mirror of https://gitee.com/openkylin/linux.git
sched: Better document ttwu()
Dave hit the problem fixed by commit:
b6e13e8582
("sched/core: Fix ttwu() race")
and failed to understand much of the code involved. Per his request a
few comments to (hopefully) clarify things.
Requested-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200702125211.GQ4800@hirez.programming.kicks-ass.net
This commit is contained in:
parent
015dc08918
commit
58877d347b
|
@ -154,24 +154,24 @@ struct task_group;
|
|||
*
|
||||
* for (;;) {
|
||||
* set_current_state(TASK_UNINTERRUPTIBLE);
|
||||
* if (!need_sleep)
|
||||
* break;
|
||||
* if (CONDITION)
|
||||
* break;
|
||||
*
|
||||
* schedule();
|
||||
* }
|
||||
* __set_current_state(TASK_RUNNING);
|
||||
*
|
||||
* If the caller does not need such serialisation (because, for instance, the
|
||||
* condition test and condition change and wakeup are under the same lock) then
|
||||
* CONDITION test and condition change and wakeup are under the same lock) then
|
||||
* use __set_current_state().
|
||||
*
|
||||
* The above is typically ordered against the wakeup, which does:
|
||||
*
|
||||
* need_sleep = false;
|
||||
* CONDITION = 1;
|
||||
* wake_up_state(p, TASK_UNINTERRUPTIBLE);
|
||||
*
|
||||
* where wake_up_state() executes a full memory barrier before accessing the
|
||||
* task state.
|
||||
* where wake_up_state()/try_to_wake_up() executes a full memory barrier before
|
||||
* accessing p->state.
|
||||
*
|
||||
* Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
|
||||
* once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
|
||||
|
|
|
@ -79,6 +79,100 @@ __read_mostly int scheduler_running;
|
|||
*/
|
||||
int sysctl_sched_rt_runtime = 950000;
|
||||
|
||||
|
||||
/*
|
||||
* Serialization rules:
|
||||
*
|
||||
* Lock order:
|
||||
*
|
||||
* p->pi_lock
|
||||
* rq->lock
|
||||
* hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
|
||||
*
|
||||
* rq1->lock
|
||||
* rq2->lock where: rq1 < rq2
|
||||
*
|
||||
* Regular state:
|
||||
*
|
||||
* Normal scheduling state is serialized by rq->lock. __schedule() takes the
|
||||
* local CPU's rq->lock, it optionally removes the task from the runqueue and
|
||||
* always looks at the local rq data structures to find the most elegible task
|
||||
* to run next.
|
||||
*
|
||||
* Task enqueue is also under rq->lock, possibly taken from another CPU.
|
||||
* Wakeups from another LLC domain might use an IPI to transfer the enqueue to
|
||||
* the local CPU to avoid bouncing the runqueue state around [ see
|
||||
* ttwu_queue_wakelist() ]
|
||||
*
|
||||
* Task wakeup, specifically wakeups that involve migration, are horribly
|
||||
* complicated to avoid having to take two rq->locks.
|
||||
*
|
||||
* Special state:
|
||||
*
|
||||
* System-calls and anything external will use task_rq_lock() which acquires
|
||||
* both p->pi_lock and rq->lock. As a consequence the state they change is
|
||||
* stable while holding either lock:
|
||||
*
|
||||
* - sched_setaffinity()/
|
||||
* set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
|
||||
* - set_user_nice(): p->se.load, p->*prio
|
||||
* - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
|
||||
* p->se.load, p->rt_priority,
|
||||
* p->dl.dl_{runtime, deadline, period, flags, bw, density}
|
||||
* - sched_setnuma(): p->numa_preferred_nid
|
||||
* - sched_move_task()/
|
||||
* cpu_cgroup_fork(): p->sched_task_group
|
||||
* - uclamp_update_active() p->uclamp*
|
||||
*
|
||||
* p->state <- TASK_*:
|
||||
*
|
||||
* is changed locklessly using set_current_state(), __set_current_state() or
|
||||
* set_special_state(), see their respective comments, or by
|
||||
* try_to_wake_up(). This latter uses p->pi_lock to serialize against
|
||||
* concurrent self.
|
||||
*
|
||||
* p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
|
||||
*
|
||||
* is set by activate_task() and cleared by deactivate_task(), under
|
||||
* rq->lock. Non-zero indicates the task is runnable, the special
|
||||
* ON_RQ_MIGRATING state is used for migration without holding both
|
||||
* rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
|
||||
*
|
||||
* p->on_cpu <- { 0, 1 }:
|
||||
*
|
||||
* is set by prepare_task() and cleared by finish_task() such that it will be
|
||||
* set before p is scheduled-in and cleared after p is scheduled-out, both
|
||||
* under rq->lock. Non-zero indicates the task is running on its CPU.
|
||||
*
|
||||
* [ The astute reader will observe that it is possible for two tasks on one
|
||||
* CPU to have ->on_cpu = 1 at the same time. ]
|
||||
*
|
||||
* task_cpu(p): is changed by set_task_cpu(), the rules are:
|
||||
*
|
||||
* - Don't call set_task_cpu() on a blocked task:
|
||||
*
|
||||
* We don't care what CPU we're not running on, this simplifies hotplug,
|
||||
* the CPU assignment of blocked tasks isn't required to be valid.
