mirror of https://gitee.com/openkylin/linux.git
nand/denali Clean up all white spaces in code indent
Hi, I have changed the outlook mail cliet to be linux mutt client and use my personal gmail to submit patches. Here are 5 new patches to fix nand/denali check patch errors. The other 4 patches will be sent out after this mail. Thanks for your review. >From d125ad3f57bbf517131dccad6b5933edf8c2632a Mon Sep 17 00:00:00 2001 From: Chuanxiao Dong <chuanxiao.dong@intel.com> Date: Tue, 3 Aug 2010 15:54:48 +0800 Subject: [PATCH 1/5] mtd: denali.c: clean up all whitespaces in code indent Signed-off-by: Chuanxiao Dong <chuanxiao.dong@intel.com> Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
This commit is contained in:
parent
d2350c2ab5
commit
5bac3acfb8
|
@ -29,7 +29,7 @@
|
|||
|
||||
MODULE_LICENSE("GPL");
|
||||
|
||||
/* We define a module parameter that allows the user to override
|
||||
/* We define a module parameter that allows the user to override
|
||||
* the hardware and decide what timing mode should be used.
|
||||
*/
|
||||
#define NAND_DEFAULT_TIMINGS -1
|
||||
|
@ -54,13 +54,13 @@ MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting. -1 indicates
|
|||
INTR_STATUS0__RST_COMP | \
|
||||
INTR_STATUS0__ERASE_COMP)
|
||||
|
||||
/* indicates whether or not the internal value for the flash bank is
|
||||
/* indicates whether or not the internal value for the flash bank is
|
||||
valid or not */
|
||||
#define CHIP_SELECT_INVALID -1
|
||||
#define CHIP_SELECT_INVALID -1
|
||||
|
||||
#define SUPPORT_8BITECC 1
|
||||
|
||||
/* This macro divides two integers and rounds fractional values up
|
||||
/* This macro divides two integers and rounds fractional values up
|
||||
* to the nearest integer value. */
|
||||
#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
|
||||
|
||||
|
@ -83,7 +83,7 @@ MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting. -1 indicates
|
|||
#define ADDR_CYCLE 1
|
||||
#define STATUS_CYCLE 2
|
||||
|
||||
/* this is a helper macro that allows us to
|
||||
/* this is a helper macro that allows us to
|
||||
* format the bank into the proper bits for the controller */
|
||||
#define BANK(x) ((x) << 24)
|
||||
|
||||
|
@ -95,28 +95,28 @@ static const struct pci_device_id denali_pci_ids[] = {
|
|||
};
|
||||
|
||||
|
||||
/* these are static lookup tables that give us easy access to
|
||||
registers in the NAND controller.
|
||||
/* these are static lookup tables that give us easy access to
|
||||
registers in the NAND controller.
|
||||
*/
|
||||
static const uint32_t intr_status_addresses[4] = {INTR_STATUS0,
|
||||
INTR_STATUS1,
|
||||
INTR_STATUS2,
|
||||
static const uint32_t intr_status_addresses[4] = {INTR_STATUS0,
|
||||
INTR_STATUS1,
|
||||
INTR_STATUS2,
|
||||
INTR_STATUS3};
|
||||
|
||||
static const uint32_t device_reset_banks[4] = {DEVICE_RESET__BANK0,
|
||||
DEVICE_RESET__BANK1,
|
||||
DEVICE_RESET__BANK2,
|
||||
DEVICE_RESET__BANK3};
|
||||
DEVICE_RESET__BANK1,
|
||||
DEVICE_RESET__BANK2,
|
||||
DEVICE_RESET__BANK3};
|
||||
|
||||
static const uint32_t operation_timeout[4] = {INTR_STATUS0__TIME_OUT,
|
||||
INTR_STATUS1__TIME_OUT,
|
||||
INTR_STATUS2__TIME_OUT,
|
||||
INTR_STATUS3__TIME_OUT};
|
||||
INTR_STATUS1__TIME_OUT,
|
||||
INTR_STATUS2__TIME_OUT,
|
||||
INTR_STATUS3__TIME_OUT};
|
||||
|
||||
static const uint32_t reset_complete[4] = {INTR_STATUS0__RST_COMP,
|
||||
INTR_STATUS1__RST_COMP,
|
||||
INTR_STATUS2__RST_COMP,
|
||||
INTR_STATUS3__RST_COMP};
|
||||
INTR_STATUS1__RST_COMP,
|
||||
INTR_STATUS2__RST_COMP,
|
||||
INTR_STATUS3__RST_COMP};
|
||||
|
||||
/* specifies the debug level of the driver */
|
||||
static int nand_debug_level = 0;
|
||||
|
@ -131,21 +131,21 @@ static uint32_t read_interrupt_status(struct denali_nand_info *denali);
|
|||
|
||||
/* This is a wrapper for writing to the denali registers.
|
||||
* this allows us to create debug information so we can
|
||||
* observe how the driver is programming the device.
|
||||
* observe how the driver is programming the device.
