mirror of https://gitee.com/openkylin/linux.git
ocfs2: Add the underlying blockcheck code.
This is the code that computes crc32 and ecc for ocfs2 metadata blocks. There are high-level functions that check whether the filesystem has the ecc feature, mid-level functions that work on a single block or array of buffer_heads, and the low-level ecc hamming code that can handle multiple buffers like crc32_le(). It's not hooked up to the filesystem yet. Signed-off-by: Joel Becker <joel.becker@oracle.com> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
This commit is contained in:
parent
ab552d5467
commit
70ad1ba7b4
|
@ -12,6 +12,7 @@ obj-$(CONFIG_OCFS2_FS_USERSPACE_CLUSTER) += ocfs2_stack_user.o
|
|||
ocfs2-objs := \
|
||||
alloc.o \
|
||||
aops.o \
|
||||
blockcheck.o \
|
||||
buffer_head_io.o \
|
||||
dcache.o \
|
||||
dir.o \
|
||||
|
|
|
@ -0,0 +1,480 @@
|
|||
/* -*- mode: c; c-basic-offset: 8; -*-
|
||||
* vim: noexpandtab sw=8 ts=8 sts=0:
|
||||
*
|
||||
* blockcheck.c
|
||||
*
|
||||
* Checksum and ECC codes for the OCFS2 userspace library.
|
||||
*
|
||||
* Copyright (C) 2006, 2008 Oracle. All rights reserved.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public
|
||||
* License, version 2, as published by the Free Software Foundation.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* General Public License for more details.
|
||||
*/
|
||||
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/types.h>
|
||||
#include <linux/crc32.h>
|
||||
#include <linux/buffer_head.h>
|
||||
#include <linux/bitops.h>
|
||||
#include <asm/byteorder.h>
|
||||
|
||||
#include "ocfs2.h"
|
||||
|
||||
#include "blockcheck.h"
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* We use the following conventions:
|
||||
*
|
||||
* d = # data bits
|
||||
* p = # parity bits
|
||||
* c = # total code bits (d + p)
|
||||
*/
|
||||
static int calc_parity_bits(unsigned int d)
|
||||
{
|
||||
unsigned int p;
|
||||
|
||||
/*
|
||||
* Bits required for Single Error Correction is as follows:
|
||||
*
|
||||
* d + p + 1 <= 2^p
|
||||
*
|
||||
* We're restricting ourselves to 31 bits of parity, that should be
|
||||
* sufficient.
|
||||
*/
|
||||
for (p = 1; p < 32; p++)
|
||||
{
|
||||
if ((d + p + 1) <= (1 << p))
|
||||
return p;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Calculate the bit offset in the hamming code buffer based on the bit's
|
||||
* offset in the data buffer. Since the hamming code reserves all
|
||||
* power-of-two bits for parity, the data bit number and the code bit
|
||||
* number are offest by all the parity bits beforehand.
|
||||
*
|
||||
* Recall that bit numbers in hamming code are 1-based. This function
|
||||
* takes the 0-based data bit from the caller.
|
||||
*
|
||||
* An example. Take bit 1 of the data buffer. 1 is a power of two (2^0),
|
||||
* so it's a parity bit. 2 is a power of two (2^1), so it's a parity bit.
|
||||
* 3 is not a power of two. So bit 1 of the data buffer ends up as bit 3
|
||||
* in the code buffer.
|
||||
*/
|
||||
static unsigned int calc_code_bit(unsigned int i)
|
||||
{
|
||||
unsigned int b, p;
|
||||
|
||||
/*
|
||||
* Data bits are 0-based, but we're talking code bits, which
|
||||
* are 1-based.
|
||||
*/
|
||||
b = i + 1;
|
||||
|
||||
/*
|
||||
* For every power of two below our bit number, bump our bit.
|
||||
*
|
||||
* We compare with (b + 1) becuase we have to compare with what b
|
||||
* would be _if_ it were bumped up by the parity bit. Capice?
