Merge tag 'sunxi-clk-3.14-for-mike' of https://bitbucket.org/emiliolopez/linux into clk-next-sunxi

Allwinner sunXi SoCs clock changes

This contains the clk driver parts of the "[PATCH v3 00/13] clk: sunxi:
add PLL5 and PLL6 support" series. It adds support for PLL4/5/6 and
mod0 clocks on most sunxi platforms. Additionally, it contains "[PATCH
1/4] clk: sunxi: Allwinner A20 output clock support" (v2) from Chen-Yu
Tsai, which adds support for output clocks present on A20.
This commit is contained in:
Mike Turquette 2013-12-29 13:37:56 -08:00
commit 6b71e0d9d6
4 changed files with 445 additions and 79 deletions

View File

@ -7,8 +7,10 @@ This binding uses the common clock binding[1].
Required properties: Required properties:
- compatible : shall be one of the following: - compatible : shall be one of the following:
"allwinner,sun4i-osc-clk" - for a gatable oscillator "allwinner,sun4i-osc-clk" - for a gatable oscillator
"allwinner,sun4i-pll1-clk" - for the main PLL clock "allwinner,sun4i-pll1-clk" - for the main PLL clock and PLL4
"allwinner,sun6i-a31-pll1-clk" - for the main PLL clock on A31 "allwinner,sun6i-a31-pll1-clk" - for the main PLL clock on A31
"allwinner,sun4i-pll5-clk" - for the PLL5 clock
"allwinner,sun4i-pll6-clk" - for the PLL6 clock
"allwinner,sun4i-cpu-clk" - for the CPU multiplexer clock "allwinner,sun4i-cpu-clk" - for the CPU multiplexer clock
"allwinner,sun4i-axi-clk" - for the AXI clock "allwinner,sun4i-axi-clk" - for the AXI clock
"allwinner,sun4i-axi-gates-clk" - for the AXI gates "allwinner,sun4i-axi-gates-clk" - for the AXI gates
@ -33,10 +35,14 @@ Required properties:
"allwinner,sun7i-a20-apb1-gates-clk" - for the APB1 gates on A20 "allwinner,sun7i-a20-apb1-gates-clk" - for the APB1 gates on A20
"allwinner,sun6i-a31-apb2-div-clk" - for the APB2 gates on A31 "allwinner,sun6i-a31-apb2-div-clk" - for the APB2 gates on A31
"allwinner,sun6i-a31-apb2-gates-clk" - for the APB2 gates on A31 "allwinner,sun6i-a31-apb2-gates-clk" - for the APB2 gates on A31
"allwinner,sun4i-mod0-clk" - for the module 0 family of clocks
"allwinner,sun7i-a20-out-clk" - for the external output clocks
Required properties for all clocks: Required properties for all clocks:
- reg : shall be the control register address for the clock. - reg : shall be the control register address for the clock.
- clocks : shall be the input parent clock(s) phandle for the clock - clocks : shall be the input parent clock(s) phandle for the clock. For
multiplexed clocks, the list order must match the hardware
programming order.
