Merge branches 'drivers/macb-gem' and 'drivers/pxa-gpio' into next/drivers

This commit is contained in:
Arnd Bergmann 2011-11-23 20:47:41 +00:00
commit 58a273745f
691 changed files with 16798 additions and 11180 deletions

View File

@ -68,6 +68,7 @@ Juha Yrjola <juha.yrjola@solidboot.com>
Kay Sievers <kay.sievers@vrfy.org>
Kenneth W Chen <kenneth.w.chen@intel.com>
Koushik <raghavendra.koushik@neterion.com>
Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>
Leonid I Ananiev <leonid.i.ananiev@intel.com>
Linas Vepstas <linas@austin.ibm.com>
Mark Brown <broonie@sirena.org.uk>
@ -111,3 +112,4 @@ Uwe Kleine-König <ukl@pengutronix.de>
Uwe Kleine-König <Uwe.Kleine-Koenig@digi.com>
Valdis Kletnieks <Valdis.Kletnieks@vt.edu>
Takashi YOSHII <takashi.yoshii.zj@renesas.com>
Yusuke Goda <goda.yusuke@renesas.com>

View File

@ -0,0 +1,22 @@
What: /sys/firmware/acpi/pm_profile
Date: 03-Nov-2011
KernelVersion: v3.2
Contact: linux-acpi@vger.kernel.org
Description: The ACPI pm_profile sysfs interface exports the platform
power management (and performance) requirement expectations
as provided by BIOS. The integer value is directly passed as
retrieved from the FADT ACPI table.
Values: For possible values see ACPI specification:
5.2.9 Fixed ACPI Description Table (FADT)
Field: Preferred_PM_Profile
Currently these values are defined by spec:
0 Unspecified
1 Desktop
2 Mobile
3 Workstation
4 Enterprise Server
5 SOHO Server
6 Appliance PC
7 Performance Server
>7 Reserved

View File

@ -32,7 +32,7 @@
The Linux DRM layer contains code intended to support the needs
of complex graphics devices, usually containing programmable
pipelines well suited to 3D graphics acceleration. Graphics
drivers in the kernel can make use of DRM functions to make
drivers in the kernel may make use of DRM functions to make
tasks like memory management, interrupt handling and DMA easier,
and provide a uniform interface to applications.
</para>
@ -57,10 +57,10 @@
existing drivers.
</para>
<para>
First, we'll go over some typical driver initialization
First, we go over some typical driver initialization
requirements, like setting up command buffers, creating an
initial output configuration, and initializing core services.
Subsequent sections will cover core internals in more detail,
Subsequent sections cover core internals in more detail,
providing implementation notes and examples.
</para>
<para>
@ -74,7 +74,7 @@
</para>
<para>
The core of every DRM driver is struct drm_driver. Drivers
will typically statically initialize a drm_driver structure,
typically statically initialize a drm_driver structure,
then pass it to drm_init() at load time.
</para>
@ -88,8 +88,8 @@
</para>
<programlisting>
static struct drm_driver driver = {
/* don't use mtrr's here, the Xserver or user space app should
* deal with them for intel hardware.
/* Don't use MTRRs here; the Xserver or userspace app should
* deal with them for Intel hardware.
*/
.driver_features =
DRIVER_USE_AGP | DRIVER_REQUIRE_AGP |
@ -154,8 +154,8 @@
</programlisting>
<para>
In the example above, taken from the i915 DRM driver, the driver
sets several flags indicating what core features it supports.
We'll go over the individual callbacks in later sections. Since
sets several flags indicating what core features it supports;
we go over the individual callbacks in later sections. Since
flags indicate which features your driver supports to the DRM
core, you need to set most of them prior to calling drm_init(). Some,
like DRIVER_MODESET can be set later based on user supplied parameters,
@ -203,8 +203,8 @@
<term>DRIVER_HAVE_IRQ</term><term>DRIVER_IRQ_SHARED</term>
<listitem>
<para>
DRIVER_HAVE_IRQ indicates whether the driver has a IRQ
handler, DRIVER_IRQ_SHARED indicates whether the device &amp;
DRIVER_HAVE_IRQ indicates whether the driver has an IRQ
handler. DRIVER_IRQ_SHARED indicates whether the device &amp;
handler support shared IRQs (note that this is required of
PCI drivers).
</para>
@ -214,8 +214,8 @@
<term>DRIVER_DMA_QUEUE</term>
<listitem>
<para>
If the driver queues DMA requests and completes them
asynchronously, this flag should be set. Deprecated.
Should be set if the driver queues DMA requests and completes them
asynchronously. Deprecated.
</para>
</listitem>
</varlistentry>
@ -238,7 +238,7 @@
</variablelist>
<para>
In this specific case, the driver requires AGP and supports
IRQs. DMA, as we'll see, is handled by device specific ioctls
IRQs. DMA, as discussed later, is handled by device-specific ioctls
in this case. It also supports the kernel mode setting APIs, though
unlike in the actual i915 driver source, this example unconditionally
exports KMS capability.
@ -269,36 +269,34 @@
initial output configuration.
</para>
<para>
Note that the tasks performed at driver load time must not
conflict with DRM client requirements. For instance, if user
If compatibility is a concern (e.g. with drivers converted over
to the new interfaces from the old ones), care must be taken to
prevent device initialization and control that is incompatible with
currently active userspace drivers. For instance, if user
level mode setting drivers are in use, it would be problematic
to perform output discovery &amp; configuration at load time.
Likewise, if pre-memory management aware user level drivers are
Likewise, if user-level drivers unaware of memory management are
in use, memory management and command buffer setup may need to
be omitted. These requirements are driver specific, and care
be omitted. These requirements are driver-specific, and care
needs to be taken to keep both old and new applications and
libraries working. The i915 driver supports the "modeset"
module parameter to control whether advanced features are
enabled at load time or in legacy fashion. If compatibility is
a concern (e.g. with drivers converted over to the new interfaces
from the old ones), care must be taken to prevent incompatible
device initialization and control with the currently active
userspace drivers.
enabled at load time or in legacy fashion.
</para>
<sect2>
<title>Driver private &amp; performance counters</title>
<para>
The driver private hangs off the main drm_device structure and
can be used for tracking various device specific bits of
can be used for tracking various device-specific bits of
information, like register offsets, command buffer status,
register state for suspend/resume, etc. At load time, a
driver can simply allocate one and set drm_device.dev_priv
appropriately; at unload the driver can free it and set
drm_device.dev_priv to NULL.
driver may simply allocate one and set drm_device.dev_priv
appropriately; it should be freed and drm_device.dev_priv set
to NULL when the driver is unloaded.
</para>
<para>
The DRM supports several counters which can be used for rough
The DRM supports several counters which may be used for rough
performance characterization. Note that the DRM stat counter
system is not often used by applications, and supporting
additional counters is completely optional.
@ -307,15 +305,15 @@
These interfaces are deprecated and should not be used. If performance
monitoring is desired, the developer should investigate and
potentially enhance the kernel perf and tracing infrastructure to export
GPU related performance information to performance monitoring
tools and applications.
GPU related performance information for consumption by performance
monitoring tools and applications.
</para>
</sect2>
<sect2>
<title>Configuring the device</title>
<para>
Obviously, device configuration will be device specific.
Obviously, device configuration is device-specific.
However, there are several common operations: finding a
device's PCI resources, mapping them, and potentially setting
up an IRQ handler.
@ -323,10 +321,10 @@
<para>
Finding &amp; mapping resources is fairly straightforward. The
DRM wrapper functions, drm_get_resource_start() and
drm_get_resource_len() can be used to find BARs on the given
drm_get_resource_len(), may be used to find BARs on the given
drm_device struct. Once those values have been retrieved, the
driver load function can call drm_addmap() to create a new
mapping for the BAR in question. Note you'll probably want a
mapping for the BAR in question. Note that you probably want a
drm_local_map_t in your driver private structure to track any
mappings you create.
<!-- !Fdrivers/gpu/drm/drm_bufs.c drm_get_resource_* -->
@ -335,20 +333,20 @@
<para>
if compatibility with other operating systems isn't a concern
(DRM drivers can run under various BSD variants and OpenSolaris),
native Linux calls can be used for the above, e.g. pci_resource_*
native Linux calls may be used for the above, e.g. pci_resource_*
and iomap*/iounmap. See the Linux device driver book for more
info.
</para>
<para>
Once you have a register map, you can use the DRM_READn() and
Once you have a register map, you may use the DRM_READn() and
DRM_WRITEn() macros to access the registers on your device, or
use driver specific versions to offset into your MMIO space
relative to a driver specific base pointer (see I915_READ for
example).
use driver-specific versions to offset into your MMIO space
relative to a driver-specific base pointer (see I915_READ for
an example).
</para>
<para>
If your device supports interrupt generation, you may want to
setup an interrupt handler at driver load time as well. This
set up an interrupt handler when the driver is loaded. This
is done using the drm_irq_install() function. If your device
supports vertical blank interrupts, it should call
drm_vblank_init() to initialize the core vblank handling code before
@ -357,7 +355,7 @@
</para>
<!--!Fdrivers/char/drm/drm_irq.c drm_irq_install-->
<para>
Once your interrupt handler is registered (it'll use your
Once your interrupt handler is registered (it uses your
drm_driver.irq_handler as the actual interrupt handling
function), you can safely enable interrupts on your device,
assuming any other state your interrupt handler uses is also
@ -371,10 +369,10 @@
using the pci_map_rom() call, a convenience function that
takes care of mapping the actual ROM, whether it has been
shadowed into memory (typically at address 0xc0000) or exists
on the PCI device in the ROM BAR. Note that once you've
mapped the ROM and extracted any necessary information, be
sure to unmap it; on many devices the ROM address decoder is
shared with other BARs, so leaving it mapped can cause
on the PCI device in the ROM BAR. Note that after the ROM
has been mapped and any necessary information has been extracted,
it should be unmapped; on many devices, the ROM address decoder is
shared with other BARs, so leaving it mapped could cause
undesired behavior like hangs or memory corruption.
<!--!Fdrivers/pci/rom.c pci_map_rom-->
</para>
@ -389,9 +387,9 @@
should support a memory manager.
</para>
<para>
If your driver supports memory management (it should!), you'll
If your driver supports memory management (it should!), you
need to set that up at load time as well. How you initialize
it depends on which memory manager you're using, TTM or GEM.
it depends on which memory manager you're using: TTM or GEM.
</para>
<sect3>
<title>TTM initialization</title>
@ -401,7 +399,7 @@
and devices with dedicated video RAM (VRAM), i.e. most discrete
graphics devices. If your device has dedicated RAM, supporting
TTM is desirable. TTM also integrates tightly with your
driver specific buffer execution function. See the radeon
driver-specific buffer execution function. See the radeon
driver for examples.
</para>
<para>
@ -429,21 +427,21 @@
created by the memory manager at runtime. Your global TTM should
have a type of TTM_GLOBAL_TTM_MEM. The size field for the global
object should be sizeof(struct ttm_mem_global), and the init and
release hooks should point at your driver specific init and
release routines, which will probably eventually call
ttm_mem_global_init and ttm_mem_global_release respectively.
release hooks should point at your driver-specific init and
release routines, which probably eventually call
ttm_mem_global_init and ttm_mem_global_release, respectively.
</para>
<para>
Once your global TTM accounting structure is set up and initialized
(done by calling ttm_global_item_ref on the global object you
just created), you'll need to create a buffer object TTM to
by calling ttm_global_item_ref() on it,
you need to create a buffer object TTM to
provide a pool for buffer object allocation by clients and the
kernel itself. The type of this object should be TTM_GLOBAL_TTM_BO,
and its size should be sizeof(struct ttm_bo_global). Again,
driver specific init and release functions can be provided,
likely eventually calling ttm_bo_global_init and
ttm_bo_global_release, respectively. Also like the previous
object, ttm_global_item_ref is used to create an initial reference
driver-specific init and release functions may be provided,
likely eventually calling ttm_bo_global_init() and
ttm_bo_global_release(), respectively. Also, like the previous
object, ttm_global_item_ref() is used to create an initial reference
count for the TTM, which will call your initialization function.
</para>
</sect3>
@ -453,27 +451,26 @@
GEM is an alternative to TTM, designed specifically for UMA
devices. It has simpler initialization and execution requirements
than TTM, but has no VRAM management capability. Core GEM
initialization is comprised of a basic drm_mm_init call to create
is initialized by calling drm_mm_init() to create
a GTT DRM MM object, which provides an address space pool for
object allocation. In a KMS configuration, the driver will
need to allocate and initialize a command ring buffer following
basic GEM initialization. Most UMA devices have a so-called
object allocation. In a KMS configuration, the driver
needs to allocate and initialize a command ring buffer following
core GEM initialization. A UMA device usually has what is called a
"stolen" memory region, which provides space for the initial
framebuffer and large, contiguous memory regions required by the
device. This space is not typically managed by GEM, and must
device. This space is not typically managed by GEM, and it must
be initialized separately into its own DRM MM object.
</para>
<para>
Initialization will be driver specific, and will depend on
the architecture of the device. In the case of Intel
Initialization is driver-specific. In the case of Intel
integrated graphics chips like 965GM, GEM initialization can
be done by calling the internal GEM init function,
i915_gem_do_init(). Since the 965GM is a UMA device
(i.e. it doesn't have dedicated VRAM), GEM will manage
(i.e. it doesn't have dedicated VRAM), GEM manages
making regular RAM available for GPU operations. Memory set
aside by the BIOS (called "stolen" memory by the i915
driver) will be managed by the DRM memrange allocator; the
rest of the aperture will be managed by GEM.
driver) is managed by the DRM memrange allocator; the
rest of the aperture is managed by GEM.
<programlisting>
/* Basic memrange allocator for stolen space (aka vram) */
drm_memrange_init(&amp;dev_priv->vram, 0, prealloc_size);
@ -483,7 +480,7 @@
<!--!Edrivers/char/drm/drm_memrange.c-->
</para>
<para>
Once the memory manager has been set up, we can allocate the
Once the memory manager has been set up, we may allocate the
command buffer. In the i915 case, this is also done with a
GEM function, i915_gem_init_ringbuffer().
</para>
@ -493,16 +490,25 @@
<sect2>
<title>Output configuration</title>
<para>
The final initialization task is output configuration. This involves
finding and initializing the CRTCs, encoders and connectors
for your device, creating an initial configuration and
registering a framebuffer console driver.
The final initialization task is output configuration. This involves:
<itemizedlist>
<listitem>
Finding and initializing the CRTCs, encoders, and connectors
for the device.
</listitem>
<listitem>
Creating an initial configuration.
</listitem>
<listitem>
Registering a framebuffer console driver.
</listitem>
</itemizedlist>
</para>
<sect3>
<title>Output discovery and initialization</title>
<para>
Several core functions exist to create CRTCs, encoders and
connectors, namely drm_crtc_init(), drm_connector_init() and
Several core functions exist to create CRTCs, encoders, and
connectors, namely: drm_crtc_init(), drm_connector_init(), and
drm_encoder_init(), along with several "helper" functions to
perform common tasks.
</para>
@ -555,10 +561,10 @@ void intel_crt_init(struct drm_device *dev)
</programlisting>
<para>
In the example above (again, taken from the i915 driver), a
CRT connector and encoder combination is created. A device
specific i2c bus is also created, for fetching EDID data and
CRT connector and encoder combination is created. A device-specific
i2c bus is also created for fetching EDID data and
performing monitor detection. Once the process is complete,
the new connector is registered with sysfs, to make its
the new connector is registered with sysfs to make its
properties available to applications.
</para>
<sect4>
@ -567,12 +573,12 @@ void intel_crt_init(struct drm_device *dev)
Since many PC-class graphics devices have similar display output
designs, the DRM provides a set of helper functions to make
output management easier. The core helper routines handle
encoder re-routing and disabling of unused functions following
mode set. Using the helpers is optional, but recommended for
encoder re-routing and the disabling of unused functions following
mode setting. Using the helpers is optional, but recommended for
devices with PC-style architectures (i.e. a set of display planes
for feeding pixels to encoders which are in turn routed to
connectors). Devices with more complex requirements needing
finer grained management can opt to use the core callbacks
finer grained management may opt to use the core callbacks
directly.
</para>
<para>
@ -580,17 +586,25 @@ void intel_crt_init(struct drm_device *dev)
</para>
</sect4>
<para>
For each encoder, CRTC and connector, several functions must
be provided, depending on the object type. Encoder objects
need to provide a DPMS (basically on/off) function, mode fixup
(for converting requested modes into native hardware timings),
and prepare, set and commit functions for use by the core DRM
helper functions. Connector helpers need to provide mode fetch and
validity functions as well as an encoder matching function for
returning an ideal encoder for a given connector. The core
connector functions include a DPMS callback, (deprecated)
save/restore routines, detection, mode probing, property handling,
and cleanup functions.
Each encoder object needs to provide:
<itemizedlist>
<listitem>
A DPMS (basically on/off) function.
</listitem>
<listitem>
A mode-fixup function (for converting requested modes into
native hardware timings).
</listitem>
<listitem>
Functions (prepare, set, and commit) for use by the core DRM
helper functions.
</listitem>
</itemizedlist>
Connector helpers need to provide functions (mode-fetch, validity,
and encoder-matching) for returning an ideal encoder for a given
connector. The core connector functions include a DPMS callback,
save/restore routines (deprecated), detection, mode probing,
property handling, and cleanup functions.
</para>
<!--!Edrivers/char/drm/drm_crtc.h-->
<!--!Edrivers/char/drm/drm_crtc.c-->
@ -605,22 +619,33 @@ void intel_crt_init(struct drm_device *dev)
<title>VBlank event handling</title>
<para>
The DRM core exposes two vertical blank related ioctls:
DRM_IOCTL_WAIT_VBLANK and DRM_IOCTL_MODESET_CTL.
<variablelist>
<varlistentry>
<term>DRM_IOCTL_WAIT_VBLANK</term>
<listitem>
<para>
This takes a struct drm_wait_vblank structure as its argument,
and it is used to block or request a signal when a specified
vblank event occurs.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>DRM_IOCTL_MODESET_CTL</term>
<listitem>
<para>
This should be called by application level drivers before and
after mode setting, since on many devices the vertical blank
counter is reset at that time. Internally, the DRM snapshots
the last vblank count when the ioctl is called with the
_DRM_PRE_MODESET command, so that the counter won't go backwards
(which is dealt with when _DRM_POST_MODESET is used).
</para>
</listitem>
</varlistentry>
</variablelist>
<!--!Edrivers/char/drm/drm_irq.c-->
</para>
<para>
DRM_IOCTL_WAIT_VBLANK takes a struct drm_wait_vblank structure
as its argument, and is used to block or request a signal when a
specified vblank event occurs.
</para>
<para>
DRM_IOCTL_MODESET_CTL should be called by application level
drivers before and after mode setting, since on many devices the
vertical blank counter will be reset at that time. Internally,
the DRM snapshots the last vblank count when the ioctl is called
with the _DRM_PRE_MODESET command so that the counter won't go
backwards (which is dealt with when _DRM_POST_MODESET is used).
</para>
<para>
To support the functions above, the DRM core provides several
helper functions for tracking vertical blank counters, and
@ -632,24 +657,24 @@ void intel_crt_init(struct drm_device *dev)
register. The enable and disable vblank callbacks should enable
and disable vertical blank interrupts, respectively. In the
absence of DRM clients waiting on vblank events, the core DRM
code will use the disable_vblank() function to disable
interrupts, which saves power. They'll be re-enabled again when
code uses the disable_vblank() function to disable
interrupts, which saves power. They are re-enabled again when
a client calls the vblank wait ioctl above.
</para>
<para>
Devices that don't provide a count register can simply use an
A device that doesn't provide a count register may simply use an
internal atomic counter incremented on every vertical blank
interrupt, and can make their enable and disable vblank
functions into no-ops.
interrupt (and then treat the enable_vblank() and disable_vblank()
callbacks as no-ops).
</para>
</sect1>
<sect1>
<title>Memory management</title>
<para>
The memory manager lies at the heart of many DRM operations, and
is also required to support advanced client features like OpenGL
pbuffers. The DRM currently contains two memory managers, TTM
The memory manager lies at the heart of many DRM operations; it
is required to support advanced client features like OpenGL
pbuffers. The DRM currently contains two memory managers: TTM
and GEM.
</para>
@ -679,41 +704,46 @@ void intel_crt_init(struct drm_device *dev)
<para>
GEM-enabled drivers must provide gem_init_object() and
gem_free_object() callbacks to support the core memory
allocation routines. They should also provide several driver
specific ioctls to support command execution, pinning, buffer
allocation routines. They should also provide several driver-specific
ioctls to support command execution, pinning, buffer
read &amp; write, mapping, and domain ownership transfers.
</para>
<para>
On a fundamental level, GEM involves several operations: memory
allocation and freeing, command execution, and aperture management
at command execution time. Buffer object allocation is relatively
On a fundamental level, GEM involves several operations:
<itemizedlist>
<listitem>Memory allocation and freeing</listitem>
<listitem>Command execution</listitem>
<listitem>Aperture management at command execution time</listitem>
</itemizedlist>
Buffer object allocation is relatively
straightforward and largely provided by Linux's shmem layer, which
provides memory to back each object. When mapped into the GTT
or used in a command buffer, the backing pages for an object are
flushed to memory and marked write combined so as to be coherent
with the GPU. Likewise, when the GPU finishes rendering to an object,
if the CPU accesses it, it must be made coherent with the CPU's view
with the GPU. Likewise, if the CPU accesses an object after the GPU
has finished rendering to the object, then the object must be made
coherent with the CPU's view
of memory, usually involving GPU cache flushing of various kinds.
This core CPU&lt;-&gt;GPU coherency management is provided by the GEM
set domain function, which evaluates an object's current domain and
This core CPU&lt;-&gt;GPU coherency management is provided by a
device-specific ioctl, which evaluates an object's current domain and
performs any necessary flushing or synchronization to put the object
into the desired coherency domain (note that the object may be busy,
i.e. an active render target; in that case the set domain function
will block the client and wait for rendering to complete before
i.e. an active render target; in that case, setting the domain
blocks the client and waits for rendering to complete before
performing any necessary flushing operations).
</para>
<para>
Perhaps the most important GEM function is providing a command
execution interface to clients. Client programs construct command
buffers containing references to previously allocated memory objects
and submit them to GEM. At that point, GEM will take care to bind
buffers containing references to previously allocated memory objects,
and then submit them to GEM. At that point, GEM takes care to bind
all the objects into the GTT, execute the buffer, and provide
necessary synchronization between clients accessing the same buffers.
This often involves evicting some objects from the GTT and re-binding
others (a fairly expensive operation), and providing relocation
support which hides fixed GTT offsets from clients. Clients must
take care not to submit command buffers that reference more objects
than can fit in the GTT or GEM will reject them and no rendering
than can fit in the GTT; otherwise, GEM will reject them and no rendering
will occur. Similarly, if several objects in the buffer require
fence registers to be allocated for correct rendering (e.g. 2D blits
on pre-965 chips), care must be taken not to require more fence
@ -729,7 +759,7 @@ void intel_crt_init(struct drm_device *dev)
<title>Output management</title>
<para>
At the core of the DRM output management code is a set of
structures representing CRTCs, encoders and connectors.
structures representing CRTCs, encoders, and connectors.
</para>
<para>
A CRTC is an abstraction representing a part of the chip that
@ -765,21 +795,19 @@ void intel_crt_init(struct drm_device *dev)
<sect1>
<title>Framebuffer management</title>
<para>
In order to set a mode on a given CRTC, encoder and connector
configuration, clients need to provide a framebuffer object which
will provide a source of pixels for the CRTC to deliver to the encoder(s)
and ultimately the connector(s) in the configuration. A framebuffer
is fundamentally a driver specific memory object, made into an opaque
handle by the DRM addfb function. Once an fb has been created this
way it can be passed to the KMS mode setting routines for use in
a configuration.
Clients need to provide a framebuffer object which provides a source
of pixels for a CRTC to deliver to the encoder(s) and ultimately the
connector(s). A framebuffer is fundamentally a driver-specific memory
object, made into an opaque handle by the DRM's addfb() function.
Once a framebuffer has been created this way, it may be passed to the
KMS mode setting routines for use in a completed configuration.
</para>
</sect1>
<sect1>
<title>Command submission &amp; fencing</title>
<para>
This should cover a few device specific command submission
This should cover a few device-specific command submission
implementations.
</para>
</sect1>
@ -789,7 +817,7 @@ void intel_crt_init(struct drm_device *dev)
<para>
The DRM core provides some suspend/resume code, but drivers
wanting full suspend/resume support should provide save() and
restore() functions. These will be called at suspend,
restore() functions. These are called at suspend,
hibernate, or resume time, and should perform any state save or
restore required by your device across suspend or hibernate
states.
@ -812,8 +840,8 @@ void intel_crt_init(struct drm_device *dev)
<para>
The DRM core exports several interfaces to applications,
generally intended to be used through corresponding libdrm
wrapper functions. In addition, drivers export device specific
interfaces for use by userspace drivers &amp; device aware
wrapper functions. In addition, drivers export device-specific
interfaces for use by userspace drivers &amp; device-aware
applications through ioctls and sysfs files.
</para>
<para>
@ -822,8 +850,8 @@ void intel_crt_init(struct drm_device *dev)
management, memory management, and output management.
</para>
<para>
Cover generic ioctls and sysfs layout here. Only need high
level info, since man pages will cover the rest.
Cover generic ioctls and sysfs layout here. We only need high-level
info, since man pages should cover the rest.
</para>
</chapter>