|
||||
*/
|
||||
for (p = 0; (1 << p) < (b + 1); p++)
|
||||
b++;
|
||||
|
||||
return b;
|
||||
}
|
||||
|
||||
/*
|
||||
* This is the low level encoder function. It can be called across
|
||||
* multiple hunks just like the crc32 code. 'd' is the number of bits
|
||||
* _in_this_hunk_. nr is the bit offset of this hunk. So, if you had
|
||||
* two 512B buffers, you would do it like so:
|
||||
*
|
||||
* parity = ocfs2_hamming_encode(0, buf1, 512 * 8, 0);
|
||||
* parity = ocfs2_hamming_encode(parity, buf2, 512 * 8, 512 * 8);
|
||||
*
|
||||
* If you just have one buffer, use ocfs2_hamming_encode_block().
|
||||
*/
|
||||
u32 ocfs2_hamming_encode(u32 parity, void *data, unsigned int d, unsigned int nr)
|
||||
{
|
||||
unsigned int p = calc_parity_bits(nr + d);
|
||||
unsigned int i, j, b;
|
||||
|
||||
BUG_ON(!p);
|
||||
|
||||
/*
|
||||
* b is the hamming code bit number. Hamming code specifies a
|
||||
* 1-based array, but C uses 0-based. So 'i' is for C, and 'b' is
|
||||
* for the algorithm.
|
||||
*
|
||||
* The i++ in the for loop is so that the start offset passed
|
||||
* to ocfs2_find_next_bit_set() is one greater than the previously
|
||||
* found bit.
|
||||
*/
|
||||
for (i = 0; (i = ocfs2_find_next_bit(data, d, i)) < d; i++)
|
||||
{
|
||||
/*
|
||||
* i is the offset in this hunk, nr + i is the total bit
|
||||
* offset.
|
||||
*/
|
||||
b = calc_code_bit(nr + i);
|
||||
|
||||
for (j = 0; j < p; j++)
|
||||
{
|
||||
/*
|
||||
* Data bits in the resultant code are checked by
|
||||
* parity bits that are part of the bit number
|
||||
* representation. Huh?
|
||||
*
|
||||
* <wikipedia href="http://en.wikipedia.org/wiki/Hamming_code">
|
||||
* In other words, the parity bit at position 2^k
|
||||
* checks bits in positions having bit k set in
|
||||
* their binary representation. Conversely, for
|
||||
* instance, bit 13, i.e. 1101(2), is checked by
|
||||
* bits 1000(2) = 8, 0100(2)=4 and 0001(2) = 1.
|
||||
* </wikipedia>
|
||||
*
|
||||
* Note that 'k' is the _code_ bit number. 'b' in
|
||||
* our loop.
|
||||
*/
|
||||
if (b & (1 << j))
|
||||
parity ^= (1 << j);
|
||||
}
|
||||
}
|
||||
|
||||
/* While the data buffer was treated as little endian, the
|
||||
* return value is in host endian. */
|
||||
return parity;
|
||||
}
|
||||
|
||||
u32 ocfs2_hamming_encode_block(void *data, unsigned int blocksize)
|
||||
{
|
||||
return ocfs2_hamming_encode(0, data, blocksize * 8, 0);
|
||||
}
|
||||
|
||||
/*
|
||||
* Like ocfs2_hamming_encode(), this can handle hunks. nr is the bit
|
||||
* offset of the current hunk. If bit to be fixed is not part of the
|
||||
* current hunk, this does nothing.
|
||||
*
|
||||
* If you only have one hunk, use ocfs2_hamming_fix_block().
|
||||
*/
|
||||
void ocfs2_hamming_fix(void *data, unsigned int d, unsigned int nr,
|
||||
unsigned int fix)
|
||||
{
|
||||
unsigned int p = calc_parity_bits(nr + d);
|
||||
unsigned int i, b;
|
||||
|
||||
BUG_ON(!p);
|
||||
|
||||
/*
|
||||
* If the bit to fix has an hweight of 1, it's a parity bit. One
|
||||
* busted parity bit is its own error. Nothing to do here.
|
||||
*/
|
||||
if (hweight32(fix) == 1)
|
||||
return;
|
||||
|
||||
/*
|
||||
* nr + d is the bit right past the data hunk we're looking at.