- #clock-cells : from common clock binding; shall be set to 0 except for - #clock-cells : from common clock binding; shall be set to 0 except for
"allwinner,*-gates-clk" where it shall be set to 1 "allwinner,*-gates-clk" where it shall be set to 1

View File

@ -30,14 +30,6 @@
* parent - fixed parent. No clk_set_parent support * parent - fixed parent. No clk_set_parent support
*/ */
struct clk_factors {
struct clk_hw hw;
void __iomem *reg;
struct clk_factors_config *config;
void (*get_factors) (u32 *rate, u32 parent, u8 *n, u8 *k, u8 *m, u8 *p);
spinlock_t *lock;
};
#define to_clk_factors(_hw) container_of(_hw, struct clk_factors, hw) #define to_clk_factors(_hw) container_of(_hw, struct clk_factors, hw)
#define SETMASK(len, pos) (((1U << (len)) - 1) << (pos)) #define SETMASK(len, pos) (((1U << (len)) - 1) << (pos))
@ -120,61 +112,8 @@ static int clk_factors_set_rate(struct clk_hw *hw, unsigned long rate,
return 0; return 0;
} }
static const struct clk_ops clk_factors_ops = { const struct clk_ops clk_factors_ops = {
.recalc_rate = clk_factors_recalc_rate, .recalc_rate = clk_factors_recalc_rate,
.round_rate = clk_factors_round_rate, .round_rate = clk_factors_round_rate,
.set_rate = clk_factors_set_rate, .set_rate = clk_factors_set_rate,
}; };
/**
* clk_register_factors - register a factors clock with
* the clock framework
* @dev: device registering this clock
* @name: name of this clock
* @parent_name: name of clock's parent
* @flags: framework-specific flags
* @reg: register address to adjust factors
* @config: shift and width of factors n, k, m and p
* @get_factors: function to calculate the factors for a given frequency
* @lock: shared register lock for this clock
*/
struct clk *clk_register_factors(struct device *dev, const char *name,
const char *parent_name,
unsigned long flags, void __iomem *reg,
struct clk_factors_config *config,
void (*get_factors)(u32 *rate, u32 parent,
u8 *n, u8 *k, u8 *m, u8 *p),
spinlock_t *lock)
{
struct clk_factors *factors;
struct clk *clk;
struct clk_init_data init;
/* allocate the factors */
factors = kzalloc(sizeof(struct clk_factors), GFP_KERNEL);
if (!factors) {
pr_err("%s: could not allocate factors clk\n", __func__);
return ERR_PTR(-ENOMEM);
}
init.name = name;
init.ops = &clk_factors_ops;
init.flags = flags;
init.parent_names = (parent_name ? &parent_name : NULL);
init.num_parents = (parent_name ? 1 : 0);
/* struct clk_factors assignments */
factors->reg = reg;
factors->config = config;
factors->lock = lock;
factors->hw.init = &init;
factors->get_factors = get_factors;
/* register the clock */
clk = clk_register(dev, &factors->hw);
if (IS_ERR(clk))
kfree(factors);
return clk;
}

View File

@ -17,11 +17,13 @@ struct clk_factors_config {
u8 pwidth; u8 pwidth;
}; };
struct clk *clk_register_factors(struct device *dev, const char *name, struct clk_factors {
const char *parent_name, struct clk_hw hw;
unsigned long flags, void __iomem *reg, void __iomem *reg;
struct clk_factors_config *config, struct clk_factors_config *config;
void (*get_factors) (u32 *rate, u32 parent_rate, void (*get_factors) (u32 *rate, u32 parent, u8 *n, u8 *k, u8 *m, u8 *p);
u8 *n, u8 *k, u8 *m, u8 *p), spinlock_t *lock;
spinlock_t *lock); };
extern const struct clk_ops clk_factors_ops;
#endif #endif

View File

@ -23,6 +23,9 @@
static DEFINE_SPINLOCK(clk_lock); static DEFINE_SPINLOCK(clk_lock);
/* Maximum number of parents our clocks have */
#define SUNXI_MAX_PARENTS 5
/** /**
* sun4i_osc_clk_setup() - Setup function for gatable oscillator * sun4i_osc_clk_setup() - Setup function for gatable oscillator
*/ */
