mirror of https://gitee.com/openkylin/linux.git
docs: networking: convert vrf.txt to ReST
- add SPDX header; - adjust title markup; - Add a subtitle for the first section; - mark code blocks and literals as such; - adjust identation, whitespaces and blank lines; - add to networking/index.rst. Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org> Acked-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
parent
961fb1ff41
commit
58ccb2b2e8
|
@ -113,6 +113,7 @@ Contents:
|
|||
tproxy
|
||||
tuntap
|
||||
udplite
|
||||
vrf
|
||||
|
||||
.. only:: subproject and html
|
||||
|
||||
|
|
|
@ -0,0 +1,451 @@
|
|||
.. SPDX-License-Identifier: GPL-2.0
|
||||
|
||||
====================================
|
||||
Virtual Routing and Forwarding (VRF)
|
||||
====================================
|
||||
|
||||
The VRF Device
|
||||
==============
|
||||
|
||||
The VRF device combined with ip rules provides the ability to create virtual
|
||||
routing and forwarding domains (aka VRFs, VRF-lite to be specific) in the
|
||||
Linux network stack. One use case is the multi-tenancy problem where each
|
||||
tenant has their own unique routing tables and in the very least need
|
||||
different default gateways.
|
||||
|
||||
Processes can be "VRF aware" by binding a socket to the VRF device. Packets
|
||||
through the socket then use the routing table associated with the VRF
|
||||
device. An important feature of the VRF device implementation is that it
|
||||
impacts only Layer 3 and above so L2 tools (e.g., LLDP) are not affected
|
||||
(ie., they do not need to be run in each VRF). The design also allows
|
||||
the use of higher priority ip rules (Policy Based Routing, PBR) to take
|
||||
precedence over the VRF device rules directing specific traffic as desired.
|
||||
|
||||
In addition, VRF devices allow VRFs to be nested within namespaces. For
|
||||
example network namespaces provide separation of network interfaces at the
|
||||
device layer, VLANs on the interfaces within a namespace provide L2 separation
|
||||
and then VRF devices provide L3 separation.
|
||||
|
||||
Design
|
||||
------
|
||||
A VRF device is created with an associated route table. Network interfaces
|
||||
are then enslaved to a VRF device::
|
||||
|
||||
+-----------------------------+
|
||||
| vrf-blue | ===> route table 10
|
||||
+-----------------------------+
|
||||
| | |
|
||||
+------+ +------+ +-------------+
|
||||
| eth1 | | eth2 | ... | bond1 |
|
||||
+------+ +------+ +-------------+
|
||||
| |
|
||||
+------+ +------+
|
||||
| eth8 | | eth9 |
|
||||
+------+ +------+
|
||||
|
||||
Packets received on an enslaved device and are switched to the VRF device
|
||||
in the IPv4 and IPv6 processing stacks giving the impression that packets
|
||||
flow through the VRF device. Similarly on egress routing rules are used to
|
||||
send packets to the VRF device driver before getting sent out the actual
|
||||
interface. This allows tcpdump on a VRF device to capture all packets into
|
||||
and out of the VRF as a whole\ [1]_. Similarly, netfilter\ [2]_ and tc rules
|
||||
can be applied using the VRF device to specify rules that apply to the VRF
|
||||
domain as a whole.
|
||||
|
||||
.. [1] Packets in the forwarded state do not flow through the device, so those
|
||||
packets are not seen by tcpdump. Will revisit this limitation in a
|
||||
future release.
|
||||
|
||||
.. [2] Iptables on ingress supports PREROUTING with skb->dev set to the real
|
||||
ingress device and both INPUT and PREROUTING rules with skb->dev set to
|
||||
the VRF device. For egress POSTROUTING and OUTPUT rules can be written
|
||||
using either the VRF device or real egress device.
|
||||
|
||||
Setup
|
||||
-----
|
||||
1. VRF device is created with an association to a FIB table.
|
||||
e.g,::
|
||||
|
||||
ip link add vrf-blue type vrf table 10
|
||||
ip link set dev vrf-blue up
|
||||
|
||||
2. An l3mdev FIB rule directs lookups to the table associated with the device.
|
||||
A single l3mdev rule is sufficient for all VRFs. The VRF device adds the
|
||||
l3mdev rule for IPv4 and IPv6 when the first device is created with a
|
||||
default preference of 1000. Users may delete the rule if desired and add
|
||||
with a different priority or install per-VRF rules.
|
||||
|
||||
Prior to the v4.8 kernel iif and oif rules are needed for each VRF device::
|
||||
|
||||
ip ru add oif vrf-blue table 10
|
||||
ip ru add iif vrf-blue table 10
|
||||
|
||||
3. Set the default route for the table (and hence default route for the VRF)::
|
||||
|
||||
ip route add table 10 unreachable default metric 4278198272
|
||||
|
||||
This high metric value ensures that the default unreachable route can
|
||||
be overridden by a routing protocol suite. FRRouting interprets
|
||||
kernel metrics as a combined admin distance (upper byte) and priority
|
||||
(lower 3 bytes). Thus the above metric translates to [255/8192].