View File

@ -572,7 +572,7 @@ static void board_select_chip (struct mtd_info *mtd, int chip)
</para>
<para>
The simplest way to activate the FLASH based bad block table support
is to set the option NAND_USE_FLASH_BBT in the option field of
is to set the option NAND_BBT_USE_FLASH in the bbt_option field of
the nand chip structure before calling nand_scan(). For AG-AND
chips is this done by default.
This activates the default FLASH based bad block table functionality
@ -773,20 +773,6 @@ struct nand_oobinfo {
done according to the default builtin scheme.
</para>
</sect2>
<sect2 id="User_space_placement_selection">
<title>User space placement selection</title>
<para>
All non ecc functions like mtd->read and mtd->write use an internal
structure, which can be set by an ioctl. This structure is preset
to the autoplacement default.
<programlisting>
ioctl (fd, MEMSETOOBSEL, oobsel);
</programlisting>
oobsel is a pointer to a user supplied structure of type
nand_oobconfig. The contents of this structure must match the
criteria of the filesystem, which will be used. See an example in utils/nandwrite.c.
</para>
</sect2>
</sect1>
<sect1 id="Spare_area_autoplacement_default">
<title>Spare area autoplacement default schemes</title>
@ -1158,9 +1144,6 @@ in this page</entry>
These constants are defined in nand.h. They are ored together to describe
the functionality.
<programlisting>
/* Use a flash based bad block table. This option is parsed by the
* default bad block table function (nand_default_bbt). */
#define NAND_USE_FLASH_BBT 0x00010000
/* The hw ecc generator provides a syndrome instead a ecc value on read
* This can only work if we have the ecc bytes directly behind the
* data bytes. Applies for DOC and AG-AND Renesas HW Reed Solomon generators */

View File

@ -33,9 +33,9 @@ demonstrate this problem using nested bash shells:
From a second, unrelated bash shell:
$ kill -SIGSTOP 16690
$ kill -SIGCONT 16990
$ kill -SIGCONT 16690
<at this point 16990 exits and causes 16644 to exit too>
<at this point 16690 exits and causes 16644 to exit too>
This happens because bash can observe both signals and choose how it
responds to them.

View File

@ -0,0 +1,14 @@
* Atmel Data Flash
Required properties:
- compatible : "atmel,<model>", "atmel,<series>", "atmel,dataflash".
Example:
flash@1 {
#address-cells = <1>;
#size-cells = <1>;
compatible = "atmel,at45db321d", "atmel,at45", "atmel,dataflash";
spi-max-frequency = <25000000>;
reg = <1>;
};

View File

@ -349,6 +349,7 @@ STAC92HD83*
ref Reference board
mic-ref Reference board with power management for ports
dell-s14 Dell laptop
dell-vostro-3500 Dell Vostro 3500 laptop
hp HP laptops with (inverted) mute-LED
hp-dv7-4000 HP dv-7 4000
auto BIOS setup (default)

2
Kbuild
View File

@ -92,7 +92,7 @@ always += missing-syscalls
targets += missing-syscalls
quiet_cmd_syscalls = CALL $<
cmd_syscalls = $(CONFIG_SHELL) $< $(CC) $(c_flags)
cmd_syscalls = $(CONFIG_SHELL) $< $(CC) $(c_flags) $(missing_syscalls_flags)
missing-syscalls: scripts/checksyscalls.sh $(offsets-file) FORCE
$(call cmd,syscalls)

View File

@ -1032,6 +1032,7 @@ F: arch/arm/include/asm/hardware/ioc.h
F: arch/arm/include/asm/hardware/iomd.h
F: arch/arm/include/asm/hardware/memc.h
F: arch/arm/mach-rpc/
F: drivers/net/ethernet/8390/etherh.c
F: drivers/net/ethernet/i825xx/ether1*
F: drivers/net/ethernet/seeq/ether3*
F: drivers/scsi/arm/
@ -1105,6 +1106,7 @@ F: drivers/media/video/s5p-fimc/
ARM/SAMSUNG S5P SERIES Multi Format Codec (MFC) SUPPORT
M: Kyungmin Park <kyungmin.park@samsung.com>
M: Kamil Debski <k.debski@samsung.com>
M: Jeongtae Park <jtp.park@samsung.com>
L: linux-arm-kernel@lists.infradead.org
L: linux-media@vger.kernel.org
S: Maintained
@ -2341,6 +2343,13 @@ S: Supported
F: drivers/gpu/drm/i915
F: include/drm/i915*
DRM DRIVERS FOR EXYNOS
M: Inki Dae <inki.dae@samsung.com>
L: dri-devel@lists.freedesktop.org
S: Supported
F: drivers/gpu/drm/exynos
F: include/drm/exynos*
DSCC4 DRIVER
M: Francois Romieu <romieu@fr.zoreil.com>
L: netdev@vger.kernel.org
@ -4672,7 +4681,7 @@ L: linux-omap@vger.kernel.org
W: http://www.muru.com/linux/omap/
W: http://linux.omap.com/
Q: http://patchwork.kernel.org/project/linux-omap/list/
T: git git://git.kernel.org/pub/scm/linux/kernel/git/tmlind/linux-omap-2.6.git
T: git git://git.kernel.org/pub/scm/linux/kernel/git/tmlind/linux-omap.git
S: Maintained
F: arch/arm/*omap*/
@ -5470,7 +5479,7 @@ S: Maintained
F: drivers/net/ethernet/rdc/r6040.c
RDS - RELIABLE DATAGRAM SOCKETS
M: Andy Grover <andy.grover@oracle.com>
M: Venkat Venkatsubra <venkat.x.venkatsubra@oracle.com>
L: rds-devel@oss.oracle.com (moderated for non-subscribers)
S: Supported
F: net/rds/
@ -6121,7 +6130,7 @@ F: sound/
SOUND - SOC LAYER / DYNAMIC AUDIO POWER MANAGEMENT (ASoC)
M: Liam Girdwood <lrg@ti.com>
M: Mark Brown <broonie@opensource.wolfsonmicro.com>
T: git git://git.kernel.org/pub/scm/linux/kernel/git/broonie/sound-2.6.git
T: git git://git.kernel.org/pub/scm/linux/kernel/git/broonie/sound.git
L: alsa-devel@alsa-project.org (moderated for non-subscribers)
W: http://alsa-project.org/main/index.php/ASoC
S: Supported

View File

@ -1,8 +1,8 @@
VERSION = 3
PATCHLEVEL = 1
PATCHLEVEL = 2
SUBLEVEL = 0
EXTRAVERSION =
NAME = "Divemaster Edition"
EXTRAVERSION = -rc2
NAME = Saber-toothed Squirrel
# *DOCUMENTATION*
# To see a list of typical targets execute "make help"

View File

@ -22,11 +22,10 @@ serial@70006300 {
sdhci@c8000400 {
cd-gpios = <&gpio 69 0>; /* gpio PI5 */
wp-gpios = <&gpio 57 0>; /* gpio PH1 */
power-gpios = <&gpio 155 0>; /* gpio PT3 */
power-gpios = <&gpio 70 0>; /* gpio PI6 */
};
sdhci@c8000600 {
power-gpios = <&gpio 70 0>; /* gpio PI6 */
support-8bit;
};
};

View File

@ -137,7 +137,7 @@ static struct clk pwm_clk = {
.type = CLK_TYPE_PERIPHERAL,
};
static struct clk macb_clk = {
.name = "macb_clk",
.name = "pclk",
.pmc_mask = 1 << AT91CAP9_ID_EMAC,
.type = CLK_TYPE_PERIPHERAL,
};
@ -210,6 +210,8 @@ static struct clk *periph_clocks[] __initdata = {
};
static struct clk_lookup periph_clocks_lookups[] = {
/* One additional fake clock for macb_hclk */
CLKDEV_CON_ID("hclk", &macb_clk),
CLKDEV_CON_DEV_ID("hclk", "atmel_usba_udc", &utmi_clk),
CLKDEV_CON_DEV_ID("pclk", "atmel_usba_udc", &udphs_clk),
CLKDEV_CON_DEV_ID("mci_clk", "at91_mci.0", &mmc0_clk),

View File

@ -98,7 +98,7 @@ void __init at91_add_device_usbh(struct at91_usbh_data *data) {}
* USB HS Device (Gadget)
* -------------------------------------------------------------------- */
#if defined(CONFIG_USB_GADGET_ATMEL_USBA) || defined(CONFIG_USB_GADGET_ATMEL_USBA_MODULE)
#if defined(CONFIG_USB_ATMEL_USBA) || defined(CONFIG_USB_ATMEL_USBA_MODULE)
static struct resource usba_udc_resources[] = {
[0] = {
@ -200,7 +200,7 @@ void __init at91_add_device_usba(struct usba_platform_data *data) {}
#if defined(CONFIG_MACB) || defined(CONFIG_MACB_MODULE)
static u64 eth_dmamask = DMA_BIT_MASK(32);
static struct at91_eth_data eth_data;
static struct macb_platform_data eth_data;
static struct resource eth_resources[] = {
[0] = {
@ -227,7 +227,7 @@ static struct platform_device at91cap9_eth_device = {
.num_resources = ARRAY_SIZE(eth_resources),
};
void __init at91_add_device_eth(struct at91_eth_data *data)
void __init at91_add_device_eth(struct macb_platform_data *data)
{
if (!data)
return;
@ -264,7 +264,7 @@ void __init at91_add_device_eth(struct at91_eth_data *data)
platform_device_register(&at91cap9_eth_device);
}
#else
void __init at91_add_device_eth(struct at91_eth_data *data) {}
void __init at91_add_device_eth(struct macb_platform_data *data) {}
#endif
@ -1021,8 +1021,8 @@ void __init at91_add_device_ssc(unsigned id, unsigned pins) {}
#if defined(CONFIG_SERIAL_ATMEL)
static struct resource dbgu_resources[] = {
[0] = {
.start = AT91_VA_BASE_SYS + AT91_DBGU,
.end = AT91_VA_BASE_SYS + AT91_DBGU + SZ_512 - 1,
.start = AT91_BASE_SYS + AT91_DBGU,
.end = AT91_BASE_SYS + AT91_DBGU + SZ_512 - 1,
.flags = IORESOURCE_MEM,
},
[1] = {
@ -1035,7 +1035,6 @@ static struct resource dbgu_resources[] = {
static struct atmel_uart_data dbgu_data = {
.use_dma_tx = 0,
.use_dma_rx = 0, /* DBGU not capable of receive DMA */
.regs = (void __iomem *)(AT91_VA_BASE_SYS + AT91_DBGU),
};
static u64 dbgu_dmamask = DMA_BIT_MASK(32);