|
||||
* If fix after that, nothing to do
|
||||
*/
|
||||
if (fix >= calc_code_bit(nr + d))
|
||||
return;
|
||||
|
||||
/*
|
||||
* nr is the offset in the data hunk we're starting at. Let's
|
||||
* start b at the offset in the code buffer. See hamming_encode()
|
||||
* for a more detailed description of 'b'.
|
||||
*/
|
||||
b = calc_code_bit(nr);
|
||||
/* If the fix is before this hunk, nothing to do */
|
||||
if (fix < b)
|
||||
return;
|
||||
|
||||
for (i = 0; i < d; i++, b++)
|
||||
{
|
||||
/* Skip past parity bits */
|
||||
while (hweight32(b) == 1)
|
||||
b++;
|
||||
|
||||
/*
|
||||
* i is the offset in this data hunk.
|
||||
* nr + i is the offset in the total data buffer.
|
||||
* b is the offset in the total code buffer.
|
||||
*
|
||||
* Thus, when b == fix, bit i in the current hunk needs
|
||||
* fixing.
|
||||
*/
|
||||
if (b == fix)
|
||||
{
|
||||
if (ocfs2_test_bit(i, data))
|
||||
ocfs2_clear_bit(i, data);
|
||||
else
|
||||
ocfs2_set_bit(i, data);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ocfs2_hamming_fix_block(void *data, unsigned int blocksize,
|
||||
unsigned int fix)
|
||||
{
|
||||
ocfs2_hamming_fix(data, blocksize * 8, 0, fix);
|
||||
}
|
||||
|
||||
/*
|
||||
* This function generates check information for a block.
|
||||
* data is the block to be checked. bc is a pointer to the
|
||||
* ocfs2_block_check structure describing the crc32 and the ecc.
|
||||
*
|
||||
* bc should be a pointer inside data, as the function will
|
||||
* take care of zeroing it before calculating the check information. If
|
||||
* bc does not point inside data, the caller must make sure any inline
|
||||
* ocfs2_block_check structures are zeroed.
|
||||
*
|
||||
* The data buffer must be in on-disk endian (little endian for ocfs2).
|
||||
* bc will be filled with little-endian values and will be ready to go to
|
||||
* disk.
|
||||
*/
|
||||
void ocfs2_block_check_compute(void *data, size_t blocksize,
|
||||
struct ocfs2_block_check *bc)
|
||||
{
|
||||
u32 crc;
|
||||
u32 ecc;
|
||||
|
||||
memset(bc, 0, sizeof(struct ocfs2_block_check));
|
||||
|
||||
crc = crc32_le(~0, data, blocksize);
|
||||
ecc = ocfs2_hamming_encode_block(data, blocksize);
|
||||
|
||||
/*
|
||||
* No ecc'd ocfs2 structure is larger than 4K, so ecc will be no
|
||||
* larger than 16 bits.
|
||||
*/
|
||||
BUG_ON(ecc > USHORT_MAX);
|
||||
|
||||
bc->bc_crc32e = cpu_to_le32(crc);
|
||||
bc->bc_ecc = cpu_to_le16((u16)ecc);
|
||||
}
|
||||
|
||||
/*
|
||||
* This function validates existing check information. Like _compute,
|
||||
* the function will take care of zeroing bc before calculating check codes.
|
||||
* If bc is not a pointer inside data, the caller must have zeroed any
|
||||
* inline ocfs2_block_check structures.
|
||||
*
|
||||
* Again, the data passed in should be the on-disk endian.
