mirror of https://gitee.com/openkylin/linux.git
powerpc/bpf: Remove classical BPF support for PPC32
At the time being, PPC32 has Classical BPF support. The test_bpf module exhibits some failure: test_bpf: #298 LD_IND byte frag jited:1 ret 202 != 66 FAIL (1 times) test_bpf: #299 LD_IND halfword frag jited:1 ret 51958 != 17220 FAIL (1 times) test_bpf: #301 LD_IND halfword mixed head/frag jited:1 ret 51958 != 1305 FAIL (1 times) test_bpf: #303 LD_ABS byte frag jited:1 ret 202 != 66 FAIL (1 times) test_bpf: #304 LD_ABS halfword frag jited:1 ret 51958 != 17220 FAIL (1 times) test_bpf: #306 LD_ABS halfword mixed head/frag jited:1 ret 51958 != 1305 FAIL (1 times) test_bpf: Summary: 371 PASSED, 7 FAILED, [119/366 JIT'ed] Fixing this is not worth the effort. Instead, remove support for classical BPF and prepare for adding Extended BPF support instead. Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/fbc3e4fcc9c8f6131d6c705212530b2aa50149ee.1616430991.git.christophe.leroy@csgroup.eu
This commit is contained in:
parent
c7393a71eb
commit
6944caad78
|
@ -195,7 +195,6 @@ config PPC
|
|||
select HAVE_ARCH_TRACEHOOK
|
||||
select HAVE_ASM_MODVERSIONS
|
||||
select HAVE_C_RECORDMCOUNT
|
||||
select HAVE_CBPF_JIT if !PPC64
|
||||
select HAVE_STACKPROTECTOR if PPC64 && $(cc-option,-mstack-protector-guard=tls -mstack-protector-guard-reg=r13)
|
||||
select HAVE_STACKPROTECTOR if PPC32 && $(cc-option,-mstack-protector-guard=tls -mstack-protector-guard-reg=r2)
|
||||
select HAVE_CONTEXT_TRACKING if PPC64
|
||||
|
|
|
@ -2,8 +2,4 @@
|
|||
#
|
||||
# Arch-specific network modules
|
||||
#
|
||||
ifdef CONFIG_PPC64
|
||||
obj-$(CONFIG_BPF_JIT) += bpf_jit_comp64.o
|
||||
else
|
||||
obj-$(CONFIG_BPF_JIT) += bpf_jit_asm.o bpf_jit_comp.o
|
||||
endif
|
||||
|
|
|
@ -1,139 +0,0 @@
|
|||
/* SPDX-License-Identifier: GPL-2.0-only */
|
||||
/*
|
||||
* bpf_jit32.h: BPF JIT compiler for PPC
|
||||
*
|
||||
* Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
|
||||
*
|
||||
* Split from bpf_jit.h
|
||||
*/
|
||||
#ifndef _BPF_JIT32_H
|
||||
#define _BPF_JIT32_H
|
||||
|
||||
#include <asm/asm-compat.h>
|
||||
#include "bpf_jit.h"
|
||||
|
||||
#ifdef CONFIG_PPC64
|
||||
#define BPF_PPC_STACK_R3_OFF 48
|
||||
#define BPF_PPC_STACK_LOCALS 32
|
||||
#define BPF_PPC_STACK_BASIC (48+64)
|
||||
#define BPF_PPC_STACK_SAVE (18*8)
|
||||
#define BPF_PPC_STACKFRAME (BPF_PPC_STACK_BASIC+BPF_PPC_STACK_LOCALS+ \
|
||||
BPF_PPC_STACK_SAVE)
|
||||
#define BPF_PPC_SLOWPATH_FRAME (48+64)
|
||||
#else
|
||||
#define BPF_PPC_STACK_R3_OFF 24
|
||||
#define BPF_PPC_STACK_LOCALS 16
|
||||
#define BPF_PPC_STACK_BASIC (24+32)
|
||||
#define BPF_PPC_STACK_SAVE (18*4)
|
||||
#define BPF_PPC_STACKFRAME (BPF_PPC_STACK_BASIC+BPF_PPC_STACK_LOCALS+ \
|
||||
BPF_PPC_STACK_SAVE)
|
||||
#define BPF_PPC_SLOWPATH_FRAME (24+32)
|
||||
#endif
|
||||
|
||||
#define REG_SZ (BITS_PER_LONG/8)
|
||||
|
||||
/*
|
||||
* Generated code register usage:
|
||||
*
|
||||
* As normal PPC C ABI (e.g. r1=sp, r2=TOC), with:
|
||||
*
|
||||
* skb r3 (Entry parameter)
|
||||
* A register r4
|
||||
* X register r5
|
||||
* addr param r6
|
||||
* r7-r10 scratch
|
||||
* skb->data r14
|
||||
* skb headlen r15 (skb->len - skb->data_len)
|
||||
* m[0] r16
|
||||
* m[...] ...
|
||||
* m[15] r31
|
||||
*/
|
||||
#define r_skb 3
|
||||
#define r_ret 3
|
||||
#define r_A 4
|
||||
#define r_X 5
|
||||
#define r_addr 6
|
||||
#define r_scratch1 7
|
||||
#define r_scratch2 8
|
||||
#define r_D 14
|
||||
#define r_HL 15
|
||||
#define r_M 16
|
||||
|
||||
#ifndef __ASSEMBLY__
|
||||
|
||||
/*
|
||||
* Assembly helpers from arch/powerpc/net/bpf_jit.S:
|
||||
*/
|
||||
#define DECLARE_LOAD_FUNC(func) \
|
||||
extern u8 func[], func##_negative_offset[], func##_positive_offset[]
|
||||
|
||||
DECLARE_LOAD_FUNC(sk_load_word);
|
||||
DECLARE_LOAD_FUNC(sk_load_half);
|
||||
DECLARE_LOAD_FUNC(sk_load_byte);
|
||||
DECLARE_LOAD_FUNC(sk_load_byte_msh);
|
||||
|
||||
#define PPC_LBZ_OFFS(r, base, i) do { if ((i) < 32768) EMIT(PPC_RAW_LBZ(r, base, i)); \
|
||||
else { EMIT(PPC_RAW_ADDIS(r, base, IMM_HA(i))); \
|
||||
EMIT(PPC_RAW_LBZ(r, r, IMM_L(i))); } } while(0)
|
||||
|
||||
#define PPC_LD_OFFS(r, base, i) do { if ((i) < 32768) EMIT(PPC_RAW_LD(r, base, i)); \
|
||||
else { EMIT(PPC_RAW_ADDIS(r, base, IMM_HA(i))); \
|
||||
EMIT(PPC_RAW_LD(r, r, IMM_L(i))); } } while(0)
|
||||
|
||||
#define PPC_LWZ_OFFS(r, base, i) do { if ((i) < 32768) EMIT(PPC_RAW_LWZ(r, base, i)); \
|
||||
else { EMIT(PPC_RAW_ADDIS(r, base, IMM_HA(i))); \
|
||||
EMIT(PPC_RAW_LWZ(r, r, IMM_L(i))); } } while(0)
|
||||
|
||||
#define PPC_LHZ_OFFS(r, base, i) do { if ((i) < 32768) EMIT(PPC_RAW_LHZ(r, base, i)); \
|
||||
else { EMIT(PPC_RAW_ADDIS(r, base, IMM_HA(i))); \
|
||||
EMIT(PPC_RAW_LHZ(r, r, IMM_L(i))); } } while(0)
|
||||
|
||||
#ifdef CONFIG_PPC64
|
||||
