sched/numa: Avoid overloading CPUs on a preferred NUMA node

This patch replaces find_idlest_cpu_node with task_numa_find_cpu.
find_idlest_cpu_node has two critical limitations. It does not take the
scheduling class into account when calculating the load and it is unsuitable
for using when comparing loads between NUMA nodes.

task_numa_find_cpu uses similar load calculations to wake_affine() when
selecting the least loaded CPU within a scheduling domain common to the
source and destimation nodes. It avoids causing CPU load imbalances in
the machine by refusing to migrate if the relative load on the target
CPU is higher than the source CPU.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-33-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit is contained in:
Mel Gorman 2013-10-07 11:29:10 +01:00 committed by Ingo Molnar
parent fc3147245d
commit 58d081b508
1 changed files with 102 additions and 29 deletions

View File

@ -901,28 +901,114 @@ static inline unsigned long task_faults(struct task_struct *p, int nid)
}
static unsigned long weighted_cpuload(const int cpu);
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static unsigned long power_of(int cpu);
static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
struct numa_stats {
unsigned long load;
s64 eff_load;
unsigned long faults;
};
static int
find_idlest_cpu_node(int this_cpu, int nid)
struct task_numa_env {
struct task_struct *p;
int src_cpu, src_nid;
int dst_cpu, dst_nid;
struct numa_stats src_stats, dst_stats;
unsigned long best_load;
int best_cpu;
};
static int task_numa_migrate(struct task_struct *p)
{
unsigned long load, min_load = ULONG_MAX;
int i, idlest_cpu = this_cpu;
BUG_ON(cpu_to_node(this_cpu) == nid);
int node_cpu = cpumask_first(cpumask_of_node(p->numa_preferred_nid));
struct task_numa_env env = {
.p = p,
.src_cpu = task_cpu(p),
.src_nid = cpu_to_node(task_cpu(p)),
.dst_cpu = node_cpu,
.dst_nid = p->numa_preferred_nid,
.best_load = ULONG_MAX,
.best_cpu = task_cpu(p),
};
struct sched_domain *sd;
int cpu;
struct task_group *tg = task_group(p);
unsigned long weight;
bool balanced;
int imbalance_pct, idx = -1;
/*
* Find the lowest common scheduling domain covering the nodes of both
* the CPU the task is currently running on and the target NUMA node.
*/
rcu_read_lock();
for_each_cpu(i, cpumask_of_node(nid)) {
load = weighted_cpuload(i);
if (load < min_load) {
min_load = load;
idlest_cpu = i;
for_each_domain(env.src_cpu, sd) {
if (cpumask_test_cpu(node_cpu, sched_domain_span(sd))) {
/*
* busy_idx is used for the load decision as it is the
* same index used by the regular load balancer for an
* active cpu.
*/
idx = sd->busy_idx;
imbalance_pct = sd->imbalance_pct;
break;
}
}
rcu_read_unlock();
return idlest_cpu;
if (WARN_ON_ONCE(idx == -1))
return 0;
/*
* XXX the below is mostly nicked from wake_affine(); we should
* see about sharing a bit if at all possible; also it might want
* some per entity weight love.
*/
weight = p->se.load.weight;
env.src_stats.load = source_load(env.src_cpu, idx);
env.src_stats.eff_load = 100 + (imbalance_pct - 100) / 2;
env.src_stats.eff_load *= power_of(env.src_cpu);
env.src_stats.eff_load *= env.src_stats.load + effective_load(tg, env.src_cpu, -weight, -weight);
for_each_cpu(cpu, cpumask_of_node(env.dst_nid)) {
env.dst_cpu = cpu;
env.dst_stats.load = target_load(cpu, idx);
/* If the CPU is idle, use it */
if (!env.dst_stats.load) {
env.best_cpu = cpu;
goto migrate;
}
/* Otherwise check the target CPU load */
env.dst_stats.eff_load = 100;
env.dst_stats.eff_load *= power_of(cpu);
env.dst_stats.eff_load *= env.dst_stats.load + effective_load(tg, cpu, weight, weight);
/*
* Destination is considered balanced if the destination CPU is
* less loaded than the source CPU. Unfortunately there is a
* risk that a task running on a lightly loaded CPU will not
* migrate to its preferred node due to load imbalances.
*/
balanced = (env.dst_stats.eff_load <= env.src_stats.eff_load);
if (!balanced)
continue;
if (env.dst_stats.eff_load < env.best_load) {
env.best_load = env.dst_stats.eff_load;
env.best_cpu = cpu;
}
}
migrate:
return migrate_task_to(p, env.best_cpu);
}
static void task_numa_placement(struct task_struct *p)
@ -966,22 +1052,10 @@ static void task_numa_placement(struct task_struct *p)
* the working set placement.
*/
if (max_faults && max_nid != p->numa_preferred_nid) {
int preferred_cpu;
/*
* If the task is not on the preferred node then find the most
* idle CPU to migrate to.
*/
preferred_cpu = task_cpu(p);
if (cpu_to_node(preferred_cpu) != max_nid) {
preferred_cpu = find_idlest_cpu_node(preferred_cpu,
max_nid);
}
/* Update the preferred nid and migrate task if possible */
p->numa_preferred_nid = max_nid;
p->numa_migrate_seq = 1;
migrate_task_to(p, preferred_cpu);
task_numa_migrate(p);
}
}
@ -3292,7 +3366,7 @@ static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
{
struct sched_entity *se = tg->se[cpu];
if (!tg->parent) /* the trivial, non-cgroup case */
if (!tg->parent || !wl) /* the trivial, non-cgroup case */
return wl;
for_each_sched_entity(se) {
@ -3345,8 +3419,7 @@ static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
}
#else
static inline unsigned long effective_load(struct task_group *tg, int cpu,
unsigned long wl, unsigned long wg)
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
{
return wl;
}