mirror of https://gitee.com/openkylin/linux.git
can: dev: move bittiming related code into seperate file
This patch moves the bittiming related code of the CAN device infrastructure into a separate file. Reviewed-by: Vincent Mailhol <mailhol.vincent@wanadoo.fr> Link: https://lore.kernel.org/r/20210111141930.693847-4-mkl@pengutronix.de Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
This commit is contained in:
parent
3e77f70e73
commit
5a9d5ecd69
|
@ -3943,6 +3943,7 @@ T: git git://git.kernel.org/pub/scm/linux/kernel/git/mkl/linux-can.git
|
|||
T: git git://git.kernel.org/pub/scm/linux/kernel/git/mkl/linux-can-next.git
|
||||
F: Documentation/devicetree/bindings/net/can/
|
||||
F: drivers/net/can/
|
||||
F: include/linux/can/bittiming.h
|
||||
F: include/linux/can/dev.h
|
||||
F: include/linux/can/led.h
|
||||
F: include/linux/can/platform/
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
# SPDX-License-Identifier: GPL-2.0
|
||||
|
||||
obj-$(CONFIG_CAN_DEV) += can-dev.o
|
||||
can-dev-y += bittiming.o
|
||||
can-dev-y += dev.o
|
||||
can-dev-y += rx-offload.o
|
||||
|
||||
|
|
|
@ -0,0 +1,261 @@
|
|||
// SPDX-License-Identifier: GPL-2.0-only
|
||||
/* Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
|
||||
* Copyright (C) 2006 Andrey Volkov, Varma Electronics
|
||||
* Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
|
||||
*/
|
||||
|
||||
#include <linux/can/dev.h>
|
||||
|
||||
#ifdef CONFIG_CAN_CALC_BITTIMING
|
||||
#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
|
||||
|
||||
/* Bit-timing calculation derived from:
|
||||
*
|
||||
* Code based on LinCAN sources and H8S2638 project
|
||||
* Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
|
||||
* Copyright 2005 Stanislav Marek
|
||||
* email: pisa@cmp.felk.cvut.cz
|
||||
*
|
||||
* Calculates proper bit-timing parameters for a specified bit-rate
|
||||
* and sample-point, which can then be used to set the bit-timing
|
||||
* registers of the CAN controller. You can find more information
|
||||
* in the header file linux/can/netlink.h.
|
||||
*/
|
||||
static int
|
||||
can_update_sample_point(const struct can_bittiming_const *btc,
|
||||
unsigned int sample_point_nominal, unsigned int tseg,
|
||||
unsigned int *tseg1_ptr, unsigned int *tseg2_ptr,
|
||||
unsigned int *sample_point_error_ptr)
|
||||
{
|
||||
unsigned int sample_point_error, best_sample_point_error = UINT_MAX;
|
||||
unsigned int sample_point, best_sample_point = 0;
|
||||
unsigned int tseg1, tseg2;
|
||||
int i;
|
||||
|
||||
for (i = 0; i <= 1; i++) {
|
||||
tseg2 = tseg + CAN_SYNC_SEG -
|
||||
(sample_point_nominal * (tseg + CAN_SYNC_SEG)) /
|
||||
1000 - i;
|
||||
tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max);
|
||||
tseg1 = tseg - tseg2;
|
||||
if (tseg1 > btc->tseg1_max) {
|
||||
tseg1 = btc->tseg1_max;
|
||||
tseg2 = tseg - tseg1;
|
||||
}
|
||||
|
||||
sample_point = 1000 * (tseg + CAN_SYNC_SEG - tseg2) /
|
||||
(tseg + CAN_SYNC_SEG);
|
||||
sample_point_error = abs(sample_point_nominal - sample_point);
|
||||
|
||||
if (sample_point <= sample_point_nominal &&
|
||||
sample_point_error < best_sample_point_error) {
|
||||
best_sample_point = sample_point;
|
||||
best_sample_point_error = sample_point_error;
|
||||
*tseg1_ptr = tseg1;
|
||||