#define PPC_LL_OFFS(r, base, i) do { PPC_LD_OFFS(r, base, i); } while(0)
|
||||
#else
|
||||
#define PPC_LL_OFFS(r, base, i) do { PPC_LWZ_OFFS(r, base, i); } while(0)
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
#ifdef CONFIG_PPC64
|
||||
#define PPC_BPF_LOAD_CPU(r) \
|
||||
do { BUILD_BUG_ON(sizeof_field(struct paca_struct, paca_index) != 2); \
|
||||
PPC_LHZ_OFFS(r, 13, offsetof(struct paca_struct, paca_index)); \
|
||||
} while (0)
|
||||
#else
|
||||
#define PPC_BPF_LOAD_CPU(r) \
|
||||
do { BUILD_BUG_ON(sizeof_field(struct task_struct, cpu) != 4); \
|
||||
PPC_LHZ_OFFS(r, 2, offsetof(struct task_struct, cpu)); \
|
||||
} while(0)
|
||||
#endif
|
||||
#else
|
||||
#define PPC_BPF_LOAD_CPU(r) do { EMIT(PPC_RAW_LI(r, 0)); } while(0)
|
||||
#endif
|
||||
|
||||
#define PPC_LHBRX_OFFS(r, base, i) \
|
||||
do { PPC_LI32(r, i); EMIT(PPC_RAW_LHBRX(r, r, base)); } while(0)
|
||||
#ifdef __LITTLE_ENDIAN__
|
||||
#define PPC_NTOHS_OFFS(r, base, i) PPC_LHBRX_OFFS(r, base, i)
|
||||
#else
|
||||
#define PPC_NTOHS_OFFS(r, base, i) PPC_LHZ_OFFS(r, base, i)
|
||||
#endif
|
||||
|
||||
#define PPC_BPF_LL(r, base, i) do { EMIT(PPC_RAW_LWZ(r, base, i)); } while(0)
|
||||
#define PPC_BPF_STL(r, base, i) do { EMIT(PPC_RAW_STW(r, base, i)); } while(0)
|
||||
#define PPC_BPF_STLU(r, base, i) do { EMIT(PPC_RAW_STWU(r, base, i)); } while(0)
|
||||
|
||||
#define SEEN_DATAREF 0x10000 /* might call external helpers */
|
||||
#define SEEN_XREG 0x20000 /* X reg is used */
|
||||
#define SEEN_MEM 0x40000 /* SEEN_MEM+(1<<n) = use mem[n] for temporary
|
||||
* storage */
|
||||
#define SEEN_MEM_MSK 0x0ffff
|
||||
|
||||
struct codegen_context {
|
||||
unsigned int seen;
|
||||
unsigned int idx;
|
||||
int pc_ret0; /* bpf index of first RET #0 instruction (if any) */
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
|
@ -1,226 +0,0 @@
|
|||
/* SPDX-License-Identifier: GPL-2.0-only */
|
||||
/* bpf_jit.S: Packet/header access helper functions
|
||||
* for PPC64 BPF compiler.
|
||||
*
|
||||
* Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
|
||||
*/
|
||||
|
||||
#include <asm/ppc_asm.h>
|
||||
#include <asm/asm-compat.h>
|
||||
#include "bpf_jit32.h"
|
||||
|
||||
/*
|
||||
* All of these routines are called directly from generated code,
|
||||
* whose register usage is:
|
||||
*
|
||||
* r3 skb
|
||||
* r4,r5 A,X
|
||||
* r6 *** address parameter to helper ***
|
||||
* r7-r10 scratch
|
||||
* r14 skb->data
|
||||
* r15 skb headlen
|
||||
* r16-31 M[]
|
||||
*/
|
||||
|
||||
/*
|
||||
* To consider: These helpers are so small it could be better to just
|
||||
* generate them inline. Inline code can do the simple headlen check
|
||||
* then branch directly to slow_path_XXX if required. (In fact, could
|
||||
* load a spare GPR with the address of slow_path_generic and pass size
|
||||
* as an argument, making the call site a mtlr, li and bllr.)
|
||||
*/
|
||||
.globl sk_load_word
|
||||
sk_load_word:
|
||||
PPC_LCMPI r_addr, 0
|
||||
blt bpf_slow_path_word_neg
|
||||
.globl sk_load_word_positive_offset
|
||||
sk_load_word_positive_offset:
|
||||
/* Are we accessing past headlen? */
|
||||
subi r_scratch1, r_HL, 4
|
||||
PPC_LCMP r_scratch1, r_addr
|
||||
blt bpf_slow_path_word
|
||||
/* Nope, just hitting the header. cr0 here is eq or gt! */
|
||||
#ifdef __LITTLE_ENDIAN__
|
||||
lwbrx r_A, r_D, r_addr
|
||||
#else
|
||||
lwzx r_A, r_D, r_addr
|
||||
#endif
|
||||
blr /* Return success, cr0 != LT */
|
||||
|
||||
.globl sk_load_half
|
||||
sk_load_half:
|
||||
PPC_LCMPI r_addr, 0
|
||||
blt bpf_slow_path_half_neg
|
||||
.globl sk_load_half_positive_offset
|
||||
sk_load_half_positive_offset:
|
||||
subi r_scratch1, r_HL, 2
|
||||
PPC_LCMP r_scratch1, r_addr
|
||||
blt bpf_slow_path_half
|
||||
#ifdef __LITTLE_ENDIAN__
|
||||
lhbrx r_A, r_D, r_addr
|
||||
#else
|
||||
lhzx r_A, r_D, r_addr
|
||||
#endif
|
||||
blr
|
||||
|
||||
.globl sk_load_byte
|
||||
sk_load_byte:
|
||||
PPC_LCMPI r_addr, 0
|
||||
blt bpf_slow_path_byte_neg
|
||||
.globl sk_load_byte_positive_offset
|
||||
sk_load_byte_positive_offset:
|
||||
PPC_LCMP r_HL, r_addr
|
||||
ble bpf_slow_path_byte
|
||||
lbzx r_A, r_D, r_addr
|
||||
blr
|
||||
|
||||
/*
|
||||
* BPF_LDX | BPF_B | BPF_MSH: ldxb 4*([offset]&0xf)
|
||||
* r_addr is the offset value
|
||||
*/
|
||||
.globl sk_load_byte_msh
|
||||
sk_load_byte_msh:
|
||||
PPC_LCMPI r_addr, 0
|
||||
blt bpf_slow_path_byte_msh_neg
|
||||
.globl sk_load_byte_msh_positive_offset
|
||||
sk_load_byte_msh_positive_offset:
|
||||
PPC_LCMP r_HL, r_addr
|
||||
ble bpf_slow_path_byte_msh
|
||||
lbzx r_X, r_D, r_addr
|
||||
rlwinm r_X, r_X, 2, 32-4-2, 31-2
|
||||
blr
|
||||
|
||||
/* Call out to skb_copy_bits:
|
||||
* We'll need to back up our volatile regs first; we have
|
||||
* local variable space at r1+(BPF_PPC_STACK_BASIC).
