypto_kpp_generate_public_key(req);
|
||||
|
||||
if (err == -EINPROGRESS) {
|
||||
wait_for_completion(&result.completion);
|
||||
err = result.err;
|
||||
}
|
||||
|
||||
/* Private key is not valid. Regenerate */
|
||||
if (err == -EINVAL)
|
||||
continue;
|
||||
|
||||
if (err < 0)
|
||||
goto free_all;
|
||||
else
|
||||
break;
|
||||
|
||||
} while (true);
|
||||
|
||||
/* Keys are handed back in little endian as expected by Security
|
||||
* Manager Protocol
|
||||
*/
|
||||
swap_digits((u64 *)tmp, (u64 *)public_key, 4); /* x */
|
||||
swap_digits((u64 *)&tmp[32], (u64 *)&public_key[32], 4); /* y */
|
||||
swap_digits((u64 *)private_key, (u64 *)tmp, 4);
|
||||
memcpy(private_key, tmp, 32);
|
||||
|
||||
free_all:
|
||||
kzfree(buf);
|
||||
free_req:
|
||||
kpp_request_free(req);
|
||||
free_kpp:
|
||||
crypto_free_kpp(tfm);
|
||||
return (err == 0);
|
||||
}
|
|
@ -0,0 +1,27 @@
|
|||
/*
|
||||
* ECDH helper functions - KPP wrappings
|
||||
*
|
||||
* Copyright (C) 2017 Intel Corporation
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation;
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
||||
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
|
||||
* IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
|
||||
* CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
|
||||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
||||
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
||||
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
||||
*
|
||||
* ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
|
||||
* COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
|
||||
* SOFTWARE IS DISCLAIMED.
|
||||
*/
|
||||
#include <linux/types.h>
|
||||
|
||||
bool compute_ecdh_secret(const u8 pub_a[64], const u8 priv_b[32],
|
||||
u8 secret[32]);
|
||||
bool generate_ecdh_keys(u8 public_key[64], u8 private_key[32]);
|
|
@ -26,7 +26,7 @@
|
|||
#include <net/bluetooth/bluetooth.h>
|
||||
#include <net/bluetooth/hci_core.h>
|
||||
|
||||
#include "ecc.h"
|
||||
#include "ecdh_helper.h"
|
||||
#include "smp.h"
|
||||
#include "selftest.h"
|
||||
|
||||
|
@ -144,8 +144,8 @@ static int __init test_ecdh_sample(const u8 priv_a[32], const u8 priv_b[32],
|
|||
{
|
||||
u8 dhkey_a[32], dhkey_b[32];
|
||||
|
||||
ecdh_shared_secret(pub_b, priv_a, dhkey_a);
|
||||
ecdh_shared_secret(pub_a, priv_b, dhkey_b);
|
||||
compute_ecdh_secret(pub_b, priv_a, dhkey_a);
|
||||
compute_ecdh_secret(pub_a, priv_b, dhkey_b);
|
||||
|
||||
if (memcmp(dhkey_a, dhkey, 32))
|
||||
return -EINVAL;
|
||||
|
|
|
@ -31,7 +31,7 @@
|
|||
#include <net/bluetooth/l2cap.h>
|
||||
#include <net/bluetooth/mgmt.h>
|
||||
|
||||
#include "ecc.h"
|
||||
#include "ecdh_helper.h"
|
||||
#include "smp.h"
|
||||
|
||||
#define SMP_DEV(hdev) \
|
||||
|
@ -570,7 +570,7 @@ int smp_generate_oob(struct hci_dev *hdev, u8 hash[16], u8 rand[16])
|
|||
} else {
|
||||
while (true) {
|
||||
/* Generate local key pair for Secure Connections */
|
||||
if (!ecc_make_key(smp->local_pk, smp->local_sk))
|
||||
if (!generate_ecdh_keys(smp->local_pk, smp->local_sk))
|
||||
return -EIO;
|
||||
|
||||
/* This is unlikely, but we need to check that
|
||||
|
@ -1896,7 +1896,7 @@ static u8 sc_send_public_key(struct smp_chan *smp)
|
|||
} else {
|
||||
while (true) {
|
||||
/* Generate local key pair for Secure Connections */
|
||||
if (!ecc_make_key(smp->local_pk, smp->local_sk))
|
||||
if (!generate_ecdh_keys(smp->local_pk, smp->local_sk))
|
||||
return SMP_UNSPECIFIED;
|
||||
|
||||
/* This is unlikely, but we need to check that
|
||||
|
@ -2670,7 +2670,7 @@ static int smp_cmd_public_key(struct l2cap_conn *conn, struct sk_buff *skb)
|
|||
SMP_DBG("Remote Public Key X: %32phN", smp->remote_pk);
|
||||
SMP_DBG("Remote Public Key Y: %32phN", smp->remote_pk + 32);
|
||||
|
||||
if (!ecdh_shared_secret(smp->remote_pk, smp->local_sk, smp->dhkey))
|
||||
if (!compute_ecdh_secret(smp->remote_pk, smp->local_sk, smp->dhkey))
|
||||
return SMP_UNSPECIFIED;
|
||||
|
||||
SMP_DBG("DHKey %32phN", smp->dhkey);
|
||||
|
|
Loading…
Reference in New Issue