View File

@ -135,7 +135,7 @@ void __init at91_add_device_udc(struct at91_udc_data *data) {}
#if defined(CONFIG_ARM_AT91_ETHER) || defined(CONFIG_ARM_AT91_ETHER_MODULE)
static u64 eth_dmamask = DMA_BIT_MASK(32);
static struct at91_eth_data eth_data;
static struct macb_platform_data eth_data;
static struct resource eth_resources[] = {
[0] = {
@ -162,7 +162,7 @@ static struct platform_device at91rm9200_eth_device = {
.num_resources = ARRAY_SIZE(eth_resources),
};
void __init at91_add_device_eth(struct at91_eth_data *data)
void __init at91_add_device_eth(struct macb_platform_data *data)
{
if (!data)
return;
@ -199,7 +199,7 @@ void __init at91_add_device_eth(struct at91_eth_data *data)
platform_device_register(&at91rm9200_eth_device);
}
#else
void __init at91_add_device_eth(struct at91_eth_data *data) {}
void __init at91_add_device_eth(struct macb_platform_data *data) {}
#endif
@ -877,8 +877,8 @@ void __init at91_add_device_ssc(unsigned id, unsigned pins) {}
#if defined(CONFIG_SERIAL_ATMEL)
static struct resource dbgu_resources[] = {
[0] = {
.start = AT91_VA_BASE_SYS + AT91_DBGU,
.end = AT91_VA_BASE_SYS + AT91_DBGU + SZ_512 - 1,
.start = AT91_BASE_SYS + AT91_DBGU,
.end = AT91_BASE_SYS + AT91_DBGU + SZ_512 - 1,
.flags = IORESOURCE_MEM,
},
[1] = {
@ -891,7 +891,6 @@ static struct resource dbgu_resources[] = {
static struct atmel_uart_data dbgu_data = {
.use_dma_tx = 0,
.use_dma_rx = 0, /* DBGU not capable of receive DMA */
.regs = (void __iomem *)(AT91_VA_BASE_SYS + AT91_DBGU),
};
static u64 dbgu_dmamask = DMA_BIT_MASK(32);

View File

@ -120,7 +120,7 @@ static struct clk ohci_clk = {
.type = CLK_TYPE_PERIPHERAL,
};
static struct clk macb_clk = {
.name = "macb_clk",
.name = "pclk",
.pmc_mask = 1 << AT91SAM9260_ID_EMAC,
.type = CLK_TYPE_PERIPHERAL,
};
@ -190,6 +190,8 @@ static struct clk *periph_clocks[] __initdata = {
};
static struct clk_lookup periph_clocks_lookups[] = {
/* One additional fake clock for macb_hclk */
CLKDEV_CON_ID("hclk", &macb_clk),
CLKDEV_CON_DEV_ID("spi_clk", "atmel_spi.0", &spi0_clk),
CLKDEV_CON_DEV_ID("spi_clk", "atmel_spi.1", &spi1_clk),
CLKDEV_CON_DEV_ID("t0_clk", "atmel_tcb.0", &tc0_clk),

View File

@ -136,7 +136,7 @@ void __init at91_add_device_udc(struct at91_udc_data *data) {}
#if defined(CONFIG_MACB) || defined(CONFIG_MACB_MODULE)
static u64 eth_dmamask = DMA_BIT_MASK(32);
static struct at91_eth_data eth_data;
static struct macb_platform_data eth_data;
static struct resource eth_resources[] = {
[0] = {
@ -163,7 +163,7 @@ static struct platform_device at91sam9260_eth_device = {
.num_resources = ARRAY_SIZE(eth_resources),
};
void __init at91_add_device_eth(struct at91_eth_data *data)
void __init at91_add_device_eth(struct macb_platform_data *data)
{
if (!data)
return;
@ -200,7 +200,7 @@ void __init at91_add_device_eth(struct at91_eth_data *data)
platform_device_register(&at91sam9260_eth_device);
}
#else
void __init at91_add_device_eth(struct at91_eth_data *data) {}
void __init at91_add_device_eth(struct macb_platform_data *data) {}
#endif
@ -837,8 +837,8 @@ void __init at91_add_device_ssc(unsigned id, unsigned pins) {}
#if defined(CONFIG_SERIAL_ATMEL)
static struct resource dbgu_resources[] = {
[0] = {
.start = AT91_VA_BASE_SYS + AT91_DBGU,
.end = AT91_VA_BASE_SYS + AT91_DBGU + SZ_512 - 1,
.start = AT91_BASE_SYS + AT91_DBGU,
.end = AT91_BASE_SYS + AT91_DBGU + SZ_512 - 1,
.flags = IORESOURCE_MEM,
},
[1] = {
@ -851,7 +851,6 @@ static struct resource dbgu_resources[] = {
static struct atmel_uart_data dbgu_data = {
.use_dma_tx = 0,
.use_dma_rx = 0, /* DBGU not capable of receive DMA */
.regs = (void __iomem *)(AT91_VA_BASE_SYS + AT91_DBGU),
};
static u64 dbgu_dmamask = DMA_BIT_MASK(32);

View File

@ -816,8 +816,8 @@ void __init at91_add_device_ssc(unsigned id, unsigned pins) {}
#if defined(CONFIG_SERIAL_ATMEL)
static struct resource dbgu_resources[] = {
[0] = {
.start = AT91_VA_BASE_SYS + AT91_DBGU,
.end = AT91_VA_BASE_SYS + AT91_DBGU + SZ_512 - 1,
.start = AT91_BASE_SYS + AT91_DBGU,
.end = AT91_BASE_SYS + AT91_DBGU + SZ_512 - 1,
.flags = IORESOURCE_MEM,
},
[1] = {
@ -830,7 +830,6 @@ static struct resource dbgu_resources[] = {
static struct atmel_uart_data dbgu_data = {
.use_dma_tx = 0,
.use_dma_rx = 0, /* DBGU not capable of receive DMA */
.regs = (void __iomem *)(AT91_VA_BASE_SYS + AT91_DBGU),
};
static u64 dbgu_dmamask = DMA_BIT_MASK(32);

View File

@ -118,7 +118,7 @@ static struct clk pwm_clk = {
.type = CLK_TYPE_PERIPHERAL,
};
static struct clk macb_clk = {
.name = "macb_clk",
.name = "pclk",
.pmc_mask = 1 << AT91SAM9263_ID_EMAC,
.type = CLK_TYPE_PERIPHERAL,
};
@ -182,6 +182,8 @@ static struct clk *periph_clocks[] __initdata = {
};
static struct clk_lookup periph_clocks_lookups[] = {
/* One additional fake clock for macb_hclk */
CLKDEV_CON_ID("hclk", &macb_clk),
CLKDEV_CON_DEV_ID("pclk", "ssc.0", &ssc0_clk),
CLKDEV_CON_DEV_ID("pclk", "ssc.1", &ssc1_clk),
CLKDEV_CON_DEV_ID("mci_clk", "at91_mci.0", &mmc0_clk),

View File

@ -144,7 +144,7 @@ void __init at91_add_device_udc(struct at91_udc_data *data) {}
#if defined(CONFIG_MACB) || defined(CONFIG_MACB_MODULE)
static u64 eth_dmamask = DMA_BIT_MASK(32);
static struct at91_eth_data eth_data;
static struct macb_platform_data eth_data;
static struct resource eth_resources[] = {
[0] = {
@ -171,7 +171,7 @@ static struct platform_device at91sam9263_eth_device = {
.num_resources = ARRAY_SIZE(eth_resources),
};
void __init at91_add_device_eth(struct at91_eth_data *data)
void __init at91_add_device_eth(struct macb_platform_data *data)
{
if (!data)
return;
@ -208,7 +208,7 @@ void __init at91_add_device_eth(struct at91_eth_data *data)
platform_device_register(&at91sam9263_eth_device);
}
#else
void __init at91_add_device_eth(struct at91_eth_data *data) {}
void __init at91_add_device_eth(struct macb_platform_data *data) {}
#endif
@ -1196,8 +1196,8 @@ void __init at91_add_device_ssc(unsigned id, unsigned pins) {}
static struct resource dbgu_resources[] = {
[0] = {
.start = AT91_VA_BASE_SYS + AT91_DBGU,
.end = AT91_VA_BASE_SYS + AT91_DBGU + SZ_512 - 1,
.start = AT91_BASE_SYS + AT91_DBGU,
.end = AT91_BASE_SYS + AT91_DBGU + SZ_512 - 1,
.flags = IORESOURCE_MEM,
},
[1] = {
@ -1210,7 +1210,6 @@ static struct resource dbgu_resources[] = {
static struct atmel_uart_data dbgu_data = {
.use_dma_tx = 0,
.use_dma_rx = 0, /* DBGU not capable of receive DMA */
.regs = (void __iomem *)(AT91_VA_BASE_SYS + AT91_DBGU),
};
static u64 dbgu_dmamask = DMA_BIT_MASK(32);

View File

@ -150,7 +150,7 @@ static struct clk ac97_clk = {
.type = CLK_TYPE_PERIPHERAL,
};
static struct clk macb_clk = {
.name = "macb_clk",
.name = "pclk",
.pmc_mask = 1 << AT91SAM9G45_ID_EMAC,
.type = CLK_TYPE_PERIPHERAL,
};
@ -209,6 +209,8 @@ static struct clk *periph_clocks[] __initdata = {
};
static struct clk_lookup periph_clocks_lookups[] = {
/* One additional fake clock for macb_hclk */
CLKDEV_CON_ID("hclk", &macb_clk),
/* One additional fake clock for ohci */
CLKDEV_CON_ID("ohci_clk", &uhphs_clk),
CLKDEV_CON_DEV_ID("ehci_clk", "atmel-ehci", &uhphs_clk),

View File

@ -197,7 +197,7 @@ void __init at91_add_device_usbh_ehci(struct at91_usbh_data *data) {}
* USB HS Device (Gadget)
* -------------------------------------------------------------------- */
#if defined(CONFIG_USB_GADGET_ATMEL_USBA) || defined(CONFIG_USB_GADGET_ATMEL_USBA_MODULE)
#if defined(CONFIG_USB_ATMEL_USBA) || defined(CONFIG_USB_ATMEL_USBA_MODULE)
static struct resource usba_udc_resources[] = {
[0] = {
.start = AT91SAM9G45_UDPHS_FIFO,
@ -284,7 +284,7 @@ void __init at91_add_device_usba(struct usba_platform_data *data) {}
#if defined(CONFIG_MACB) || defined(CONFIG_MACB_MODULE)
static u64 eth_dmamask = DMA_BIT_MASK(32);
static struct at91_eth_data eth_data;
static struct macb_platform_data eth_data;
static struct resource eth_resources[] = {
[0] = {
@ -311,7 +311,7 @@ static struct platform_device at91sam9g45_eth_device = {
.num_resources = ARRAY_SIZE(eth_resources),
};
void __init at91_add_device_eth(struct at91_eth_data *data)
void __init at91_add_device_eth(struct macb_platform_data *data)
{
if (!data)
return;
@ -348,7 +348,7 @@ void __init at91_add_device_eth(struct at91_eth_data *data)
platform_device_register(&at91sam9g45_eth_device);
}
#else
void __init at91_add_device_eth(struct at91_eth_data *data) {}
void __init at91_add_device_eth(struct macb_platform_data *data) {}
#endif
@ -1332,8 +1332,8 @@ void __init at91_add_device_ssc(unsigned id, unsigned pins) {}
#if defined(CONFIG_SERIAL_ATMEL)
static struct resource dbgu_resources[] = {
[0] = {
.start = AT91_VA_BASE_SYS + AT91_DBGU,
.end = AT91_VA_BASE_SYS + AT91_DBGU + SZ_512 - 1,
.start = AT91_BASE_SYS + AT91_DBGU,
.end = AT91_BASE_SYS + AT91_DBGU + SZ_512 - 1,
.flags = IORESOURCE_MEM,
},
[1] = {
@ -1346,7 +1346,6 @@ static struct resource dbgu_resources[] = {
static struct atmel_uart_data dbgu_data = {
.use_dma_tx = 0,
.use_dma_rx = 0,
.regs = (void __iomem *)(AT91_VA_BASE_SYS + AT91_DBGU),
};
static u64 dbgu_dmamask = DMA_BIT_MASK(32);

View File

@ -75,7 +75,7 @@ void __init at91_add_device_hdmac(void) {}
* USB HS Device (Gadget)
* -------------------------------------------------------------------- */
#if defined(CONFIG_USB_GADGET_ATMEL_USBA) || defined(CONFIG_USB_GADGET_ATMEL_USBA_MODULE)
#if defined(CONFIG_USB_ATMEL_USBA) || defined(CONFIG_USB_ATMEL_USBA_MODULE)
static struct resource usba_udc_resources[] = {
[0] = {
@ -908,8 +908,8 @@ void __init at91_add_device_ssc(unsigned id, unsigned pins) {}
#if defined(CONFIG_SERIAL_ATMEL)
static struct resource dbgu_resources[] = {
[0] = {
.start = AT91_VA_BASE_SYS + AT91_DBGU,
.end = AT91_VA_BASE_SYS + AT91_DBGU + SZ_512 - 1,
.start = AT91_BASE_SYS + AT91_DBGU,
.end = AT91_BASE_SYS + AT91_DBGU + SZ_512 - 1,
.flags = IORESOURCE_MEM,
},
[1] = {
@ -922,7 +922,6 @@ static struct resource dbgu_resources[] = {
static struct atmel_uart_data dbgu_data = {
.use_dma_tx = 0,
.use_dma_rx = 0, /* DBGU not capable of receive DMA */
.regs = (void __iomem *)(AT91_VA_BASE_SYS + AT91_DBGU),
};
static u64 dbgu_dmamask = DMA_BIT_MASK(32);

View File

@ -63,7 +63,7 @@ static void __init onearm_init_early(void)
at91_set_serial_console(0);
}
static struct at91_eth_data __initdata onearm_eth_data = {
static struct macb_platform_data __initdata onearm_eth_data = {
.phy_irq_pin = AT91_PIN_PC4,
.is_rmii = 1,
};

View File

@ -103,7 +103,7 @@ static struct spi_board_info afeb9260_spi_devices[] = {
/*
* MACB Ethernet device
*/
static struct at91_eth_data __initdata afeb9260_macb_data = {
static struct macb_platform_data __initdata afeb9260_macb_data = {
.phy_irq_pin = AT91_PIN_PA9,
.is_rmii = 0,
};
@ -130,19 +130,14 @@ static struct mtd_partition __initdata afeb9260_nand_partition[] = {
},
};
static struct mtd_partition * __init nand_partitions(int size, int *num_partitions)
{
*num_partitions = ARRAY_SIZE(afeb9260_nand_partition);
return afeb9260_nand_partition;
}
static struct atmel_nand_data __initdata afeb9260_nand_data = {
.ale = 21,
.cle = 22,
.rdy_pin = AT91_PIN_PC13,
.enable_pin = AT91_PIN_PC14,
.partition_info = nand_partitions,
.bus_width_16 = 0,
.parts = afeb9260_nand_partition,
.num_parts = ARRAY_SIZE(afeb9260_nand_partition),
};

View File

@ -115,7 +115,7 @@ static struct spi_board_info cam60_spi_devices[] __initdata = {
/*
* MACB Ethernet device
*/
static struct __initdata at91_eth_data cam60_macb_data = {
static struct __initdata macb_platform_data cam60_macb_data = {
.phy_irq_pin = AT91_PIN_PB5,
.is_rmii = 0,
};
@ -132,19 +132,14 @@ static struct mtd_partition __initdata cam60_nand_partition[] = {
},
};
static struct mtd_partition * __init nand_partitions(int size, int *num_partitions)
{
*num_partitions = ARRAY_SIZE(cam60_nand_partition);
return cam60_nand_partition;
}
static struct atmel_nand_data __initdata cam60_nand_data = {
.ale = 21,
.cle = 22,
// .det_pin = ... not there
.rdy_pin = AT91_PIN_PA9,
.enable_pin = AT91_PIN_PA7,
.partition_info = nand_partitions,
.parts = cam60_nand_partition,
.num_parts = ARRAY_SIZE(cam60_nand_partition),
};
static struct sam9_smc_config __initdata cam60_nand_smc_config = {

View File

@ -153,7 +153,7 @@ static struct at91_mmc_data __initdata cap9adk_mmc_data = {
/*
* MACB Ethernet device
*/
static struct at91_eth_data __initdata cap9adk_macb_data = {
static struct macb_platform_data __initdata cap9adk_macb_data = {
.is_rmii = 1,
};
@ -169,19 +169,14 @@ static struct mtd_partition __initdata cap9adk_nand_partitions[] = {
},
};
static struct mtd_partition * __init nand_partitions(int size, int *num_partitions)
{
*num_partitions = ARRAY_SIZE(cap9adk_nand_partitions);
return cap9adk_nand_partitions;
}
static struct atmel_nand_data __initdata cap9adk_nand_data = {
.ale = 21,
.cle = 22,
// .det_pin = ... not connected
// .rdy_pin = ... not connected
.enable_pin = AT91_PIN_PD15,
.partition_info = nand_partitions,
.parts = cap9adk_nand_partitions,
.num_parts = ARRAY_SIZE(cap9adk_nand_partitions),
};
static struct sam9_smc_config __initdata cap9adk_nand_smc_config = {

View File

@ -57,7 +57,7 @@ static void __init carmeva_init_early(void)
at91_set_serial_console(0);
}
static struct at91_eth_data __initdata carmeva_eth_data = {
static struct macb_platform_data __initdata carmeva_eth_data = {
.phy_irq_pin = AT91_PIN_PC4,
.is_rmii = 1,
};

View File

@ -99,7 +99,7 @@ static struct at91_udc_data __initdata cpu9krea_udc_data = {
/*
* MACB Ethernet device
*/
static struct at91_eth_data __initdata cpu9krea_macb_data = {
static struct macb_platform_data __initdata cpu9krea_macb_data = {
.is_rmii = 1,
};