|
||||
|
||||
4. Enslave L3 interfaces to a VRF device::
|
||||
|
||||
ip link set dev eth1 master vrf-blue
|
||||
|
||||
Local and connected routes for enslaved devices are automatically moved to
|
||||
the table associated with VRF device. Any additional routes depending on
|
||||
the enslaved device are dropped and will need to be reinserted to the VRF
|
||||
FIB table following the enslavement.
|
||||
|
||||
The IPv6 sysctl option keep_addr_on_down can be enabled to keep IPv6 global
|
||||
addresses as VRF enslavement changes::
|
||||
|
||||
sysctl -w net.ipv6.conf.all.keep_addr_on_down=1
|
||||
|
||||
5. Additional VRF routes are added to associated table::
|
||||
|
||||
ip route add table 10 ...
|
||||
|
||||
|
||||
Applications
|
||||
------------
|
||||
Applications that are to work within a VRF need to bind their socket to the
|
||||
VRF device::
|
||||
|
||||
setsockopt(sd, SOL_SOCKET, SO_BINDTODEVICE, dev, strlen(dev)+1);
|
||||
|
||||
or to specify the output device using cmsg and IP_PKTINFO.
|
||||
|
||||
By default the scope of the port bindings for unbound sockets is
|
||||
limited to the default VRF. That is, it will not be matched by packets
|
||||
arriving on interfaces enslaved to an l3mdev and processes may bind to
|
||||
the same port if they bind to an l3mdev.
|
||||
|
||||
TCP & UDP services running in the default VRF context (ie., not bound
|
||||
to any VRF device) can work across all VRF domains by enabling the
|
||||
tcp_l3mdev_accept and udp_l3mdev_accept sysctl options::
|
||||
|
||||
sysctl -w net.ipv4.tcp_l3mdev_accept=1
|
||||
sysctl -w net.ipv4.udp_l3mdev_accept=1
|
||||
|
||||
These options are disabled by default so that a socket in a VRF is only
|
||||
selected for packets in that VRF. There is a similar option for RAW
|
||||
sockets, which is enabled by default for reasons of backwards compatibility.
|
||||
This is so as to specify the output device with cmsg and IP_PKTINFO, but
|
||||
using a socket not bound to the corresponding VRF. This allows e.g. older ping
|
||||
implementations to be run with specifying the device but without executing it
|
||||
in the VRF. This option can be disabled so that packets received in a VRF
|
||||
context are only handled by a raw socket bound to the VRF, and packets in the
|
||||
default VRF are only handled by a socket not bound to any VRF::
|
||||
|
||||
sysctl -w net.ipv4.raw_l3mdev_accept=0
|
||||
|
||||
netfilter rules on the VRF device can be used to limit access to services
|
||||
running in the default VRF context as well.
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
Using iproute2 for VRFs
|
||||
=======================
|
||||
iproute2 supports the vrf keyword as of v4.7. For backwards compatibility this
|
||||
section lists both commands where appropriate -- with the vrf keyword and the
|
||||
older form without it.
|
||||
|
||||
1. Create a VRF
|
||||
|
||||
To instantiate a VRF device and associate it with a table::
|
||||
|
||||
$ ip link add dev NAME type vrf table ID
|
||||
|
||||
As of v4.8 the kernel supports the l3mdev FIB rule where a single rule
|
||||
covers all VRFs. The l3mdev rule is created for IPv4 and IPv6 on first
|
||||
device create.
|
||||
|
||||
2. List VRFs
|
||||
|
||||
To list VRFs that have been created::
|
||||
|
||||
$ ip [-d] link show type vrf
|
||||
NOTE: The -d option is needed to show the table id
|
||||
|
||||
For example::
|
||||
|
||||
$ ip -d link show type vrf
|
||||
11: mgmt: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
|
||||
link/ether 72:b3:ba:91:e2:24 brd ff:ff:ff:ff:ff:ff promiscuity 0
|
||||
vrf table 1 addrgenmode eui64
|
||||
12: red: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
|
||||
link/ether b6:6f:6e:f6:da:73 brd ff:ff:ff:ff:ff:ff promiscuity 0
|
||||
vrf table 10 addrgenmode eui64
|
||||
13: blue: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
|
||||
link/ether 36:62:e8:7d:bb:8c brd ff:ff:ff:ff:ff:ff promiscuity 0
|
||||
vrf table 66 addrgenmode eui64
|
||||
14: green: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
|
||||
link/ether e6:28:b8:63:70:bb brd ff:ff:ff:ff:ff:ff promiscuity 0
|
||||
vrf table 81 addrgenmode eui64
|
||||
|
||||
|
||||
Or in brief output::
|
||||
|
||||
$ ip -br link show type vrf
|
||||
mgmt UP 72:b3:ba:91:e2:24 <NOARP,MASTER,UP,LOWER_UP>
|
||||
red UP b6:6f:6e:f6:da:73 <NOARP,MASTER,UP,LOWER_UP>
|
||||
blue UP 36:62:e8:7d:bb:8c <NOARP,MASTER,UP,LOWER_UP>
|
||||
green UP e6:28:b8:63:70:bb <NOARP,MASTER,UP,LOWER_UP>
|
||||
|
||||
|
||||
3. Assign a Network Interface to a VRF
|
||||
|
||||
Network interfaces are assigned to a VRF by enslaving the netdevice to a
|
||||
VRF device::
|
||||
|
||||
$ ip link set dev NAME master NAME
|
||||
|
||||
On enslavement connected and local routes are automatically moved to the
|
||||
table associated with the VRF device.