*tseg2_ptr = tseg2;
|
||||
}
|
||||
}
|
||||
|
||||
if (sample_point_error_ptr)
|
||||
*sample_point_error_ptr = best_sample_point_error;
|
||||
|
||||
return best_sample_point;
|
||||
}
|
||||
|
||||
int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
|
||||
const struct can_bittiming_const *btc)
|
||||
{
|
||||
struct can_priv *priv = netdev_priv(dev);
|
||||
unsigned int bitrate; /* current bitrate */
|
||||
unsigned int bitrate_error; /* difference between current and nominal value */
|
||||
unsigned int best_bitrate_error = UINT_MAX;
|
||||
unsigned int sample_point_error; /* difference between current and nominal value */
|
||||
unsigned int best_sample_point_error = UINT_MAX;
|
||||
unsigned int sample_point_nominal; /* nominal sample point */
|
||||
unsigned int best_tseg = 0; /* current best value for tseg */
|
||||
unsigned int best_brp = 0; /* current best value for brp */
|
||||
unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0;
|
||||
u64 v64;
|
||||
|
||||
/* Use CiA recommended sample points */
|
||||
if (bt->sample_point) {
|
||||
sample_point_nominal = bt->sample_point;
|
||||
} else {
|
||||
if (bt->bitrate > 800000)
|
||||
sample_point_nominal = 750;
|
||||
else if (bt->bitrate > 500000)
|
||||
sample_point_nominal = 800;
|
||||
else
|
||||
sample_point_nominal = 875;
|
||||
}
|
||||
|
||||
/* tseg even = round down, odd = round up */
|
||||
for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
|
||||
tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
|
||||
tsegall = CAN_SYNC_SEG + tseg / 2;
|
||||
|
||||
/* Compute all possible tseg choices (tseg=tseg1+tseg2) */
|
||||
brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
|
||||
|
||||
/* choose brp step which is possible in system */
|
||||
brp = (brp / btc->brp_inc) * btc->brp_inc;
|
||||
if (brp < btc->brp_min || brp > btc->brp_max)
|
||||
continue;
|
||||
|
||||
bitrate = priv->clock.freq / (brp * tsegall);
|
||||
bitrate_error = abs(bt->bitrate - bitrate);
|
||||
|
||||
/* tseg brp biterror */
|
||||
if (bitrate_error > best_bitrate_error)
|
||||
continue;
|
||||
|
||||
/* reset sample point error if we have a better bitrate */
|
||||
if (bitrate_error < best_bitrate_error)
|
||||
best_sample_point_error = UINT_MAX;
|
||||
|
||||
can_update_sample_point(btc, sample_point_nominal, tseg / 2,
|
||||
&tseg1, &tseg2, &sample_point_error);
|
||||
if (sample_point_error > best_sample_point_error)
|
||||
continue;
|
||||
|
||||
best_sample_point_error = sample_point_error;
|
||||
best_bitrate_error = bitrate_error;
|
||||
best_tseg = tseg / 2;
|
||||
best_brp = brp;
|
||||
|
||||
if (bitrate_error == 0 && sample_point_error == 0)
|
||||
break;
|
||||
}
|
||||
|
||||
if (best_bitrate_error) {
|
||||
/* Error in one-tenth of a percent */
|
||||
v64 = (u64)best_bitrate_error * 1000;
|
||||
do_div(v64, bt->bitrate);
|
||||
bitrate_error = (u32)v64;
|
||||
if (bitrate_error > CAN_CALC_MAX_ERROR) {
|
||||
netdev_err(dev,
|
||||
"bitrate error %d.%d%% too high\n",
|
||||
bitrate_error / 10, bitrate_error % 10);
|
||||
return -EDOM;
|
||||
}
|
||||
netdev_warn(dev, "bitrate error %d.%d%%\n",
|
||||
bitrate_error / 10, bitrate_error % 10);
|
||||
}
|
||||
|
||||
/* real sample point */
|
||||
bt->sample_point = can_update_sample_point(btc, sample_point_nominal,