View File

@ -82,7 +82,7 @@ static void __init cpuat91_init_early(void)
at91_set_serial_console(0);
}
static struct at91_eth_data __initdata cpuat91_eth_data = {
static struct macb_platform_data __initdata cpuat91_eth_data = {
.is_rmii = 1,
};

View File

@ -58,7 +58,7 @@ static void __init csb337_init_early(void)
at91_set_serial_console(0);
}
static struct at91_eth_data __initdata csb337_eth_data = {
static struct macb_platform_data __initdata csb337_eth_data = {
.phy_irq_pin = AT91_PIN_PC2,
.is_rmii = 0,
};

View File

@ -52,7 +52,7 @@ static void __init csb637_init_early(void)
at91_set_serial_console(0);
}
static struct at91_eth_data __initdata csb637_eth_data = {
static struct macb_platform_data __initdata csb637_eth_data = {
.phy_irq_pin = AT91_PIN_PC0,
.is_rmii = 0,
};

View File

@ -60,7 +60,7 @@ static void __init eb9200_init_early(void)
at91_set_serial_console(0);
}
static struct at91_eth_data __initdata eb9200_eth_data = {
static struct macb_platform_data __initdata eb9200_eth_data = {
.phy_irq_pin = AT91_PIN_PC4,
.is_rmii = 1,
};

View File

@ -64,7 +64,7 @@ static void __init ecb_at91init_early(void)
at91_set_serial_console(0);
}
static struct at91_eth_data __initdata ecb_at91eth_data = {
static struct macb_platform_data __initdata ecb_at91eth_data = {
.phy_irq_pin = AT91_PIN_PC4,
.is_rmii = 0,
};

View File

@ -47,7 +47,7 @@ static void __init eco920_init_early(void)
at91_set_serial_console(0);
}
static struct at91_eth_data __initdata eco920_eth_data = {
static struct macb_platform_data __initdata eco920_eth_data = {
.phy_irq_pin = AT91_PIN_PC2,
.is_rmii = 1,
};

View File

@ -135,7 +135,7 @@ static struct spi_board_info foxg20_spi_devices[] = {
/*
* MACB Ethernet device
*/
static struct at91_eth_data __initdata foxg20_macb_data = {
static struct macb_platform_data __initdata foxg20_macb_data = {
.phy_irq_pin = AT91_PIN_PA7,
.is_rmii = 1,
};

View File

@ -93,7 +93,7 @@ static struct at91_udc_data __initdata udc_data = {
/*
* MACB Ethernet device
*/
static struct at91_eth_data __initdata macb_data = {
static struct macb_platform_data __initdata macb_data = {
.phy_irq_pin = AT91_PIN_PA28,
.is_rmii = 1,
};

View File

@ -61,7 +61,7 @@ static void __init kafa_init_early(void)
at91_set_serial_console(0);
}
static struct at91_eth_data __initdata kafa_eth_data = {
static struct macb_platform_data __initdata kafa_eth_data = {
.phy_irq_pin = AT91_PIN_PC4,
.is_rmii = 0,
};

View File

@ -69,7 +69,7 @@ static void __init kb9202_init_early(void)
at91_set_serial_console(0);
}
static struct at91_eth_data __initdata kb9202_eth_data = {
static struct macb_platform_data __initdata kb9202_eth_data = {
.phy_irq_pin = AT91_PIN_PB29,
.is_rmii = 0,
};
@ -97,19 +97,14 @@ static struct mtd_partition __initdata kb9202_nand_partition[] = {
},
};
static struct mtd_partition * __init nand_partitions(int size, int *num_partitions)
{
*num_partitions = ARRAY_SIZE(kb9202_nand_partition);
return kb9202_nand_partition;
}
static struct atmel_nand_data __initdata kb9202_nand_data = {
.ale = 22,
.cle = 21,
// .det_pin = ... not there
.rdy_pin = AT91_PIN_PC29,
.enable_pin = AT91_PIN_PC28,
.partition_info = nand_partitions,
.parts = kb9202_nand_partition,
.num_parts = ARRAY_SIZE(kb9202_nand_partition),
};
static void __init kb9202_board_init(void)

View File

@ -155,7 +155,7 @@ static struct at91_mmc_data __initdata neocore926_mmc_data = {
/*
* MACB Ethernet device
*/
static struct at91_eth_data __initdata neocore926_macb_data = {
static struct macb_platform_data __initdata neocore926_macb_data = {
.phy_irq_pin = AT91_PIN_PE31,
.is_rmii = 1,
};
@ -182,19 +182,14 @@ static struct mtd_partition __initdata neocore926_nand_partition[] = {
},
};
static struct mtd_partition * __init nand_partitions(int size, int *num_partitions)
{
*num_partitions = ARRAY_SIZE(neocore926_nand_partition);
return neocore926_nand_partition;
}
static struct atmel_nand_data __initdata neocore926_nand_data = {
.ale = 21,
.cle = 22,
.rdy_pin = AT91_PIN_PB19,
.rdy_pin_active_low = 1,
.enable_pin = AT91_PIN_PD15,
.partition_info = nand_partitions,
.parts = neocore926_nand_partition,
.num_parts = ARRAY_SIZE(neocore926_nand_partition),
};
static struct sam9_smc_config __initdata neocore926_nand_smc_config = {

View File

@ -122,7 +122,7 @@ static struct at91_udc_data __initdata pcontrol_g20_udc_data = {
/*
* MACB Ethernet device
*/
static struct at91_eth_data __initdata macb_data = {
static struct macb_platform_data __initdata macb_data = {
.phy_irq_pin = AT91_PIN_PA28,
.is_rmii = 1,
};

View File

@ -60,7 +60,7 @@ static void __init picotux200_init_early(void)
at91_set_serial_console(0);
}
static struct at91_eth_data __initdata picotux200_eth_data = {
static struct macb_platform_data __initdata picotux200_eth_data = {
.phy_irq_pin = AT91_PIN_PC4,
.is_rmii = 1,
};

View File

@ -104,7 +104,7 @@ static struct spi_board_info ek_spi_devices[] = {
/*
* MACB Ethernet device
*/
static struct at91_eth_data __initdata ek_macb_data = {
static struct macb_platform_data __initdata ek_macb_data = {
.phy_irq_pin = AT91_PIN_PA31,
.is_rmii = 1,
};
@ -130,19 +130,14 @@ static struct mtd_partition __initdata ek_nand_partition[] = {
},
};
static struct mtd_partition * __init nand_partitions(int size, int *num_partitions)
{
*num_partitions = ARRAY_SIZE(ek_nand_partition);
return ek_nand_partition;
}
static struct atmel_nand_data __initdata ek_nand_data = {
.ale = 21,
.cle = 22,
// .det_pin = ... not connected
.rdy_pin = AT91_PIN_PC13,
.enable_pin = AT91_PIN_PC14,
.partition_info = nand_partitions,
.parts = ek_nand_partition,
.num_parts = ARRAY_SIZE(ek_nand_partition),
};
static struct sam9_smc_config __initdata ek_nand_smc_config = {

View File

@ -65,7 +65,7 @@ static void __init dk_init_early(void)
at91_set_serial_console(0);
}
static struct at91_eth_data __initdata dk_eth_data = {
static struct macb_platform_data __initdata dk_eth_data = {
.phy_irq_pin = AT91_PIN_PC4,
.is_rmii = 1,
};
@ -138,19 +138,14 @@ static struct mtd_partition __initdata dk_nand_partition[] = {
},
};
static struct mtd_partition * __init nand_partitions(int size, int *num_partitions)
{
*num_partitions = ARRAY_SIZE(dk_nand_partition);
return dk_nand_partition;
}
static struct atmel_nand_data __initdata dk_nand_data = {
.ale = 22,
.cle = 21,
.det_pin = AT91_PIN_PB1,
.rdy_pin = AT91_PIN_PC2,
// .enable_pin = ... not there
.partition_info = nand_partitions,
.parts = dk_nand_partition,
.num_parts = ARRAY_SIZE(dk_nand_partition),
};
#define DK_FLASH_BASE AT91_CHIPSELECT_0

View File

@ -65,7 +65,7 @@ static void __init ek_init_early(void)
at91_set_serial_console(0);
}
static struct at91_eth_data __initdata ek_eth_data = {
static struct macb_platform_data __initdata ek_eth_data = {
.phy_irq_pin = AT91_PIN_PC4,
.is_rmii = 1,
};

View File

@ -60,7 +60,7 @@ static void __init rsi_ews_init_early(void)
/*
* Ethernet
*/
static struct at91_eth_data rsi_ews_eth_data __initdata = {
static struct macb_platform_data rsi_ews_eth_data __initdata = {
.phy_irq_pin = AT91_PIN_PC4,
.is_rmii = 1,
};

View File

@ -109,7 +109,7 @@ static struct spi_board_info ek_spi_devices[] = {
/*
* MACB Ethernet device
*/
static struct at91_eth_data __initdata ek_macb_data = {
static struct macb_platform_data __initdata ek_macb_data = {
.phy_irq_pin = AT91_PIN_PA7,
.is_rmii = 0,
};
@ -131,19 +131,14 @@ static struct mtd_partition __initdata ek_nand_partition[] = {
},
};
static struct mtd_partition * __init nand_partitions(int size, int *num_partitions)
{
*num_partitions = ARRAY_SIZE(ek_nand_partition);
return ek_nand_partition;
}
static struct atmel_nand_data __initdata ek_nand_data = {
.ale = 21,
.cle = 22,
// .det_pin = ... not connected
.rdy_pin = AT91_PIN_PC13,
.enable_pin = AT91_PIN_PC14,
.partition_info = nand_partitions,
.parts = ek_nand_partition,
.num_parts = ARRAY_SIZE(ek_nand_partition),
};
static struct sam9_smc_config __initdata ek_nand_smc_config = {

View File

@ -151,7 +151,7 @@ static struct spi_board_info ek_spi_devices[] = {
/*
* MACB Ethernet device
*/
static struct at91_eth_data __initdata ek_macb_data = {
static struct macb_platform_data __initdata ek_macb_data = {
.phy_irq_pin = AT91_PIN_PA7,
.is_rmii = 1,
};
@ -173,19 +173,14 @@ static struct mtd_partition __initdata ek_nand_partition[] = {
},
};
static struct mtd_partition * __init nand_partitions(int size, int *num_partitions)
{
*num_partitions = ARRAY_SIZE(ek_nand_partition);
return ek_nand_partition;
}
static struct atmel_nand_data __initdata ek_nand_data = {
.ale = 21,
.cle = 22,
// .det_pin = ... not connected
.rdy_pin = AT91_PIN_PC13,
.enable_pin = AT91_PIN_PC14,
.partition_info = nand_partitions,
.parts = ek_nand_partition,
.num_parts = ARRAY_SIZE(ek_nand_partition),
};
static struct sam9_smc_config __initdata ek_nand_smc_config = {

View File

@ -179,19 +179,14 @@ static struct mtd_partition __initdata ek_nand_partition[] = {
},
};
static struct mtd_partition * __init nand_partitions(int size, int *num_partitions)
{
*num_partitions = ARRAY_SIZE(ek_nand_partition);
return ek_nand_partition;
}
static struct atmel_nand_data __initdata ek_nand_data = {
.ale = 22,
.cle = 21,
// .det_pin = ... not connected
.rdy_pin = AT91_PIN_PC15,
.enable_pin = AT91_PIN_PC14,
.partition_info = nand_partitions,
.parts = ek_nand_partition,
.num_parts = ARRAY_SIZE(ek_nand_partition),
};
static struct sam9_smc_config __initdata ek_nand_smc_config = {

View File

@ -158,7 +158,7 @@ static struct at91_mmc_data __initdata ek_mmc_data = {
/*
* MACB Ethernet device
*/
static struct at91_eth_data __initdata ek_macb_data = {
static struct macb_platform_data __initdata ek_macb_data = {
.phy_irq_pin = AT91_PIN_PE31,
.is_rmii = 1,
};
@ -180,19 +180,14 @@ static struct mtd_partition __initdata ek_nand_partition[] = {
},
};
static struct mtd_partition * __init nand_partitions(int size, int *num_partitions)
{
*num_partitions = ARRAY_SIZE(ek_nand_partition);
return ek_nand_partition;
}
static struct atmel_nand_data __initdata ek_nand_data = {
.ale = 21,
.cle = 22,
// .det_pin = ... not connected
.rdy_pin = AT91_PIN_PA22,
.enable_pin = AT91_PIN_PD15,
.partition_info = nand_partitions,
.parts = ek_nand_partition,
.num_parts = ARRAY_SIZE(ek_nand_partition),
};
static struct sam9_smc_config __initdata ek_nand_smc_config = {

View File

@ -123,7 +123,7 @@ static struct spi_board_info ek_spi_devices[] = {
/*
* MACB Ethernet device
*/
static struct at91_eth_data __initdata ek_macb_data = {
static struct macb_platform_data __initdata ek_macb_data = {
.phy_irq_pin = AT91_PIN_PA7,
.is_rmii = 1,
};
@ -157,19 +157,14 @@ static struct mtd_partition __initdata ek_nand_partition[] = {
},
};
static struct mtd_partition * __init nand_partitions(int size, int *num_partitions)
{
*num_partitions = ARRAY_SIZE(ek_nand_partition);
return ek_nand_partition;
}
/* det_pin is not connected */
static struct atmel_nand_data __initdata ek_nand_data = {
.ale = 21,
.cle = 22,
.rdy_pin = AT91_PIN_PC13,
.enable_pin = AT91_PIN_PC14,
.partition_info = nand_partitions,
.parts = ek_nand_partition,
.num_parts = ARRAY_SIZE(ek_nand_partition),
};
static struct sam9_smc_config __initdata ek_nand_smc_config = {

View File

@ -115,7 +115,7 @@ static struct mci_platform_data __initdata mci1_data = {
/*
* MACB Ethernet device
*/
static struct at91_eth_data __initdata ek_macb_data = {
static struct macb_platform_data __initdata ek_macb_data = {
.phy_irq_pin = AT91_PIN_PD5,
.is_rmii = 1,
};
@ -137,19 +137,14 @@ static struct mtd_partition __initdata ek_nand_partition[] = {
},
};
static struct mtd_partition * __init nand_partitions(int size, int *num_partitions)
{
*num_partitions = ARRAY_SIZE(ek_nand_partition);
return ek_nand_partition;
}
/* det_pin is not connected */
static struct atmel_nand_data __initdata ek_nand_data = {
.ale = 21,
.cle = 22,
.rdy_pin = AT91_PIN_PC8,
.enable_pin = AT91_PIN_PC14,
.partition_info = nand_partitions,
.parts = ek_nand_partition,
.num_parts = ARRAY_SIZE(ek_nand_partition),
};
static struct sam9_smc_config __initdata ek_nand_smc_config = {

View File

@ -88,19 +88,14 @@ static struct mtd_partition __initdata ek_nand_partition[] = {
},
};
static struct mtd_partition * __init nand_partitions(int size, int *num_partitions)
{
*num_partitions = ARRAY_SIZE(ek_nand_partition);
return ek_nand_partition;
}
static struct atmel_nand_data __initdata ek_nand_data = {
.ale = 21,
.cle = 22,
// .det_pin = ... not connected
.rdy_pin = AT91_PIN_PD17,
.enable_pin = AT91_PIN_PB6,
.partition_info = nand_partitions,
.parts = ek_nand_partition,
.num_parts = ARRAY_SIZE(ek_nand_partition),
};
static struct sam9_smc_config __initdata ek_nand_smc_config = {

View File

@ -65,7 +65,7 @@ static struct at91_udc_data __initdata snapper9260_udc_data = {
.vbus_polled = 1,
};
static struct at91_eth_data snapper9260_macb_data = {
static struct macb_platform_data snapper9260_macb_data = {
.is_rmii = 1,
};
@ -97,18 +97,12 @@ static struct mtd_partition __initdata snapper9260_nand_partitions[] = {
},
};
static struct mtd_partition * __init
snapper9260_nand_partition_info(int size, int *num_partitions)
{
*num_partitions = ARRAY_SIZE(snapper9260_nand_partitions);
return snapper9260_nand_partitions;
}
static struct atmel_nand_data __initdata snapper9260_nand_data = {
.ale = 21,
.cle = 22,
.rdy_pin = AT91_PIN_PC13,
.partition_info = snapper9260_nand_partition_info,
.parts = snapper9260_nand_partitions,
.num_parts = ARRAY_SIZE(snapper9260_nand_partitions),
.bus_width_16 = 0,
};

View File

@ -157,7 +157,7 @@ static struct at91_udc_data __initdata stamp9g20evb_udc_data = {
/*
* MACB Ethernet device
*/
static struct at91_eth_data __initdata macb_data = {
static struct macb_platform_data __initdata macb_data = {
.phy_irq_pin = AT91_PIN_PA28,
.is_rmii = 1,
};

View File

@ -146,7 +146,7 @@ static void __init ek_add_device_spi(void)
/*
* MACB Ethernet device
*/
static struct at91_eth_data __initdata ek_macb_data = {
static struct macb_platform_data __initdata ek_macb_data = {
.phy_irq_pin = AT91_PIN_PE31,
.is_rmii = 1,
};
@ -190,19 +190,14 @@ static struct mtd_partition __initdata ek_nand_partition[] = {
}
};
static struct mtd_partition * __init nand_partitions(int size, int *num_partitions)
{
*num_partitions = ARRAY_SIZE(ek_nand_partition);
return ek_nand_partition;
}
static struct atmel_nand_data __initdata ek_nand_data = {
.ale = 21,
.cle = 22,
// .det_pin = ... not connected
.rdy_pin = AT91_PIN_PA22,
.enable_pin = AT91_PIN_PD15,
.partition_info = nand_partitions,
.parts = ek_nand_partition,
.num_parts = ARRAY_SIZE(ek_nand_partition),
};
static struct sam9_smc_config __initdata usb_a9260_nand_smc_config = {