|
||||
* it uses standard linux convention for (val, addr) */
|
||||
static void denali_write32(uint32_t value, void *addr)
|
||||
{
|
||||
iowrite32(value, addr);
|
||||
iowrite32(value, addr);
|
||||
|
||||
#if DEBUG_DENALI
|
||||
printk(KERN_ERR "wrote: 0x%x -> 0x%x\n", value, (uint32_t)((uint32_t)addr & 0x1fff));
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
/* Certain operations for the denali NAND controller use an indexed mode to read/write
|
||||
data. The operation is performed by writing the address value of the command to
|
||||
the device memory followed by the data. This function abstracts this common
|
||||
operation.
|
||||
/* Certain operations for the denali NAND controller use an indexed mode to read/write
|
||||
data. The operation is performed by writing the address value of the command to
|
||||
the device memory followed by the data. This function abstracts this common
|
||||
operation.
|
||||
*/
|
||||
static void index_addr(struct denali_nand_info *denali, uint32_t address, uint32_t data)
|
||||
{
|
||||
|
@ -161,7 +161,7 @@ static void index_addr_read_data(struct denali_nand_info *denali,
|
|||
*pdata = ioread32(denali->flash_mem + 0x10);
|
||||
}
|
||||
|
||||
/* We need to buffer some data for some of the NAND core routines.
|
||||
/* We need to buffer some data for some of the NAND core routines.
|
||||
* The operations manage buffering that data. */
|
||||
static void reset_buf(struct denali_nand_info *denali)
|
||||
{
|
||||
|
@ -183,7 +183,7 @@ static void read_status(struct denali_nand_info *denali)
|
|||
reset_buf(denali);
|
||||
|
||||
/* initiate a device status read */
|
||||
cmd = MODE_11 | BANK(denali->flash_bank);
|
||||
cmd = MODE_11 | BANK(denali->flash_bank);
|
||||
index_addr(denali, cmd | COMMAND_CYCLE, 0x70);
|
||||
denali_write32(cmd | STATUS_CYCLE, denali->flash_mem);
|
||||
|
||||
|
@ -199,7 +199,7 @@ static void read_status(struct denali_nand_info *denali)
|
|||
static void reset_bank(struct denali_nand_info *denali)
|
||||
{
|
||||
uint32_t irq_status = 0;
|
||||
uint32_t irq_mask = reset_complete[denali->flash_bank] |
|
||||
uint32_t irq_mask = reset_complete[denali->flash_bank] |
|
||||
operation_timeout[denali->flash_bank];
|
||||
int bank = 0;
|
||||
|
||||
|
@ -209,7 +209,7 @@ static void reset_bank(struct denali_nand_info *denali)
|
|||
denali_write32(bank, denali->flash_reg + DEVICE_RESET);
|
||||
|
||||
irq_status = wait_for_irq(denali, irq_mask);
|
||||
|
||||
|
||||
if (irq_status & operation_timeout[denali->flash_bank])
|
||||
{
|
||||
printk(KERN_ERR "reset bank failed.\n");
|
||||
|
@ -610,7 +610,7 @@ static void get_hynix_nand_para(struct denali_nand_info *denali)
|
|||
}
|
||||
|
||||
/* determines how many NAND chips are connected to the controller. Note for
|
||||
Intel CE4100 devices we don't support more than one device.
|
||||
Intel CE4100 devices we don't support more than one device.
|
||||
*/
|
||||
static void find_valid_banks(struct denali_nand_info *denali)
|
||||
{
|
||||
|
@ -641,8 +641,8 @@ static void find_valid_banks(struct denali_nand_info *denali)
|
|||
{
|
||||
/* Platform limitations of the CE4100 device limit
|
||||
* users to a single chip solution for NAND.
|
||||
* Multichip support is not enabled.
|
||||
*/
|
||||
* Multichip support is not enabled.
|
||||
*/
|
||||
if (denali->total_used_banks != 1)
|
||||
{
|
||||
printk(KERN_ERR "Sorry, Intel CE4100 only supports "
|
||||
|
@ -885,7 +885,7 @@ static uint16_t NAND_Read_Device_ID(struct denali_nand_info *denali)
|
|||
dump_device_info(denali);
|
||||
|
||||
/* If the user specified to override the default timings
|
||||
* with a specific ONFI mode, we apply those changes here.
|
||||
* with a specific ONFI mode, we apply those changes here.
|
||||
*/
|
||||
if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
|
||||
{
|
||||
|
@ -912,7 +912,7 @@ static void NAND_LLD_Enable_Disable_Interrupts(struct denali_nand_info *denali,
|
|||
*/
|
||||
static inline bool is_flash_bank_valid(int flash_bank)
|
||||
{
|
||||
return (flash_bank >= 0 && flash_bank < 4);
|
||||
return (flash_bank >= 0 && flash_bank < 4);
|
||||
}
|
||||
|
||||
static void denali_irq_init(struct denali_nand_info *denali)
|
||||
|
@ -948,7 +948,7 @@ static void denali_irq_enable(struct denali_nand_info *denali, uint32_t int_mask
|
|||
}
|
||||
|
||||
/* This function only returns when an interrupt that this driver cares about
|
||||
* occurs. This is to reduce the overhead of servicing interrupts
|
||||
* occurs. This is to reduce the overhead of servicing interrupts
|
||||
*/
|
||||
static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
|
||||
{
|
||||
|
@ -1003,9 +1003,9 @@ static void print_irq_log(struct denali_nand_info *denali)
|
|||
}
|
||||
#endif
|
||||
|
||||
/* This is the interrupt service routine. It handles all interrupts
|
||||
* sent to this device. Note that on CE4100, this is a shared
|
||||
* interrupt.