|
||||
|
||||
For example::
|
||||
|
||||
$ ip link set dev eth0 master mgmt
|
||||
|
||||
|
||||
4. Show Devices Assigned to a VRF
|
||||
|
||||
To show devices that have been assigned to a specific VRF add the master
|
||||
option to the ip command::
|
||||
|
||||
$ ip link show vrf NAME
|
||||
$ ip link show master NAME
|
||||
|
||||
For example::
|
||||
|
||||
$ ip link show vrf red
|
||||
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP mode DEFAULT group default qlen 1000
|
||||
link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff
|
||||
4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP mode DEFAULT group default qlen 1000
|
||||
link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff
|
||||
7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master red state DOWN mode DEFAULT group default qlen 1000
|
||||
link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff
|
||||
|
||||
|
||||
Or using the brief output::
|
||||
|
||||
$ ip -br link show vrf red
|
||||
eth1 UP 02:00:00:00:02:02 <BROADCAST,MULTICAST,UP,LOWER_UP>
|
||||
eth2 UP 02:00:00:00:02:03 <BROADCAST,MULTICAST,UP,LOWER_UP>
|
||||
eth5 DOWN 02:00:00:00:02:06 <BROADCAST,MULTICAST>
|
||||
|
||||
|
||||
5. Show Neighbor Entries for a VRF
|
||||
|
||||
To list neighbor entries associated with devices enslaved to a VRF device
|
||||
add the master option to the ip command::
|
||||
|
||||
$ ip [-6] neigh show vrf NAME
|
||||
$ ip [-6] neigh show master NAME
|
||||
|
||||
For example::
|
||||
|
||||
$ ip neigh show vrf red
|
||||
10.2.1.254 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE
|
||||
10.2.2.254 dev eth2 lladdr 5e:54:01:6a:ee:80 REACHABLE
|
||||
|
||||
$ ip -6 neigh show vrf red
|
||||
2002:1::64 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE
|
||||
|
||||
|
||||
6. Show Addresses for a VRF
|
||||
|
||||
To show addresses for interfaces associated with a VRF add the master
|
||||
option to the ip command::
|
||||
|
||||
$ ip addr show vrf NAME
|
||||
$ ip addr show master NAME
|
||||
|
||||
For example::
|
||||
|
||||
$ ip addr show vrf red
|
||||
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP group default qlen 1000
|
||||
link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff
|
||||
inet 10.2.1.2/24 brd 10.2.1.255 scope global eth1
|
||||
valid_lft forever preferred_lft forever
|
||||
inet6 2002:1::2/120 scope global
|
||||
valid_lft forever preferred_lft forever
|
||||
inet6 fe80::ff:fe00:202/64 scope link
|
||||
valid_lft forever preferred_lft forever
|
||||
4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP group default qlen 1000
|
||||
link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff
|
||||
inet 10.2.2.2/24 brd 10.2.2.255 scope global eth2
|
||||
valid_lft forever preferred_lft forever
|
||||
inet6 2002:2::2/120 scope global
|
||||
valid_lft forever preferred_lft forever
|
||||
inet6 fe80::ff:fe00:203/64 scope link
|
||||
valid_lft forever preferred_lft forever
|
||||
7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master red state DOWN group default qlen 1000
|
||||
link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff
|
||||
|
||||
Or in brief format::
|
||||
|
||||
$ ip -br addr show vrf red
|
||||
eth1 UP 10.2.1.2/24 2002:1::2/120 fe80::ff:fe00:202/64
|
||||
eth2 UP 10.2.2.2/24 2002:2::2/120 fe80::ff:fe00:203/64
|
||||
eth5 DOWN
|
||||
|
||||
|
||||
7. Show Routes for a VRF
|
||||
|
||||
To show routes for a VRF use the ip command to display the table associated
|
||||
with the VRF device::
|
||||
|
||||
$ ip [-6] route show vrf NAME
|
||||
$ ip [-6] route show table ID
|
||||
|
||||
For example::
|
||||
|
||||
$ ip route show vrf red
|
||||
unreachable default metric 4278198272
|
||||
broadcast 10.2.1.0 dev eth1 proto kernel scope link src 10.2.1.2
|
||||
10.2.1.0/24 dev eth1 proto kernel scope link src 10.2.1.2
|
||||
local 10.2.1.2 dev eth1 proto kernel scope host src 10.2.1.2
|
||||
broadcast 10.2.1.255 dev eth1 proto kernel scope link src 10.2.1.2
|
||||
broadcast 10.2.2.0 dev eth2 proto kernel scope link src 10.2.2.2
|
||||
10.2.2.0/24 dev eth2 proto kernel scope link src 10.2.2.2
|
||||
local 10.2.2.2 dev eth2 proto kernel scope host src 10.2.2.2
|
||||
broadcast 10.2.2.255 dev eth2 proto kernel scope link src 10.2.2.2
|
||||
|
||||