|
||||
best_tseg, &tseg1, &tseg2,
|
||||
NULL);
|
||||
|
||||
v64 = (u64)best_brp * 1000 * 1000 * 1000;
|
||||
do_div(v64, priv->clock.freq);
|
||||
bt->tq = (u32)v64;
|
||||
bt->prop_seg = tseg1 / 2;
|
||||
bt->phase_seg1 = tseg1 - bt->prop_seg;
|
||||
bt->phase_seg2 = tseg2;
|
||||
|
||||
/* check for sjw user settings */
|
||||
if (!bt->sjw || !btc->sjw_max) {
|
||||
bt->sjw = 1;
|
||||
} else {
|
||||
/* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
|
||||
if (bt->sjw > btc->sjw_max)
|
||||
bt->sjw = btc->sjw_max;
|
||||
/* bt->sjw must not be higher than tseg2 */
|
||||
if (tseg2 < bt->sjw)
|
||||
bt->sjw = tseg2;
|
||||
}
|
||||
|
||||
bt->brp = best_brp;
|
||||
|
||||
/* real bitrate */
|
||||
bt->bitrate = priv->clock.freq /
|
||||
(bt->brp * (CAN_SYNC_SEG + tseg1 + tseg2));
|
||||
|
||||
return 0;
|
||||
}
|
||||
#endif /* CONFIG_CAN_CALC_BITTIMING */
|
||||
|
||||
/* Checks the validity of the specified bit-timing parameters prop_seg,
|
||||
* phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
|
||||
* prescaler value brp. You can find more information in the header
|
||||
* file linux/can/netlink.h.
|
||||
*/
|
||||
static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
|
||||
const struct can_bittiming_const *btc)
|
||||
{
|
||||
struct can_priv *priv = netdev_priv(dev);
|
||||
int tseg1, alltseg;
|
||||
u64 brp64;
|
||||
|
||||
tseg1 = bt->prop_seg + bt->phase_seg1;
|
||||
if (!bt->sjw)
|
||||
bt->sjw = 1;
|
||||
if (bt->sjw > btc->sjw_max ||
|
||||
tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
|
||||
bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
|
||||
return -ERANGE;
|
||||
|
||||
brp64 = (u64)priv->clock.freq * (u64)bt->tq;
|
||||
if (btc->brp_inc > 1)
|
||||
do_div(brp64, btc->brp_inc);
|
||||
brp64 += 500000000UL - 1;
|
||||
do_div(brp64, 1000000000UL); /* the practicable BRP */
|
||||
if (btc->brp_inc > 1)
|
||||
brp64 *= btc->brp_inc;
|
||||
bt->brp = (u32)brp64;
|
||||
|
||||
if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
|
||||
return -EINVAL;
|
||||
|
||||
alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
|
||||
bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
|
||||
bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Checks the validity of predefined bitrate settings */
|
||||
static int
|
||||
can_validate_bitrate(struct net_device *dev, struct can_bittiming *bt,
|
||||
const u32 *bitrate_const,
|
||||
const unsigned int bitrate_const_cnt)
|
||||
{
|
||||
struct can_priv *priv = netdev_priv(dev);
|
||||
unsigned int i;
|
||||
|
||||
for (i = 0; i < bitrate_const_cnt; i++) {
|
||||
if (bt->bitrate == bitrate_const[i])
|
||||
break;
|
||||
}
|
||||
|
||||
if (i >= priv->bitrate_const_cnt)
|
||||
return -EINVAL;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
|
||||
const struct can_bittiming_const *btc,
|
||||
const u32 *bitrate_const,
|
||||
const unsigned int bitrate_const_cnt)
|
||||
{
|
||||
int err;
|
||||
|
||||
/* Depending on the given can_bittiming parameter structure the CAN
|
||||
* timing parameters are calculated based on the provided bitrate OR
|
||||
* alternatively the CAN timing parameters (tq, prop_seg, etc.) are
|
||||
* provided directly which are then checked and fixed up.