View File

@ -110,7 +110,7 @@ static struct gpio_led yl9200_leds[] = {
/*
* Ethernet
*/
static struct at91_eth_data __initdata yl9200_eth_data = {
static struct macb_platform_data __initdata yl9200_eth_data = {
.phy_irq_pin = AT91_PIN_PB28,
.is_rmii = 1,
};
@ -172,19 +172,14 @@ static struct mtd_partition __initdata yl9200_nand_partition[] = {
}
};
static struct mtd_partition * __init nand_partitions(int size, int *num_partitions)
{
*num_partitions = ARRAY_SIZE(yl9200_nand_partition);
return yl9200_nand_partition;
}
static struct atmel_nand_data __initdata yl9200_nand_data = {
.ale = 6,
.cle = 7,
// .det_pin = ... not connected
.rdy_pin = AT91_PIN_PC14, /* R/!B (Sheet10) */
.enable_pin = AT91_PIN_PC15, /* !CE (Sheet10) */
.partition_info = nand_partitions,
.parts = yl9200_nand_partition,
.num_parts = ARRAY_SIZE(yl9200_nand_partition),
};
/*
@ -389,7 +384,7 @@ static struct spi_board_info yl9200_spi_devices[] = {
#include <video/s1d13xxxfb.h>
static void __init yl9200_init_video(void)
static void yl9200_init_video(void)
{
/* NWAIT Signal */
at91_set_A_periph(AT91_PIN_PC6, 0);

View File

@ -34,7 +34,8 @@ static struct cpuidle_driver at91_idle_driver = {
/* Actual code that puts the SoC in different idle states */
static int at91_enter_idle(struct cpuidle_device *dev,
struct cpuidle_state *state)
struct cpuidle_driver *drv,
int index)
{
struct timeval before, after;
int idle_time;
@ -42,10 +43,10 @@ static int at91_enter_idle(struct cpuidle_device *dev,
local_irq_disable();
do_gettimeofday(&before);
if (state == &dev->states[0])
if (index == 0)
/* Wait for interrupt state */
cpu_do_idle();
else if (state == &dev->states[1]) {
else if (index == 1) {
asm("b 1f; .align 5; 1:");
asm("mcr p15, 0, r0, c7, c10, 4"); /* drain write buffer */
saved_lpr = sdram_selfrefresh_enable();
@ -56,34 +57,38 @@ static int at91_enter_idle(struct cpuidle_device *dev,
local_irq_enable();
idle_time = (after.tv_sec - before.tv_sec) * USEC_PER_SEC +
(after.tv_usec - before.tv_usec);
return idle_time;
dev->last_residency = idle_time;
return index;
}
/* Initialize CPU idle by registering the idle states */
static int at91_init_cpuidle(void)
{
struct cpuidle_device *device;
cpuidle_register_driver(&at91_idle_driver);
struct cpuidle_driver *driver = &at91_idle_driver;
device = &per_cpu(at91_cpuidle_device, smp_processor_id());
device->state_count = AT91_MAX_STATES;
driver->state_count = AT91_MAX_STATES;
/* Wait for interrupt state */
device->states[0].enter = at91_enter_idle;
device->states[0].exit_latency = 1;
device->states[0].target_residency = 10000;
device->states[0].flags = CPUIDLE_FLAG_TIME_VALID;
strcpy(device->states[0].name, "WFI");
strcpy(device->states[0].desc, "Wait for interrupt");
driver->states[0].enter = at91_enter_idle;
driver->states[0].exit_latency = 1;
driver->states[0].target_residency = 10000;
driver->states[0].flags = CPUIDLE_FLAG_TIME_VALID;
strcpy(driver->states[0].name, "WFI");
strcpy(driver->states[0].desc, "Wait for interrupt");
/* Wait for interrupt and RAM self refresh state */
device->states[1].enter = at91_enter_idle;
device->states[1].exit_latency = 10;
device->states[1].target_residency = 10000;
device->states[1].flags = CPUIDLE_FLAG_TIME_VALID;
strcpy(device->states[1].name, "RAM_SR");
strcpy(device->states[1].desc, "WFI and RAM Self Refresh");
driver->states[1].enter = at91_enter_idle;
driver->states[1].exit_latency = 10;
driver->states[1].target_residency = 10000;
driver->states[1].flags = CPUIDLE_FLAG_TIME_VALID;
strcpy(driver->states[1].name, "RAM_SR");
strcpy(driver->states[1].desc, "WFI and RAM Self Refresh");
cpuidle_register_driver(&at91_idle_driver);
if (cpuidle_register_device(device)) {
printk(KERN_ERR "at91_init_cpuidle: Failed registering\n");

View File

@ -40,6 +40,7 @@
#include <linux/atmel-mci.h>
#include <sound/atmel-ac97c.h>
#include <linux/serial.h>
#include <linux/platform_data/macb.h>
/* USB Device */
struct at91_udc_data {
@ -81,18 +82,7 @@ extern void __init at91_add_device_mmc(short mmc_id, struct at91_mmc_data *data)
/* atmel-mci platform config */
extern void __init at91_add_device_mci(short mmc_id, struct mci_platform_data *data);
/* Ethernet (EMAC & MACB) */
struct at91_eth_data {
u32 phy_mask;
u8 phy_irq_pin; /* PHY IRQ */
u8 is_rmii; /* using RMII interface? */
};
extern void __init at91_add_device_eth(struct at91_eth_data *data);
#if defined(CONFIG_ARCH_AT91SAM9260) || defined(CONFIG_ARCH_AT91SAM9263) || defined(CONFIG_ARCH_AT91SAM9G20) || defined(CONFIG_ARCH_AT91CAP9) \
|| defined(CONFIG_ARCH_AT91SAM9G45)
#define eth_platform_data at91_eth_data
#endif
extern void __init at91_add_device_eth(struct macb_platform_data *data);
/* USB Host */
struct at91_usbh_data {
@ -117,7 +107,8 @@ struct atmel_nand_data {
u8 ale; /* address line number connected to ALE */
u8 cle; /* address line number connected to CLE */
u8 bus_width_16; /* buswidth is 16 bit */
struct mtd_partition* (*partition_info)(int, int*);
struct mtd_partition *parts;
unsigned int num_parts;
};
extern void __init at91_add_device_nand(struct atmel_nand_data *data);

View File

@ -21,6 +21,8 @@
#ifndef __ASM_ARCH_VMALLOC_H
#define __ASM_ARCH_VMALLOC_H
#include <mach/hardware.h>
#define VMALLOC_END (AT91_VIRT_BASE & PGDIR_MASK)
#endif

View File

@ -377,7 +377,7 @@ static struct davinci_nand_pdata da830_evm_nand_pdata = {
.nr_parts = ARRAY_SIZE(da830_evm_nand_partitions),
.ecc_mode = NAND_ECC_HW,
.ecc_bits = 4,
.options = NAND_USE_FLASH_BBT,
.bbt_options = NAND_BBT_USE_FLASH,
.bbt_td = &da830_evm_nand_bbt_main_descr,
.bbt_md = &da830_evm_nand_bbt_mirror_descr,
.timing = &da830_evm_nandflash_timing,

View File

@ -256,7 +256,7 @@ static struct davinci_nand_pdata da850_evm_nandflash_data = {
.nr_parts = ARRAY_SIZE(da850_evm_nandflash_partition),
.ecc_mode = NAND_ECC_HW,
.ecc_bits = 4,
.options = NAND_USE_FLASH_BBT,
.bbt_options = NAND_BBT_USE_FLASH,
.timing = &da850_evm_nandflash_timing,
};

View File

@ -77,7 +77,7 @@ static struct davinci_nand_pdata davinci_nand_data = {
.parts = davinci_nand_partitions,
.nr_parts = ARRAY_SIZE(davinci_nand_partitions),
.ecc_mode = NAND_ECC_HW,
.options = NAND_USE_FLASH_BBT,
.bbt_options = NAND_BBT_USE_FLASH,
.ecc_bits = 4,
};

View File

@ -74,7 +74,7 @@ static struct davinci_nand_pdata davinci_nand_data = {
.parts = davinci_nand_partitions,
.nr_parts = ARRAY_SIZE(davinci_nand_partitions),
.ecc_mode = NAND_ECC_HW_SYNDROME,
.options = NAND_USE_FLASH_BBT,
.bbt_options = NAND_BBT_USE_FLASH,
};
static struct resource davinci_nand_resources[] = {

View File

@ -139,7 +139,7 @@ static struct davinci_nand_pdata davinci_nand_data = {
.parts = davinci_nand_partitions,
.nr_parts = ARRAY_SIZE(davinci_nand_partitions),
.ecc_mode = NAND_ECC_HW,
.options = NAND_USE_FLASH_BBT,
.bbt_options = NAND_BBT_USE_FLASH,
.ecc_bits = 4,
};

View File

@ -151,7 +151,7 @@ static struct davinci_nand_pdata davinci_evm_nandflash_data = {
.parts = davinci_evm_nandflash_partition,
.nr_parts = ARRAY_SIZE(davinci_evm_nandflash_partition),
.ecc_mode = NAND_ECC_HW,
.options = NAND_USE_FLASH_BBT,
.bbt_options = NAND_BBT_USE_FLASH,
.timing = &davinci_evm_nandflash_timing,
};

View File

@ -396,7 +396,8 @@ static struct davinci_nand_pdata mityomapl138_nandflash_data = {
.parts = mityomapl138_nandflash_partition,
.nr_parts = ARRAY_SIZE(mityomapl138_nandflash_partition),
.ecc_mode = NAND_ECC_HW,
.options = NAND_USE_FLASH_BBT | NAND_BUSWIDTH_16,
.bbt_options = NAND_BBT_USE_FLASH,
.options = NAND_BUSWIDTH_16,
.ecc_bits = 1, /* 4 bit mode is not supported with 16 bit NAND */
};

View File

@ -87,7 +87,7 @@ static struct davinci_nand_pdata davinci_ntosd2_nandflash_data = {
.parts = davinci_ntosd2_nandflash_partition,
.nr_parts = ARRAY_SIZE(davinci_ntosd2_nandflash_partition),
.ecc_mode = NAND_ECC_HW,
.options = NAND_USE_FLASH_BBT,
.bbt_options = NAND_BBT_USE_FLASH,
};
static struct resource davinci_ntosd2_nandflash_resource[] = {

View File

@ -144,7 +144,7 @@ static struct davinci_nand_pdata nand_config = {
.parts = nand_partitions,
.nr_parts = ARRAY_SIZE(nand_partitions),
.ecc_mode = NAND_ECC_HW,
.options = NAND_USE_FLASH_BBT,
.bbt_options = NAND_BBT_USE_FLASH,
.ecc_bits = 1,
};

View File

@ -79,9 +79,11 @@ static struct davinci_ops davinci_states[DAVINCI_CPUIDLE_MAX_STATES] = {
/* Actual code that puts the SoC in different idle states */
static int davinci_enter_idle(struct cpuidle_device *dev,
struct cpuidle_state *state)
struct cpuidle_driver *drv,
int index)
{
struct davinci_ops *ops = cpuidle_get_statedata(state);
struct cpuidle_state_usage *state_usage = &dev->states_usage[index];
struct davinci_ops *ops = cpuidle_get_statedata(state_usage);
struct timeval before, after;
int idle_time;
@ -99,13 +101,17 @@ static int davinci_enter_idle(struct cpuidle_device *dev,
local_irq_enable();
idle_time = (after.tv_sec - before.tv_sec) * USEC_PER_SEC +
(after.tv_usec - before.tv_usec);
return idle_time;
dev->last_residency = idle_time;
return index;
}
static int __init davinci_cpuidle_probe(struct platform_device *pdev)
{
int ret;
struct cpuidle_device *device;
struct cpuidle_driver *driver = &davinci_idle_driver;
struct davinci_cpuidle_config *pdata = pdev->dev.platform_data;
device = &per_cpu(davinci_cpuidle_device, smp_processor_id());
@ -117,33 +123,34 @@ static int __init davinci_cpuidle_probe(struct platform_device *pdev)
ddr2_reg_base = pdata->ddr2_ctlr_base;
/* Wait for interrupt state */
driver->states[0].enter = davinci_enter_idle;
driver->states[0].exit_latency = 1;
driver->states[0].target_residency = 10000;
driver->states[0].flags = CPUIDLE_FLAG_TIME_VALID;
strcpy(driver->states[0].name, "WFI");
strcpy(driver->states[0].desc, "Wait for interrupt");
/* Wait for interrupt and DDR self refresh state */
driver->states[1].enter = davinci_enter_idle;
driver->states[1].exit_latency = 10;
driver->states[1].target_residency = 10000;
driver->states[1].flags = CPUIDLE_FLAG_TIME_VALID;
strcpy(driver->states[1].name, "DDR SR");
strcpy(driver->states[1].desc, "WFI and DDR Self Refresh");
if (pdata->ddr2_pdown)
davinci_states[1].flags |= DAVINCI_CPUIDLE_FLAGS_DDR2_PWDN;
cpuidle_set_statedata(&device->states_usage[1], &davinci_states[1]);
device->state_count = DAVINCI_CPUIDLE_MAX_STATES;
driver->state_count = DAVINCI_CPUIDLE_MAX_STATES;
ret = cpuidle_register_driver(&davinci_idle_driver);
if (ret) {
dev_err(&pdev->dev, "failed to register driver\n");
return ret;
}
/* Wait for interrupt state */
device->states[0].enter = davinci_enter_idle;
device->states[0].exit_latency = 1;
device->states[0].target_residency = 10000;
device->states[0].flags = CPUIDLE_FLAG_TIME_VALID;
strcpy(device->states[0].name, "WFI");
strcpy(device->states[0].desc, "Wait for interrupt");
/* Wait for interrupt and DDR self refresh state */
device->states[1].enter = davinci_enter_idle;
device->states[1].exit_latency = 10;
device->states[1].target_residency = 10000;
device->states[1].flags = CPUIDLE_FLAG_TIME_VALID;
strcpy(device->states[1].name, "DDR SR");
strcpy(device->states[1].desc, "WFI and DDR Self Refresh");
if (pdata->ddr2_pdown)
davinci_states[1].flags |= DAVINCI_CPUIDLE_FLAGS_DDR2_PWDN;
cpuidle_set_statedata(&device->states[1], &davinci_states[1]);
device->state_count = DAVINCI_CPUIDLE_MAX_STATES;
ret = cpuidle_register_device(device);
if (ret) {
dev_err(&pdev->dev, "failed to register device\n");

View File

@ -74,8 +74,10 @@ struct davinci_nand_pdata { /* platform_data */
nand_ecc_modes_t ecc_mode;
u8 ecc_bits;
/* e.g. NAND_BUSWIDTH_16 or NAND_USE_FLASH_BBT */
/* e.g. NAND_BUSWIDTH_16 */
unsigned options;
/* e.g. NAND_BBT_USE_FLASH */
unsigned bbt_options;
/* Main and mirror bbt descriptor overrides */
struct nand_bbt_descr *bbt_td;

View File

@ -116,8 +116,9 @@ static struct mtd_partition ts72xx_nand_parts[] = {
.mask_flags = MTD_WRITEABLE, /* force read-only */
}, {
.name = "Linux",
.offset = MTDPART_OFS_APPEND,
.size = 0, /* filled in later */
.offset = MTDPART_OFS_RETAIN,
.size = TS72XX_REDBOOT_PART_SIZE,
/* leave so much for last partition */
}, {
.name = "RedBoot",
.offset = MTDPART_OFS_APPEND,
@ -126,28 +127,14 @@ static struct mtd_partition ts72xx_nand_parts[] = {
},
};
static void ts72xx_nand_set_parts(uint64_t size,
struct platform_nand_chip *chip)
{
/* Factory TS-72xx boards only come with 32MiB or 128MiB NAND options */
if (size == SZ_32M || size == SZ_128M) {
/* Set the "Linux" partition size */
ts72xx_nand_parts[1].size = size - TS72XX_REDBOOT_PART_SIZE;
chip->partitions = ts72xx_nand_parts;
chip->nr_partitions = ARRAY_SIZE(ts72xx_nand_parts);
} else {
pr_warning("Unknown nand disk size:%lluMiB\n", size >> 20);
}
}
static struct platform_nand_data ts72xx_nand_data = {
.chip = {
.nr_chips = 1,
.chip_offset = 0,
.chip_delay = 15,
.part_probe_types = ts72xx_nand_part_probes,
.set_parts = ts72xx_nand_set_parts,
.partitions = ts72xx_nand_parts,
.nr_partitions = ARRAY_SIZE(ts72xx_nand_parts),
},
.ctrl = {
.cmd_ctrl = ts72xx_nand_hwcontrol,

View File

@ -16,7 +16,8 @@
#include <asm/proc-fns.h>
static int exynos4_enter_idle(struct cpuidle_device *dev,
struct cpuidle_state *state);
struct cpuidle_driver *drv,
int index);
static struct cpuidle_state exynos4_cpuidle_set[] = {
[0] = {
@ -37,7 +38,8 @@ static struct cpuidle_driver exynos4_idle_driver = {
};
static int exynos4_enter_idle(struct cpuidle_device *dev,
struct cpuidle_state *state)
struct cpuidle_driver *drv,
int index)
{
struct timeval before, after;
int idle_time;
@ -52,29 +54,31 @@ static int exynos4_enter_idle(struct cpuidle_device *dev,
idle_time = (after.tv_sec - before.tv_sec) * USEC_PER_SEC +
(after.tv_usec - before.tv_usec);
return idle_time;
dev->last_residency = idle_time;
return index;
}
static int __init exynos4_init_cpuidle(void)
{
int i, max_cpuidle_state, cpu_id;
struct cpuidle_device *device;
struct cpuidle_driver *drv = &exynos4_idle_driver;
/* Setup cpuidle driver */
drv->state_count = (sizeof(exynos4_cpuidle_set) /
sizeof(struct cpuidle_state));
max_cpuidle_state = drv->state_count;
for (i = 0; i < max_cpuidle_state; i++) {
memcpy(&drv->states[i], &exynos4_cpuidle_set[i],
sizeof(struct cpuidle_state));
}
cpuidle_register_driver(&exynos4_idle_driver);
for_each_cpu(cpu_id, cpu_online_mask) {
device = &per_cpu(exynos4_cpuidle_device, cpu_id);
device->cpu = cpu_id;
device->state_count = (sizeof(exynos4_cpuidle_set) /
sizeof(struct cpuidle_state));
max_cpuidle_state = device->state_count;
for (i = 0; i < max_cpuidle_state; i++) {
memcpy(&device->states[i], &exynos4_cpuidle_set[i],
sizeof(struct cpuidle_state));
}
device->state_count = drv->state_count;
if (cpuidle_register_device(device)) {
printk(KERN_ERR "CPUidle register device failed\n,");