|
||||
*/
|
||||
int ocfs2_block_check_validate(void *data, size_t blocksize,
|
||||
struct ocfs2_block_check *bc)
|
||||
{
|
||||
int rc = 0;
|
||||
struct ocfs2_block_check check;
|
||||
u32 crc, ecc;
|
||||
|
||||
check.bc_crc32e = le32_to_cpu(bc->bc_crc32e);
|
||||
check.bc_ecc = le16_to_cpu(bc->bc_ecc);
|
||||
|
||||
memset(bc, 0, sizeof(struct ocfs2_block_check));
|
||||
|
||||
/* Fast path - if the crc32 validates, we're good to go */
|
||||
crc = crc32_le(~0, data, blocksize);
|
||||
if (crc == check.bc_crc32e)
|
||||
goto out;
|
||||
|
||||
/* Ok, try ECC fixups */
|
||||
ecc = ocfs2_hamming_encode_block(data, blocksize);
|
||||
ocfs2_hamming_fix_block(data, blocksize, ecc ^ check.bc_ecc);
|
||||
|
||||
/* And check the crc32 again */
|
||||
crc = crc32_le(~0, data, blocksize);
|
||||
if (crc == check.bc_crc32e)
|
||||
goto out;
|
||||
|
||||
rc = -EIO;
|
||||
|
||||
out:
|
||||
bc->bc_crc32e = cpu_to_le32(check.bc_crc32e);
|
||||
bc->bc_ecc = cpu_to_le16(check.bc_ecc);
|
||||
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
* This function generates check information for a list of buffer_heads.
|
||||
* bhs is the blocks to be checked. bc is a pointer to the
|
||||
* ocfs2_block_check structure describing the crc32 and the ecc.
|
||||
*
|
||||
* bc should be a pointer inside data, as the function will
|
||||
* take care of zeroing it before calculating the check information. If
|
||||
* bc does not point inside data, the caller must make sure any inline
|
||||
* ocfs2_block_check structures are zeroed.
|
||||
*
|
||||
* The data buffer must be in on-disk endian (little endian for ocfs2).
|
||||
* bc will be filled with little-endian values and will be ready to go to
|
||||
* disk.
|
||||
*/
|
||||
void ocfs2_block_check_compute_bhs(struct buffer_head **bhs, int nr,
|
||||
struct ocfs2_block_check *bc)
|
||||
{
|
||||
int i;
|
||||
u32 crc, ecc;
|
||||
|
||||
BUG_ON(nr < 0);
|
||||
|
||||
if (!nr)
|
||||
return;
|
||||
|
||||
memset(bc, 0, sizeof(struct ocfs2_block_check));
|
||||
|
||||
for (i = 0, crc = ~0, ecc = 0; i < nr; i++) {
|
||||
crc = crc32_le(crc, bhs[i]->b_data, bhs[i]->b_size);
|
||||
/*
|
||||
* The number of bits in a buffer is obviously b_size*8.
|
||||
* The offset of this buffer is b_size*i, so the bit offset
|
||||
* of this buffer is b_size*8*i.
|
||||
*/
|
||||
ecc = (u16)ocfs2_hamming_encode(ecc, bhs[i]->b_data,
|
||||
bhs[i]->b_size * 8,
|
||||
bhs[i]->b_size * 8 * i);
|
||||
}
|
||||
|
||||
/*
|
||||
* No ecc'd ocfs2 structure is larger than 4K, so ecc will be no
|
||||
* larger than 16 bits.
|
||||
*/
|
||||
BUG_ON(ecc > USHORT_MAX);
|
||||
|
||||
bc->bc_crc32e = cpu_to_le32(crc);
|
||||
bc->bc_ecc = cpu_to_le16((u16)ecc);
|
||||
}
|
||||
|
||||
/*
|
||||
* This function validates existing check information on a list of
|
||||
* buffer_heads. Like _compute_bhs, the function will take care of
|
||||
* zeroing bc before calculating check codes. If bc is not a pointer
|
||||
* inside data, the caller must have zeroed any inline
|
||||
* ocfs2_block_check structures.
|
||||
*
|
||||
* Again, the data passed in should be the on-disk endian.