|
||||
*/
|
||||
if (!bt->tq && bt->bitrate && btc)
|
||||
err = can_calc_bittiming(dev, bt, btc);
|
||||
else if (bt->tq && !bt->bitrate && btc)
|
||||
err = can_fixup_bittiming(dev, bt, btc);
|
||||
else if (!bt->tq && bt->bitrate && bitrate_const)
|
||||
err = can_validate_bitrate(dev, bt, bitrate_const,
|
||||
bitrate_const_cnt);
|
||||
else
|
||||
err = -EINVAL;
|
||||
|
||||
return err;
|
||||
}
|
|
@ -58,267 +58,6 @@ u8 can_fd_len2dlc(u8 len)
|
|||
}
|
||||
EXPORT_SYMBOL_GPL(can_fd_len2dlc);
|
||||
|
||||
#ifdef CONFIG_CAN_CALC_BITTIMING
|
||||
#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
|
||||
|
||||
/* Bit-timing calculation derived from:
|
||||
*
|
||||
* Code based on LinCAN sources and H8S2638 project
|
||||
* Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
|
||||
* Copyright 2005 Stanislav Marek
|
||||
* email: pisa@cmp.felk.cvut.cz
|
||||
*
|
||||
* Calculates proper bit-timing parameters for a specified bit-rate
|
||||
* and sample-point, which can then be used to set the bit-timing
|
||||
* registers of the CAN controller. You can find more information
|
||||
* in the header file linux/can/netlink.h.
|
||||
*/
|
||||
static int
|
||||
can_update_sample_point(const struct can_bittiming_const *btc,
|
||||
unsigned int sample_point_nominal, unsigned int tseg,
|
||||
unsigned int *tseg1_ptr, unsigned int *tseg2_ptr,
|
||||
unsigned int *sample_point_error_ptr)
|
||||
{
|
||||
unsigned int sample_point_error, best_sample_point_error = UINT_MAX;
|
||||
unsigned int sample_point, best_sample_point = 0;
|
||||
unsigned int tseg1, tseg2;
|
||||
int i;
|
||||
|
||||
for (i = 0; i <= 1; i++) {
|
||||
tseg2 = tseg + CAN_SYNC_SEG -
|
||||
(sample_point_nominal * (tseg + CAN_SYNC_SEG)) /
|
||||
1000 - i;
|
||||
tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max);
|
||||
tseg1 = tseg - tseg2;
|
||||
if (tseg1 > btc->tseg1_max) {
|
||||
tseg1 = btc->tseg1_max;
|
||||
tseg2 = tseg - tseg1;
|
||||
}
|
||||
|
||||
sample_point = 1000 * (tseg + CAN_SYNC_SEG - tseg2) /
|
||||
(tseg + CAN_SYNC_SEG);
|
||||
sample_point_error = abs(sample_point_nominal - sample_point);
|
||||
|
||||
if (sample_point <= sample_point_nominal &&
|
||||
sample_point_error < best_sample_point_error) {
|
||||
best_sample_point = sample_point;
|
||||
best_sample_point_error = sample_point_error;
|
||||
*tseg1_ptr = tseg1;
|
||||
*tseg2_ptr = tseg2;
|
||||
}
|
||||
}
|
||||
|
||||
if (sample_point_error_ptr)
|
||||
*sample_point_error_ptr = best_sample_point_error;
|
||||
|
||||
return best_sample_point;
|
||||
}
|
||||
|
||||
static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
|
||||
const struct can_bittiming_const *btc)
|
||||
{
|
||||
struct can_priv *priv = netdev_priv(dev);
|
||||
unsigned int bitrate; /* current bitrate */
|
||||
unsigned int bitrate_error; /* difference between current and nominal value */
|
||||
unsigned int best_bitrate_error = UINT_MAX;
|
||||
unsigned int sample_point_error; /* difference between current and nominal value */
|
||||
unsigned int best_sample_point_error = UINT_MAX;