View File

@ -1,22 +1,26 @@
zreladdr-$(CONFIG_ARCH_MX1) += 0x08008000
params_phys-$(CONFIG_ARCH_MX1) := 0x08000100
initrd_phys-$(CONFIG_ARCH_MX1) := 0x08800000
zreladdr-$(CONFIG_SOC_IMX1) += 0x08008000
params_phys-$(CONFIG_SOC_IMX1) := 0x08000100
initrd_phys-$(CONFIG_SOC_IMX1) := 0x08800000
zreladdr-$(CONFIG_MACH_MX21) += 0xC0008000
params_phys-$(CONFIG_MACH_MX21) := 0xC0000100
initrd_phys-$(CONFIG_MACH_MX21) := 0xC0800000
zreladdr-$(CONFIG_SOC_IMX21) += 0xC0008000
params_phys-$(CONFIG_SOC_IMX21) := 0xC0000100
initrd_phys-$(CONFIG_SOC_IMX21) := 0xC0800000
zreladdr-$(CONFIG_ARCH_MX25) += 0x80008000
params_phys-$(CONFIG_ARCH_MX25) := 0x80000100
initrd_phys-$(CONFIG_ARCH_MX25) := 0x80800000
zreladdr-$(CONFIG_SOC_IMX25) += 0x80008000
params_phys-$(CONFIG_SOC_IMX25) := 0x80000100
initrd_phys-$(CONFIG_SOC_IMX25) := 0x80800000
zreladdr-$(CONFIG_MACH_MX27) += 0xA0008000
params_phys-$(CONFIG_MACH_MX27) := 0xA0000100
initrd_phys-$(CONFIG_MACH_MX27) := 0xA0800000
zreladdr-$(CONFIG_SOC_IMX27) += 0xA0008000
params_phys-$(CONFIG_SOC_IMX27) := 0xA0000100
initrd_phys-$(CONFIG_SOC_IMX27) := 0xA0800000
zreladdr-$(CONFIG_ARCH_MX3) += 0x80008000
params_phys-$(CONFIG_ARCH_MX3) := 0x80000100
initrd_phys-$(CONFIG_ARCH_MX3) := 0x80800000
zreladdr-$(CONFIG_SOC_IMX31) += 0x80008000
params_phys-$(CONFIG_SOC_IMX31) := 0x80000100
initrd_phys-$(CONFIG_SOC_IMX31) := 0x80800000
zreladdr-$(CONFIG_SOC_IMX35) += 0x80008000
params_phys-$(CONFIG_SOC_IMX35) := 0x80000100
initrd_phys-$(CONFIG_SOC_IMX35) := 0x80800000
zreladdr-$(CONFIG_SOC_IMX6Q) += 0x10008000
params_phys-$(CONFIG_SOC_IMX6Q) := 0x10000100

View File

@ -1139,7 +1139,7 @@ static int _clk_set_rate(struct clk *clk, unsigned long rate)
return -EINVAL;
max_div = ((d->bm_pred >> d->bp_pred) + 1) *
((d->bm_pred >> d->bp_pred) + 1);
((d->bm_podf >> d->bp_podf) + 1);
div = parent_rate / rate;
if (div == 0)
@ -2002,6 +2002,21 @@ int __init mx6q_clocks_init(void)
clk_set_rate(&asrc_serial_clk, 1500000);
clk_set_rate(&enfc_clk, 11000000);
/*
* Before pinctrl API is available, we have to rely on the pad
* configuration set up by bootloader. For usdhc example here,
* u-boot sets up the pads for 49.5 MHz case, and we have to lower
* the usdhc clock from 198 to 49.5 MHz to match the pad configuration.
*
* FIXME: This is should be removed after pinctrl API is available.
* At that time, usdhc driver can call pinctrl API to change pad
* configuration dynamically per different usdhc clock settings.
*/
clk_set_rate(&usdhc1_clk, 49500000);
clk_set_rate(&usdhc2_clk, 49500000);
clk_set_rate(&usdhc3_clk, 49500000);
clk_set_rate(&usdhc4_clk, 49500000);
np = of_find_compatible_node(NULL, NULL, "fsl,imx6q-gpt");
base = of_iomap(np, 0);
WARN_ON(!base);

View File

@ -33,17 +33,18 @@ static DEFINE_PER_CPU(struct cpuidle_device, kirkwood_cpuidle_device);
/* Actual code that puts the SoC in different idle states */
static int kirkwood_enter_idle(struct cpuidle_device *dev,
struct cpuidle_state *state)
struct cpuidle_driver *drv,
int index)
{
struct timeval before, after;
int idle_time;
local_irq_disable();
do_gettimeofday(&before);
if (state == &dev->states[0])
if (index == 0)
/* Wait for interrupt state */
cpu_do_idle();
else if (state == &dev->states[1]) {
else if (index == 1) {
/*
* Following write will put DDR in self refresh.
* Note that we have 256 cycles before DDR puts it
@ -58,35 +59,40 @@ static int kirkwood_enter_idle(struct cpuidle_device *dev,
local_irq_enable();
idle_time = (after.tv_sec - before.tv_sec) * USEC_PER_SEC +
(after.tv_usec - before.tv_usec);
return idle_time;
/* Update last residency */
dev->last_residency = idle_time;
return index;
}
/* Initialize CPU idle by registering the idle states */
static int kirkwood_init_cpuidle(void)
{
struct cpuidle_device *device;
cpuidle_register_driver(&kirkwood_idle_driver);
struct cpuidle_driver *driver = &kirkwood_idle_driver;
device = &per_cpu(kirkwood_cpuidle_device, smp_processor_id());
device->state_count = KIRKWOOD_MAX_STATES;
driver->state_count = KIRKWOOD_MAX_STATES;
/* Wait for interrupt state */
device->states[0].enter = kirkwood_enter_idle;
device->states[0].exit_latency = 1;
device->states[0].target_residency = 10000;
device->states[0].flags = CPUIDLE_FLAG_TIME_VALID;
strcpy(device->states[0].name, "WFI");
strcpy(device->states[0].desc, "Wait for interrupt");
driver->states[0].enter = kirkwood_enter_idle;
driver->states[0].exit_latency = 1;
driver->states[0].target_residency = 10000;
driver->states[0].flags = CPUIDLE_FLAG_TIME_VALID;
strcpy(driver->states[0].name, "WFI");
strcpy(driver->states[0].desc, "Wait for interrupt");
/* Wait for interrupt and DDR self refresh state */
device->states[1].enter = kirkwood_enter_idle;
device->states[1].exit_latency = 10;
device->states[1].target_residency = 10000;
device->states[1].flags = CPUIDLE_FLAG_TIME_VALID;
strcpy(device->states[1].name, "DDR SR");
strcpy(device->states[1].desc, "WFI and DDR Self Refresh");
driver->states[1].enter = kirkwood_enter_idle;
driver->states[1].exit_latency = 10;
driver->states[1].target_residency = 10000;
driver->states[1].flags = CPUIDLE_FLAG_TIME_VALID;
strcpy(driver->states[1].name, "DDR SR");
strcpy(driver->states[1].desc, "WFI and DDR Self Refresh");
cpuidle_register_driver(&kirkwood_idle_driver);
if (cpuidle_register_device(device)) {
printk(KERN_ERR "kirkwood_init_cpuidle: Failed registering\n");
return -EIO;

View File

@ -167,8 +167,9 @@ static struct mtd_partition aspenite_nand_partitions[] = {
static struct pxa3xx_nand_platform_data aspenite_nand_info = {
.enable_arbiter = 1,
.parts = aspenite_nand_partitions,
.nr_parts = ARRAY_SIZE(aspenite_nand_partitions),
.num_cs = 1,
.parts[0] = aspenite_nand_partitions,
.nr_parts[0] = ARRAY_SIZE(aspenite_nand_partitions),
};
static struct i2c_board_info aspenite_i2c_info[] __initdata = {

View File

@ -15,6 +15,8 @@ obj-$(CONFIG_MSM_SMD) += smd.o smd_debug.o
obj-$(CONFIG_MSM_SMD) += last_radio_log.o
obj-$(CONFIG_MSM_SCM) += scm.o scm-boot.o
CFLAGS_scm.o :=$(call as-instr,.arch_extension sec,-DREQUIRES_SEC=1)
obj-$(CONFIG_HOTPLUG_CPU) += hotplug.o
obj-$(CONFIG_SMP) += headsmp.o platsmp.o

View File

@ -42,8 +42,8 @@
extern struct sys_timer msm_timer;
static void __init msm7x30_fixup(struct machine_desc *desc, struct tag *tag,
char **cmdline, struct meminfo *mi)
static void __init msm7x30_fixup(struct tag *tag, char **cmdline,
struct meminfo *mi)
{
for (; tag->hdr.size; tag = tag_next(tag))
if (tag->hdr.tag == ATAG_MEM && tag->u.mem.start == 0x200000) {

View File

@ -32,8 +32,8 @@
#include "devices.h"
static void __init msm8960_fixup(struct machine_desc *desc, struct tag *tag,
char **cmdline, struct meminfo *mi)
static void __init msm8960_fixup(struct tag *tag, char **cmdline,
struct meminfo *mi)
{
for (; tag->hdr.size; tag = tag_next(tag))
if (tag->hdr.tag == ATAG_MEM &&

View File

@ -28,8 +28,8 @@
#include <mach/board.h>
#include <mach/msm_iomap.h>
static void __init msm8x60_fixup(struct machine_desc *desc, struct tag *tag,
char **cmdline, struct meminfo *mi)
static void __init msm8x60_fixup(struct tag *tag, char **cmdline,
struct meminfo *mi)
{
for (; tag->hdr.size; tag = tag_next(tag))
if (tag->hdr.tag == ATAG_MEM &&

View File

@ -180,6 +180,9 @@ static u32 smc(u32 cmd_addr)
__asmeq("%1", "r0")
__asmeq("%2", "r1")
__asmeq("%3", "r2")
#ifdef REQUIRES_SEC
".arch_extension sec\n"
#endif
"smc #0 @ switch to secure world\n"
: "=r" (r0)
: "r" (r0), "r" (r1), "r" (r2)

View File

@ -1281,9 +1281,9 @@ DEFINE_CLOCK(gpt_clk, 0, MXC_CCM_CCGR2, MXC_CCM_CCGRx_CG9_OFFSET,
NULL, NULL, &ipg_clk, &gpt_ipg_clk);
DEFINE_CLOCK(pwm1_clk, 0, MXC_CCM_CCGR2, MXC_CCM_CCGRx_CG6_OFFSET,
NULL, NULL, &ipg_clk, NULL);
NULL, NULL, &ipg_perclk, NULL);
DEFINE_CLOCK(pwm2_clk, 0, MXC_CCM_CCGR2, MXC_CCM_CCGRx_CG8_OFFSET,
NULL, NULL, &ipg_clk, NULL);
NULL, NULL, &ipg_perclk, NULL);
/* I2C */
DEFINE_CLOCK(i2c1_clk, 0, MXC_CCM_CCGR1, MXC_CCM_CCGRx_CG9_OFFSET,
@ -1634,6 +1634,7 @@ int __init mx53_clocks_init(unsigned long ckil, unsigned long osc,
return 0;
}
#ifdef CONFIG_OF
static void __init clk_get_freq_dt(unsigned long *ckil, unsigned long *osc,
unsigned long *ckih1, unsigned long *ckih2)
{
@ -1671,3 +1672,4 @@ int __init mx53_clocks_init_dt(void)
clk_get_freq_dt(&ckil, &osc, &ckih1, &ckih2);
return mx53_clocks_init(ckil, osc, ckih1, ckih2);
}
#endif

View File

@ -471,7 +471,8 @@ static void __init mx28evk_init(void)
"mmc0-slot-power");
if (ret)
pr_warn("failed to request gpio mmc0-slot-power: %d\n", ret);
mx28_add_mxs_mmc(0, &mx28evk_mmc_pdata[0]);
else
mx28_add_mxs_mmc(0, &mx28evk_mmc_pdata[0]);
ret = gpio_request_one(MX28EVK_MMC1_SLOT_POWER, GPIOF_OUT_INIT_LOW,
"mmc1-slot-power");
@ -480,7 +481,6 @@ static void __init mx28evk_init(void)
else
mx28_add_mxs_mmc(1, &mx28evk_mmc_pdata[1]);
mx28_add_mxs_mmc(1, &mx28evk_mmc_pdata[1]);
mx28_add_rtc_stmp3xxx();
gpio_led_register_device(0, &mx28evk_led_data);

View File

@ -42,7 +42,6 @@
#include <plat/irda.h>
#include <plat/keypad.h>
#include <plat/common.h>
#include <plat/omap-alsa.h>
#include <linux/spi/spi.h>
#include <linux/spi/ads7846.h>

View File

@ -116,7 +116,7 @@ void omap1_pm_idle(void)
return;
}
#ifdef CONFIG_OMAP_MPU_TIMER
#if defined(CONFIG_OMAP_MPU_TIMER) && !defined(CONFIG_OMAP_DM_TIMER)
#warning Enable 32kHz OS timer in order to allow sleep states in idle
use_idlect1 = use_idlect1 & ~(1 << 9);
#else

View File

@ -226,7 +226,6 @@ static int devkit8000_twl_gpio_setup(struct device *dev,
{
int ret;
omap_mux_init_gpio(29, OMAP_PIN_INPUT);
/* gpio + 0 is "mmc0_cd" (input/IRQ) */
mmc[0].gpio_cd = gpio + 0;
omap2_hsmmc_init(mmc);

View File

@ -28,6 +28,7 @@
* XXX: Still needed to boot until the i2c & twl driver is adapted to
* device-tree
*/
#ifdef CONFIG_ARCH_OMAP4
static struct twl4030_platform_data sdp4430_twldata = {
.irq_base = TWL6030_IRQ_BASE,
.irq_end = TWL6030_IRQ_END,
@ -37,7 +38,9 @@ static void __init omap4_i2c_init(void)
{
omap4_pmic_init("twl6030", &sdp4430_twldata);
}
#endif
#ifdef CONFIG_ARCH_OMAP3
static struct twl4030_platform_data beagle_twldata = {
.irq_base = TWL4030_IRQ_BASE,
.irq_end = TWL4030_IRQ_END,
@ -47,6 +50,7 @@ static void __init omap3_i2c_init(void)
{
omap3_pmic_init("twl4030", &beagle_twldata);
}
#endif
static struct of_device_id omap_dt_match_table[] __initdata = {
{ .compatible = "simple-bus", },
@ -72,17 +76,21 @@ static void __init omap_generic_init(void)
of_platform_populate(NULL, omap_dt_match_table, NULL, NULL);
}
#ifdef CONFIG_ARCH_OMAP4
static void __init omap4_init(void)
{
omap4_i2c_init();
omap_generic_init();
}
#endif
#ifdef CONFIG_ARCH_OMAP3
static void __init omap3_init(void)
{
omap3_i2c_init();
omap_generic_init();
}
#endif
#if defined(CONFIG_SOC_OMAP2420)
static const char *omap242x_boards_compat[] __initdata = {