$ ip -6 route show vrf red
|
||||
local 2002:1:: dev lo proto none metric 0 pref medium
|
||||
local 2002:1::2 dev lo proto none metric 0 pref medium
|
||||
2002:1::/120 dev eth1 proto kernel metric 256 pref medium
|
||||
local 2002:2:: dev lo proto none metric 0 pref medium
|
||||
local 2002:2::2 dev lo proto none metric 0 pref medium
|
||||
2002:2::/120 dev eth2 proto kernel metric 256 pref medium
|
||||
local fe80:: dev lo proto none metric 0 pref medium
|
||||
local fe80:: dev lo proto none metric 0 pref medium
|
||||
local fe80::ff:fe00:202 dev lo proto none metric 0 pref medium
|
||||
local fe80::ff:fe00:203 dev lo proto none metric 0 pref medium
|
||||
fe80::/64 dev eth1 proto kernel metric 256 pref medium
|
||||
fe80::/64 dev eth2 proto kernel metric 256 pref medium
|
||||
ff00::/8 dev red metric 256 pref medium
|
||||
ff00::/8 dev eth1 metric 256 pref medium
|
||||
ff00::/8 dev eth2 metric 256 pref medium
|
||||
unreachable default dev lo metric 4278198272 error -101 pref medium
|
||||
|
||||
8. Route Lookup for a VRF
|
||||
|
||||
A test route lookup can be done for a VRF::
|
||||
|
||||
$ ip [-6] route get vrf NAME ADDRESS
|
||||
$ ip [-6] route get oif NAME ADDRESS
|
||||
|
||||
For example::
|
||||
|
||||
$ ip route get 10.2.1.40 vrf red
|
||||
10.2.1.40 dev eth1 table red src 10.2.1.2
|
||||
cache
|
||||
|
||||
$ ip -6 route get 2002:1::32 vrf red
|
||||
2002:1::32 from :: dev eth1 table red proto kernel src 2002:1::2 metric 256 pref medium
|
||||
|
||||
|
||||
9. Removing Network Interface from a VRF
|
||||
|
||||
Network interfaces are removed from a VRF by breaking the enslavement to
|
||||
the VRF device::
|
||||
|
||||
$ ip link set dev NAME nomaster
|
||||
|
||||
Connected routes are moved back to the default table and local entries are
|
||||
moved to the local table.
|
||||
|
||||
For example::
|
||||
|
||||
$ ip link set dev eth0 nomaster
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
Commands used in this example::
|
||||
|
||||
cat >> /etc/iproute2/rt_tables.d/vrf.conf <<EOF
|
||||
1 mgmt
|
||||
10 red
|
||||
66 blue
|
||||
81 green
|
||||
EOF
|
||||
|
||||
function vrf_create
|
||||
{
|
||||
VRF=$1
|
||||
TBID=$2
|
||||
|
||||
# create VRF device
|
||||
ip link add ${VRF} type vrf table ${TBID}
|
||||
|
||||
if [ "${VRF}" != "mgmt" ]; then
|
||||
ip route add table ${TBID} unreachable default metric 4278198272
|
||||
fi
|
||||
ip link set dev ${VRF} up
|
||||
}
|
||||
|
||||
vrf_create mgmt 1
|
||||
ip link set dev eth0 master mgmt
|
||||
|
||||
vrf_create red 10
|
||||
ip link set dev eth1 master red
|
||||
ip link set dev eth2 master red
|
||||
ip link set dev eth5 master red
|
||||
|
||||
vrf_create blue 66
|
||||
ip link set dev eth3 master blue
|
||||
|
||||
vrf_create green 81
|
||||
ip link set dev eth4 master green
|
||||
|
||||
|
||||
Interface addresses from /etc/network/interfaces:
|
||||
auto eth0
|
||||
iface eth0 inet static
|
||||
address 10.0.0.2
|
||||
netmask 255.255.255.0
|
||||
gateway 10.0.0.254
|
||||
|
||||
iface eth0 inet6 static
|
||||
address 2000:1::2
|
||||
netmask 120
|
||||
|
||||
auto eth1
|
||||
iface eth1 inet static
|
||||
address 10.2.1.2
|
||||
netmask 255.255.255.0
|
||||
|
||||
iface eth1 inet6 static
|
||||
address 2002:1::2
|
||||
netmask 120
|
||||
|
||||
auto eth2
|
||||
iface eth2 inet static
|
||||
address 10.2.2.2
|
||||
netmask 255.255.255.0
|
||||
|
||||
iface eth2 inet6 static
|
||||
address 2002:2::2
|
||||
netmask 120
|
||||
|
||||
auto eth3
|
||||
iface eth3 inet static
|
||||
address 10.2.3.2
|
||||
netmask 255.255.255.0
|
||||
|
||||
iface eth3 inet6 static
|
||||
address 2002:3::2
|
||||
netmask 120
|
||||
|
||||
auto eth4
|
||||
iface eth4 inet static
|
||||
address 10.2.4.2
|
||||
netmask 255.255.255.0
|
||||
|
||||
iface eth4 inet6 static
|
||||
address 2002:4::2
|
||||
netmask 120
|
|
@ -1,418 +0,0 @@
|
|||
Virtual Routing and Forwarding (VRF)
|
||||
====================================
|
||||
The VRF device combined with ip rules provides the ability to create virtual
|
||||
routing and forwarding domains (aka VRFs, VRF-lite to be specific) in the
|
||||
Linux network stack. One use case is the multi-tenancy problem where each
|
||||
tenant has their own unique routing tables and in the very least need
|
||||
different default gateways.