|
||||
* Allocate a new stack frame here to remain ABI-compliant in
|
||||
* stashing LR.
|
||||
*/
|
||||
#define bpf_slow_path_common(SIZE) \
|
||||
mflr r0; \
|
||||
PPC_STL r0, PPC_LR_STKOFF(r1); \
|
||||
/* R3 goes in parameter space of caller's frame */ \
|
||||
PPC_STL r_skb, (BPF_PPC_STACKFRAME+BPF_PPC_STACK_R3_OFF)(r1); \
|
||||
PPC_STL r_A, (BPF_PPC_STACK_BASIC+(0*REG_SZ))(r1); \
|
||||
PPC_STL r_X, (BPF_PPC_STACK_BASIC+(1*REG_SZ))(r1); \
|
||||
addi r5, r1, BPF_PPC_STACK_BASIC+(2*REG_SZ); \
|
||||
PPC_STLU r1, -BPF_PPC_SLOWPATH_FRAME(r1); \
|
||||
/* R3 = r_skb, as passed */ \
|
||||
mr r4, r_addr; \
|
||||
li r6, SIZE; \
|
||||
bl skb_copy_bits; \
|
||||
nop; \
|
||||
/* R3 = 0 on success */ \
|
||||
addi r1, r1, BPF_PPC_SLOWPATH_FRAME; \
|
||||
PPC_LL r0, PPC_LR_STKOFF(r1); \
|
||||
PPC_LL r_A, (BPF_PPC_STACK_BASIC+(0*REG_SZ))(r1); \
|
||||
PPC_LL r_X, (BPF_PPC_STACK_BASIC+(1*REG_SZ))(r1); \
|
||||
mtlr r0; \
|
||||
PPC_LCMPI r3, 0; \
|
||||
blt bpf_error; /* cr0 = LT */ \
|
||||
PPC_LL r_skb, (BPF_PPC_STACKFRAME+BPF_PPC_STACK_R3_OFF)(r1); \
|
||||
/* Great success! */
|
||||
|
||||
bpf_slow_path_word:
|
||||
bpf_slow_path_common(4)
|
||||
/* Data value is on stack, and cr0 != LT */
|
||||
lwz r_A, BPF_PPC_STACK_BASIC+(2*REG_SZ)(r1)
|
||||
blr
|
||||
|
||||
bpf_slow_path_half:
|
||||
bpf_slow_path_common(2)
|
||||
lhz r_A, BPF_PPC_STACK_BASIC+(2*8)(r1)
|
||||
blr
|
||||
|
||||
bpf_slow_path_byte:
|
||||
bpf_slow_path_common(1)
|
||||
lbz r_A, BPF_PPC_STACK_BASIC+(2*8)(r1)
|
||||
blr
|
||||
|
||||
bpf_slow_path_byte_msh:
|
||||
bpf_slow_path_common(1)
|
||||
lbz r_X, BPF_PPC_STACK_BASIC+(2*8)(r1)
|
||||
rlwinm r_X, r_X, 2, 32-4-2, 31-2
|
||||
blr
|
||||
|
||||
/* Call out to bpf_internal_load_pointer_neg_helper:
|
||||
* We'll need to back up our volatile regs first; we have
|
||||
* local variable space at r1+(BPF_PPC_STACK_BASIC).
|
||||
* Allocate a new stack frame here to remain ABI-compliant in
|
||||
* stashing LR.
|
||||
*/
|
||||
#define sk_negative_common(SIZE) \
|
||||
mflr r0; \
|
||||
PPC_STL r0, PPC_LR_STKOFF(r1); \
|
||||
/* R3 goes in parameter space of caller's frame */ \
|
||||
PPC_STL r_skb, (BPF_PPC_STACKFRAME+BPF_PPC_STACK_R3_OFF)(r1); \
|
||||
PPC_STL r_A, (BPF_PPC_STACK_BASIC+(0*REG_SZ))(r1); \
|
||||
PPC_STL r_X, (BPF_PPC_STACK_BASIC+(1*REG_SZ))(r1); \
|
||||
PPC_STLU r1, -BPF_PPC_SLOWPATH_FRAME(r1); \
|
||||
/* R3 = r_skb, as passed */ \
|
||||
mr r4, r_addr; \
|
||||
li r5, SIZE; \
|
||||
bl bpf_internal_load_pointer_neg_helper; \
|
||||
nop; \
|
||||
/* R3 != 0 on success */ \
|
||||
addi r1, r1, BPF_PPC_SLOWPATH_FRAME; \
|
||||
PPC_LL r0, PPC_LR_STKOFF(r1); \
|
||||
PPC_LL r_A, (BPF_PPC_STACK_BASIC+(0*REG_SZ))(r1); \
|
||||
PPC_LL r_X, (BPF_PPC_STACK_BASIC+(1*REG_SZ))(r1); \
|
||||
mtlr r0; \
|
||||
PPC_LCMPLI r3, 0; \
|
||||
beq bpf_error_slow; /* cr0 = EQ */ \
|
||||
mr r_addr, r3; \
|
||||
PPC_LL r_skb, (BPF_PPC_STACKFRAME+BPF_PPC_STACK_R3_OFF)(r1); \
|
||||
/* Great success! */
|
||||
|
||||
bpf_slow_path_word_neg:
|
||||
lis r_scratch1,-32 /* SKF_LL_OFF */
|
||||
PPC_LCMP r_addr, r_scratch1 /* addr < SKF_* */
|
||||
blt bpf_error /* cr0 = LT */
|
||||
.globl sk_load_word_negative_offset
|
||||
sk_load_word_negative_offset:
|
||||
sk_negative_common(4)
|
||||
lwz r_A, 0(r_addr)
|
||||
blr
|
||||
|
||||
bpf_slow_path_half_neg:
|
||||
lis r_scratch1,-32 /* SKF_LL_OFF */
|
||||
PPC_LCMP r_addr, r_scratch1 /* addr < SKF_* */
|
||||
blt bpf_error /* cr0 = LT */
|
||||
.globl sk_load_half_negative_offset
|
||||
sk_load_half_negative_offset:
|
||||
sk_negative_common(2)
|
||||
lhz r_A, 0(r_addr)
|
||||
blr
|
||||
|
||||
bpf_slow_path_byte_neg:
|
||||
lis r_scratch1,-32 /* SKF_LL_OFF */
|
||||
PPC_LCMP r_addr, r_scratch1 /* addr < SKF_* */
|
||||
blt bpf_error /* cr0 = LT */
|
||||
.globl sk_load_byte_negative_offset
|
||||
sk_load_byte_negative_offset:
|
||||
sk_negative_common(1)
|
||||
lbz r_A, 0(r_addr)
|
||||
blr
|
||||
|
||||
bpf_slow_path_byte_msh_neg:
|
||||
lis r_scratch1,-32 /* SKF_LL_OFF */
|
||||
PPC_LCMP r_addr, r_scratch1 /* addr < SKF_* */
|
||||
blt bpf_error /* cr0 = LT */
|
||||
.globl sk_load_byte_msh_negative_offset
|
||||
sk_load_byte_msh_negative_offset:
|
||||
sk_negative_common(1)
|
||||
lbz r_X, 0(r_addr)
|
||||
rlwinm r_X, r_X, 2, 32-4-2, 31-2
|
||||
blr
|
||||
|
||||
bpf_error_slow:
|
||||
/* fabricate a cr0 = lt */
|
||||