View File

@ -25,6 +25,7 @@
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/input/matrix_keypad.h>
#include <mach/hardware.h>
#include <asm/mach-types.h>
@ -34,7 +35,6 @@
#include <plat/usb.h>
#include <plat/board.h>
#include <plat/common.h>
#include <plat/keypad.h>
#include <plat/menelaus.h>
#include <plat/dma.h>
#include <plat/gpmc.h>
@ -50,10 +50,8 @@
#define H4_ETHR_GPIO_IRQ 92
static unsigned int row_gpios[6] = { 88, 89, 124, 11, 6, 96 };
static unsigned int col_gpios[7] = { 90, 91, 100, 36, 12, 97, 98 };
static const unsigned int h4_keymap[] = {
#if defined(CONFIG_KEYBOARD_MATRIX) || defined(CONFIG_KEYBOARD_MATRIX_MODULE)
static const uint32_t board_matrix_keys[] = {
KEY(0, 0, KEY_LEFT),
KEY(1, 0, KEY_RIGHT),
KEY(2, 0, KEY_A),
@ -86,6 +84,71 @@ static const unsigned int h4_keymap[] = {
KEY(4, 5, KEY_ENTER),
};
static const struct matrix_keymap_data board_keymap_data = {
.keymap = board_matrix_keys,
.keymap_size = ARRAY_SIZE(board_matrix_keys),
};
static unsigned int board_keypad_row_gpios[] = {
88, 89, 124, 11, 6, 96
};
static unsigned int board_keypad_col_gpios[] = {
90, 91, 100, 36, 12, 97, 98
};
static struct matrix_keypad_platform_data board_keypad_platform_data = {
.keymap_data = &board_keymap_data,
.row_gpios = board_keypad_row_gpios,
.num_row_gpios = ARRAY_SIZE(board_keypad_row_gpios),
.col_gpios = board_keypad_col_gpios,
.num_col_gpios = ARRAY_SIZE(board_keypad_col_gpios),
.active_low = 1,
.debounce_ms = 20,
.col_scan_delay_us = 5,
};
static struct platform_device board_keyboard = {
.name = "matrix-keypad",
.id = -1,
.dev = {
.platform_data = &board_keypad_platform_data,
},
};
static void __init board_mkp_init(void)
{
omap_mux_init_gpio(88, OMAP_PULL_ENA | OMAP_PULL_UP);
omap_mux_init_gpio(89, OMAP_PULL_ENA | OMAP_PULL_UP);
omap_mux_init_gpio(124, OMAP_PULL_ENA | OMAP_PULL_UP);
omap_mux_init_signal("mcbsp2_dr.gpio_11", OMAP_PULL_ENA | OMAP_PULL_UP);
if (omap_has_menelaus()) {
omap_mux_init_signal("sdrc_a14.gpio0",
OMAP_PULL_ENA | OMAP_PULL_UP);
omap_mux_init_signal("vlynq_rx0.gpio_15", 0);
omap_mux_init_signal("gpio_98", 0);
board_keypad_row_gpios[5] = 0;
board_keypad_col_gpios[2] = 15;
board_keypad_col_gpios[6] = 18;
} else {
omap_mux_init_signal("gpio_96", OMAP_PULL_ENA | OMAP_PULL_UP);
omap_mux_init_signal("gpio_100", 0);
omap_mux_init_signal("gpio_98", 0);
}
omap_mux_init_signal("gpio_90", 0);
omap_mux_init_signal("gpio_91", 0);
omap_mux_init_signal("gpio_36", 0);
omap_mux_init_signal("mcbsp2_clkx.gpio_12", 0);
omap_mux_init_signal("gpio_97", 0);
platform_device_register(&board_keyboard);
}
#else
static inline void board_mkp_init(void)
{
}
#endif
static struct mtd_partition h4_partitions[] = {
/* bootloader (U-Boot, etc) in first sector */
{
@ -137,31 +200,8 @@ static struct platform_device h4_flash_device = {
.resource = &h4_flash_resource,
};
static const struct matrix_keymap_data h4_keymap_data = {
.keymap = h4_keymap,
.keymap_size = ARRAY_SIZE(h4_keymap),
};
static struct omap_kp_platform_data h4_kp_data = {
.rows = 6,
.cols = 7,
.keymap_data = &h4_keymap_data,
.rep = true,
.row_gpios = row_gpios,
.col_gpios = col_gpios,
};
static struct platform_device h4_kp_device = {
.name = "omap-keypad",
.id = -1,
.dev = {
.platform_data = &h4_kp_data,
},
};
static struct platform_device *h4_devices[] __initdata = {
&h4_flash_device,
&h4_kp_device,
};
static struct panel_generic_dpi_data h4_panel_data = {
@ -336,31 +376,7 @@ static void __init omap_h4_init(void)
* if not needed.
*/
#if defined(CONFIG_KEYBOARD_OMAP) || defined(CONFIG_KEYBOARD_OMAP_MODULE)
omap_mux_init_gpio(88, OMAP_PULL_ENA | OMAP_PULL_UP);
omap_mux_init_gpio(89, OMAP_PULL_ENA | OMAP_PULL_UP);
omap_mux_init_gpio(124, OMAP_PULL_ENA | OMAP_PULL_UP);
omap_mux_init_signal("mcbsp2_dr.gpio_11", OMAP_PULL_ENA | OMAP_PULL_UP);
if (omap_has_menelaus()) {
omap_mux_init_signal("sdrc_a14.gpio0",
OMAP_PULL_ENA | OMAP_PULL_UP);
omap_mux_init_signal("vlynq_rx0.gpio_15", 0);
omap_mux_init_signal("gpio_98", 0);
row_gpios[5] = 0;
col_gpios[2] = 15;
col_gpios[6] = 18;
} else {
omap_mux_init_signal("gpio_96", OMAP_PULL_ENA | OMAP_PULL_UP);
omap_mux_init_signal("gpio_100", 0);
omap_mux_init_signal("gpio_98", 0);
}
omap_mux_init_signal("gpio_90", 0);
omap_mux_init_signal("gpio_91", 0);
omap_mux_init_signal("gpio_36", 0);
omap_mux_init_signal("mcbsp2_clkx.gpio_12", 0);
omap_mux_init_signal("gpio_97", 0);
#endif
board_mkp_init();
i2c_register_board_info(1, h4_i2c_board_info,
ARRAY_SIZE(h4_i2c_board_info));

View File

@ -46,10 +46,19 @@
(DPLL_SCALE_FACTOR / DPLL_SCALE_BASE))
/* DPLL valid Fint frequency band limits - from 34xx TRM Section 4.7.6.2 */
#define DPLL_FINT_BAND1_MIN 750000
#define DPLL_FINT_BAND1_MAX 2100000
#define DPLL_FINT_BAND2_MIN 7500000
#define DPLL_FINT_BAND2_MAX 21000000
#define OMAP3430_DPLL_FINT_BAND1_MIN 750000
#define OMAP3430_DPLL_FINT_BAND1_MAX 2100000
#define OMAP3430_DPLL_FINT_BAND2_MIN 7500000
#define OMAP3430_DPLL_FINT_BAND2_MAX 21000000
/*
* DPLL valid Fint frequency range for OMAP36xx and OMAP4xxx.
* From device data manual section 4.3 "DPLL and DLL Specifications".
*/
#define OMAP3PLUS_DPLL_FINT_JTYPE_MIN 500000
#define OMAP3PLUS_DPLL_FINT_JTYPE_MAX 2500000
#define OMAP3PLUS_DPLL_FINT_MIN 32000
#define OMAP3PLUS_DPLL_FINT_MAX 52000000
/* _dpll_test_fint() return codes */
#define DPLL_FINT_UNDERFLOW -1
@ -71,33 +80,43 @@
static int _dpll_test_fint(struct clk *clk, u8 n)
{
struct dpll_data *dd;
long fint;
long fint, fint_min, fint_max;
int ret = 0;
dd = clk->dpll_data;
/* DPLL divider must result in a valid jitter correction val */
fint = clk->parent->rate / n;
if (fint < DPLL_FINT_BAND1_MIN) {
if (cpu_is_omap24xx()) {
/* Should not be called for OMAP2, so warn if it is called */
WARN(1, "No fint limits available for OMAP2!\n");
return DPLL_FINT_INVALID;
} else if (cpu_is_omap3430()) {
fint_min = OMAP3430_DPLL_FINT_BAND1_MIN;
fint_max = OMAP3430_DPLL_FINT_BAND2_MAX;
} else if (dd->flags & DPLL_J_TYPE) {
fint_min = OMAP3PLUS_DPLL_FINT_JTYPE_MIN;
fint_max = OMAP3PLUS_DPLL_FINT_JTYPE_MAX;
} else {
fint_min = OMAP3PLUS_DPLL_FINT_MIN;
fint_max = OMAP3PLUS_DPLL_FINT_MAX;
}
if (fint < fint_min) {
pr_debug("rejecting n=%d due to Fint failure, "
"lowering max_divider\n", n);
dd->max_divider = n;
ret = DPLL_FINT_UNDERFLOW;
} else if (fint > DPLL_FINT_BAND1_MAX &&
fint < DPLL_FINT_BAND2_MIN) {
pr_debug("rejecting n=%d due to Fint failure\n", n);
ret = DPLL_FINT_INVALID;
} else if (fint > DPLL_FINT_BAND2_MAX) {
} else if (fint > fint_max) {
pr_debug("rejecting n=%d due to Fint failure, "
"boosting min_divider\n", n);
dd->min_divider = n;
ret = DPLL_FINT_INVALID;
} else if (cpu_is_omap3430() && fint > OMAP3430_DPLL_FINT_BAND1_MAX &&
fint < OMAP3430_DPLL_FINT_BAND2_MIN) {
pr_debug("rejecting n=%d due to Fint failure\n", n);
ret = DPLL_FINT_INVALID;
}
return ret;

View File

@ -66,6 +66,8 @@ void omap3_noncore_dpll_disable(struct clk *clk);
int omap4_dpllmx_gatectrl_read(struct clk *clk);
void omap4_dpllmx_allow_gatectrl(struct clk *clk);
void omap4_dpllmx_deny_gatectrl(struct clk *clk);
long omap4_dpll_regm4xen_round_rate(struct clk *clk, unsigned long target_rate);
unsigned long omap4_dpll_regm4xen_recalc(struct clk *clk);
#ifdef CONFIG_OMAP_RESET_CLOCKS
void omap2_clk_disable_unused(struct clk *clk);

View File

@ -1898,18 +1898,6 @@ static struct omap_clk omap2420_clks[] = {
CLK(NULL, "pka_ick", &pka_ick, CK_242X),
CLK(NULL, "usb_fck", &usb_fck, CK_242X),
CLK("musb-hdrc", "fck", &osc_ck, CK_242X),
CLK("omap_timer.1", "fck", &gpt1_fck, CK_242X),
CLK("omap_timer.2", "fck", &gpt2_fck, CK_242X),
CLK("omap_timer.3", "fck", &gpt3_fck, CK_242X),
CLK("omap_timer.4", "fck", &gpt4_fck, CK_242X),
CLK("omap_timer.5", "fck", &gpt5_fck, CK_242X),
CLK("omap_timer.6", "fck", &gpt6_fck, CK_242X),
CLK("omap_timer.7", "fck", &gpt7_fck, CK_242X),
CLK("omap_timer.8", "fck", &gpt8_fck, CK_242X),
CLK("omap_timer.9", "fck", &gpt9_fck, CK_242X),
CLK("omap_timer.10", "fck", &gpt10_fck, CK_242X),
CLK("omap_timer.11", "fck", &gpt11_fck, CK_242X),
CLK("omap_timer.12", "fck", &gpt12_fck, CK_242X),
CLK("omap_timer.1", "32k_ck", &func_32k_ck, CK_243X),
CLK("omap_timer.2", "32k_ck", &func_32k_ck, CK_243X),
CLK("omap_timer.3", "32k_ck", &func_32k_ck, CK_243X),

View File

@ -1998,18 +1998,6 @@ static struct omap_clk omap2430_clks[] = {
CLK(NULL, "mdm_intc_ick", &mdm_intc_ick, CK_243X),
CLK("omap_hsmmc.0", "mmchsdb_fck", &mmchsdb1_fck, CK_243X),
CLK("omap_hsmmc.1", "mmchsdb_fck", &mmchsdb2_fck, CK_243X),
CLK("omap_timer.1", "fck", &gpt1_fck, CK_243X),
CLK("omap_timer.2", "fck", &gpt2_fck, CK_243X),
CLK("omap_timer.3", "fck", &gpt3_fck, CK_243X),
CLK("omap_timer.4", "fck", &gpt4_fck, CK_243X),
CLK("omap_timer.5", "fck", &gpt5_fck, CK_243X),
CLK("omap_timer.6", "fck", &gpt6_fck, CK_243X),
CLK("omap_timer.7", "fck", &gpt7_fck, CK_243X),
CLK("omap_timer.8", "fck", &gpt8_fck, CK_243X),
CLK("omap_timer.9", "fck", &gpt9_fck, CK_243X),
CLK("omap_timer.10", "fck", &gpt10_fck, CK_243X),
CLK("omap_timer.11", "fck", &gpt11_fck, CK_243X),
CLK("omap_timer.12", "fck", &gpt12_fck, CK_243X),
CLK("omap_timer.1", "32k_ck", &func_32k_ck, CK_243X),
CLK("omap_timer.2", "32k_ck", &func_32k_ck, CK_243X),
CLK("omap_timer.3", "32k_ck", &func_32k_ck, CK_243X),

View File

@ -3464,18 +3464,6 @@ static struct omap_clk omap3xxx_clks[] = {
CLK("musb-am35x", "fck", &hsotgusb_fck_am35xx, CK_AM35XX),
CLK(NULL, "hecc_ck", &hecc_ck, CK_AM35XX),
CLK(NULL, "uart4_ick", &uart4_ick_am35xx, CK_AM35XX),
CLK("omap_timer.1", "fck", &gpt1_fck, CK_3XXX),
CLK("omap_timer.2", "fck", &gpt2_fck, CK_3XXX),
CLK("omap_timer.3", "fck", &gpt3_fck, CK_3XXX),
CLK("omap_timer.4", "fck", &gpt4_fck, CK_3XXX),
CLK("omap_timer.5", "fck", &gpt5_fck, CK_3XXX),
CLK("omap_timer.6", "fck", &gpt6_fck, CK_3XXX),
CLK("omap_timer.7", "fck", &gpt7_fck, CK_3XXX),
CLK("omap_timer.8", "fck", &gpt8_fck, CK_3XXX),
CLK("omap_timer.9", "fck", &gpt9_fck, CK_3XXX),
CLK("omap_timer.10", "fck", &gpt10_fck, CK_3XXX),
CLK("omap_timer.11", "fck", &gpt11_fck, CK_3XXX),
CLK("omap_timer.12", "fck", &gpt12_fck, CK_3XXX),
CLK("omap_timer.1", "32k_ck", &omap_32k_fck, CK_3XXX),
CLK("omap_timer.2", "32k_ck", &omap_32k_fck, CK_3XXX),
CLK("omap_timer.3", "32k_ck", &omap_32k_fck, CK_3XXX),

View File

@ -8,6 +8,13 @@
#ifndef __ARCH_ARM_MACH_OMAP2_CLOCK44XX_H
#define __ARCH_ARM_MACH_OMAP2_CLOCK44XX_H
/*
* OMAP4430_REGM4XEN_MULT: If the CM_CLKMODE_DPLL_ABE.DPLL_REGM4XEN bit is
* set, then the DPLL's lock frequency is multiplied by 4 (OMAP4430 TRM
* vV Section 3.6.3.3.1 "DPLLs Output Clocks Parameters")
*/
#define OMAP4430_REGM4XEN_MULT 4
int omap4xxx_clk_init(void);
#endif

View File

@ -270,8 +270,8 @@ static struct clk dpll_abe_ck = {
.dpll_data = &dpll_abe_dd,
.init = &omap2_init_dpll_parent,
.ops = &clkops_omap3_noncore_dpll_ops,
.recalc = &omap3_dpll_recalc,
.round_rate = &omap2_dpll_round_rate,
.recalc = &omap4_dpll_regm4xen_recalc,
.round_rate = &omap4_dpll_regm4xen_round_rate,
.set_rate = &omap3_noncore_dpll_set_rate,
};
@ -1195,11 +1195,25 @@ static struct clk l4_wkup_clk_mux_ck = {
.recalc = &omap2_clksel_recalc,
};
static const struct clksel_rate div2_2to1_rates[] = {
{ .div = 1, .val = 1, .flags = RATE_IN_4430 },
{ .div = 2, .val = 0, .flags = RATE_IN_4430 },
{ .div = 0 },
};
static const struct clksel ocp_abe_iclk_div[] = {
{ .parent = &aess_fclk, .rates = div2_2to1_rates },
{ .parent = NULL },
};
static struct clk ocp_abe_iclk = {
.name = "ocp_abe_iclk",
.parent = &aess_fclk,
.clksel = ocp_abe_iclk_div,
.clksel_reg = OMAP4430_CM1_ABE_AESS_CLKCTRL,
.clksel_mask = OMAP4430_CLKSEL_AESS_FCLK_MASK,
.ops = &clkops_null,
.recalc = &followparent_recalc,
.recalc = &omap2_clksel_recalc,
};
static struct clk per_abe_24m_fclk = {
@ -1398,9 +1412,9 @@ static struct clk dss_dss_clk = {
};
static const struct clksel_rate div3_8to32_rates[] = {
{ .div = 8, .val = 0, .flags = RATE_IN_44XX },
{ .div = 16, .val = 1, .flags = RATE_IN_44XX },
{ .div = 32, .val = 2, .flags = RATE_IN_44XX },
{ .div = 8, .val = 0, .flags = RATE_IN_4460 },
{ .div = 16, .val = 1, .flags = RATE_IN_4460 },
{ .div = 32, .val = 2, .flags = RATE_IN_4460 },
{ .div = 0 },
};
@ -3363,17 +3377,6 @@ static struct omap_clk omap44xx_clks[] = {
CLK("usbhs-omap.0", "usbhost_ick", &dummy_ck, CK_443X),
CLK("usbhs-omap.0", "usbtll_fck", &dummy_ck, CK_443X),
CLK("omap_wdt", "ick", &dummy_ck, CK_443X),
CLK("omap_timer.1", "fck", &timer1_fck, CK_443X),
CLK("omap_timer.2", "fck", &timer2_fck, CK_443X),
CLK("omap_timer.3", "fck", &timer3_fck, CK_443X),
CLK("omap_timer.4", "fck", &timer4_fck, CK_443X),
CLK("omap_timer.5", "fck", &timer5_fck, CK_443X),
CLK("omap_timer.6", "fck", &timer6_fck, CK_443X),
CLK("omap_timer.7", "fck", &timer7_fck, CK_443X),
CLK("omap_timer.8", "fck", &timer8_fck, CK_443X),
CLK("omap_timer.9", "fck", &timer9_fck, CK_443X),
CLK("omap_timer.10", "fck", &timer10_fck, CK_443X),
CLK("omap_timer.11", "fck", &timer11_fck, CK_443X),
CLK("omap_timer.1", "32k_ck", &sys_32k_ck, CK_443X),
CLK("omap_timer.2", "32k_ck", &sys_32k_ck, CK_443X),
CLK("omap_timer.3", "32k_ck", &sys_32k_ck, CK_443X),
@ -3403,12 +3406,12 @@ int __init omap4xxx_clk_init(void)
struct omap_clk *c;
u32 cpu_clkflg;
if (cpu_is_omap44xx()) {
if (cpu_is_omap443x()) {
cpu_mask = RATE_IN_4430;
cpu_clkflg = CK_443X;
} else if (cpu_is_omap446x()) {
cpu_mask = RATE_IN_4460;
cpu_clkflg = CK_446X;
cpu_mask = RATE_IN_4460 | RATE_IN_4430;
cpu_clkflg = CK_446X | CK_443X;
} else {
return 0;
}