|
||||
unsigned int sample_point_nominal; /* nominal sample point */
|
||||
unsigned int best_tseg = 0; /* current best value for tseg */
|
||||
unsigned int best_brp = 0; /* current best value for brp */
|
||||
unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0;
|
||||
u64 v64;
|
||||
|
||||
/* Use CiA recommended sample points */
|
||||
if (bt->sample_point) {
|
||||
sample_point_nominal = bt->sample_point;
|
||||
} else {
|
||||
if (bt->bitrate > 800000)
|
||||
sample_point_nominal = 750;
|
||||
else if (bt->bitrate > 500000)
|
||||
sample_point_nominal = 800;
|
||||
else
|
||||
sample_point_nominal = 875;
|
||||
}
|
||||
|
||||
/* tseg even = round down, odd = round up */
|
||||
for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
|
||||
tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
|
||||
tsegall = CAN_SYNC_SEG + tseg / 2;
|
||||
|
||||
/* Compute all possible tseg choices (tseg=tseg1+tseg2) */
|
||||
brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
|
||||
|
||||
/* choose brp step which is possible in system */
|
||||
brp = (brp / btc->brp_inc) * btc->brp_inc;
|
||||
if (brp < btc->brp_min || brp > btc->brp_max)
|
||||
continue;
|
||||
|
||||
bitrate = priv->clock.freq / (brp * tsegall);
|
||||
bitrate_error = abs(bt->bitrate - bitrate);
|
||||
|
||||
/* tseg brp biterror */
|
||||
if (bitrate_error > best_bitrate_error)
|
||||
continue;
|
||||
|
||||
/* reset sample point error if we have a better bitrate */
|
||||
if (bitrate_error < best_bitrate_error)
|
||||
best_sample_point_error = UINT_MAX;
|
||||
|
||||
can_update_sample_point(btc, sample_point_nominal, tseg / 2,
|
||||
&tseg1, &tseg2, &sample_point_error);
|
||||
if (sample_point_error > best_sample_point_error)
|
||||
continue;
|
||||
|
||||
best_sample_point_error = sample_point_error;
|
||||
best_bitrate_error = bitrate_error;
|
||||
best_tseg = tseg / 2;
|
||||
best_brp = brp;
|
||||
|
||||
if (bitrate_error == 0 && sample_point_error == 0)
|
||||
break;
|
||||
}
|
||||
|
||||
if (best_bitrate_error) {
|
||||
/* Error in one-tenth of a percent */
|
||||
v64 = (u64)best_bitrate_error * 1000;
|
||||
do_div(v64, bt->bitrate);
|
||||
bitrate_error = (u32)v64;
|
||||
if (bitrate_error > CAN_CALC_MAX_ERROR) {
|
||||
netdev_err(dev,
|
||||
"bitrate error %d.%d%% too high\n",
|
||||
bitrate_error / 10, bitrate_error % 10);
|
||||
return -EDOM;
|
||||
}
|
||||
netdev_warn(dev, "bitrate error %d.%d%%\n",
|
||||
bitrate_error / 10, bitrate_error % 10);
|
||||
}
|
||||
|
||||
/* real sample point */
|
||||
bt->sample_point = can_update_sample_point(btc, sample_point_nominal,
|
||||
best_tseg, &tseg1, &tseg2,
|
||||
NULL);
|
||||
|
||||
v64 = (u64)best_brp * 1000 * 1000 * 1000;
|
||||
do_div(v64, priv->clock.freq);
|
||||
bt->tq = (u32)v64;
|
||||
bt->prop_seg = tseg1 / 2;
|
||||
bt->phase_seg1 = tseg1 - bt->prop_seg;
|
||||
bt->phase_seg2 = tseg2;
|
||||
|
||||
/* check for sjw user settings */
|
||||
if (!bt->sjw || !btc->sjw_max) {
|
||||
bt->sjw = 1;
|
||||
} else {
|
||||
/* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
