mirror of https://gitee.com/openkylin/linux.git
drm/i915: extract intel_dp_init_panel_power_sequencer
That thing has grown way too big already. Also move around a comment to the right spot. Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org> Tested-by: Paulo Zanoni <paulo.r.zanoni@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
This commit is contained in:
parent
6b3ec1c9fb
commit
67a5456655
|
@ -2522,6 +2522,118 @@ intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connect
|
|||
intel_attach_broadcast_rgb_property(connector);
|
||||
}
|
||||
|
||||
static void
|
||||
intel_dp_init_panel_power_sequencer(struct drm_device *dev,
|
||||
struct intel_dp *intel_dp)
|
||||
{
|
||||
struct drm_i915_private *dev_priv = dev->dev_private;
|
||||
struct edp_power_seq cur, vbt, spec, final;
|
||||
u32 pp_on, pp_off, pp_div, pp;
|
||||
|
||||
/* Workaround: Need to write PP_CONTROL with the unlock key as
|
||||
* the very first thing. */
|
||||
pp = ironlake_get_pp_control(dev_priv);
|
||||
I915_WRITE(PCH_PP_CONTROL, pp);
|
||||
|
||||
pp_on = I915_READ(PCH_PP_ON_DELAYS);
|
||||
pp_off = I915_READ(PCH_PP_OFF_DELAYS);
|
||||
pp_div = I915_READ(PCH_PP_DIVISOR);
|
||||
|
||||
/* Pull timing values out of registers */
|
||||
cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
|
||||
PANEL_POWER_UP_DELAY_SHIFT;
|
||||
|
||||
cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
|
||||
PANEL_LIGHT_ON_DELAY_SHIFT;
|
||||
|
||||
cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
|
||||
PANEL_LIGHT_OFF_DELAY_SHIFT;
|
||||
|
||||
cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
|
||||
PANEL_POWER_DOWN_DELAY_SHIFT;
|
||||
|
||||
cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
|
||||
PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
|
||||
|
||||
DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
|
||||
cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
|
||||
|
||||
vbt = dev_priv->edp.pps;
|
||||
|
||||
/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
|
||||
* our hw here, which are all in 100usec. */
|
||||
spec.t1_t3 = 210 * 10;
|
||||
spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
|
||||
spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
|
||||
spec.t10 = 500 * 10;
|
||||
/* This one is special and actually in units of 100ms, but zero
|
||||
* based in the hw (so we need to add 100 ms). But the sw vbt
|
||||
* table multiplies it with 1000 to make it in units of 100usec,
|
||||
* too. */
|
||||
spec.t11_t12 = (510 + 100) * 10;
|
||||
|
||||
DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
|
||||
vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
|
||||
|
||||
/* Use the max of the register settings and vbt. If both are
|
||||
* unset, fall back to the spec limits. */
|
||||
#define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
|
||||
spec.field : \
|
||||
max(cur.field, vbt.field))
|
||||
assign_final(t1_t3);
|
||||
assign_final(t8);
|
||||
assign_final(t9);
|
||||
assign_final(t10);
|
||||
assign_final(t11_t12);
|
||||
#undef assign_final
|
||||
|
||||
#define get_delay(field) (DIV_ROUND_UP(final.field, 10))
|
||||
intel_dp->panel_power_up_delay = get_delay(t1_t3);
|
||||
intel_dp->backlight_on_delay = get_delay(t8);
|
||||
intel_dp->backlight_off_delay = get_delay(t9);
|
||||
intel_dp->panel_power_down_delay = get_delay(t10);
|
||||
intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
|
||||
#undef get_delay
|
||||
|
||||
/* And finally store the new values in the power sequencer. */
|
||||
pp_on = (final.t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
|
||||
(final.t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
|
||||
pp_off = (final.t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
|
||||
(final.t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
|
||||
/* Compute the divisor for the pp clock, simply match the Bspec
|
||||
* formula. */
|
||||
pp_div = ((100 * intel_pch_rawclk(dev))/2 - 1)
|
||||
<< PP_REFERENCE_DIVIDER_SHIFT;
|
||||
pp_div |= (DIV_ROUND_UP(final.t11_t12, 1000)
|
||||
<< PANEL_POWER_CYCLE_DELAY_SHIFT);
|
||||
|
||||
/* Haswell doesn't have any port selection bits for the panel
|
||||
* power sequencer any more. */
|
||||
if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
|
||||
if (is_cpu_edp(intel_dp))
|
||||
pp_on |= PANEL_POWER_PORT_DP_A;
|
||||
else
|
||||
pp_on |= PANEL_POWER_PORT_DP_D;
|
||||
}
|
||||
|
||||
I915_WRITE(PCH_PP_ON_DELAYS, pp_on);
|
||||
I915_WRITE(PCH_PP_OFF_DELAYS, pp_off);
|
||||
I915_WRITE(PCH_PP_DIVISOR, pp_div);
|
||||
|
||||
|
||||
DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
|
||||
intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
|
||||
intel_dp->panel_power_cycle_delay);
|
||||
|
||||
DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
|
||||
intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
|
||||
|
||||
DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
|
||||
I915_READ(PCH_PP_ON_DELAYS),
|
||||
I915_READ(PCH_PP_OFF_DELAYS),
