mirror of https://gitee.com/openkylin/linux.git
Merge branch 'slab/for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux
* 'slab/for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux: slub: disallow changing cpu_partial from userspace for debug caches slub: add missed accounting slub: Extract get_freelist from __slab_alloc slub: Switch per cpu partial page support off for debugging slub: fix a possible memleak in __slab_alloc() slub: fix slub_max_order Documentation slub: add missed accounting slab: add taint flag outputting to debug paths. slub: add taint flag outputting to debug paths slab: introduce slab_max_order kernel parameter slab: rename slab_break_gfp_order to slab_max_order
This commit is contained in:
commit
6296e5d3c0
|
@ -2395,6 +2395,12 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
|
|||
|
||||
slram= [HW,MTD]
|
||||
|
||||
slab_max_order= [MM, SLAB]
|
||||
Determines the maximum allowed order for slabs.
|
||||
A high setting may cause OOMs due to memory
|
||||
fragmentation. Defaults to 1 for systems with
|
||||
more than 32MB of RAM, 0 otherwise.
|
||||
|
||||
slub_debug[=options[,slabs]] [MM, SLUB]
|
||||
Enabling slub_debug allows one to determine the
|
||||
culprit if slab objects become corrupted. Enabling
|
||||
|
|
|
@ -117,7 +117,7 @@ can be influenced by kernel parameters:
|
|||
|
||||
slub_min_objects=x (default 4)
|
||||
slub_min_order=x (default 0)
|
||||
slub_max_order=x (default 1)
|
||||
slub_max_order=x (default 3 (PAGE_ALLOC_COSTLY_ORDER))
|
||||
|
||||
slub_min_objects allows to specify how many objects must at least fit
|
||||
into one slab in order for the allocation order to be acceptable.
|
||||
|
|
39
mm/slab.c
39
mm/slab.c
|
@ -481,11 +481,13 @@ EXPORT_SYMBOL(slab_buffer_size);
|
|||
#endif
|
||||
|
||||
/*
|
||||
* Do not go above this order unless 0 objects fit into the slab.
|
||||
* Do not go above this order unless 0 objects fit into the slab or
|
||||
* overridden on the command line.
|
||||
*/
|
||||
#define BREAK_GFP_ORDER_HI 1
|
||||
#define BREAK_GFP_ORDER_LO 0
|
||||
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
|
||||
#define SLAB_MAX_ORDER_HI 1
|
||||
#define SLAB_MAX_ORDER_LO 0
|
||||
static int slab_max_order = SLAB_MAX_ORDER_LO;
|
||||
static bool slab_max_order_set __initdata;
|
||||
|
||||
/*
|
||||
* Functions for storing/retrieving the cachep and or slab from the page
|
||||
|
@ -854,6 +856,17 @@ static int __init noaliencache_setup(char *s)
|
|||
}
|
||||
__setup("noaliencache", noaliencache_setup);
|
||||
|
||||
static int __init slab_max_order_setup(char *str)
|
||||
{
|
||||
get_option(&str, &slab_max_order);
|
||||
slab_max_order = slab_max_order < 0 ? 0 :
|
||||
min(slab_max_order, MAX_ORDER - 1);
|
||||
slab_max_order_set = true;
|
||||
|
||||
return 1;
|
||||
}
|
||||
__setup("slab_max_order=", slab_max_order_setup);
|
||||
|
||||
#ifdef CONFIG_NUMA
|
||||
/*
|
||||
* Special reaping functions for NUMA systems called from cache_reap().
|
||||
|
@ -1502,10 +1515,11 @@ void __init kmem_cache_init(void)
|
|||
|
||||
/*
|
||||
* Fragmentation resistance on low memory - only use bigger
|
||||
* page orders on machines with more than 32MB of memory.
|
||||
* page orders on machines with more than 32MB of memory if
|
||||
* not overridden on the command line.
|
||||
*/
|
||||
if (totalram_pages > (32 << 20) >> PAGE_SHIFT)
|
||||
slab_break_gfp_order = BREAK_GFP_ORDER_HI;
|
||||
if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
|
||||
slab_max_order = SLAB_MAX_ORDER_HI;
|
||||
|
||||
/* Bootstrap is tricky, because several objects are allocated
|
||||
* from caches that do not exist yet:
|
||||
|
@ -1932,8 +1946,8 @@ static void check_poison_obj(struct kmem_cache *cachep, void *objp)
|
|||
/* Print header */
|
||||
if (lines == 0) {
|
||||
printk(KERN_ERR
|
||||
"Slab corruption: %s start=%p, len=%d\n",
|
||||
cachep->name, realobj, size);
|
||||
"Slab corruption (%s): %s start=%p, len=%d\n",
|
||||
print_tainted(), cachep->name, realobj, size);
|
||||
print_objinfo(cachep, objp, 0);
|
||||
}
|
||||
/* Hexdump the affected line */
|
||||
|
@ -2117,7 +2131,7 @@ static size_t calculate_slab_order(struct kmem_cache *cachep,
|
|||
* Large number of objects is good, but very large slabs are
|
||||
* currently bad for the gfp()s.