|
||||
/* This is the interrupt service routine. It handles all interrupts
|
||||
* sent to this device. Note that on CE4100, this is a shared
|
||||
* interrupt.
|
||||
*/
|
||||
static irqreturn_t denali_isr(int irq, void *dev_id)
|
||||
{
|
||||
|
@ -1015,12 +1015,12 @@ static irqreturn_t denali_isr(int irq, void *dev_id)
|
|||
|
||||
spin_lock(&denali->irq_lock);
|
||||
|
||||
/* check to see if a valid NAND chip has
|
||||
* been selected.
|
||||
/* check to see if a valid NAND chip has
|
||||
* been selected.
|
||||
*/
|
||||
if (is_flash_bank_valid(denali->flash_bank))
|
||||
{
|
||||
/* check to see if controller generated
|
||||
/* check to see if controller generated
|
||||
* the interrupt, since this is a shared interrupt */
|
||||
if ((irq_status = denali_irq_detected(denali)) != 0)
|
||||
{
|
||||
|
@ -1078,10 +1078,10 @@ static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
|
|||
/* our interrupt was detected */
|
||||
break;
|
||||
}
|
||||
else
|
||||
else
|
||||
{
|
||||
/* these are not the interrupts you are looking for -
|
||||
need to wait again */
|
||||
/* these are not the interrupts you are looking for -
|
||||
* need to wait again */
|
||||
spin_unlock_irq(&denali->irq_lock);
|
||||
#if DEBUG_DENALI
|
||||
print_irq_log(denali);
|
||||
|
@ -1095,20 +1095,20 @@ static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
|
|||
if (comp_res == 0)
|
||||
{
|
||||
/* timeout */
|
||||
printk(KERN_ERR "timeout occurred, status = 0x%x, mask = 0x%x\n",
|
||||
intr_status, irq_mask);
|
||||
printk(KERN_ERR "timeout occurred, status = 0x%x, mask = 0x%x\n",
|
||||
intr_status, irq_mask);
|
||||
|
||||
intr_status = 0;
|
||||
}
|
||||
return intr_status;
|
||||
}
|
||||
|
||||
/* This helper function setups the registers for ECC and whether or not
|
||||
/* This helper function setups the registers for ECC and whether or not
|
||||
the spare area will be transfered. */
|
||||
static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
|
||||
static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
|
||||
bool transfer_spare)
|
||||
{
|
||||
int ecc_en_flag = 0, transfer_spare_flag = 0;
|
||||
int ecc_en_flag = 0, transfer_spare_flag = 0;
|
||||
|
||||
/* set ECC, transfer spare bits if needed */
|
||||
ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
|
||||
|
@ -1119,15 +1119,15 @@ static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
|
|||
denali_write32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
|
||||
}
|
||||
|
||||
/* sends a pipeline command operation to the controller. See the Denali NAND
|
||||
controller's user guide for more information (section 4.2.3.6).
|
||||
/* sends a pipeline command operation to the controller. See the Denali NAND
|
||||
controller's user guide for more information (section 4.2.3.6).
|
||||
*/
|
||||
static int denali_send_pipeline_cmd(struct denali_nand_info *denali, bool ecc_en,
|
||||
bool transfer_spare, int access_type,
|
||||
static int denali_send_pipeline_cmd(struct denali_nand_info *denali, bool ecc_en,
|
||||
bool transfer_spare, int access_type,
|
||||
int op)
|
||||
{
|
||||
int status = PASS;
|
||||
uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0,
|
||||
uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0,
|
||||
irq_mask = 0;
|
||||
|
||||
if (op == DENALI_READ) irq_mask = INTR_STATUS0__LOAD_COMP;
|
||||
|
@ -1145,32 +1145,32 @@ static int denali_send_pipeline_cmd(struct denali_nand_info *denali, bool ecc_en
|
|||
|
||||
|
||||
/* clear interrupts */
|
||||
clear_interrupts(denali);
|
||||
clear_interrupts(denali);
|
||||
|
||||
addr = BANK(denali->flash_bank) | denali->page;
|
||||
|
||||
if (op == DENALI_WRITE && access_type != SPARE_ACCESS)
|
||||
{
|
||||
cmd = MODE_01 | addr;
|
||||
cmd = MODE_01 | addr;
|
||||
denali_write32(cmd, denali->flash_mem);
|
||||
}
|
||||
else if (op == DENALI_WRITE && access_type == SPARE_ACCESS)
|
||||
{
|
||||
/* read spare area */
|
||||
cmd = MODE_10 | addr;
|
||||
cmd = MODE_10 | addr;
|
||||
index_addr(denali, (uint32_t)cmd, access_type);
|
||||
|
||||
cmd = MODE_01 | addr;
|
||||
cmd = MODE_01 | addr;
|
||||
denali_write32(cmd, denali->flash_mem);
|
||||
}
|
||||
else if (op == DENALI_READ)
|
||||
{
|
||||
/* setup page read request for access type */
|
||||
cmd = MODE_10 | addr;
|
||||
cmd = MODE_10 | addr;
|
||||
index_addr(denali, (uint32_t)cmd, access_type);
|
||||
|
||||
/* page 33 of the NAND controller spec indicates we should not
|
||||
use the pipeline commands in Spare area only mode. So we
|
||||
use the pipeline commands in Spare area only mode. So we
|
||||
don't.