li r_scratch1, -1
|
||||
PPC_LCMPI r_scratch1, 0
|
||||
bpf_error:
|
||||
/* Entered with cr0 = lt */
|
||||
li r3, 0
|
||||
/* Generated code will 'blt epilogue', returning 0. */
|
||||
blr
|
|
@ -1,683 +0,0 @@
|
|||
// SPDX-License-Identifier: GPL-2.0-only
|
||||
/* bpf_jit_comp.c: BPF JIT compiler
|
||||
*
|
||||
* Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
|
||||
*
|
||||
* Based on the x86 BPF compiler, by Eric Dumazet (eric.dumazet@gmail.com)
|
||||
* Ported to ppc32 by Denis Kirjanov <kda@linux-powerpc.org>
|
||||
*/
|
||||
#include <linux/moduleloader.h>
|
||||
#include <asm/cacheflush.h>
|
||||
#include <asm/asm-compat.h>
|
||||
#include <linux/netdevice.h>
|
||||
#include <linux/filter.h>
|
||||
#include <linux/if_vlan.h>
|
||||
|
||||
#include "bpf_jit32.h"
|
||||
|
||||
static inline void bpf_flush_icache(void *start, void *end)
|
||||
{
|
||||
smp_wmb();
|
||||
flush_icache_range((unsigned long)start, (unsigned long)end);
|
||||
}
|
||||
|
||||
static void bpf_jit_build_prologue(struct bpf_prog *fp, u32 *image,
|
||||
struct codegen_context *ctx)
|
||||
{
|
||||
int i;
|
||||
const struct sock_filter *filter = fp->insns;
|
||||
|
||||
if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
|
||||
/* Make stackframe */
|
||||
if (ctx->seen & SEEN_DATAREF) {
|
||||
/* If we call any helpers (for loads), save LR */
|
||||
EMIT(PPC_INST_MFLR | __PPC_RT(R0));
|
||||
PPC_BPF_STL(0, 1, PPC_LR_STKOFF);
|
||||
|
||||
/* Back up non-volatile regs. */
|
||||
PPC_BPF_STL(r_D, 1, -(REG_SZ*(32-r_D)));
|
||||
PPC_BPF_STL(r_HL, 1, -(REG_SZ*(32-r_HL)));
|
||||
}
|
||||
if (ctx->seen & SEEN_MEM) {
|
||||
/*
|
||||
* Conditionally save regs r15-r31 as some will be used
|
||||
* for M[] data.
|
||||
*/
|
||||
for (i = r_M; i < (r_M+16); i++) {
|
||||
if (ctx->seen & (1 << (i-r_M)))
|
||||
PPC_BPF_STL(i, 1, -(REG_SZ*(32-i)));
|
||||
}
|
||||
}
|
||||
PPC_BPF_STLU(1, 1, -BPF_PPC_STACKFRAME);
|
||||
}
|
||||
|
||||
if (ctx->seen & SEEN_DATAREF) {
|
||||
/*
|
||||
* If this filter needs to access skb data,
|
||||
* prepare r_D and r_HL:
|
||||
* r_HL = skb->len - skb->data_len
|
||||
* r_D = skb->data
|
||||
*/
|
||||
PPC_LWZ_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
|
||||
data_len));
|
||||
PPC_LWZ_OFFS(r_HL, r_skb, offsetof(struct sk_buff, len));
|
||||
EMIT(PPC_RAW_SUB(r_HL, r_HL, r_scratch1));
|
||||
PPC_LL_OFFS(r_D, r_skb, offsetof(struct sk_buff, data));
|
||||
}
|
||||
|
||||
if (ctx->seen & SEEN_XREG) {
|
||||
/*
|
||||
* TODO: Could also detect whether first instr. sets X and
|
||||
* avoid this (as below, with A).
|
||||
*/
|
||||
EMIT(PPC_RAW_LI(r_X, 0));
|
||||
}
|
||||
|
||||
/* make sure we dont leak kernel information to user */
|
||||
if (bpf_needs_clear_a(&filter[0]))
|
||||
EMIT(PPC_RAW_LI(r_A, 0));
|
||||
}
|
||||
|
||||
static void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx)
|
||||
{
|
||||
int i;
|
||||
|
||||
if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
|
||||
EMIT(PPC_RAW_ADDI(1, 1, BPF_PPC_STACKFRAME));
|
||||
if (ctx->seen & SEEN_DATAREF) {
|
||||
PPC_BPF_LL(0, 1, PPC_LR_STKOFF);
|
||||
EMIT(PPC_RAW_MTLR(0));
|
||||
PPC_BPF_LL(r_D, 1, -(REG_SZ*(32-r_D)));
|
||||
PPC_BPF_LL(r_HL, 1, -(REG_SZ*(32-r_HL)));
|
||||
}
|
||||
if (ctx->seen & SEEN_MEM) {
|
||||
/* Restore any saved non-vol registers */
|
||||
for (i = r_M; i < (r_M+16); i++) {
|
||||
if (ctx->seen & (1 << (i-r_M)))
|
||||
PPC_BPF_LL(i, 1, -(REG_SZ*(32-i)));
|
||||
}
|
||||
}
|
||||
}
|
||||
/* The RETs have left a return value in R3. */
|
||||
|
||||
EMIT(PPC_RAW_BLR());
|
||||
}
|
||||
|
||||
#define CHOOSE_LOAD_FUNC(K, func) \
|
||||
((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
|
||||
|
||||
/* Assemble the body code between the prologue & epilogue. */
|
||||
static int bpf_jit_build_body(struct bpf_prog *fp, u32 *image,
|
||||
struct codegen_context *ctx,
|
||||
unsigned int *addrs)
|
||||
{
|
||||
const struct sock_filter *filter = fp->insns;
|
||||
int flen = fp->len;
|
||||
u8 *func;
|
||||
unsigned int true_cond;
|
||||
int i;
|
||||
|
||||
/* Start of epilogue code */
|
||||
unsigned int exit_addr = addrs[flen];
|
||||
|
||||
for (i = 0; i < flen; i++) {
|
||||
unsigned int K = filter[i].k;
|
||||
u16 code = bpf_anc_helper(&filter[i]);
|
||||
|
||||
/*
|
||||
* addrs[] maps a BPF bytecode address into a real offset from
|
||||
* the start of the body code.