|
||||
*/
|
||||
if (gfporder >= slab_break_gfp_order)
|
||||
if (gfporder >= slab_max_order)
|
||||
break;
|
||||
|
||||
/*
|
||||
|
@ -3042,8 +3056,9 @@ static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
|
|||
if (entries != cachep->num - slabp->inuse) {
|
||||
bad:
|
||||
printk(KERN_ERR "slab: Internal list corruption detected in "
|
||||
"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
|
||||
cachep->name, cachep->num, slabp, slabp->inuse);
|
||||
"cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
|
||||
cachep->name, cachep->num, slabp, slabp->inuse,
|
||||
print_tainted());
|
||||
print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
|
||||
sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
|
||||
1);
|
||||
|
|
77
mm/slub.c
77
mm/slub.c
|
@ -570,7 +570,7 @@ static void slab_bug(struct kmem_cache *s, char *fmt, ...)
|
|||
va_end(args);
|
||||
printk(KERN_ERR "========================================"
|
||||
"=====================================\n");
|
||||
printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
|
||||
printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
|
||||
printk(KERN_ERR "----------------------------------------"
|
||||
"-------------------------------------\n\n");
|
||||
}
|
||||
|
@ -1901,11 +1901,14 @@ static void unfreeze_partials(struct kmem_cache *s)
|
|||
}
|
||||
|
||||
if (l != m) {
|
||||
if (l == M_PARTIAL)
|
||||
if (l == M_PARTIAL) {
|
||||
remove_partial(n, page);
|
||||
else
|
||||
stat(s, FREE_REMOVE_PARTIAL);
|
||||
} else {
|
||||
add_partial(n, page,
|
||||
DEACTIVATE_TO_TAIL);
|
||||
stat(s, FREE_ADD_PARTIAL);
|
||||
}
|
||||
|
||||
l = m;
|
||||
}
|
||||
|
@ -2123,6 +2126,37 @@ static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
|
|||
return object;
|
||||
}
|
||||
|
||||
/*
|
||||
* Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
|
||||
* or deactivate the page.
|
||||
*
|
||||
* The page is still frozen if the return value is not NULL.
|
||||
*
|
||||
* If this function returns NULL then the page has been unfrozen.
|
||||
*/
|
||||
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
|
||||
{
|
||||
struct page new;
|
||||
unsigned long counters;
|
||||
void *freelist;
|
||||
|
||||
do {
|
||||
freelist = page->freelist;
|
||||
counters = page->counters;
|
||||
new.counters = counters;
|
||||
VM_BUG_ON(!new.frozen);
|
||||
|
||||
new.inuse = page->objects;
|
||||
new.frozen = freelist != NULL;
|
||||
|
||||
} while (!cmpxchg_double_slab(s, page,
|
||||
freelist, counters,
|
||||
NULL, new.counters,
|
||||
"get_freelist"));
|
||||
|
||||
return freelist;
|
||||
}
|
||||
|
||||
/*
|
||||
* Slow path. The lockless freelist is empty or we need to perform
|
||||
* debugging duties.
|
||||
|
@ -2144,8 +2178,6 @@ static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
|
|||
{
|
||||
void **object;
|
||||
unsigned long flags;
|
||||
struct page new;
|
||||
unsigned long counters;
|
||||
|
||||
local_irq_save(flags);
|
||||
#ifdef CONFIG_PREEMPT
|
||||
|
@ -2166,31 +2198,14 @@ static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
|
|||
goto new_slab;
|
||||
}
|
||||
|
||||
/* must check again c->freelist in case of cpu migration or IRQ */
|
||||
object = c->freelist;
|
||||
if (object)
|
||||
goto load_freelist;
|
||||
|
||||
stat(s, ALLOC_SLOWPATH);
|
||||
|
||||
do {
|
||||
object = c->page->freelist;
|
||||
counters = c->page->counters;
|
||||
new.counters = counters;
|
||||
VM_BUG_ON(!new.frozen);
|
||||
|
||||
/*
|
||||
* If there is no object left then we use this loop to
|
||||
* deactivate the slab which is simple since no objects
|
||||
* are left in the slab and therefore we do not need to
|
||||
* put the page back onto the partial list.
|
||||
*
|
||||
* If there are objects left then we retrieve them
|
||||
* and use them to refill the per cpu queue.
|
||||
*/
|
||||
|
||||
new.inuse = c->page->objects;
|
||||
new.frozen = object != NULL;
|
||||
|
||||
} while (!__cmpxchg_double_slab(s, c->page,
|
||||
object, counters,
|
||||
NULL, new.counters,
|
||||
"__slab_alloc"));
|
||||
object = get_freelist(s, c->page);
|
||||
|
||||
if (!object) {
|
||||
c->page = NULL;
|
||||
|
@ -3028,7 +3043,9 @@ static int kmem_cache_open(struct kmem_cache *s,
|
|||
* per node list when we run out of per cpu objects. We only fetch 50%
|
||||
* to keep some capacity around for frees.
|
||||
*/
|
||||
if (s->size >= PAGE_SIZE)
|
||||
if (kmem_cache_debug(s))
|
||||
s->cpu_partial = 0;
|
||||
else if (s->size >= PAGE_SIZE)
|
||||
s->cpu_partial = 2;
|
||||
else if (s->size >= 1024)
|
||||
s->cpu_partial = 6;
|
||||
|
@ -4637,6 +4654,8 @@ static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
|
|||
err = strict_strtoul(buf, 10, &objects);
|
||||
if (err)
|
||||
return err;
|
||||
if (objects && kmem_cache_debug(s))
|
||||
return -EINVAL;
|
||||
|
||||
s->cpu_partial = objects;
|
||||
flush_all(s);
|
||||
|
|
Loading…
Reference in New Issue