|
||||
*/
|
||||
if (access_type == SPARE_ACCESS)
|
||||
|
@ -1181,8 +1181,8 @@ static int denali_send_pipeline_cmd(struct denali_nand_info *denali, bool ecc_en
|
|||
else
|
||||
{
|
||||
index_addr(denali, (uint32_t)cmd, 0x2000 | op | page_count);
|
||||
|
||||
/* wait for command to be accepted
|
||||
|
||||
/* wait for command to be accepted
|
||||
* can always use status0 bit as the mask is identical for each
|
||||
* bank. */
|
||||
irq_status = wait_for_irq(denali, irq_mask);
|
||||
|
@ -1204,13 +1204,13 @@ static int denali_send_pipeline_cmd(struct denali_nand_info *denali, bool ecc_en
|
|||
}
|
||||
|
||||
/* helper function that simply writes a buffer to the flash */
|
||||
static int write_data_to_flash_mem(struct denali_nand_info *denali, const uint8_t *buf,
|
||||
int len)
|
||||
static int write_data_to_flash_mem(struct denali_nand_info *denali, const uint8_t *buf,
|
||||
int len)
|
||||
{
|
||||
uint32_t i = 0, *buf32;
|
||||
|
||||
/* verify that the len is a multiple of 4. see comment in
|
||||
* read_data_from_flash_mem() */
|
||||
/* verify that the len is a multiple of 4. see comment in
|
||||
* read_data_from_flash_mem() */
|
||||
BUG_ON((len % 4) != 0);
|
||||
|
||||
/* write the data to the flash memory */
|
||||
|
@ -1219,21 +1219,20 @@ static int write_data_to_flash_mem(struct denali_nand_info *denali, const uint8_
|
|||
{
|
||||
denali_write32(*buf32++, denali->flash_mem + 0x10);
|
||||
}
|
||||
return i*4; /* intent is to return the number of bytes read */
|
||||
return i*4; /* intent is to return the number of bytes read */
|
||||
}
|
||||
|
||||
/* helper function that simply reads a buffer from the flash */
|
||||
static int read_data_from_flash_mem(struct denali_nand_info *denali, uint8_t *buf,
|
||||
static int read_data_from_flash_mem(struct denali_nand_info *denali, uint8_t *buf,
|
||||
int len)
|
||||
{
|
||||
uint32_t i = 0, *buf32;
|
||||
|
||||
/* we assume that len will be a multiple of 4, if not
|
||||
* it would be nice to know about it ASAP rather than
|
||||
* have random failures...
|
||||
*
|
||||
* This assumption is based on the fact that this
|
||||
* function is designed to be used to read flash pages,
|
||||
* have random failures...
|
||||
* This assumption is based on the fact that this
|
||||
* function is designed to be used to read flash pages,
|
||||
* which are typically multiples of 4...
|
||||
*/
|
||||
|
||||
|
@ -1245,7 +1244,7 @@ static int read_data_from_flash_mem(struct denali_nand_info *denali, uint8_t *bu
|
|||
{
|
||||
*buf32++ = ioread32(denali->flash_mem + 0x10);
|
||||
}
|
||||
return i*4; /* intent is to return the number of bytes read */
|
||||
return i*4; /* intent is to return the number of bytes read */
|
||||
}
|
||||
|
||||
/* writes OOB data to the device */
|
||||
|
@ -1253,14 +1252,14 @@ static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
|
|||
{
|
||||
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
||||
uint32_t irq_status = 0;
|
||||
uint32_t irq_mask = INTR_STATUS0__PROGRAM_COMP |
|
||||
uint32_t irq_mask = INTR_STATUS0__PROGRAM_COMP |
|
||||
INTR_STATUS0__PROGRAM_FAIL;
|
||||
int status = 0;
|
||||
|
||||
denali->page = page;
|
||||
|
||||
if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
|
||||
DENALI_WRITE) == PASS)
|
||||
if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
|
||||
DENALI_WRITE) == PASS)
|
||||
{
|
||||
write_data_to_flash_mem(denali, buf, mtd->oobsize);
|
||||
|
||||
|
@ -1271,7 +1270,7 @@ static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
|
|||
spin_unlock_irq(&denali->irq_lock);
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
/* wait for operation to complete */
|
||||
irq_status = wait_for_irq(denali, irq_mask);
|
||||
|
||||
|
@ -1281,10 +1280,10 @@ static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
|
|||
status = -EIO;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
else
|
||||
{
|
||||
printk(KERN_ERR "unable to send pipeline command\n");
|
||||
status = -EIO;
|
||||
status = -EIO;
|
||||
}
|
||||
return status;
|
||||
}
|
||||
|
@ -1300,12 +1299,12 @@ static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
|
|||
#if DEBUG_DENALI
|
||||
printk("read_oob %d\n", page);
|
||||
#endif
|
||||
if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
|
||||
DENALI_READ) == PASS)
|
||||
if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
|
||||
DENALI_READ) == PASS)
|
||||
{
|
||||
read_data_from_flash_mem(denali, buf, mtd->oobsize);
|
||||
read_data_from_flash_mem(denali, buf, mtd->oobsize);
|
||||
|
||||
/* wait for command to be accepted
|
||||
/* wait for command to be accepted
|
||||
* can always use status0 bit as the mask is identical for each
|
||||
* bank. */
|
||||
irq_status = wait_for_irq(denali, irq_mask);
|
||||
|
@ -1319,10 +1318,10 @@ static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
|
|||
* instability with the controller if you do a block erase
|
||||
* and the last transaction was a SPARE_ACCESS. Block erase
|
||||
* is reliable (according to the MTD test infrastructure)
|
||||
* if you are in MAIN_ACCESS.