|
||||
*/
|
||||
addrs[i] = ctx->idx * 4;
|
||||
|
||||
switch (code) {
|
||||
/*** ALU ops ***/
|
||||
case BPF_ALU | BPF_ADD | BPF_X: /* A += X; */
|
||||
ctx->seen |= SEEN_XREG;
|
||||
EMIT(PPC_RAW_ADD(r_A, r_A, r_X));
|
||||
break;
|
||||
case BPF_ALU | BPF_ADD | BPF_K: /* A += K; */
|
||||
if (!K)
|
||||
break;
|
||||
EMIT(PPC_RAW_ADDI(r_A, r_A, IMM_L(K)));
|
||||
if (K >= 32768)
|
||||
EMIT(PPC_RAW_ADDIS(r_A, r_A, IMM_HA(K)));
|
||||
break;
|
||||
case BPF_ALU | BPF_SUB | BPF_X: /* A -= X; */
|
||||
ctx->seen |= SEEN_XREG;
|
||||
EMIT(PPC_RAW_SUB(r_A, r_A, r_X));
|
||||
break;
|
||||
case BPF_ALU | BPF_SUB | BPF_K: /* A -= K */
|
||||
if (!K)
|
||||
break;
|
||||
EMIT(PPC_RAW_ADDI(r_A, r_A, IMM_L(-K)));
|
||||
if (K >= 32768)
|
||||
EMIT(PPC_RAW_ADDIS(r_A, r_A, IMM_HA(-K)));
|
||||
break;
|
||||
case BPF_ALU | BPF_MUL | BPF_X: /* A *= X; */
|
||||
ctx->seen |= SEEN_XREG;
|
||||
EMIT(PPC_RAW_MULW(r_A, r_A, r_X));
|
||||
break;
|
||||
case BPF_ALU | BPF_MUL | BPF_K: /* A *= K */
|
||||
if (K < 32768)
|
||||
EMIT(PPC_RAW_MULI(r_A, r_A, K));
|
||||
else {
|
||||
PPC_LI32(r_scratch1, K);
|
||||
EMIT(PPC_RAW_MULW(r_A, r_A, r_scratch1));
|
||||
}
|
||||
break;
|
||||
case BPF_ALU | BPF_MOD | BPF_X: /* A %= X; */
|
||||
case BPF_ALU | BPF_DIV | BPF_X: /* A /= X; */
|
||||
ctx->seen |= SEEN_XREG;
|
||||
EMIT(PPC_RAW_CMPWI(r_X, 0));
|
||||
if (ctx->pc_ret0 != -1) {
|
||||
PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
|
||||
} else {
|
||||
PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
|
||||
EMIT(PPC_RAW_LI(r_ret, 0));
|
||||
PPC_JMP(exit_addr);
|
||||
}
|
||||
if (code == (BPF_ALU | BPF_MOD | BPF_X)) {
|
||||
EMIT(PPC_RAW_DIVWU(r_scratch1, r_A, r_X));
|
||||
EMIT(PPC_RAW_MULW(r_scratch1, r_X, r_scratch1));
|
||||
EMIT(PPC_RAW_SUB(r_A, r_A, r_scratch1));
|
||||
} else {
|
||||
EMIT(PPC_RAW_DIVWU(r_A, r_A, r_X));
|
||||
}
|
||||
break;
|
||||
case BPF_ALU | BPF_MOD | BPF_K: /* A %= K; */
|
||||
PPC_LI32(r_scratch2, K);
|
||||
EMIT(PPC_RAW_DIVWU(r_scratch1, r_A, r_scratch2));
|
||||
EMIT(PPC_RAW_MULW(r_scratch1, r_scratch2, r_scratch1));
|
||||
EMIT(PPC_RAW_SUB(r_A, r_A, r_scratch1));
|
||||
break;
|
||||
case BPF_ALU | BPF_DIV | BPF_K: /* A /= K */
|
||||
if (K == 1)
|
||||
break;
|
||||
PPC_LI32(r_scratch1, K);
|
||||
EMIT(PPC_RAW_DIVWU(r_A, r_A, r_scratch1));
|
||||
break;
|
||||
case BPF_ALU | BPF_AND | BPF_X:
|
||||
ctx->seen |= SEEN_XREG;
|
||||
EMIT(PPC_RAW_AND(r_A, r_A, r_X));
|
||||
break;
|
||||
case BPF_ALU | BPF_AND | BPF_K:
|
||||
if (!IMM_H(K))
|
||||
EMIT(PPC_RAW_ANDI(r_A, r_A, K));
|
||||
else {
|
||||
PPC_LI32(r_scratch1, K);
|
||||
EMIT(PPC_RAW_AND(r_A, r_A, r_scratch1));
|
||||
}
|
||||
break;
|
||||
case BPF_ALU | BPF_OR | BPF_X:
|
||||
ctx->seen |= SEEN_XREG;
|
||||
EMIT(PPC_RAW_OR(r_A, r_A, r_X));
|
||||
break;
|
||||
case BPF_ALU | BPF_OR | BPF_K:
|
||||
if (IMM_L(K))
|
||||
EMIT(PPC_RAW_ORI(r_A, r_A, IMM_L(K)));
|
||||
if (K >= 65536)
|
||||
EMIT(PPC_RAW_ORIS(r_A, r_A, IMM_H(K)));
|
||||
break;
|
||||
case BPF_ANC | SKF_AD_ALU_XOR_X:
|
||||
case BPF_ALU | BPF_XOR | BPF_X: /* A ^= X */
|
||||
ctx->seen |= SEEN_XREG;
|
||||
EMIT(PPC_RAW_XOR(r_A, r_A, r_X));
|
||||
break;
|
||||
case BPF_ALU | BPF_XOR | BPF_K: /* A ^= K */
|
||||
if (IMM_L(K))
|
||||
EMIT(PPC_RAW_XORI(r_A, r_A, IMM_L(K)));
|
||||
if (K >= 65536)
|
||||
EMIT(PPC_RAW_XORIS(r_A, r_A, IMM_H(K)));
|
||||
break;
|
||||
case BPF_ALU | BPF_LSH | BPF_X: /* A <<= X; */
|
||||
ctx->seen |= SEEN_XREG;
|
||||
EMIT(PPC_RAW_SLW(r_A, r_A, r_X));
|
||||
break;
|
||||
case BPF_ALU | BPF_LSH | BPF_K:
|
||||
if (K == 0)
|
||||
break;
|
||||
else
|
||||
EMIT(PPC_RAW_SLWI(r_A, r_A, K));
|
||||
break;
|
||||
case BPF_ALU | BPF_RSH | BPF_X: /* A >>= X; */
|
||||
ctx->seen |= SEEN_XREG;
|
||||
EMIT(PPC_RAW_SRW(r_A, r_A, r_X));
|
||||
break;
|
||||
case BPF_ALU | BPF_RSH | BPF_K: /* A >>= K; */
|
||||
if (K == 0)
|
||||
break;
|
||||
else
|
||||
EMIT(PPC_RAW_SRWI(r_A, r_A, K));
|
||||
break;
|
||||
case BPF_ALU | BPF_NEG:
|
||||
EMIT(PPC_RAW_NEG(r_A, r_A));
|
||||
break;
|
||||
case BPF_RET | BPF_K:
|
||||
PPC_LI32(r_ret, K);
|
||||
if (!K) {
|
||||
if (ctx->pc_ret0 == -1)
|
||||
ctx->pc_ret0 = i;
|
||||
}
|
||||
/*
|
||||
* If this isn't the very last instruction, branch to
|
||||
* the epilogue if we've stuff to clean up. Otherwise,
|
||||
* if there's nothing to tidy, just return. If we /are/
|
||||
* the last instruction, we're about to fall through to
|
||||
* the epilogue to return.