|
||||
*/
|
||||
int ocfs2_block_check_validate_bhs(struct buffer_head **bhs, int nr,
|
||||
struct ocfs2_block_check *bc)
|
||||
{
|
||||
int i, rc = 0;
|
||||
struct ocfs2_block_check check;
|
||||
u32 crc, ecc, fix;
|
||||
|
||||
BUG_ON(nr < 0);
|
||||
|
||||
if (!nr)
|
||||
return 0;
|
||||
|
||||
check.bc_crc32e = le32_to_cpu(bc->bc_crc32e);
|
||||
check.bc_ecc = le16_to_cpu(bc->bc_ecc);
|
||||
|
||||
memset(bc, 0, sizeof(struct ocfs2_block_check));
|
||||
|
||||
/* Fast path - if the crc32 validates, we're good to go */
|
||||
for (i = 0, crc = ~0; i < nr; i++)
|
||||
crc = crc32_le(crc, bhs[i]->b_data, bhs[i]->b_size);
|
||||
if (crc == check.bc_crc32e)
|
||||
goto out;
|
||||
|
||||
mlog(ML_ERROR,
|
||||
"CRC32 failed: stored: %u, computed %u. Applying ECC.\n",
|
||||
(unsigned int)check.bc_crc32e, (unsigned int)crc);
|
||||
|
||||
/* Ok, try ECC fixups */
|
||||
for (i = 0, ecc = 0; i < nr; i++) {
|
||||
/*
|
||||
* The number of bits in a buffer is obviously b_size*8.
|
||||
* The offset of this buffer is b_size*i, so the bit offset
|
||||
* of this buffer is b_size*8*i.
|
||||
*/
|
||||
ecc = (u16)ocfs2_hamming_encode(ecc, bhs[i]->b_data,
|
||||
bhs[i]->b_size * 8,
|
||||
bhs[i]->b_size * 8 * i);
|
||||
}
|
||||
fix = ecc ^ check.bc_ecc;
|
||||
for (i = 0; i < nr; i++) {
|
||||
/*
|
||||
* Try the fix against each buffer. It will only affect
|
||||
* one of them.
|
||||
*/
|
||||
ocfs2_hamming_fix(bhs[i]->b_data, bhs[i]->b_size * 8,
|
||||
bhs[i]->b_size * 8 * i, fix);
|
||||
}
|
||||
|
||||
/* And check the crc32 again */
|
||||
for (i = 0, crc = ~0; i < nr; i++)
|
||||
crc = crc32_le(crc, bhs[i]->b_data, bhs[i]->b_size);
|
||||
if (crc == check.bc_crc32e)
|
||||
goto out;
|
||||
|
||||
mlog(ML_ERROR, "Fixed CRC32 failed: stored: %u, computed %u\n",
|
||||
(unsigned int)check.bc_crc32e, (unsigned int)crc);
|
||||
|
||||
rc = -EIO;
|
||||
|
||||
out:
|
||||
bc->bc_crc32e = cpu_to_le32(check.bc_crc32e);
|
||||
bc->bc_ecc = cpu_to_le16(check.bc_ecc);
|
||||
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
* These are the main API. They check the superblock flag before
|
||||
* calling the underlying operations.
|
||||
*
|
||||
* They expect the buffer(s) to be in disk format.
|
||||
*/
|
||||
void ocfs2_compute_meta_ecc(struct super_block *sb, void *data,
|
||||
struct ocfs2_block_check *bc)
|
||||
{
|
||||
if (ocfs2_meta_ecc(OCFS2_SB(sb)))
|
||||
ocfs2_block_check_compute(data, sb->s_blocksize, bc);
|
||||
}
|
||||
|
||||
int ocfs2_validate_meta_ecc(struct super_block *sb, void *data,
|
||||
struct ocfs2_block_check *bc)
|
||||
{
|
||||
int rc = 0;
|
||||
|
||||
if (ocfs2_meta_ecc(OCFS2_SB(sb)))
|
||||
rc = ocfs2_block_check_validate(data, sb->s_blocksize, bc);
|
||||
|
||||
return rc;
|
||||
}
|
||||
|
||||
void ocfs2_compute_meta_ecc_bhs(struct super_block *sb,
|
||||
struct buffer_head **bhs, int nr,
|
||||
struct ocfs2_block_check *bc)
|
||||
{
|
||||
if (ocfs2_meta_ecc(OCFS2_SB(sb)))
|
||||
ocfs2_block_check_compute_bhs(bhs, nr, bc);
|
||||
}
|
||||
|
||||
int ocfs2_validate_meta_ecc_bhs(struct super_block *sb,
|
||||
struct buffer_head **bhs, int nr,
|
||||
struct ocfs2_block_check *bc)
|
||||
{
|
||||
int rc = 0;
|
||||
|
||||
if (ocfs2_meta_ecc(OCFS2_SB(sb)))
|
||||
rc = ocfs2_block_check_validate_bhs(bhs, nr, bc);
|
||||
|
||||
return rc;
|
||||
}
|
||||
|
|
@ -0,0 +1,82 @@
|
|||
/* -*- mode: c; c-basic-offset: 8; -*-
|
||||
* vim: noexpandtab sw=8 ts=8 sts=0:
|
||||
*
|
||||
* blockcheck.h
|
||||
*
|
||||
* Checksum and ECC codes for the OCFS2 userspace library.