|
||||
* if you are in MAIN_ACCESS.
|
||||
*/
|
||||
addr = BANK(denali->flash_bank) | denali->page;
|
||||
cmd = MODE_10 | addr;
|
||||
cmd = MODE_10 | addr;
|
||||
index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);
|
||||
|
||||
#if DEBUG_DENALI
|
||||
|
@ -1334,14 +1333,14 @@ static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
|
|||
}
|
||||
}
|
||||
|
||||
/* this function examines buffers to see if they contain data that
|
||||
/* this function examines buffers to see if they contain data that
|
||||
* indicate that the buffer is part of an erased region of flash.
|
||||
*/
|
||||
bool is_erased(uint8_t *buf, int len)
|
||||
{
|
||||
int i = 0;
|
||||
for (i = 0; i < len; i++)
|
||||
{
|
||||
{
|
||||
if (buf[i] != 0xFF)
|
||||
{
|
||||
return false;
|
||||
|
@ -1358,7 +1357,7 @@ bool is_erased(uint8_t *buf, int len)
|
|||
#define ECC_ERR_DEVICE(x) ((x) & ERR_CORRECTION_INFO__DEVICE_NR >> 8)
|
||||
#define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
|
||||
|
||||
static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
|
||||
static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
|
||||
uint8_t *oobbuf, uint32_t irq_status)
|
||||
{
|
||||
bool check_erased_page = false;
|
||||
|
@ -1370,27 +1369,27 @@ static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
|
|||
uint32_t err_byte = 0, err_sector = 0, err_device = 0;
|
||||
uint32_t err_correction_value = 0;
|
||||
|
||||
do
|
||||
do
|
||||
{
|
||||
err_address = ioread32(denali->flash_reg +
|
||||
err_address = ioread32(denali->flash_reg +
|
||||
ECC_ERROR_ADDRESS);
|
||||
err_sector = ECC_SECTOR(err_address);
|
||||
err_byte = ECC_BYTE(err_address);
|
||||
|
||||
|
||||
err_correction_info = ioread32(denali->flash_reg +
|
||||
err_correction_info = ioread32(denali->flash_reg +
|
||||
ERR_CORRECTION_INFO);
|
||||
err_correction_value =
|
||||
err_correction_value =
|
||||
ECC_CORRECTION_VALUE(err_correction_info);
|
||||
err_device = ECC_ERR_DEVICE(err_correction_info);
|
||||
|
||||
if (ECC_ERROR_CORRECTABLE(err_correction_info))
|
||||
{
|
||||
/* offset in our buffer is computed as:
|
||||
sector number * sector size + offset in
|
||||
sector number * sector size + offset in
|
||||
sector
|
||||
*/
|
||||
int offset = err_sector * ECC_SECTOR_SIZE +
|
||||
int offset = err_sector * ECC_SECTOR_SIZE +
|
||||
err_byte;
|
||||
if (offset < denali->mtd.writesize)
|
||||
{
|
||||
|
@ -1407,15 +1406,15 @@ static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
|
|||
}
|
||||
else
|
||||
{
|
||||
/* if the error is not correctable, need to
|
||||
/* if the error is not correctable, need to
|
||||
* look at the page to see if it is an erased page.