|
||||
|
||||
Processes can be "VRF aware" by binding a socket to the VRF device. Packets
|
||||
through the socket then use the routing table associated with the VRF
|
||||
device. An important feature of the VRF device implementation is that it
|
||||
impacts only Layer 3 and above so L2 tools (e.g., LLDP) are not affected
|
||||
(ie., they do not need to be run in each VRF). The design also allows
|
||||
the use of higher priority ip rules (Policy Based Routing, PBR) to take
|
||||
precedence over the VRF device rules directing specific traffic as desired.
|
||||
|
||||
In addition, VRF devices allow VRFs to be nested within namespaces. For
|
||||
example network namespaces provide separation of network interfaces at the
|
||||
device layer, VLANs on the interfaces within a namespace provide L2 separation
|
||||
and then VRF devices provide L3 separation.
|
||||
|
||||
Design
|
||||
------
|
||||
A VRF device is created with an associated route table. Network interfaces
|
||||
are then enslaved to a VRF device:
|
||||
|
||||
+-----------------------------+
|
||||
| vrf-blue | ===> route table 10
|
||||
+-----------------------------+
|
||||
| | |
|
||||
+------+ +------+ +-------------+
|
||||
| eth1 | | eth2 | ... | bond1 |
|
||||
+------+ +------+ +-------------+
|
||||
| |
|
||||
+------+ +------+
|
||||
| eth8 | | eth9 |
|
||||
+------+ +------+
|
||||
|
||||
Packets received on an enslaved device and are switched to the VRF device
|
||||
in the IPv4 and IPv6 processing stacks giving the impression that packets
|
||||
flow through the VRF device. Similarly on egress routing rules are used to
|
||||
send packets to the VRF device driver before getting sent out the actual
|
||||
interface. This allows tcpdump on a VRF device to capture all packets into
|
||||
and out of the VRF as a whole.[1] Similarly, netfilter[2] and tc rules can be
|
||||
applied using the VRF device to specify rules that apply to the VRF domain
|
||||
as a whole.
|
||||
|
||||
[1] Packets in the forwarded state do not flow through the device, so those
|
||||
packets are not seen by tcpdump. Will revisit this limitation in a
|
||||
future release.
|
||||
|
||||
[2] Iptables on ingress supports PREROUTING with skb->dev set to the real
|
||||
ingress device and both INPUT and PREROUTING rules with skb->dev set to
|
||||
the VRF device. For egress POSTROUTING and OUTPUT rules can be written
|
||||
using either the VRF device or real egress device.
|
||||
|
||||
Setup
|
||||
-----
|
||||
1. VRF device is created with an association to a FIB table.
|
||||
e.g, ip link add vrf-blue type vrf table 10
|
||||
ip link set dev vrf-blue up
|
||||
|
||||
2. An l3mdev FIB rule directs lookups to the table associated with the device.
|
||||
A single l3mdev rule is sufficient for all VRFs. The VRF device adds the
|
||||
l3mdev rule for IPv4 and IPv6 when the first device is created with a
|
||||
default preference of 1000. Users may delete the rule if desired and add
|
||||
with a different priority or install per-VRF rules.
|
||||
|
||||
Prior to the v4.8 kernel iif and oif rules are needed for each VRF device:
|
||||
ip ru add oif vrf-blue table 10
|
||||
ip ru add iif vrf-blue table 10
|
||||
|
||||
3. Set the default route for the table (and hence default route for the VRF).
|
||||
ip route add table 10 unreachable default metric 4278198272
|
||||
|
||||
This high metric value ensures that the default unreachable route can
|
||||
be overridden by a routing protocol suite. FRRouting interprets
|
||||
kernel metrics as a combined admin distance (upper byte) and priority
|
||||
(lower 3 bytes). Thus the above metric translates to [255/8192].
|
||||
|
||||
4. Enslave L3 interfaces to a VRF device.
|
||||
ip link set dev eth1 master vrf-blue
|
||||
|
||||
Local and connected routes for enslaved devices are automatically moved to
|
||||
the table associated with VRF device. Any additional routes depending on
|
||||
the enslaved device are dropped and will need to be reinserted to the VRF
|
||||
FIB table following the enslavement.
|
||||
|
||||
The IPv6 sysctl option keep_addr_on_down can be enabled to keep IPv6 global
|
||||
addresses as VRF enslavement changes.