@ -214,6 +217,40 @@ static void sun6i_a31_get_pll1_factors(u32 *freq, u32 parent_rate,
} }
} }
/**
* sun4i_get_pll5_factors() - calculates n, k factors for PLL5
* PLL5 rate is calculated as follows
* rate = parent_rate * n * (k + 1)
* parent_rate is always 24Mhz
*/
static void sun4i_get_pll5_factors(u32 *freq, u32 parent_rate,
u8 *n, u8 *k, u8 *m, u8 *p)
{
u8 div;
/* Normalize value to a parent_rate multiple (24M) */
div = *freq / parent_rate;
*freq = parent_rate * div;
/* we were called to round the frequency, we can now return */
if (n == NULL)
return;
if (div < 31)
*k = 0;
else if (div / 2 < 31)
*k = 1;
else if (div / 3 < 31)
*k = 2;
else
*k = 3;
*n = DIV_ROUND_UP(div, (*k+1));
}
/** /**
* sun4i_get_apb1_factors() - calculates m, p factors for APB1 * sun4i_get_apb1_factors() - calculates m, p factors for APB1
* APB1 rate is calculated as follows * APB1 rate is calculated as follows
@ -257,11 +294,97 @@ static void sun4i_get_apb1_factors(u32 *freq, u32 parent_rate,
/**
* sun4i_get_mod0_factors() - calculates m, n factors for MOD0-style clocks
* MMC rate is calculated as follows
* rate = (parent_rate >> p) / (m + 1);
*/
static void sun4i_get_mod0_factors(u32 *freq, u32 parent_rate,
u8 *n, u8 *k, u8 *m, u8 *p)
{
u8 div, calcm, calcp;
/* These clocks can only divide, so we will never be able to achieve
* frequencies higher than the parent frequency */
if (*freq > parent_rate)
*freq = parent_rate;
div = parent_rate / *freq;
if (div < 16)
calcp = 0;
else if (div / 2 < 16)
calcp = 1;
else if (div / 4 < 16)
calcp = 2;
else
calcp = 3;
calcm = DIV_ROUND_UP(div, 1 << calcp);
*freq = (parent_rate >> calcp) / calcm;
/* we were called to round the frequency, we can now return */
if (n == NULL)
return;
*m = calcm - 1;
*p = calcp;
}
/**
* sun7i_a20_get_out_factors() - calculates m, p factors for CLK_OUT_A/B
* CLK_OUT rate is calculated as follows
* rate = (parent_rate >> p) / (m + 1);
*/
static void sun7i_a20_get_out_factors(u32 *freq, u32 parent_rate,
u8 *n, u8 *k, u8 *m, u8 *p)
{
u8 div, calcm, calcp;
/* These clocks can only divide, so we will never be able to achieve
* frequencies higher than the parent frequency */
if (*freq > parent_rate)
*freq = parent_rate;
div = parent_rate / *freq;
if (div < 32)
calcp = 0;
else if (div / 2 < 32)
calcp = 1;
else if (div / 4 < 32)
calcp = 2;
else
calcp = 3;
calcm = DIV_ROUND_UP(div, 1 << calcp);
*freq = (parent_rate >> calcp) / calcm;
/* we were called to round the frequency, we can now return */
if (n == NULL)
return;
*m = calcm - 1;
*p = calcp;
}
/** /**
* sunxi_factors_clk_setup() - Setup function for factor clocks * sunxi_factors_clk_setup() - Setup function for factor clocks
*/ */
#define SUNXI_FACTORS_MUX_MASK 0x3
struct factors_data { struct factors_data {
int enable;
int mux;
struct clk_factors_config *table; struct clk_factors_config *table;
void (*getter) (u32 *rate, u32 parent_rate, u8 *n, u8 *k, u8 *m, u8 *p); void (*getter) (u32 *rate, u32 parent_rate, u8 *n, u8 *k, u8 *m, u8 *p);
}; };
@ -286,6 +409,13 @@ static struct clk_factors_config sun6i_a31_pll1_config = {
.mwidth = 2, .mwidth = 2,
}; };
static struct clk_factors_config sun4i_pll5_config = {
.nshift = 8,
.nwidth = 5,
.kshift = 4,
.kwidth = 2,
};
static struct clk_factors_config sun4i_apb1_config = { static struct clk_factors_config sun4i_apb1_config = {
.mshift = 0, .mshift = 0,
.mwidth = 5, .mwidth = 5,
@ -293,40 +423,143 @@ static struct clk_factors_config sun4i_apb1_config = {
.pwidth = 2, .pwidth = 2,
}; };
/* user manual says "n" but it's really "p" */
static struct clk_factors_config sun4i_mod0_config = {