|
||||
* if so, then it's not a real ECC error */
|
||||
* if so, then it's not a real ECC error */
|
||||
check_erased_page = true;
|
||||
}
|
||||
|
||||
#if DEBUG_DENALI
|
||||
#if DEBUG_DENALI
|
||||
printk("Detected ECC error in page %d: err_addr = 0x%08x,"
|
||||
" info to fix is 0x%08x\n", denali->page, err_address,
|
||||
" info to fix is 0x%08x\n", denali->page, err_address,
|
||||
err_correction_info);
|
||||
#endif
|
||||
} while (!ECC_LAST_ERR(err_correction_info));
|
||||
|
@ -1458,9 +1457,9 @@ static void denali_setup_dma(struct denali_nand_info *denali, int op)
|
|||
index_addr(denali, mode | 0x14000, 0x2400);
|
||||
}
|
||||
|
||||
/* writes a page. user specifies type, and this function handles the
|
||||
/* writes a page. user specifies type, and this function handles the
|
||||
configuration details. */
|
||||
static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
|
||||
static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
|
||||
const uint8_t *buf, bool raw_xfer)
|
||||
{
|
||||
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
||||
|
@ -1470,7 +1469,7 @@ static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
|
|||
size_t size = denali->mtd.writesize + denali->mtd.oobsize;
|
||||
|
||||
uint32_t irq_status = 0;
|
||||
uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP |
|
||||
uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP |
|
||||
INTR_STATUS0__PROGRAM_FAIL;
|
||||
|
||||
/* if it is a raw xfer, we want to disable ecc, and send
|
||||
|
@ -1486,15 +1485,15 @@ static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
|
|||
if (raw_xfer)
|
||||
{
|
||||
/* transfer the data to the spare area */
|
||||
memcpy(denali->buf.buf + mtd->writesize,
|
||||
chip->oob_poi,
|
||||
mtd->oobsize);
|
||||
memcpy(denali->buf.buf + mtd->writesize,
|
||||
chip->oob_poi,
|
||||
mtd->oobsize);
|
||||
}
|
||||
|
||||
pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_TODEVICE);
|
||||
|
||||
clear_interrupts(denali);
|
||||
denali_enable_dma(denali, true);
|
||||
denali_enable_dma(denali, true);
|
||||
|
||||
denali_setup_dma(denali, DENALI_WRITE);
|
||||
|
||||
|
@ -1504,53 +1503,53 @@ static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
|
|||
if (irq_status == 0)
|
||||
{
|
||||
printk(KERN_ERR "timeout on write_page (type = %d)\n", raw_xfer);
|
||||
denali->status =
|
||||
(irq_status & INTR_STATUS0__PROGRAM_FAIL) ? NAND_STATUS_FAIL :
|
||||
PASS;
|
||||
denali->status =
|
||||
(irq_status & INTR_STATUS0__PROGRAM_FAIL) ? NAND_STATUS_FAIL :
|
||||
PASS;
|
||||
}
|
||||
|
||||
denali_enable_dma(denali, false);
|
||||
denali_enable_dma(denali, false);
|
||||
pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_TODEVICE);
|
||||
}
|
||||
|
||||
/* NAND core entry points */
|
||||
|
||||
/* this is the callback that the NAND core calls to write a page. Since
|
||||
writing a page with ECC or without is similar, all the work is done
|
||||
/* this is the callback that the NAND core calls to write a page. Since
|
||||
writing a page with ECC or without is similar, all the work is done
|
||||
by write_page above. */
|
||||
static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
|
||||
static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
|
||||
const uint8_t *buf)
|
||||
{
|
||||
/* for regular page writes, we let HW handle all the ECC
|
||||
* data written to the device. */
|
||||
* data written to the device. */
|
||||
write_page(mtd, chip, buf, false);
|
||||
}
|
||||
|
||||
/* This is the callback that the NAND core calls to write a page without ECC.
|
||||
/* This is the callback that the NAND core calls to write a page without ECC.
|
||||
raw access is similiar to ECC page writes, so all the work is done in the
|
||||
write_page() function above.
|
||||
write_page() function above.
|
||||
*/
|
||||
static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
|
||||
static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
|
||||
const uint8_t *buf)
|
||||
{
|
||||
/* for raw page writes, we want to disable ECC and simply write
|
||||
/* for raw page writes, we want to disable ECC and simply write
|
||||
whatever data is in the buffer. */
|
||||
write_page(mtd, chip, buf, true);
|
||||
}
|
||||
|
||||
static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
|
||||
static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
|
||||
int page)
|
||||
{
|
||||
return write_oob_data(mtd, chip->oob_poi, page);
|
||||
return write_oob_data(mtd, chip->oob_poi, page);
|
||||
}
|
||||
|
||||
static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
|
||||
static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
|
||||
int page, int sndcmd)
|
||||
{
|
||||
read_oob_data(mtd, chip->oob_poi, page);
|
||||
|
||||
return 0; /* notify NAND core to send command to
|
||||
* NAND device. */
|
||||
return 0; /* notify NAND core to send command to
|
||||
NAND device. */
|
||||
}
|
||||
|
||||
static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
|
||||
|
@ -1563,7 +1562,7 @@ static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
|
|||
size_t size = denali->mtd.writesize + denali->mtd.oobsize;
|
||||
|
||||
uint32_t irq_status = 0;
|
||||
uint32_t irq_mask = INTR_STATUS0__ECC_TRANSACTION_DONE |
|
||||
uint32_t irq_mask = INTR_STATUS0__ECC_TRANSACTION_DONE |
|
||||
INTR_STATUS0__ECC_ERR;
|
||||
bool check_erased_page = false;
|
||||
|
||||
|
@ -1581,7 +1580,7 @@ static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
|
|||
pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
|
||||
|
||||
memcpy(buf, denali->buf.buf, mtd->writesize);
|
||||
|
||||
|
||||