|
||||
*/
|
||||
if (i != flen - 1) {
|
||||
/*
|
||||
* Note: 'seen' is properly valid only on pass
|
||||
* #2. Both parts of this conditional are the
|
||||
* same instruction size though, meaning the
|
||||
* first pass will still correctly determine the
|
||||
* code size/addresses.
|
||||
*/
|
||||
if (ctx->seen)
|
||||
PPC_JMP(exit_addr);
|
||||
else
|
||||
EMIT(PPC_RAW_BLR());
|
||||
}
|
||||
break;
|
||||
case BPF_RET | BPF_A:
|
||||
EMIT(PPC_RAW_MR(r_ret, r_A));
|
||||
if (i != flen - 1) {
|
||||
if (ctx->seen)
|
||||
PPC_JMP(exit_addr);
|
||||
else
|
||||
EMIT(PPC_RAW_BLR());
|
||||
}
|
||||
break;
|
||||
case BPF_MISC | BPF_TAX: /* X = A */
|
||||
EMIT(PPC_RAW_MR(r_X, r_A));
|
||||
break;
|
||||
case BPF_MISC | BPF_TXA: /* A = X */
|
||||
ctx->seen |= SEEN_XREG;
|
||||
EMIT(PPC_RAW_MR(r_A, r_X));
|
||||
break;
|
||||
|
||||
/*** Constant loads/M[] access ***/
|
||||
case BPF_LD | BPF_IMM: /* A = K */
|
||||
PPC_LI32(r_A, K);
|
||||
break;
|
||||
case BPF_LDX | BPF_IMM: /* X = K */
|
||||
PPC_LI32(r_X, K);
|
||||
break;
|
||||
case BPF_LD | BPF_MEM: /* A = mem[K] */
|
||||
EMIT(PPC_RAW_MR(r_A, r_M + (K & 0xf)));
|
||||
ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
|
||||
break;
|
||||
case BPF_LDX | BPF_MEM: /* X = mem[K] */
|
||||
EMIT(PPC_RAW_MR(r_X, r_M + (K & 0xf)));
|
||||
ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
|
||||
break;
|
||||
case BPF_ST: /* mem[K] = A */
|
||||
EMIT(PPC_RAW_MR(r_M + (K & 0xf), r_A));
|
||||
ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
|
||||
break;
|
||||
case BPF_STX: /* mem[K] = X */
|
||||
EMIT(PPC_RAW_MR(r_M + (K & 0xf), r_X));
|
||||
ctx->seen |= SEEN_XREG | SEEN_MEM | (1<<(K & 0xf));
|
||||
break;
|
||||
case BPF_LD | BPF_W | BPF_LEN: /* A = skb->len; */
|
||||
BUILD_BUG_ON(sizeof_field(struct sk_buff, len) != 4);
|
||||
PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, len));
|
||||
break;
|
||||
case BPF_LDX | BPF_W | BPF_ABS: /* A = *((u32 *)(seccomp_data + K)); */
|
||||
PPC_LWZ_OFFS(r_A, r_skb, K);
|
||||
break;
|
||||
case BPF_LDX | BPF_W | BPF_LEN: /* X = skb->len; */
|
||||
PPC_LWZ_OFFS(r_X, r_skb, offsetof(struct sk_buff, len));
|
||||
break;
|
||||
|
||||
/*** Ancillary info loads ***/
|
||||
case BPF_ANC | SKF_AD_PROTOCOL: /* A = ntohs(skb->protocol); */
|
||||
BUILD_BUG_ON(sizeof_field(struct sk_buff,
|
||||
protocol) != 2);
|
||||
PPC_NTOHS_OFFS(r_A, r_skb, offsetof(struct sk_buff,
|
||||
protocol));
|
||||
break;
|
||||
case BPF_ANC | SKF_AD_IFINDEX:
|
||||
case BPF_ANC | SKF_AD_HATYPE:
|
||||
BUILD_BUG_ON(sizeof_field(struct net_device,
|
||||
ifindex) != 4);
|
||||
BUILD_BUG_ON(sizeof_field(struct net_device,
|
||||
type) != 2);
|
||||
PPC_LL_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
|
||||
dev));
|
||||
EMIT(PPC_RAW_CMPDI(r_scratch1, 0));
|
||||
if (ctx->pc_ret0 != -1) {
|
||||
PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
|
||||
} else {
|
||||
/* Exit, returning 0; first pass hits here. */
|
||||
PPC_BCC_SHORT(COND_NE, ctx->idx * 4 + 12);
|
||||
EMIT(PPC_RAW_LI(r_ret, 0));
|
||||
PPC_JMP(exit_addr);
|
||||
}
|
||||
if (code == (BPF_ANC | SKF_AD_IFINDEX)) {
|
||||
PPC_LWZ_OFFS(r_A, r_scratch1,
|
||||
offsetof(struct net_device, ifindex));
|
||||
} else {
|
||||
PPC_LHZ_OFFS(r_A, r_scratch1,
|
||||
offsetof(struct net_device, type));
|
||||
}
|
||||
|
||||
break;
|
||||
case BPF_ANC | SKF_AD_MARK:
|
||||
BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
|
||||
PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
|
||||
mark));
|
||||
break;
|
||||
case BPF_ANC | SKF_AD_RXHASH:
|
||||
BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
|
||||
PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
|
||||
hash));
|
||||
break;
|
||||
case BPF_ANC | SKF_AD_VLAN_TAG:
|
||||
BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
|
||||
|
||||
PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
|
||||
vlan_tci));
|
||||
break;
|
||||
case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
|
||||
PPC_LBZ_OFFS(r_A, r_skb, PKT_VLAN_PRESENT_OFFSET());
|
||||
if (PKT_VLAN_PRESENT_BIT)
|
||||
EMIT(PPC_RAW_SRWI(r_A, r_A, PKT_VLAN_PRESENT_BIT));
|
||||
if (PKT_VLAN_PRESENT_BIT < 7)
|
||||
EMIT(PPC_RAW_ANDI(r_A, r_A, 1));