|
||||
*
|
||||
* - for try_to_wake_up(), called under p->pi_lock:
|
||||
*
|
||||
* This allows try_to_wake_up() to only take one rq->lock, see its comment.
|
||||
*
|
||||
* - for migration called under rq->lock:
|
||||
* [ see task_on_rq_migrating() in task_rq_lock() ]
|
||||
*
|
||||
* o move_queued_task()
|
||||
* o detach_task()
|
||||
*
|
||||
* - for migration called under double_rq_lock():
|
||||
*
|
||||
* o __migrate_swap_task()
|
||||
* o push_rt_task() / pull_rt_task()
|
||||
* o push_dl_task() / pull_dl_task()
|
||||
* o dl_task_offline_migration()
|
||||
*
|
||||
*/
|
||||
|
||||
/*
|
||||
* __task_rq_lock - lock the rq @p resides on.
|
||||
*/
|
||||
|
@ -1543,8 +1637,7 @@ static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
|
|||
{
|
||||
lockdep_assert_held(&rq->lock);
|
||||
|
||||
WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
|
||||
dequeue_task(rq, p, DEQUEUE_NOCLOCK);
|
||||
deactivate_task(rq, p, DEQUEUE_NOCLOCK);
|
||||
set_task_cpu(p, new_cpu);
|
||||
rq_unlock(rq, rf);
|
||||
|
||||
|
@ -1552,8 +1645,7 @@ static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
|
|||
|
||||
rq_lock(rq, rf);
|
||||
BUG_ON(task_cpu(p) != new_cpu);
|
||||
enqueue_task(rq, p, 0);
|
||||
p->on_rq = TASK_ON_RQ_QUEUED;
|
||||
activate_task(rq, p, 0);
|
||||
check_preempt_curr(rq, p, 0);
|
||||
|
||||
return rq;
|
||||
|
@ -2318,12 +2410,31 @@ ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
|
|||
}
|
||||
|
||||
/*
|
||||
* Called in case the task @p isn't fully descheduled from its runqueue,
|
||||
* in this case we must do a remote wakeup. Its a 'light' wakeup though,
|
||||
* since all we need to do is flip p->state to TASK_RUNNING, since
|
||||
* the task is still ->on_rq.
|
||||
* Consider @p being inside a wait loop:
|
||||
*
|
||||
* for (;;) {
|
||||
* set_current_state(TASK_UNINTERRUPTIBLE);
|
||||
*
|
||||
* if (CONDITION)
|
||||
* break;
|
||||
*
|
||||
* schedule();
|
||||
* }
|
||||
* __set_current_state(TASK_RUNNING);
|
||||
*
|
||||
* between set_current_state() and schedule(). In this case @p is still
|
||||
* runnable, so all that needs doing is change p->state back to TASK_RUNNING in
|
||||
* an atomic manner.
|
||||
*
|
||||
* By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
|
||||
* then schedule() must still happen and p->state can be changed to
|
||||
* TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
|
||||
* need to do a full wakeup with enqueue.
|
||||
*
|
||||
* Returns: %true when the wakeup is done,
|
||||
* %false otherwise.
|
||||
*/
|
||||
static int ttwu_remote(struct task_struct *p, int wake_flags)
|
||||
static int ttwu_runnable(struct task_struct *p, int wake_flags)
|
||||
{
|
||||
struct rq_flags rf;
|
||||
struct rq *rq;
|
||||
|
@ -2464,6 +2575,14 @@ static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
|
|||
|
||||
return false;
|
||||
}
|
||||
|
||||
#else /* !CONFIG_SMP */
|
||||
|
||||
static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
#endif /* CONFIG_SMP */
|
||||
|
||||
static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
|
||||
|
@ -2471,10 +2590,8 @@ static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
|
|||
struct rq *rq = cpu_rq(cpu);
|
||||
struct rq_flags rf;
|
||||
|
||||
#if defined(CONFIG_SMP)
|
||||
if (ttwu_queue_wakelist(p, cpu, wake_flags))
|
||||
return;
|
||||
#endif
|
||||
|
||||
rq_lock(rq, &rf);
|
||||
update_rq_clock(rq);
|
||||
|
@ -2530,8 +2647,8 @@ static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
|
|||
* migration. However the means are completely different as there is no lock
|
||||
* chain to provide order. Instead we do:
|
||||
*
|
||||
* 1) smp_store_release(X->on_cpu, 0)
|
||||
* 2) smp_cond_load_acquire(!X->on_cpu)
|
||||
* 1) smp_store_release(X->on_cpu, 0) -- finish_task()
|
||||
* 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
|
||||
*
|
||||
* Example:
|
||||
*
|
||||
|
@ -2571,15 +2688,33 @@ static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
|
|||
* @state: the mask of task states that can be woken
|
||||
* @wake_flags: wake modifier flags (WF_*)
|
||||
*
|
||||
* If (@state & @p->state) @p->state = TASK_RUNNING.