|
||||
I915_READ(PCH_PP_DIVISOR));
|
||||
}
|
||||
|
||||
void
|
||||
intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
|
||||
{
|
||||
|
@ -2636,117 +2748,12 @@ intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
|
|||
break;
|
||||
}
|
||||
|
||||
/* Cache some DPCD data in the eDP case */
|
||||
if (is_edp(intel_dp)) {
|
||||
struct edp_power_seq cur, vbt, spec, final;
|
||||
u32 pp_on, pp_off, pp_div, pp;
|
||||
|
||||
/* Workaround: Need to write PP_CONTROL with the unlock key as
|
||||
* the very first thing. */
|
||||
pp = ironlake_get_pp_control(dev_priv);
|
||||
I915_WRITE(PCH_PP_CONTROL, pp);
|
||||
|
||||
pp_on = I915_READ(PCH_PP_ON_DELAYS);
|
||||
pp_off = I915_READ(PCH_PP_OFF_DELAYS);
|
||||
pp_div = I915_READ(PCH_PP_DIVISOR);
|
||||
|
||||
/* Pull timing values out of registers */
|
||||
cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
|
||||
PANEL_POWER_UP_DELAY_SHIFT;
|
||||
|
||||
cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
|
||||
PANEL_LIGHT_ON_DELAY_SHIFT;
|
||||
|
||||
cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
|
||||
PANEL_LIGHT_OFF_DELAY_SHIFT;
|
||||
|
||||
cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
|
||||
PANEL_POWER_DOWN_DELAY_SHIFT;
|
||||
|
||||
cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
|
||||
PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
|
||||
|
||||
DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
|
||||
cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
|
||||
|
||||
vbt = dev_priv->edp.pps;
|
||||
|
||||
/* Upper limits from eDP 1.3 spec. Note that we use the clunky
|
||||
* units of our hw here, which are all in 100usec. */
|
||||
spec.t1_t3 = 210 * 10;
|
||||
spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
|
||||
spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
|
||||
spec.t10 = 500 * 10;
|
||||
/* This one is special and actually in units of 100ms, but zero
|
||||
* based in the hw (so we need to add 100 ms). But the sw vbt
|
||||
* table multiplies it with 1000 to make it in units of 100usec,
|
||||
* too. */
|
||||
spec.t11_t12 = (510 + 100) * 10;
|
||||
|
||||
DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
|
||||
vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
|
||||
|
||||
/* Use the max of the register settings and vbt. If both are
|
||||
* unset, fall back to the spec limits. */
|
||||
#define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
|
||||
spec.field : \
|
||||
max(cur.field, vbt.field))
|
||||
assign_final(t1_t3);
|
||||
assign_final(t8);
|
||||
assign_final(t9);
|
||||
assign_final(t10);
|
||||
assign_final(t11_t12);
|
||||
#undef assign_final
|
||||
|
||||
#define get_delay(field) (DIV_ROUND_UP(final.field, 10))
|
||||
intel_dp->panel_power_up_delay = get_delay(t1_t3);
|
||||
intel_dp->backlight_on_delay = get_delay(t8);
|
||||
intel_dp->backlight_off_delay = get_delay(t9);
|
||||
intel_dp->panel_power_down_delay = get_delay(t10);
|
||||
intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
|
||||
#undef get_delay
|
||||
|
||||
/* And finally store the new values in the power sequencer. */
|
||||
pp_on = (final.t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
|
||||
(final.t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
|
||||
pp_off = (final.t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
|
||||
(final.t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
|
||||
/* Compute the divisor for the pp clock, simply match the Bspec
|
||||
* formula. */
|
||||
pp_div = ((100 * intel_pch_rawclk(dev))/2 - 1)
|
||||
<< PP_REFERENCE_DIVIDER_SHIFT;
|
||||
pp_div |= (DIV_ROUND_UP(final.t11_t12, 1000)
|
||||
<< PANEL_POWER_CYCLE_DELAY_SHIFT);
|
||||
|
||||
/* Haswell doesn't have any port selection bits for the panel
|
||||
* power sequence any more. */
|
||||
if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
|
||||
if (is_cpu_edp(intel_dp))
|
||||
pp_on |= PANEL_POWER_PORT_DP_A;
|
||||
else
|
||||
pp_on |= PANEL_POWER_PORT_DP_D;
|
||||
}
|
||||
|
||||
I915_WRITE(PCH_PP_ON_DELAYS, pp_on);
|
||||
I915_WRITE(PCH_PP_OFF_DELAYS, pp_off);
|
||||
I915_WRITE(PCH_PP_DIVISOR, pp_div);
|
||||
|
||||
|
||||
DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
|
||||
intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
|
||||
intel_dp->panel_power_cycle_delay);
|
||||
|
||||
DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
|
||||
intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
|
||||
|
||||
DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
|
||||
I915_READ(PCH_PP_ON_DELAYS),
|
||||
I915_READ(PCH_PP_OFF_DELAYS),
|
||||
I915_READ(PCH_PP_DIVISOR));
|
||||
}
|
||||
if (is_edp(intel_dp))
|
||||
intel_dp_init_panel_power_sequencer(dev, intel_dp);
|
||||
|
||||
intel_dp_i2c_init(intel_dp, intel_connector, name);
|
||||
|
||||
/* Cache DPCD and EDID for edp. */
|
||||
if (is_edp(intel_dp)) {
|
||||
bool ret;
|
||||
struct drm_display_mode *scan;
|
||||
|
|
Loading…
Reference in New Issue