check_erased_page = handle_ecc(denali, buf, chip->oob_poi, irq_status);
|
||||
denali_enable_dma(denali, false);
|
||||
|
||||
|
@ -1600,7 +1599,7 @@ static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
|
|||
{
|
||||
denali->mtd.ecc_stats.failed++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
@ -1616,7 +1615,7 @@ static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
|
|||
|
||||
uint32_t irq_status = 0;
|
||||
uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP;
|
||||
|
||||
|
||||
setup_ecc_for_xfer(denali, false, true);
|
||||
denali_enable_dma(denali, true);
|
||||
|
||||
|
@ -1687,21 +1686,21 @@ static void denali_erase(struct mtd_info *mtd, int page)
|
|||
printk("erase page: %d\n", page);
|
||||
#endif
|
||||
/* clear interrupts */
|
||||
clear_interrupts(denali);
|
||||
clear_interrupts(denali);
|
||||
|
||||
/* setup page read request for access type */
|
||||
cmd = MODE_10 | BANK(denali->flash_bank) | page;
|
||||
index_addr(denali, (uint32_t)cmd, 0x1);
|
||||
|
||||
/* wait for erase to complete or failure to occur */
|
||||
irq_status = wait_for_irq(denali, INTR_STATUS0__ERASE_COMP |
|
||||
irq_status = wait_for_irq(denali, INTR_STATUS0__ERASE_COMP |
|
||||
INTR_STATUS0__ERASE_FAIL);
|
||||
|
||||
denali->status = (irq_status & INTR_STATUS0__ERASE_FAIL) ? NAND_STATUS_FAIL :
|
||||
denali->status = (irq_status & INTR_STATUS0__ERASE_FAIL) ? NAND_STATUS_FAIL :
|
||||
PASS;
|
||||
}
|
||||
|
||||
static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
|
||||
static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
|
||||
int page)
|
||||
{
|
||||
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
||||
|
@ -1710,7 +1709,7 @@ static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
|
|||
printk("cmdfunc: 0x%x %d %d\n", cmd, col, page);
|
||||
#endif
|
||||
switch (cmd)
|
||||
{
|
||||
{
|
||||
case NAND_CMD_PAGEPROG:
|
||||
break;
|
||||
case NAND_CMD_STATUS:
|
||||
|
@ -1720,19 +1719,19 @@ static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
|
|||
reset_buf(denali);
|
||||
if (denali->flash_bank < denali->total_used_banks)
|
||||
{
|
||||
/* write manufacturer information into nand
|
||||
/* write manufacturer information into nand
|
||||
buffer for NAND subsystem to fetch.
|
||||
*/
|
||||
write_byte_to_buf(denali, denali->dev_info.wDeviceMaker);
|
||||
write_byte_to_buf(denali, denali->dev_info.wDeviceID);
|
||||
write_byte_to_buf(denali, denali->dev_info.bDeviceParam0);
|
||||
write_byte_to_buf(denali, denali->dev_info.bDeviceParam1);
|
||||
write_byte_to_buf(denali, denali->dev_info.bDeviceParam2);
|
||||
*/
|
||||
write_byte_to_buf(denali, denali->dev_info.wDeviceMaker);
|
||||
write_byte_to_buf(denali, denali->dev_info.wDeviceID);
|
||||
write_byte_to_buf(denali, denali->dev_info.bDeviceParam0);
|
||||
write_byte_to_buf(denali, denali->dev_info.bDeviceParam1);
|
||||
write_byte_to_buf(denali, denali->dev_info.bDeviceParam2);
|
||||
}
|
||||
else
|
||||
else
|
||||
{
|
||||
int i;
|
||||
for (i = 0; i < 5; i++)
|
||||
for (i = 0; i < 5; i++)
|
||||
write_byte_to_buf(denali, 0xff);
|
||||
}
|
||||
break;
|
||||
|
@ -1753,7 +1752,7 @@ static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
|
|||
}
|
||||
|
||||
/* stubs for ECC functions not used by the NAND core */
|
||||
static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
|
||||
static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
|
||||
uint8_t *ecc_code)
|
||||
{
|
||||
printk(KERN_ERR "denali_ecc_calculate called unexpectedly\n");
|
||||
|
@ -1761,7 +1760,7 @@ static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
|
|||
return -EIO;
|
||||
}
|
||||
|
||||
static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
|
||||
static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
|
||||
uint8_t *read_ecc, uint8_t *calc_ecc)
|
||||
{
|
||||
printk(KERN_ERR "denali_ecc_correct called unexpectedly\n");
|
||||
|
@ -1797,9 +1796,9 @@ static void denali_hw_init(struct denali_nand_info *denali)
|
|||
static struct nand_ecclayout nand_oob_slc = {
|
||||
.eccbytes = 4,
|
||||
.eccpos = { 0, 1, 2, 3 }, /* not used */
|
||||
.oobfree = {{
|
||||
.offset = ECC_BYTES_SLC,
|
||||
.length = 64 - ECC_BYTES_SLC
|
||||
.oobfree = {{
|
||||
.offset = ECC_BYTES_SLC,
|
||||
.length = 64 - ECC_BYTES_SLC
|
||||
}}
|
||||
};
|
||||
|
||||
|
@ -1807,9 +1806,9 @@ static struct nand_ecclayout nand_oob_slc = {
|
|||
static struct nand_ecclayout nand_oob_mlc_14bit = {
|
||||
.eccbytes = 14,
|
||||
.eccpos = { 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13 }, /* not used */
|
||||
.oobfree = {{
|
||||
.offset = ECC_BYTES_MLC,
|
||||
.length = 64 - ECC_BYTES_MLC
|
||||
.oobfree = {{
|
||||
.offset = ECC_BYTES_MLC,
|
||||
.length = 64 - ECC_BYTES_MLC
|
||||
}}
|
||||
};
|
||||
|
||||
|
@ -1842,12 +1841,12 @@ void denali_drv_init(struct denali_nand_info *denali)
|
|||
denali->idx = 0;
|
||||
|
||||
/* setup interrupt handler */
|
||||
/* the completion object will be used to notify
|
||||
/* the completion object will be used to notify
|
||||
* the callee that the interrupt is done */
|
||||
init_completion(&denali->complete);
|
||||
|
||||
/* the spinlock will be used to synchronize the ISR
|
||||
* with any element that might be access shared
|
||||
* with any element that might be access shared
|
||||
* data (interrupt status) */
|
||||
spin_lock_init(&denali->irq_lock);
|
||||
|
||||
|
@ -1880,9 +1879,9 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
|
|||
}
|
||||
|
||||
if (id->driver_data == INTEL_CE4100) {
|
||||
/* Due to a silicon limitation, we can only support
|
||||
* ONFI timing mode 1 and below.