|
||||
* Conceptually does:
|
||||
*
|
||||
* If (@state & @p->state) @p->state = TASK_RUNNING.
|
||||
*
|
||||
* If the task was not queued/runnable, also place it back on a runqueue.
|
||||
*
|
||||
* Atomic against schedule() which would dequeue a task, also see
|
||||
* set_current_state().
|
||||
* This function is atomic against schedule() which would dequeue the task.
|
||||
*
|
||||
* This function executes a full memory barrier before accessing the task
|
||||
* state; see set_current_state().
|
||||
* It issues a full memory barrier before accessing @p->state, see the comment
|
||||
* with set_current_state().
|
||||
*
|
||||
* Uses p->pi_lock to serialize against concurrent wake-ups.
|
||||
*
|
||||
* Relies on p->pi_lock stabilizing:
|
||||
* - p->sched_class
|
||||
* - p->cpus_ptr
|
||||
* - p->sched_task_group
|
||||
* in order to do migration, see its use of select_task_rq()/set_task_cpu().
|
||||
*
|
||||
* Tries really hard to only take one task_rq(p)->lock for performance.
|
||||
* Takes rq->lock in:
|
||||
* - ttwu_runnable() -- old rq, unavoidable, see comment there;
|
||||
* - ttwu_queue() -- new rq, for enqueue of the task;
|
||||
* - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
|
||||
*
|
||||
* As a consequence we race really badly with just about everything. See the
|
||||
* many memory barriers and their comments for details.
|
||||
*
|
||||
* Return: %true if @p->state changes (an actual wakeup was done),
|
||||
* %false otherwise.
|
||||
|
@ -2595,7 +2730,7 @@ try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
|
|||
/*
|
||||
* We're waking current, this means 'p->on_rq' and 'task_cpu(p)
|
||||
* == smp_processor_id()'. Together this means we can special
|
||||
* case the whole 'p->on_rq && ttwu_remote()' case below
|
||||
* case the whole 'p->on_rq && ttwu_runnable()' case below
|
||||
* without taking any locks.
|
||||
*
|
||||
* In particular:
|
||||
|
@ -2616,8 +2751,8 @@ try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
|
|||
/*
|
||||
* If we are going to wake up a thread waiting for CONDITION we
|
||||
* need to ensure that CONDITION=1 done by the caller can not be
|
||||
* reordered with p->state check below. This pairs with mb() in
|
||||
* set_current_state() the waiting thread does.
|
||||
* reordered with p->state check below. This pairs with smp_store_mb()
|
||||
* in set_current_state() that the waiting thread does.
|
||||
*/
|
||||
raw_spin_lock_irqsave(&p->pi_lock, flags);
|
||||
smp_mb__after_spinlock();
|
||||
|
@ -2652,7 +2787,7 @@ try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
|
|||
* A similar smb_rmb() lives in try_invoke_on_locked_down_task().
|
||||
*/
|
||||
smp_rmb();
|
||||
if (READ_ONCE(p->on_rq) && ttwu_remote(p, wake_flags))
|
||||
if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
|
||||
goto unlock;
|
||||
|
||||
if (p->in_iowait) {
|
||||
|
@ -3222,8 +3357,10 @@ static inline void prepare_task(struct task_struct *next)
|
|||
/*
|
||||
* Claim the task as running, we do this before switching to it
|
||||
* such that any running task will have this set.
|
||||
*
|
||||
* See the ttwu() WF_ON_CPU case and its ordering comment.
|
||||
*/
|
||||
next->on_cpu = 1;
|
||||
WRITE_ONCE(next->on_cpu, 1);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
@ -3231,8 +3368,9 @@ static inline void finish_task(struct task_struct *prev)
|
|||
{
|
||||
#ifdef CONFIG_SMP
|
||||
/*
|
||||
* After ->on_cpu is cleared, the task can be moved to a different CPU.
|
||||
* We must ensure this doesn't happen until the switch is completely
|
||||
* This must be the very last reference to @prev from this CPU. After
|
||||
* p->on_cpu is cleared, the task can be moved to a different CPU. We
|
||||
* must ensure this doesn't happen until the switch is completely
|
||||
* finished.
|
||||
*
|
||||
* In particular, the load of prev->state in finish_task_switch() must
|
||||
|
|
|
@ -1203,6 +1203,16 @@ struct rq_flags {
|
|||
#endif
|
||||
};
|
||||
|
||||
/*
|
||||
* Lockdep annotation that avoids accidental unlocks; it's like a
|
||||
* sticky/continuous lockdep_assert_held().
|
||||
*
|
||||
* This avoids code that has access to 'struct rq *rq' (basically everything in
|
||||
* the scheduler) from accidentally unlocking the rq if they do not also have a
|
||||
* copy of the (on-stack) 'struct rq_flags rf'.
|
||||
*
|
||||
* Also see Documentation/locking/lockdep-design.rst.
|
||||
*/
|
||||
static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
|
||||
{
|
||||
rf->cookie = lockdep_pin_lock(&rq->lock);
|
||||
|
|
Loading…
Reference in New Issue