|
||||
break;
|
||||
case BPF_ANC | SKF_AD_QUEUE:
|
||||
BUILD_BUG_ON(sizeof_field(struct sk_buff,
|
||||
queue_mapping) != 2);
|
||||
PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
|
||||
queue_mapping));
|
||||
break;
|
||||
case BPF_ANC | SKF_AD_PKTTYPE:
|
||||
PPC_LBZ_OFFS(r_A, r_skb, PKT_TYPE_OFFSET());
|
||||
EMIT(PPC_RAW_ANDI(r_A, r_A, PKT_TYPE_MAX));
|
||||
EMIT(PPC_RAW_SRWI(r_A, r_A, 5));
|
||||
break;
|
||||
case BPF_ANC | SKF_AD_CPU:
|
||||
PPC_BPF_LOAD_CPU(r_A);
|
||||
break;
|
||||
/*** Absolute loads from packet header/data ***/
|
||||
case BPF_LD | BPF_W | BPF_ABS:
|
||||
func = CHOOSE_LOAD_FUNC(K, sk_load_word);
|
||||
goto common_load;
|
||||
case BPF_LD | BPF_H | BPF_ABS:
|
||||
func = CHOOSE_LOAD_FUNC(K, sk_load_half);
|
||||
goto common_load;
|
||||
case BPF_LD | BPF_B | BPF_ABS:
|
||||
func = CHOOSE_LOAD_FUNC(K, sk_load_byte);
|
||||
common_load:
|
||||
/* Load from [K]. */
|
||||
ctx->seen |= SEEN_DATAREF;
|
||||
PPC_FUNC_ADDR(r_scratch1, func);
|
||||
EMIT(PPC_RAW_MTLR(r_scratch1));
|
||||
PPC_LI32(r_addr, K);
|
||||
EMIT(PPC_RAW_BLRL());
|
||||
/*
|
||||
* Helper returns 'lt' condition on error, and an
|
||||
* appropriate return value in r3
|
||||
*/
|
||||
PPC_BCC(COND_LT, exit_addr);
|
||||
break;
|
||||
|
||||
/*** Indirect loads from packet header/data ***/
|
||||
case BPF_LD | BPF_W | BPF_IND:
|
||||
func = sk_load_word;
|
||||
goto common_load_ind;
|
||||
case BPF_LD | BPF_H | BPF_IND:
|
||||
func = sk_load_half;
|
||||
goto common_load_ind;
|
||||
case BPF_LD | BPF_B | BPF_IND:
|
||||
func = sk_load_byte;
|
||||
common_load_ind:
|
||||
/*
|
||||
* Load from [X + K]. Negative offsets are tested for
|
||||
* in the helper functions.
|
||||
*/
|
||||
ctx->seen |= SEEN_DATAREF | SEEN_XREG;
|
||||
PPC_FUNC_ADDR(r_scratch1, func);
|
||||
EMIT(PPC_RAW_MTLR(r_scratch1));
|
||||
EMIT(PPC_RAW_ADDI(r_addr, r_X, IMM_L(K)));
|
||||
if (K >= 32768)
|
||||
EMIT(PPC_RAW_ADDIS(r_addr, r_addr, IMM_HA(K)));
|
||||
EMIT(PPC_RAW_BLRL());
|
||||
/* If error, cr0.LT set */
|
||||
PPC_BCC(COND_LT, exit_addr);
|
||||
break;
|
||||
|
||||
case BPF_LDX | BPF_B | BPF_MSH:
|
||||
func = CHOOSE_LOAD_FUNC(K, sk_load_byte_msh);
|
||||
goto common_load;
|
||||
break;
|
||||
|
||||
/*** Jump and branches ***/
|
||||
case BPF_JMP | BPF_JA:
|
||||
if (K != 0)
|
||||
PPC_JMP(addrs[i + 1 + K]);
|
||||
break;
|
||||
|
||||
case BPF_JMP | BPF_JGT | BPF_K:
|
||||
case BPF_JMP | BPF_JGT | BPF_X:
|
||||
true_cond = COND_GT;
|
||||
goto cond_branch;
|
||||
case BPF_JMP | BPF_JGE | BPF_K:
|
||||
case BPF_JMP | BPF_JGE | BPF_X:
|
||||
true_cond = COND_GE;
|
||||
goto cond_branch;
|
||||
case BPF_JMP | BPF_JEQ | BPF_K:
|
||||
case BPF_JMP | BPF_JEQ | BPF_X:
|
||||
true_cond = COND_EQ;
|
||||
goto cond_branch;
|
||||
case BPF_JMP | BPF_JSET | BPF_K:
|
||||
case BPF_JMP | BPF_JSET | BPF_X:
|
||||
true_cond = COND_NE;
|
||||
cond_branch:
|
||||
/* same targets, can avoid doing the test :) */
|
||||
if (filter[i].jt == filter[i].jf) {
|
||||
if (filter[i].jt > 0)
|
||||
PPC_JMP(addrs[i + 1 + filter[i].jt]);
|
||||
break;
|
||||
}
|
||||
|
||||
switch (code) {
|
||||
case BPF_JMP | BPF_JGT | BPF_X:
|
||||
case BPF_JMP | BPF_JGE | BPF_X:
|
||||
case BPF_JMP | BPF_JEQ | BPF_X:
|
||||
ctx->seen |= SEEN_XREG;
|
||||
EMIT(PPC_RAW_CMPLW(r_A, r_X));
|
||||
break;
|
||||
case BPF_JMP | BPF_JSET | BPF_X:
|
||||
ctx->seen |= SEEN_XREG;
|
||||
EMIT(PPC_RAW_AND_DOT(r_scratch1, r_A, r_X));
|
||||
break;
|
||||
case BPF_JMP | BPF_JEQ | BPF_K:
|
||||
case BPF_JMP | BPF_JGT | BPF_K:
|
||||
case BPF_JMP | BPF_JGE | BPF_K:
|
||||
if (K < 32768)
|
||||
EMIT(PPC_RAW_CMPLWI(r_A, K));
|
||||
else {
|
||||
PPC_LI32(r_scratch1, K);
|
||||
EMIT(PPC_RAW_CMPLW(r_A, r_scratch1));
|
||||
}
|
||||
break;
|
||||
case BPF_JMP | BPF_JSET | BPF_K:
|
||||
if (K < 32768)
|
||||
/* PPC_ANDI is /only/ dot-form */
|
||||
EMIT(PPC_RAW_ANDI(r_scratch1, r_A, K));
|
||||
else {
|
||||
PPC_LI32(r_scratch1, K);
|
||||
EMIT(PPC_RAW_AND_DOT(r_scratch1, r_A,
|
||||
r_scratch1));
|
||||
}
|
||||
break;
|
||||
}
|
||||
/* Sometimes branches are constructed "backward", with
|
||||
* the false path being the branch and true path being
|
||||
* a fallthrough to the next instruction.