View File

@ -88,17 +88,21 @@ static int _cpuidle_deny_idle(struct powerdomain *pwrdm,
/**
* omap3_enter_idle - Programs OMAP3 to enter the specified state
* @dev: cpuidle device
* @state: The target state to be programmed
* @drv: cpuidle driver
* @index: the index of state to be entered
*
* Called from the CPUidle framework to program the device to the
* specified target state selected by the governor.
*/
static int omap3_enter_idle(struct cpuidle_device *dev,
struct cpuidle_state *state)
struct cpuidle_driver *drv,
int index)
{
struct omap3_idle_statedata *cx = cpuidle_get_statedata(state);
struct omap3_idle_statedata *cx =
cpuidle_get_statedata(&dev->states_usage[index]);
struct timespec ts_preidle, ts_postidle, ts_idle;
u32 mpu_state = cx->mpu_state, core_state = cx->core_state;
int idle_time;
/* Used to keep track of the total time in idle */
getnstimeofday(&ts_preidle);
@ -113,7 +117,7 @@ static int omap3_enter_idle(struct cpuidle_device *dev,
goto return_sleep_time;
/* Deny idle for C1 */
if (state == &dev->states[0]) {
if (index == 0) {
pwrdm_for_each_clkdm(mpu_pd, _cpuidle_deny_idle);
pwrdm_for_each_clkdm(core_pd, _cpuidle_deny_idle);
}
@ -122,7 +126,7 @@ static int omap3_enter_idle(struct cpuidle_device *dev,
omap_sram_idle();
/* Re-allow idle for C1 */
if (state == &dev->states[0]) {
if (index == 0) {
pwrdm_for_each_clkdm(mpu_pd, _cpuidle_allow_idle);
pwrdm_for_each_clkdm(core_pd, _cpuidle_allow_idle);
}
@ -134,28 +138,38 @@ static int omap3_enter_idle(struct cpuidle_device *dev,
local_irq_enable();
local_fiq_enable();
return ts_idle.tv_nsec / NSEC_PER_USEC + ts_idle.tv_sec * USEC_PER_SEC;
idle_time = ts_idle.tv_nsec / NSEC_PER_USEC + ts_idle.tv_sec * \
USEC_PER_SEC;
/* Update cpuidle counters */
dev->last_residency = idle_time;
return index;
}
/**
* next_valid_state - Find next valid C-state
* @dev: cpuidle device
* @state: Currently selected C-state
* @drv: cpuidle driver
* @index: Index of currently selected c-state
*
* If the current state is valid, it is returned back to the caller.
* Else, this function searches for a lower c-state which is still
* valid.
* If the state corresponding to index is valid, index is returned back
* to the caller. Else, this function searches for a lower c-state which is
* still valid (as defined in omap3_power_states[]) and returns its index.
*
* A state is valid if the 'valid' field is enabled and
* if it satisfies the enable_off_mode condition.
*/
static struct cpuidle_state *next_valid_state(struct cpuidle_device *dev,
struct cpuidle_state *curr)
static int next_valid_state(struct cpuidle_device *dev,
struct cpuidle_driver *drv,
int index)
{
struct cpuidle_state *next = NULL;
struct omap3_idle_statedata *cx = cpuidle_get_statedata(curr);
struct cpuidle_state_usage *curr_usage = &dev->states_usage[index];
struct cpuidle_state *curr = &drv->states[index];
struct omap3_idle_statedata *cx = cpuidle_get_statedata(curr_usage);
u32 mpu_deepest_state = PWRDM_POWER_RET;
u32 core_deepest_state = PWRDM_POWER_RET;
int next_index = -1;
if (enable_off_mode) {
mpu_deepest_state = PWRDM_POWER_OFF;
@ -172,20 +186,20 @@ static struct cpuidle_state *next_valid_state(struct cpuidle_device *dev,
if ((cx->valid) &&
(cx->mpu_state >= mpu_deepest_state) &&
(cx->core_state >= core_deepest_state)) {
return curr;
return index;
} else {
int idx = OMAP3_NUM_STATES - 1;
/* Reach the current state starting at highest C-state */
for (; idx >= 0; idx--) {
if (&dev->states[idx] == curr) {
next = &dev->states[idx];
if (&drv->states[idx] == curr) {
next_index = idx;
break;
}
}
/* Should never hit this condition */
WARN_ON(next == NULL);
WARN_ON(next_index == -1);
/*
* Drop to next valid state.
@ -193,41 +207,44 @@ static struct cpuidle_state *next_valid_state(struct cpuidle_device *dev,
*/
idx--;
for (; idx >= 0; idx--) {
cx = cpuidle_get_statedata(&dev->states[idx]);
cx = cpuidle_get_statedata(&dev->states_usage[idx]);
if ((cx->valid) &&
(cx->mpu_state >= mpu_deepest_state) &&
(cx->core_state >= core_deepest_state)) {
next = &dev->states[idx];
next_index = idx;
break;
}
}
/*
* C1 is always valid.
* So, no need to check for 'next==NULL' outside this loop.
* So, no need to check for 'next_index == -1' outside
* this loop.
*/
}
return next;
return next_index;
}
/**
* omap3_enter_idle_bm - Checks for any bus activity
* @dev: cpuidle device
* @state: The target state to be programmed
* @drv: cpuidle driver
* @index: array index of target state to be programmed
*
* This function checks for any pending activity and then programs
* the device to the specified or a safer state.
*/
static int omap3_enter_idle_bm(struct cpuidle_device *dev,
struct cpuidle_state *state)
struct cpuidle_driver *drv,
int index)
{
struct cpuidle_state *new_state;
int new_state_idx;
u32 core_next_state, per_next_state = 0, per_saved_state = 0, cam_state;
struct omap3_idle_statedata *cx;
int ret;
if (!omap3_can_sleep()) {
new_state = dev->safe_state;
new_state_idx = drv->safe_state_index;
goto select_state;
}
@ -237,7 +254,7 @@ static int omap3_enter_idle_bm(struct cpuidle_device *dev,
*/
cam_state = pwrdm_read_pwrst(cam_pd);
if (cam_state == PWRDM_POWER_ON) {
new_state = dev->safe_state;
new_state_idx = drv->safe_state_index;
goto select_state;
}
@ -253,7 +270,7 @@ static int omap3_enter_idle_bm(struct cpuidle_device *dev,
* Prevent PER off if CORE is not in retention or off as this
* would disable PER wakeups completely.
*/
cx = cpuidle_get_statedata(state);
cx = cpuidle_get_statedata(&dev->states_usage[index]);
core_next_state = cx->core_state;
per_next_state = per_saved_state = pwrdm_read_next_pwrst(per_pd);
if ((per_next_state == PWRDM_POWER_OFF) &&
@ -264,11 +281,10 @@ static int omap3_enter_idle_bm(struct cpuidle_device *dev,
if (per_next_state != per_saved_state)
pwrdm_set_next_pwrst(per_pd, per_next_state);
new_state = next_valid_state(dev, state);
new_state_idx = next_valid_state(dev, drv, index);
select_state:
dev->last_state = new_state;
ret = omap3_enter_idle(dev, new_state);
ret = omap3_enter_idle(dev, drv, new_state_idx);
/* Restore original PER state if it was modified */
if (per_next_state != per_saved_state)
@ -301,22 +317,31 @@ struct cpuidle_driver omap3_idle_driver = {
.owner = THIS_MODULE,
};
/* Helper to fill the C-state common data and register the driver_data */
static inline struct omap3_idle_statedata *_fill_cstate(
struct cpuidle_device *dev,
/* Helper to fill the C-state common data*/
static inline void _fill_cstate(struct cpuidle_driver *drv,
int idx, const char *descr)
{
struct omap3_idle_statedata *cx = &omap3_idle_data[idx];
struct cpuidle_state *state = &dev->states[idx];
struct cpuidle_state *state = &drv->states[idx];
state->exit_latency = cpuidle_params_table[idx].exit_latency;
state->target_residency = cpuidle_params_table[idx].target_residency;
state->flags = CPUIDLE_FLAG_TIME_VALID;
state->enter = omap3_enter_idle_bm;
cx->valid = cpuidle_params_table[idx].valid;
sprintf(state->name, "C%d", idx + 1);
strncpy(state->desc, descr, CPUIDLE_DESC_LEN);
cpuidle_set_statedata(state, cx);
}
/* Helper to register the driver_data */
static inline struct omap3_idle_statedata *_fill_cstate_usage(
struct cpuidle_device *dev,
int idx)
{
struct omap3_idle_statedata *cx = &omap3_idle_data[idx];
struct cpuidle_state_usage *state_usage = &dev->states_usage[idx];
cx->valid = cpuidle_params_table[idx].valid;
cpuidle_set_statedata(state_usage, cx);
return cx;
}
@ -330,6 +355,7 @@ static inline struct omap3_idle_statedata *_fill_cstate(
int __init omap3_idle_init(void)
{
struct cpuidle_device *dev;
struct cpuidle_driver *drv = &omap3_idle_driver;
struct omap3_idle_statedata *cx;
mpu_pd = pwrdm_lookup("mpu_pwrdm");
@ -337,44 +363,52 @@ int __init omap3_idle_init(void)
per_pd = pwrdm_lookup("per_pwrdm");
cam_pd = pwrdm_lookup("cam_pwrdm");
cpuidle_register_driver(&omap3_idle_driver);
drv->safe_state_index = -1;
dev = &per_cpu(omap3_idle_dev, smp_processor_id());
/* C1 . MPU WFI + Core active */
cx = _fill_cstate(dev, 0, "MPU ON + CORE ON");
(&dev->states[0])->enter = omap3_enter_idle;
dev->safe_state = &dev->states[0];
_fill_cstate(drv, 0, "MPU ON + CORE ON");
(&drv->states[0])->enter = omap3_enter_idle;
drv->safe_state_index = 0;
cx = _fill_cstate_usage(dev, 0);
cx->valid = 1; /* C1 is always valid */
cx->mpu_state = PWRDM_POWER_ON;
cx->core_state = PWRDM_POWER_ON;
/* C2 . MPU WFI + Core inactive */
cx = _fill_cstate(dev, 1, "MPU ON + CORE ON");
_fill_cstate(drv, 1, "MPU ON + CORE ON");
cx = _fill_cstate_usage(dev, 1);
cx->mpu_state = PWRDM_POWER_ON;
cx->core_state = PWRDM_POWER_ON;
/* C3 . MPU CSWR + Core inactive */
cx = _fill_cstate(dev, 2, "MPU RET + CORE ON");
_fill_cstate(drv, 2, "MPU RET + CORE ON");
cx = _fill_cstate_usage(dev, 2);
cx->mpu_state = PWRDM_POWER_RET;
cx->core_state = PWRDM_POWER_ON;
/* C4 . MPU OFF + Core inactive */
cx = _fill_cstate(dev, 3, "MPU OFF + CORE ON");
_fill_cstate(drv, 3, "MPU OFF + CORE ON");
cx = _fill_cstate_usage(dev, 3);
cx->mpu_state = PWRDM_POWER_OFF;
cx->core_state = PWRDM_POWER_ON;
/* C5 . MPU RET + Core RET */
cx = _fill_cstate(dev, 4, "MPU RET + CORE RET");
_fill_cstate(drv, 4, "MPU RET + CORE RET");
cx = _fill_cstate_usage(dev, 4);
cx->mpu_state = PWRDM_POWER_RET;
cx->core_state = PWRDM_POWER_RET;
/* C6 . MPU OFF + Core RET */
cx = _fill_cstate(dev, 5, "MPU OFF + CORE RET");
_fill_cstate(drv, 5, "MPU OFF + CORE RET");
cx = _fill_cstate_usage(dev, 5);
cx->mpu_state = PWRDM_POWER_OFF;
cx->core_state = PWRDM_POWER_RET;
/* C7 . MPU OFF + Core OFF */
cx = _fill_cstate(dev, 6, "MPU OFF + CORE OFF");
_fill_cstate(drv, 6, "MPU OFF + CORE OFF");
cx = _fill_cstate_usage(dev, 6);
/*
* Erratum i583: implementation for ES rev < Es1.2 on 3630. We cannot
* enable OFF mode in a stable form for previous revisions.
@ -388,6 +422,9 @@ int __init omap3_idle_init(void)
cx->mpu_state = PWRDM_POWER_OFF;
cx->core_state = PWRDM_POWER_OFF;
drv->state_count = OMAP3_NUM_STATES;
cpuidle_register_driver(&omap3_idle_driver);
dev->state_count = OMAP3_NUM_STATES;
if (cpuidle_register_device(dev)) {
printk(KERN_ERR "%s: CPUidle register device failed\n",

View File

@ -318,18 +318,10 @@ static inline void omap_init_audio(void) {}
#if defined(CONFIG_SND_OMAP_SOC_MCPDM) || \
defined(CONFIG_SND_OMAP_SOC_MCPDM_MODULE)
static struct omap_device_pm_latency omap_mcpdm_latency[] = {
{
.deactivate_func = omap_device_idle_hwmods,
.activate_func = omap_device_enable_hwmods,
.flags = OMAP_DEVICE_LATENCY_AUTO_ADJUST,
},
};
static void omap_init_mcpdm(void)
{
struct omap_hwmod *oh;
struct omap_device *od;
struct platform_device *pdev;
oh = omap_hwmod_lookup("mcpdm");
if (!oh) {
@ -337,11 +329,8 @@ static void omap_init_mcpdm(void)
return;
}
od = omap_device_build("omap-mcpdm", -1, oh, NULL, 0,
omap_mcpdm_latency,
ARRAY_SIZE(omap_mcpdm_latency), 0);
if (IS_ERR(od))
printk(KERN_ERR "Could not build omap_device for omap-mcpdm-dai\n");
pdev = omap_device_build("omap-mcpdm", -1, oh, NULL, 0, NULL, 0, 0);
WARN(IS_ERR(pdev), "Can't build omap_device for omap-mcpdm.\n");
}
#else
static inline void omap_init_mcpdm(void) {}

View File

@ -390,7 +390,8 @@ int omap3_noncore_dpll_enable(struct clk *clk)
* propagating?
*/
if (!r)
clk->rate = omap2_get_dpll_rate(clk);
clk->rate = (clk->recalc) ? clk->recalc(clk) :
omap2_get_dpll_rate(clk);
return r;
}
@ -424,6 +425,7 @@ void omap3_noncore_dpll_disable(struct clk *clk)
int omap3_noncore_dpll_set_rate(struct clk *clk, unsigned long rate)
{
struct clk *new_parent = NULL;
unsigned long hw_rate;
u16 freqsel = 0;
struct dpll_data *dd;
int ret;
@ -435,7 +437,8 @@ int omap3_noncore_dpll_set_rate(struct clk *clk, unsigned long rate)
if (!dd)
return -EINVAL;
if (rate == omap2_get_dpll_rate(clk))
hw_rate = (clk->recalc) ? clk->recalc(clk) : omap2_get_dpll_rate(clk);
if (rate == hw_rate)
return 0;
/*
@ -455,7 +458,7 @@ int omap3_noncore_dpll_set_rate(struct clk *clk, unsigned long rate)
new_parent = dd->clk_bypass;
} else {
if (dd->last_rounded_rate != rate)
omap2_dpll_round_rate(clk, rate);
rate = clk->round_rate(clk, rate);
if (dd->last_rounded_rate == 0)
return -EINVAL;

View File

@ -19,6 +19,7 @@
#include <plat/clock.h>
#include "clock.h"
#include "clock44xx.h"
#include "cm-regbits-44xx.h"
/* Supported only on OMAP4 */
@ -82,3 +83,71 @@ const struct clkops clkops_omap4_dpllmx_ops = {
.deny_idle = omap4_dpllmx_deny_gatectrl,
};
/**
* omap4_dpll_regm4xen_recalc - compute DPLL rate, considering REGM4XEN bit
* @clk: struct clk * of the DPLL to compute the rate for
*
* Compute the output rate for the OMAP4 DPLL represented by @clk.
* Takes the REGM4XEN bit into consideration, which is needed for the
* OMAP4 ABE DPLL. Returns the DPLL's output rate (before M-dividers)
* upon success, or 0 upon error.
*/
unsigned long omap4_dpll_regm4xen_recalc(struct clk *clk)
{
u32 v;
unsigned long rate;
struct dpll_data *dd;
if (!clk || !clk->dpll_data)
return 0;
dd = clk->dpll_data;
rate = omap2_get_dpll_rate(clk);
/* regm4xen adds a multiplier of 4 to DPLL calculations */
v = __raw_readl(dd->control_reg);
if (v & OMAP4430_DPLL_REGM4XEN_MASK)
rate *= OMAP4430_REGM4XEN_MULT;
return rate;
}
/**
* omap4_dpll_regm4xen_round_rate - round DPLL rate, considering REGM4XEN bit
* @clk: struct clk * of the DPLL to round a rate for
* @target_rate: the desired rate of the DPLL
*
* Compute the rate that would be programmed into the DPLL hardware
* for @clk if set_rate() were to be provided with the rate
* @target_rate. Takes the REGM4XEN bit into consideration, which is
* needed for the OMAP4 ABE DPLL. Returns the rounded rate (before
* M-dividers) upon success, -EINVAL if @clk is null or not a DPLL, or
* ~0 if an error occurred in omap2_dpll_round_rate().
*/
long omap4_dpll_regm4xen_round_rate(struct clk *clk, unsigned long target_rate)
{
u32 v;
struct dpll_data *dd;
long r;
if (!clk || !clk->dpll_data)
return -EINVAL;
dd = clk->dpll_data;
/* regm4xen adds a multiplier of 4 to DPLL calculations */
v = __raw_readl(dd->control_reg) & OMAP4430_DPLL_REGM4XEN_MASK;
if (v)
target_rate = target_rate / OMAP4430_REGM4XEN_MULT;
r = omap2_dpll_round_rate(clk, target_rate);
if (r == ~0)
return r;
if (v)
clk->dpll_data->last_rounded_rate *= OMAP4430_REGM4XEN_MULT;
return clk->dpll_data->last_rounded_rate;
}

View File

@ -18,6 +18,7 @@
* of the OMAP PM core code.
*/
#include <linux/module.h>
#include <linux/platform_device.h>
#include "cm2xxx_3xxx.h"
#include "prm2xxx_3xxx.h"

Some files were not shown because too many files have changed in this diff Show More