|
||||
if (bt->sjw > btc->sjw_max)
|
||||
bt->sjw = btc->sjw_max;
|
||||
/* bt->sjw must not be higher than tseg2 */
|
||||
if (tseg2 < bt->sjw)
|
||||
bt->sjw = tseg2;
|
||||
}
|
||||
|
||||
bt->brp = best_brp;
|
||||
|
||||
/* real bitrate */
|
||||
bt->bitrate = priv->clock.freq /
|
||||
(bt->brp * (CAN_SYNC_SEG + tseg1 + tseg2));
|
||||
|
||||
return 0;
|
||||
}
|
||||
#else /* !CONFIG_CAN_CALC_BITTIMING */
|
||||
static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
|
||||
const struct can_bittiming_const *btc)
|
||||
{
|
||||
netdev_err(dev, "bit-timing calculation not available\n");
|
||||
return -EINVAL;
|
||||
}
|
||||
#endif /* CONFIG_CAN_CALC_BITTIMING */
|
||||
|
||||
/* Checks the validity of the specified bit-timing parameters prop_seg,
|
||||
* phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
|
||||
* prescaler value brp. You can find more information in the header
|
||||
* file linux/can/netlink.h.
|
||||
*/
|
||||
static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
|
||||
const struct can_bittiming_const *btc)
|
||||
{
|
||||
struct can_priv *priv = netdev_priv(dev);
|
||||
int tseg1, alltseg;
|
||||
u64 brp64;
|
||||
|
||||
tseg1 = bt->prop_seg + bt->phase_seg1;
|
||||
if (!bt->sjw)
|
||||
bt->sjw = 1;
|
||||
if (bt->sjw > btc->sjw_max ||
|
||||
tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
|
||||
bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
|
||||
return -ERANGE;
|
||||
|
||||
brp64 = (u64)priv->clock.freq * (u64)bt->tq;
|
||||
if (btc->brp_inc > 1)
|
||||
do_div(brp64, btc->brp_inc);
|
||||
brp64 += 500000000UL - 1;
|
||||
do_div(brp64, 1000000000UL); /* the practicable BRP */
|
||||
if (btc->brp_inc > 1)
|
||||
brp64 *= btc->brp_inc;
|
||||
bt->brp = (u32)brp64;
|
||||
|
||||
if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
|
||||
return -EINVAL;
|
||||
|
||||
alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
|
||||
bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
|
||||
bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Checks the validity of predefined bitrate settings */
|
||||
static int
|
||||
can_validate_bitrate(struct net_device *dev, struct can_bittiming *bt,
|
||||
const u32 *bitrate_const,
|
||||
const unsigned int bitrate_const_cnt)
|
||||
{
|
||||
struct can_priv *priv = netdev_priv(dev);
|
||||
unsigned int i;
|
||||
|
||||
for (i = 0; i < bitrate_const_cnt; i++) {
|
||||
if (bt->bitrate == bitrate_const[i])
|
||||
break;
|
||||
}
|
||||
|
||||
if (i >= priv->bitrate_const_cnt)
|
||||
return -EINVAL;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
|
||||
const struct can_bittiming_const *btc,
|
||||
const u32 *bitrate_const,
|
||||
const unsigned int bitrate_const_cnt)
|
||||
{
|
||||
int err;
|
||||
|
||||
/* Depending on the given can_bittiming parameter structure the CAN
|
||||
* timing parameters are calculated based on the provided bitrate OR
|
||||
* alternatively the CAN timing parameters (tq, prop_seg, etc.) are
|
||||
* provided directly which are then checked and fixed up.