|
||||
*/
|
||||
if (filter[i].jt == 0)
|
||||
/* Swap the sense of the branch */
|
||||
PPC_BCC(true_cond ^ COND_CMP_TRUE,
|
||||
addrs[i + 1 + filter[i].jf]);
|
||||
else {
|
||||
PPC_BCC(true_cond, addrs[i + 1 + filter[i].jt]);
|
||||
if (filter[i].jf != 0)
|
||||
PPC_JMP(addrs[i + 1 + filter[i].jf]);
|
||||
}
|
||||
break;
|
||||
default:
|
||||
/* The filter contains something cruel & unusual.
|
||||
* We don't handle it, but also there shouldn't be
|
||||
* anything missing from our list.
|
||||
*/
|
||||
if (printk_ratelimit())
|
||||
pr_err("BPF filter opcode %04x (@%d) unsupported\n",
|
||||
filter[i].code, i);
|
||||
return -ENOTSUPP;
|
||||
}
|
||||
|
||||
}
|
||||
/* Set end-of-body-code address for exit. */
|
||||
addrs[i] = ctx->idx * 4;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void bpf_jit_compile(struct bpf_prog *fp)
|
||||
{
|
||||
unsigned int proglen;
|
||||
unsigned int alloclen;
|
||||
u32 *image = NULL;
|
||||
u32 *code_base;
|
||||
unsigned int *addrs;
|
||||
struct codegen_context cgctx;
|
||||
int pass;
|
||||
int flen = fp->len;
|
||||
|
||||
if (!bpf_jit_enable)
|
||||
return;
|
||||
|
||||
addrs = kcalloc(flen + 1, sizeof(*addrs), GFP_KERNEL);
|
||||
if (addrs == NULL)
|
||||
return;
|
||||
|
||||
/*
|
||||
* There are multiple assembly passes as the generated code will change
|
||||
* size as it settles down, figuring out the max branch offsets/exit
|
||||
* paths required.
|
||||
*
|
||||
* The range of standard conditional branches is +/- 32Kbytes. Since
|
||||
* BPF_MAXINSNS = 4096, we can only jump from (worst case) start to
|
||||
* finish with 8 bytes/instruction. Not feasible, so long jumps are
|
||||
* used, distinct from short branches.
|
||||
*
|
||||
* Current:
|
||||
*
|
||||
* For now, both branch types assemble to 2 words (short branches padded
|
||||
* with a NOP); this is less efficient, but assembly will always complete
|
||||
* after exactly 3 passes:
|
||||
*
|
||||
* First pass: No code buffer; Program is "faux-generated" -- no code
|
||||
* emitted but maximum size of output determined (and addrs[] filled
|
||||
* in). Also, we note whether we use M[], whether we use skb data, etc.
|
||||
* All generation choices assumed to be 'worst-case', e.g. branches all
|
||||
* far (2 instructions), return path code reduction not available, etc.
|
||||
*
|
||||
* Second pass: Code buffer allocated with size determined previously.
|
||||
* Prologue generated to support features we have seen used. Exit paths
|
||||
* determined and addrs[] is filled in again, as code may be slightly
|
||||
* smaller as a result.
|
||||
*
|
||||
* Third pass: Code generated 'for real', and branch destinations
|
||||
* determined from now-accurate addrs[] map.
|
||||
*
|
||||
* Ideal:
|
||||
*
|
||||
* If we optimise this, near branches will be shorter. On the
|
||||
* first assembly pass, we should err on the side of caution and
|
||||
* generate the biggest code. On subsequent passes, branches will be
|
||||
* generated short or long and code size will reduce. With smaller
|
||||
* code, more branches may fall into the short category, and code will
|
||||
* reduce more.
|
||||
*
|
||||
* Finally, if we see one pass generate code the same size as the
|
||||
* previous pass we have converged and should now generate code for
|
||||
* real. Allocating at the end will also save the memory that would
|
||||
* otherwise be wasted by the (small) current code shrinkage.
|
||||
* Preferably, we should do a small number of passes (e.g. 5) and if we
|
||||
* haven't converged by then, get impatient and force code to generate
|
||||
* as-is, even if the odd branch would be left long. The chances of a
|
||||
* long jump are tiny with all but the most enormous of BPF filter
|
||||
* inputs, so we should usually converge on the third pass.
|
||||
*/
|
||||
|
||||
cgctx.idx = 0;
|
||||
cgctx.seen = 0;
|
||||
cgctx.pc_ret0 = -1;
|
||||
/* Scouting faux-generate pass 0 */
|
||||
if (bpf_jit_build_body(fp, 0, &cgctx, addrs))
|
||||
/* We hit something illegal or unsupported. */
|
||||
goto out;
|
||||
|
||||
/*
|
||||
* Pretend to build prologue, given the features we've seen. This will
|
||||
* update ctgtx.idx as it pretends to output instructions, then we can
|
||||
* calculate total size from idx.
|
||||
*/
|
||||
bpf_jit_build_prologue(fp, 0, &cgctx);
|
||||
bpf_jit_build_epilogue(0, &cgctx);
|
||||
|
||||
proglen = cgctx.idx * 4;
|
||||
alloclen = proglen + FUNCTION_DESCR_SIZE;
|
||||
image = module_alloc(alloclen);
|
||||
if (!image)
|
||||
goto out;
|
||||
|
||||
code_base = image + (FUNCTION_DESCR_SIZE/4);
|
||||
|
||||
/* Code generation passes 1-2 */
|
||||
for (pass = 1; pass < 3; pass++) {
|
||||
/* Now build the prologue, body code & epilogue for real. */
|
||||
cgctx.idx = 0;
|
||||
bpf_jit_build_prologue(fp, code_base, &cgctx);
|
||||
bpf_jit_build_body(fp, code_base, &cgctx, addrs);
|
||||
bpf_jit_build_epilogue(code_base, &cgctx);
|
||||
|
||||
if (bpf_jit_enable > 1)
|
||||
pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass,
|
||||
proglen - (cgctx.idx * 4), cgctx.seen);
|
||||
}
|
||||
|
||||
if (bpf_jit_enable > 1)
|
||||
/* Note that we output the base address of the code_base
|
||||
* rather than image, since opcodes are in code_base.
|
||||
*/
|
||||
bpf_jit_dump(flen, proglen, pass, code_base);
|
||||
|
||||
bpf_flush_icache(code_base, code_base + (proglen/4));
|
||||
|
||||
#ifdef CONFIG_PPC64
|
||||
/* Function descriptor nastiness: Address + TOC */
|
||||
((u64 *)image)[0] = (u64)code_base;
|
||||
((u64 *)image)[1] = local_paca->kernel_toc;
|
||||
#endif
|
||||
|
||||
fp->bpf_func = (void *)image;
|
||||
fp->jited = 1;
|
||||
|
||||
out:
|
||||
kfree(addrs);
|
||||
return;
|
||||
}
|
||||
|
||||
void bpf_jit_free(struct bpf_prog *fp)
|
||||
{
|
||||
if (fp->jited)
|
||||
module_memfree(fp->bpf_func);
|
||||
|
||||
bpf_prog_unlock_free(fp);
|
||||
}
|
Loading…
Reference in New Issue