.mshift = 0,
.mwidth = 4,
.pshift = 16,
.pwidth = 2,
};
/* user manual says "n" but it's really "p" */
static struct clk_factors_config sun7i_a20_out_config = {
.mshift = 8,
.mwidth = 5,
.pshift = 20,
.pwidth = 2,
};
static const struct factors_data sun4i_pll1_data __initconst = { static const struct factors_data sun4i_pll1_data __initconst = {
.enable = 31,
.table = &sun4i_pll1_config, .table = &sun4i_pll1_config,
.getter = sun4i_get_pll1_factors, .getter = sun4i_get_pll1_factors,
}; };
static const struct factors_data sun6i_a31_pll1_data __initconst = { static const struct factors_data sun6i_a31_pll1_data __initconst = {
.enable = 31,
.table = &sun6i_a31_pll1_config, .table = &sun6i_a31_pll1_config,
.getter = sun6i_a31_get_pll1_factors, .getter = sun6i_a31_get_pll1_factors,
}; };
static const struct factors_data sun4i_pll5_data __initconst = {
.enable = 31,
.table = &sun4i_pll5_config,
.getter = sun4i_get_pll5_factors,
};
static const struct factors_data sun4i_apb1_data __initconst = { static const struct factors_data sun4i_apb1_data __initconst = {
.table = &sun4i_apb1_config, .table = &sun4i_apb1_config,
.getter = sun4i_get_apb1_factors, .getter = sun4i_get_apb1_factors,
}; };
static void __init sunxi_factors_clk_setup(struct device_node *node, static const struct factors_data sun4i_mod0_data __initconst = {
struct factors_data *data) .enable = 31,
.mux = 24,
.table = &sun4i_mod0_config,
.getter = sun4i_get_mod0_factors,
};
static const struct factors_data sun7i_a20_out_data __initconst = {
.enable = 31,
.mux = 24,
.table = &sun7i_a20_out_config,
.getter = sun7i_a20_get_out_factors,
};
static struct clk * __init sunxi_factors_clk_setup(struct device_node *node,
const struct factors_data *data)
{ {
struct clk *clk; struct clk *clk;
struct clk_factors *factors;
struct clk_gate *gate = NULL;
struct clk_mux *mux = NULL;
struct clk_hw *gate_hw = NULL;
struct clk_hw *mux_hw = NULL;
const char *clk_name = node->name; const char *clk_name = node->name;
const char *parent; const char *parents[SUNXI_MAX_PARENTS];
void *reg; void *reg;
int i = 0;
reg = of_iomap(node, 0); reg = of_iomap(node, 0);
parent = of_clk_get_parent_name(node, 0); /* if we have a mux, we will have >1 parents */
while (i < SUNXI_MAX_PARENTS &&
(parents[i] = of_clk_get_parent_name(node, i)) != NULL)
i++;
clk = clk_register_factors(NULL, clk_name, parent, 0, reg, /* Nodes should be providing the name via clock-output-names
data->table, data->getter, &clk_lock); * but originally our dts didn't, and so we used node->name.
* The new, better nodes look like clk@deadbeef, so we pull the
* name just in this case */
if (!strcmp("clk", clk_name)) {
of_property_read_string_index(node, "clock-output-names",
0, &clk_name);
}
factors = kzalloc(sizeof(struct clk_factors), GFP_KERNEL);
if (!factors)
return NULL;
/* Add a gate if this factor clock can be gated */
if (data->enable) {
gate = kzalloc(sizeof(struct clk_gate), GFP_KERNEL);
if (!gate) {
kfree(factors);
return NULL;
}
/* set up gate properties */
gate->reg = reg;
gate->bit_idx = data->enable;
gate->lock = &clk_lock;
gate_hw = &gate->hw;
}
/* Add a mux if this factor clock can be muxed */
if (data->mux) {
mux = kzalloc(sizeof(struct clk_mux), GFP_KERNEL);
if (!mux) {
kfree(factors);
kfree(gate);
return NULL;
}
/* set up gate properties */
mux->reg = reg;
mux->shift = data->mux;
mux->mask = SUNXI_FACTORS_MUX_MASK;
mux->lock = &clk_lock;
mux_hw = &mux->hw;
}
/* set up factors properties */
factors->reg = reg;
factors->config = data->table;
factors->get_factors = data->getter;
factors->lock = &clk_lock;