|
||||
*/
|
||||
/* Due to a silicon limitation, we can only support
|
||||
* ONFI timing mode 1 and below.
|
||||
*/
|
||||
if (onfi_timing_mode < -1 || onfi_timing_mode > 1)
|
||||
{
|
||||
printk("Intel CE4100 only supports ONFI timing mode 1 "
|
||||
|
@ -1918,7 +1917,7 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
|
|||
printk(KERN_ERR "Spectra: no usable DMA configuration\n");
|
||||
goto failed_enable;
|
||||
}
|
||||
denali->buf.dma_buf = pci_map_single(dev, denali->buf.buf, DENALI_BUF_SIZE,
|
||||
denali->buf.dma_buf = pci_map_single(dev, denali->buf.buf, DENALI_BUF_SIZE,
|
||||
PCI_DMA_BIDIRECTIONAL);
|
||||
|
||||
if (pci_dma_mapping_error(dev, denali->buf.dma_buf))
|
||||
|
@ -1976,8 +1975,8 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
|
|||
|
||||
NAND_Read_Device_ID(denali);
|
||||
|
||||
/* MTD supported page sizes vary by kernel. We validate our
|
||||
kernel supports the device here.
|
||||
/* MTD supported page sizes vary by kernel. We validate our
|
||||
* kernel supports the device here.
|
||||
*/
|
||||
if (denali->dev_info.wPageSize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE)
|
||||
{
|
||||
|
@ -2009,18 +2008,18 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
|
|||
denali->nand.read_byte = denali_read_byte;
|
||||
denali->nand.waitfunc = denali_waitfunc;
|
||||
|
||||
/* scan for NAND devices attached to the controller
|
||||
/* scan for NAND devices attached to the controller
|
||||
* this is the first stage in a two step process to register
|
||||
* with the nand subsystem */
|
||||
* with the nand subsystem */
|
||||
if (nand_scan_ident(&denali->mtd, LLD_MAX_FLASH_BANKS, NULL))
|
||||
{
|
||||
ret = -ENXIO;
|
||||
goto failed_nand;
|
||||
}
|
||||
|
||||
/* second stage of the NAND scan
|
||||
* this stage requires information regarding ECC and
|
||||
* bad block management. */
|
||||
|
||||
/* second stage of the NAND scan
|
||||
* this stage requires information regarding ECC and
|
||||
* bad block management. */
|
||||
|
||||
/* Bad block management */
|
||||
denali->nand.bbt_td = &bbt_main_descr;
|
||||
|
@ -2041,9 +2040,9 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
|
|||
denali->nand.ecc.bytes = ECC_BYTES_SLC;
|
||||
}
|
||||
|
||||
/* These functions are required by the NAND core framework, otherwise,
|
||||
the NAND core will assert. However, we don't need them, so we'll stub
|
||||
them out. */
|
||||
/* These functions are required by the NAND core framework, otherwise,
|
||||
* the NAND core will assert. However, we don't need them, so we'll stub
|
||||
* them out. */
|
||||
denali->nand.ecc.calculate = denali_ecc_calculate;
|
||||
denali->nand.ecc.correct = denali_ecc_correct;
|
||||
denali->nand.ecc.hwctl = denali_ecc_hwctl;
|
||||
|
@ -2079,7 +2078,7 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
|
|||
failed_remap_csr:
|
||||
pci_release_regions(dev);
|
||||
failed_req_csr:
|
||||
pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
|
||||
pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
|
||||
PCI_DMA_BIDIRECTIONAL);
|
||||
failed_enable:
|
||||
kfree(denali);
|
||||
|
@ -2103,7 +2102,7 @@ static void denali_pci_remove(struct pci_dev *dev)
|
|||
iounmap(denali->flash_mem);
|
||||
pci_release_regions(dev);
|
||||
pci_disable_device(dev);
|
||||
pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
|
||||
pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
|
||||
PCI_DMA_BIDIRECTIONAL);
|
||||
pci_set_drvdata(dev, NULL);
|
||||
kfree(denali);
|
||||
|
|
Loading…
Reference in New Issue