|
||||
sysctl -w net.ipv6.conf.all.keep_addr_on_down=1
|
||||
|
||||
5. Additional VRF routes are added to associated table.
|
||||
ip route add table 10 ...
|
||||
|
||||
|
||||
Applications
|
||||
------------
|
||||
Applications that are to work within a VRF need to bind their socket to the
|
||||
VRF device:
|
||||
|
||||
setsockopt(sd, SOL_SOCKET, SO_BINDTODEVICE, dev, strlen(dev)+1);
|
||||
|
||||
or to specify the output device using cmsg and IP_PKTINFO.
|
||||
|
||||
By default the scope of the port bindings for unbound sockets is
|
||||
limited to the default VRF. That is, it will not be matched by packets
|
||||
arriving on interfaces enslaved to an l3mdev and processes may bind to
|
||||
the same port if they bind to an l3mdev.
|
||||
|
||||
TCP & UDP services running in the default VRF context (ie., not bound
|
||||
to any VRF device) can work across all VRF domains by enabling the
|
||||
tcp_l3mdev_accept and udp_l3mdev_accept sysctl options:
|
||||
|
||||
sysctl -w net.ipv4.tcp_l3mdev_accept=1
|
||||
sysctl -w net.ipv4.udp_l3mdev_accept=1
|
||||
|
||||
These options are disabled by default so that a socket in a VRF is only
|
||||
selected for packets in that VRF. There is a similar option for RAW
|
||||
sockets, which is enabled by default for reasons of backwards compatibility.
|
||||
This is so as to specify the output device with cmsg and IP_PKTINFO, but
|
||||
using a socket not bound to the corresponding VRF. This allows e.g. older ping
|
||||
implementations to be run with specifying the device but without executing it
|
||||
in the VRF. This option can be disabled so that packets received in a VRF
|
||||
context are only handled by a raw socket bound to the VRF, and packets in the
|
||||
default VRF are only handled by a socket not bound to any VRF:
|
||||
|
||||
sysctl -w net.ipv4.raw_l3mdev_accept=0
|
||||
|
||||
netfilter rules on the VRF device can be used to limit access to services
|
||||
running in the default VRF context as well.
|
||||
|
||||
################################################################################
|
||||
|
||||
Using iproute2 for VRFs
|
||||
=======================
|
||||
iproute2 supports the vrf keyword as of v4.7. For backwards compatibility this
|
||||
section lists both commands where appropriate -- with the vrf keyword and the
|
||||
older form without it.
|
||||
|
||||
1. Create a VRF
|
||||
|
||||
To instantiate a VRF device and associate it with a table:
|
||||
$ ip link add dev NAME type vrf table ID
|
||||
|
||||
As of v4.8 the kernel supports the l3mdev FIB rule where a single rule
|
||||
covers all VRFs. The l3mdev rule is created for IPv4 and IPv6 on first
|
||||
device create.
|
||||
|
||||
2. List VRFs
|
||||
|
||||
To list VRFs that have been created:
|
||||
$ ip [-d] link show type vrf
|
||||
NOTE: The -d option is needed to show the table id
|
||||
|
||||
For example:
|
||||
$ ip -d link show type vrf
|
||||
11: mgmt: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
|
||||
link/ether 72:b3:ba:91:e2:24 brd ff:ff:ff:ff:ff:ff promiscuity 0
|
||||
vrf table 1 addrgenmode eui64
|
||||
12: red: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
|
||||
link/ether b6:6f:6e:f6:da:73 brd ff:ff:ff:ff:ff:ff promiscuity 0
|
||||
vrf table 10 addrgenmode eui64
|
||||
13: blue: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
|
||||
link/ether 36:62:e8:7d:bb:8c brd ff:ff:ff:ff:ff:ff promiscuity 0
|
||||
vrf table 66 addrgenmode eui64
|
||||
14: green: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
|
||||
link/ether e6:28:b8:63:70:bb brd ff:ff:ff:ff:ff:ff promiscuity 0
|
||||
vrf table 81 addrgenmode eui64
|
||||
|
||||
|
||||
Or in brief output:
|
||||
|
||||
$ ip -br link show type vrf
|
||||
mgmt UP 72:b3:ba:91:e2:24 <NOARP,MASTER,UP,LOWER_UP>
|
||||
red UP b6:6f:6e:f6:da:73 <NOARP,MASTER,UP,LOWER_UP>
|
||||
blue UP 36:62:e8:7d:bb:8c <NOARP,MASTER,UP,LOWER_UP>
|
||||
green UP e6:28:b8:63:70:bb <NOARP,MASTER,UP,LOWER_UP>
|
||||
|
||||
|
||||
3. Assign a Network Interface to a VRF
|
||||
|
||||
Network interfaces are assigned to a VRF by enslaving the netdevice to a
|
||||
VRF device:
|
||||
$ ip link set dev NAME master NAME
|
||||
|
||||
On enslavement connected and local routes are automatically moved to the
|
||||
table associated with the VRF device.