clk = clk_register_composite(NULL, clk_name,
parents, i,
mux_hw, &clk_mux_ops,
&factors->hw, &clk_factors_ops,
gate_hw, &clk_gate_ops, 0);
if (!IS_ERR(clk)) { if (!IS_ERR(clk)) {
of_clk_add_provider(node, of_clk_src_simple_get, clk); of_clk_add_provider(node, of_clk_src_simple_get, clk);
clk_register_clkdev(clk, clk_name, NULL); clk_register_clkdev(clk, clk_name, NULL);
} }
return clk;
} }
@ -358,13 +591,14 @@ static void __init sunxi_mux_clk_setup(struct device_node *node,
{ {
struct clk *clk; struct clk *clk;
const char *clk_name = node->name; const char *clk_name = node->name;
const char *parents[5]; const char *parents[SUNXI_MAX_PARENTS];
void *reg; void *reg;
int i = 0; int i = 0;
reg = of_iomap(node, 0); reg = of_iomap(node, 0);
while (i < 5 && (parents[i] = of_clk_get_parent_name(node, i)) != NULL) while (i < SUNXI_MAX_PARENTS &&
(parents[i] = of_clk_get_parent_name(node, i)) != NULL)
i++; i++;
clk = clk_register_mux(NULL, clk_name, parents, i, clk = clk_register_mux(NULL, clk_name, parents, i,
@ -561,11 +795,186 @@ static void __init sunxi_gates_clk_setup(struct device_node *node,
of_clk_add_provider(node, of_clk_src_onecell_get, clk_data); of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);
} }
/**
* sunxi_divs_clk_setup() helper data
*/
#define SUNXI_DIVS_MAX_QTY 2
#define SUNXI_DIVISOR_WIDTH 2
struct divs_data {
const struct factors_data *factors; /* data for the factor clock */
struct {
u8 fixed; /* is it a fixed divisor? if not... */
struct clk_div_table *table; /* is it a table based divisor? */
u8 shift; /* otherwise it's a normal divisor with this shift */
u8 pow; /* is it power-of-two based? */
u8 gate; /* is it independently gateable? */
} div[SUNXI_DIVS_MAX_QTY];
};
static struct clk_div_table pll6_sata_tbl[] = {
{ .val = 0, .div = 6, },
{ .val = 1, .div = 12, },
{ .val = 2, .div = 18, },
{ .val = 3, .div = 24, },
{ } /* sentinel */
};
static const struct divs_data pll5_divs_data __initconst = {
.factors = &sun4i_pll5_data,
.div = {
{ .shift = 0, .pow = 0, }, /* M, DDR */
{ .shift = 16, .pow = 1, }, /* P, other */
}
};
static const struct divs_data pll6_divs_data __initconst = {
.factors = &sun4i_pll5_data,
.div = {
{ .shift = 0, .table = pll6_sata_tbl, .gate = 14 }, /* M, SATA */
{ .fixed = 2 }, /* P, other */
}
};
/**
* sunxi_divs_clk_setup() - Setup function for leaf divisors on clocks
*
* These clocks look something like this
* ________________________
* | ___divisor 1---|----> to consumer
* parent >--| pll___/___divisor 2---|----> to consumer
* | \_______________|____> to consumer
* |________________________|
*/
static void __init sunxi_divs_clk_setup(struct device_node *node,
struct divs_data *data)
{
struct clk_onecell_data *clk_data;
const char *parent = node->name;
const char *clk_name;
struct clk **clks, *pclk;
struct clk_hw *gate_hw, *rate_hw;
const struct clk_ops *rate_ops;
struct clk_gate *gate = NULL;
struct clk_fixed_factor *fix_factor;
struct clk_divider *divider;
void *reg;
int i = 0;
int flags, clkflags;
/* Set up factor clock that we will be dividing */
pclk = sunxi_factors_clk_setup(node, data->factors);
reg = of_iomap(node, 0);
clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
if (!clk_data)
return;
clks = kzalloc(SUNXI_DIVS_MAX_QTY * sizeof(struct clk *), GFP_KERNEL);
if (!clks)
goto free_clkdata;
clk_data->clks = clks;
/* It's not a good idea to have automatic reparenting changing
* our RAM clock! */
clkflags = !strcmp("pll5", parent) ? 0 : CLK_SET_RATE_PARENT;
for (i = 0; i < SUNXI_DIVS_MAX_QTY; i++) {
if (of_property_read_string_index(node, "clock-output-names",