|
||||
*/
|
||||
if (!bt->tq && bt->bitrate && btc)
|
||||
err = can_calc_bittiming(dev, bt, btc);
|
||||
else if (bt->tq && !bt->bitrate && btc)
|
||||
err = can_fixup_bittiming(dev, bt, btc);
|
||||
else if (!bt->tq && bt->bitrate && bitrate_const)
|
||||
err = can_validate_bitrate(dev, bt, bitrate_const,
|
||||
bitrate_const_cnt);
|
||||
else
|
||||
err = -EINVAL;
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
static void can_update_state_error_stats(struct net_device *dev,
|
||||
enum can_state new_state)
|
||||
{
|
||||
|
|
|
@ -0,0 +1,44 @@
|
|||
/* SPDX-License-Identifier: GPL-2.0-only */
|
||||
/* Copyright (c) 2020 Pengutronix, Marc Kleine-Budde <kernel@pengutronix.de>
|
||||
*/
|
||||
|
||||
#ifndef _CAN_BITTIMING_H
|
||||
#define _CAN_BITTIMING_H
|
||||
|
||||
#include <linux/netdevice.h>
|
||||
#include <linux/can/netlink.h>
|
||||
|
||||
#define CAN_SYNC_SEG 1
|
||||
|
||||
#ifdef CONFIG_CAN_CALC_BITTIMING
|
||||
int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
|
||||
const struct can_bittiming_const *btc);
|
||||
#else /* !CONFIG_CAN_CALC_BITTIMING */
|
||||
static inline int
|
||||
can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
|
||||
const struct can_bittiming_const *btc)
|
||||
{
|
||||
netdev_err(dev, "bit-timing calculation not available\n");
|
||||
return -EINVAL;
|
||||
}
|
||||
#endif /* CONFIG_CAN_CALC_BITTIMING */
|
||||
|
||||
int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
|
||||
const struct can_bittiming_const *btc,
|
||||
const u32 *bitrate_const,
|
||||
const unsigned int bitrate_const_cnt);
|
||||
|
||||
/*
|
||||
* can_bit_time() - Duration of one bit
|
||||
*
|
||||
* Please refer to ISO 11898-1:2015, section 11.3.1.1 "Bit time" for
|
||||
* additional information.
|
||||
*
|
||||
* Return: the number of time quanta in one bit.
|
||||
*/
|
||||
static inline unsigned int can_bit_time(const struct can_bittiming *bt)
|
||||
{
|
||||
return CAN_SYNC_SEG + bt->prop_seg + bt->phase_seg1 + bt->phase_seg2;
|
||||
}
|
||||
|
||||
#endif /* !_CAN_BITTIMING_H */
|
|
@ -15,6 +15,7 @@
|
|||
#define _CAN_DEV_H
|
||||
|
||||
#include <linux/can.h>
|
||||
#include <linux/can/bittiming.h>
|
||||
#include <linux/can/error.h>
|
||||
#include <linux/can/led.h>
|
||||
#include <linux/can/netlink.h>
|
||||
|
@ -82,21 +83,6 @@ struct can_priv {
|
|||
#endif
|
||||
};
|
||||
|
||||
#define CAN_SYNC_SEG 1
|
||||
|
||||
/*
|
||||
* can_bit_time() - Duration of one bit
|
||||
*
|
||||
* Please refer to ISO 11898-1:2015, section 11.3.1.1 "Bit time" for
|
||||
* additional information.
|
||||
*
|
||||
* Return: the number of time quanta in one bit.
|
||||
*/
|
||||
static inline unsigned int can_bit_time(const struct can_bittiming *bt)
|
||||
{
|
||||
return CAN_SYNC_SEG + bt->prop_seg + bt->phase_seg1 + bt->phase_seg2;
|
||||
}
|
||||
|
||||
/*
|
||||
* can_cc_dlc2len(value) - convert a given data length code (dlc) of a
|
||||
* Classical CAN frame into a valid data length of max. 8 bytes.
|
||||
|
|
Loading…
Reference in New Issue