|
||||
|
||||
For example:
|
||||
$ ip link set dev eth0 master mgmt
|
||||
|
||||
|
||||
4. Show Devices Assigned to a VRF
|
||||
|
||||
To show devices that have been assigned to a specific VRF add the master
|
||||
option to the ip command:
|
||||
$ ip link show vrf NAME
|
||||
$ ip link show master NAME
|
||||
|
||||
For example:
|
||||
$ ip link show vrf red
|
||||
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP mode DEFAULT group default qlen 1000
|
||||
link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff
|
||||
4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP mode DEFAULT group default qlen 1000
|
||||
link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff
|
||||
7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master red state DOWN mode DEFAULT group default qlen 1000
|
||||
link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff
|
||||
|
||||
|
||||
Or using the brief output:
|
||||
$ ip -br link show vrf red
|
||||
eth1 UP 02:00:00:00:02:02 <BROADCAST,MULTICAST,UP,LOWER_UP>
|
||||
eth2 UP 02:00:00:00:02:03 <BROADCAST,MULTICAST,UP,LOWER_UP>
|
||||
eth5 DOWN 02:00:00:00:02:06 <BROADCAST,MULTICAST>
|
||||
|
||||
|
||||
5. Show Neighbor Entries for a VRF
|
||||
|
||||
To list neighbor entries associated with devices enslaved to a VRF device
|
||||
add the master option to the ip command:
|
||||
$ ip [-6] neigh show vrf NAME
|
||||
$ ip [-6] neigh show master NAME
|
||||
|
||||
For example:
|
||||
$ ip neigh show vrf red
|
||||
10.2.1.254 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE
|
||||
10.2.2.254 dev eth2 lladdr 5e:54:01:6a:ee:80 REACHABLE
|
||||
|
||||
$ ip -6 neigh show vrf red
|
||||
2002:1::64 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE
|
||||
|
||||
|
||||
6. Show Addresses for a VRF
|
||||
|
||||
To show addresses for interfaces associated with a VRF add the master
|
||||
option to the ip command:
|
||||
$ ip addr show vrf NAME
|
||||
$ ip addr show master NAME
|
||||
|
||||
For example:
|
||||
$ ip addr show vrf red
|
||||
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP group default qlen 1000
|
||||
link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff
|
||||
inet 10.2.1.2/24 brd 10.2.1.255 scope global eth1
|
||||
valid_lft forever preferred_lft forever
|
||||
inet6 2002:1::2/120 scope global
|
||||
valid_lft forever preferred_lft forever
|
||||
inet6 fe80::ff:fe00:202/64 scope link
|
||||
valid_lft forever preferred_lft forever
|
||||
4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP group default qlen 1000
|
||||
link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff
|
||||
inet 10.2.2.2/24 brd 10.2.2.255 scope global eth2
|
||||
valid_lft forever preferred_lft forever
|
||||
inet6 2002:2::2/120 scope global
|
||||
valid_lft forever preferred_lft forever
|
||||
inet6 fe80::ff:fe00:203/64 scope link
|
||||
valid_lft forever preferred_lft forever
|
||||
7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master red state DOWN group default qlen 1000
|
||||
link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff
|
||||
|
||||
Or in brief format:
|
||||
$ ip -br addr show vrf red
|
||||
eth1 UP 10.2.1.2/24 2002:1::2/120 fe80::ff:fe00:202/64
|
||||
eth2 UP 10.2.2.2/24 2002:2::2/120 fe80::ff:fe00:203/64
|
||||
eth5 DOWN
|
||||
|
||||
|
||||
7. Show Routes for a VRF
|
||||
|
||||
To show routes for a VRF use the ip command to display the table associated
|
||||
with the VRF device:
|
||||
$ ip [-6] route show vrf NAME
|
||||
$ ip [-6] route show table ID
|
||||
|
||||
For example:
|
||||
$ ip route show vrf red
|
||||
unreachable default metric 4278198272
|
||||
broadcast 10.2.1.0 dev eth1 proto kernel scope link src 10.2.1.2
|
||||
10.2.1.0/24 dev eth1 proto kernel scope link src 10.2.1.2
|
||||
local 10.2.1.2 dev eth1 proto kernel scope host src 10.2.1.2
|
||||
broadcast 10.2.1.255 dev eth1 proto kernel scope link src 10.2.1.2
|
||||
broadcast 10.2.2.0 dev eth2 proto kernel scope link src 10.2.2.2
|
||||
10.2.2.0/24 dev eth2 proto kernel scope link src 10.2.2.2
|
||||
local 10.2.2.2 dev eth2 proto kernel scope host src 10.2.2.2
|
||||
broadcast 10.2.2.255 dev eth2 proto kernel scope link src 10.2.2.2