i, &clk_name) != 0)
break;
gate_hw = NULL;
rate_hw = NULL;
rate_ops = NULL;
/* If this leaf clock can be gated, create a gate */
if (data->div[i].gate) {
gate = kzalloc(sizeof(*gate), GFP_KERNEL);
if (!gate)
goto free_clks;
gate->reg = reg;
gate->bit_idx = data->div[i].gate;
gate->lock = &clk_lock;
gate_hw = &gate->hw;
}
/* Leaves can be fixed or configurable divisors */
if (data->div[i].fixed) {
fix_factor = kzalloc(sizeof(*fix_factor), GFP_KERNEL);
if (!fix_factor)
goto free_gate;
fix_factor->mult = 1;
fix_factor->div = data->div[i].fixed;
rate_hw = &fix_factor->hw;
rate_ops = &clk_fixed_factor_ops;
} else {
divider = kzalloc(sizeof(*divider), GFP_KERNEL);
if (!divider)
goto free_gate;
flags = data->div[i].pow ? CLK_DIVIDER_POWER_OF_TWO : 0;
divider->reg = reg;
divider->shift = data->div[i].shift;
divider->width = SUNXI_DIVISOR_WIDTH;
divider->flags = flags;
divider->lock = &clk_lock;
divider->table = data->div[i].table;
rate_hw = &divider->hw;
rate_ops = &clk_divider_ops;
}
/* Wrap the (potential) gate and the divisor on a composite
* clock to unify them */
clks[i] = clk_register_composite(NULL, clk_name, &parent, 1,
NULL, NULL,
rate_hw, rate_ops,
gate_hw, &clk_gate_ops,
clkflags);
WARN_ON(IS_ERR(clk_data->clks[i]));
clk_register_clkdev(clks[i], clk_name, NULL);
}
/* The last clock available on the getter is the parent */
clks[i++] = pclk;
/* Adjust to the real max */
clk_data->clk_num = i;
of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);
return;
free_gate:
kfree(gate);
free_clks:
kfree(clks);
free_clkdata:
kfree(clk_data);
}
/* Matches for factors clocks */ /* Matches for factors clocks */
static const struct of_device_id clk_factors_match[] __initconst = { static const struct of_device_id clk_factors_match[] __initconst = {
{.compatible = "allwinner,sun4i-pll1-clk", .data = &sun4i_pll1_data,}, {.compatible = "allwinner,sun4i-pll1-clk", .data = &sun4i_pll1_data,},
{.compatible = "allwinner,sun6i-a31-pll1-clk", .data = &sun6i_a31_pll1_data,}, {.compatible = "allwinner,sun6i-a31-pll1-clk", .data = &sun6i_a31_pll1_data,},
{.compatible = "allwinner,sun4i-apb1-clk", .data = &sun4i_apb1_data,}, {.compatible = "allwinner,sun4i-apb1-clk", .data = &sun4i_apb1_data,},
{.compatible = "allwinner,sun4i-mod0-clk", .data = &sun4i_mod0_data,},
{.compatible = "allwinner,sun7i-a20-out-clk", .data = &sun7i_a20_out_data,},
{} {}
}; };
@ -578,6 +987,13 @@ static const struct of_device_id clk_div_match[] __initconst = {
{} {}
}; };
/* Matches for divided outputs */
static const struct of_device_id clk_divs_match[] __initconst = {
{.compatible = "allwinner,sun4i-pll5-clk", .data = &pll5_divs_data,},
{.compatible = "allwinner,sun4i-pll6-clk", .data = &pll6_divs_data,},
{}
};
/* Matches for mux clocks */ /* Matches for mux clocks */
static const struct of_device_id clk_mux_match[] __initconst = { static const struct of_device_id clk_mux_match[] __initconst = {
{.compatible = "allwinner,sun4i-cpu-clk", .data = &sun4i_cpu_mux_data,}, {.compatible = "allwinner,sun4i-cpu-clk", .data = &sun4i_cpu_mux_data,},
@ -655,6 +1071,9 @@ static void __init sunxi_init_clocks(void)
/* Register divider clocks */ /* Register divider clocks */
of_sunxi_table_clock_setup(clk_div_match, sunxi_divider_clk_setup); of_sunxi_table_clock_setup(clk_div_match, sunxi_divider_clk_setup);
/* Register divided output clocks */
of_sunxi_table_clock_setup(clk_divs_match, sunxi_divs_clk_setup);
/* Register mux clocks */ /* Register mux clocks */
of_sunxi_table_clock_setup(clk_mux_match, sunxi_mux_clk_setup); of_sunxi_table_clock_setup(clk_mux_match, sunxi_mux_clk_setup);