|
||||
|
||||
$ ip -6 route show vrf red
|
||||
local 2002:1:: dev lo proto none metric 0 pref medium
|
||||
local 2002:1::2 dev lo proto none metric 0 pref medium
|
||||
2002:1::/120 dev eth1 proto kernel metric 256 pref medium
|
||||
local 2002:2:: dev lo proto none metric 0 pref medium
|
||||
local 2002:2::2 dev lo proto none metric 0 pref medium
|
||||
2002:2::/120 dev eth2 proto kernel metric 256 pref medium
|
||||
local fe80:: dev lo proto none metric 0 pref medium
|
||||
local fe80:: dev lo proto none metric 0 pref medium
|
||||
local fe80::ff:fe00:202 dev lo proto none metric 0 pref medium
|
||||
local fe80::ff:fe00:203 dev lo proto none metric 0 pref medium
|
||||
fe80::/64 dev eth1 proto kernel metric 256 pref medium
|
||||
fe80::/64 dev eth2 proto kernel metric 256 pref medium
|
||||
ff00::/8 dev red metric 256 pref medium
|
||||
ff00::/8 dev eth1 metric 256 pref medium
|
||||
ff00::/8 dev eth2 metric 256 pref medium
|
||||
unreachable default dev lo metric 4278198272 error -101 pref medium
|
||||
|
||||
8. Route Lookup for a VRF
|
||||
|
||||
A test route lookup can be done for a VRF:
|
||||
$ ip [-6] route get vrf NAME ADDRESS
|
||||
$ ip [-6] route get oif NAME ADDRESS
|
||||
|
||||
For example:
|
||||
$ ip route get 10.2.1.40 vrf red
|
||||
10.2.1.40 dev eth1 table red src 10.2.1.2
|
||||
cache
|
||||
|
||||
$ ip -6 route get 2002:1::32 vrf red
|
||||
2002:1::32 from :: dev eth1 table red proto kernel src 2002:1::2 metric 256 pref medium
|
||||
|
||||
|
||||
9. Removing Network Interface from a VRF
|
||||
|
||||
Network interfaces are removed from a VRF by breaking the enslavement to
|
||||
the VRF device:
|
||||
$ ip link set dev NAME nomaster
|
||||
|
||||
Connected routes are moved back to the default table and local entries are
|
||||
moved to the local table.
|
||||
|
||||
For example:
|
||||
$ ip link set dev eth0 nomaster
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
Commands used in this example:
|
||||
|
||||
cat >> /etc/iproute2/rt_tables.d/vrf.conf <<EOF
|
||||
1 mgmt
|
||||
10 red
|
||||
66 blue
|
||||
81 green
|
||||
EOF
|
||||
|
||||
function vrf_create
|
||||
{
|
||||
VRF=$1
|
||||
TBID=$2
|
||||
|
||||
# create VRF device
|
||||
ip link add ${VRF} type vrf table ${TBID}
|
||||
|
||||
if [ "${VRF}" != "mgmt" ]; then
|
||||
ip route add table ${TBID} unreachable default metric 4278198272
|
||||
fi
|
||||
ip link set dev ${VRF} up
|
||||
}
|
||||
|
||||
vrf_create mgmt 1
|
||||
ip link set dev eth0 master mgmt
|
||||
|
||||
vrf_create red 10
|
||||
ip link set dev eth1 master red
|
||||
ip link set dev eth2 master red
|
||||
ip link set dev eth5 master red
|
||||
|
||||
vrf_create blue 66
|
||||
ip link set dev eth3 master blue
|
||||
|
||||
vrf_create green 81
|
||||
ip link set dev eth4 master green
|
||||
|
||||
|
||||
Interface addresses from /etc/network/interfaces:
|
||||
auto eth0
|
||||
iface eth0 inet static
|
||||
address 10.0.0.2
|
||||
netmask 255.255.255.0
|
||||
gateway 10.0.0.254
|
||||
|
||||
iface eth0 inet6 static
|
||||
address 2000:1::2
|
||||
netmask 120
|
||||
|
||||
auto eth1
|
||||
iface eth1 inet static
|
||||
address 10.2.1.2
|
||||
netmask 255.255.255.0
|
||||
|
||||
iface eth1 inet6 static
|
||||
address 2002:1::2
|
||||
netmask 120
|
||||
|
||||
auto eth2
|
||||
iface eth2 inet static
|
||||
address 10.2.2.2
|
||||
netmask 255.255.255.0
|
||||
|
||||
iface eth2 inet6 static
|
||||
address 2002:2::2
|
||||
netmask 120
|
||||
|
||||
auto eth3
|
||||
iface eth3 inet static
|
||||
address 10.2.3.2
|
||||
netmask 255.255.255.0
|
||||
|
||||
iface eth3 inet6 static
|
||||
address 2002:3::2
|
||||
netmask 120
|
||||
|
||||
auto eth4
|
||||
iface eth4 inet static
|
||||
address 10.2.4.2
|
||||
netmask 255.255.255.0
|
||||
|
||||
iface eth4 inet6 static
|
||||
address 2002:4::2
|
||||
netmask 120
|
|
@ -18106,7 +18106,7 @@ M: David Ahern <dsahern@kernel.org>
|
|||
M: Shrijeet Mukherjee <shrijeet@gmail.com>
|
||||
L: netdev@vger.kernel.org
|
||||
S: Maintained
|
||||
F: Documentation/networking/vrf.txt
|
||||
F: Documentation/networking/vrf.rst
|
||||
F: drivers/net/vrf.c
|
||||
|
||||
VSPRINTF
|
||||
|
|
Loading…
Reference in New Issue