|
||||
*
|
||||
* Copyright (C) 2004, 2008 Oracle. All rights reserved.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public
|
||||
* License, version 2, as published by the Free Software Foundation.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* General Public License for more details.
|
||||
*/
|
||||
|
||||
#ifndef OCFS2_BLOCKCHECK_H
|
||||
#define OCFS2_BLOCKCHECK_H
|
||||
|
||||
|
||||
/* High level block API */
|
||||
void ocfs2_compute_meta_ecc(struct super_block *sb, void *data,
|
||||
struct ocfs2_block_check *bc);
|
||||
int ocfs2_validate_meta_ecc(struct super_block *sb, void *data,
|
||||
struct ocfs2_block_check *bc);
|
||||
void ocfs2_compute_meta_ecc_bhs(struct super_block *sb,
|
||||
struct buffer_head **bhs, int nr,
|
||||
struct ocfs2_block_check *bc);
|
||||
int ocfs2_validate_meta_ecc_bhs(struct super_block *sb,
|
||||
struct buffer_head **bhs, int nr,
|
||||
struct ocfs2_block_check *bc);
|
||||
|
||||
/* Lower level API */
|
||||
void ocfs2_block_check_compute(void *data, size_t blocksize,
|
||||
struct ocfs2_block_check *bc);
|
||||
int ocfs2_block_check_validate(void *data, size_t blocksize,
|
||||
struct ocfs2_block_check *bc);
|
||||
void ocfs2_block_check_compute_bhs(struct buffer_head **bhs, int nr,
|
||||
struct ocfs2_block_check *bc);
|
||||
int ocfs2_block_check_validate_bhs(struct buffer_head **bhs, int nr,
|
||||
struct ocfs2_block_check *bc);
|
||||
|
||||
/*
|
||||
* Hamming code functions
|
||||
*/
|
||||
|
||||
/*
|
||||
* Encoding hamming code parity bits for a buffer.
|
||||
*
|
||||
* This is the low level encoder function. It can be called across
|
||||
* multiple hunks just like the crc32 code. 'd' is the number of bits
|
||||
* _in_this_hunk_. nr is the bit offset of this hunk. So, if you had
|
||||
* two 512B buffers, you would do it like so:
|
||||
*
|
||||
* parity = ocfs2_hamming_encode(0, buf1, 512 * 8, 0);
|
||||
* parity = ocfs2_hamming_encode(parity, buf2, 512 * 8, 512 * 8);
|
||||
*
|
||||
* If you just have one buffer, use ocfs2_hamming_encode_block().
|
||||
*/
|
||||
u32 ocfs2_hamming_encode(u32 parity, void *data, unsigned int d,
|
||||
unsigned int nr);
|
||||
/*
|
||||
* Fix a buffer with a bit error. The 'fix' is the original parity
|
||||
* xor'd with the parity calculated now.
|
||||
*
|
||||
* Like ocfs2_hamming_encode(), this can handle hunks. nr is the bit
|
||||
* offset of the current hunk. If bit to be fixed is not part of the
|
||||
* current hunk, this does nothing.
|
||||
*
|
||||
* If you only have one buffer, use ocfs2_hamming_fix_block().
|
||||
*/
|
||||
void ocfs2_hamming_fix(void *data, unsigned int d, unsigned int nr,
|
||||
unsigned int fix);
|
||||
|
||||
/* Convenience wrappers for a single buffer of data */
|
||||
extern u32 ocfs2_hamming_encode_block(void *data, unsigned int blocksize);
|
||||
extern void ocfs2_hamming_fix_block(void *data, unsigned int blocksize,
|
||||
unsigned int fix);
|
||||
#endif
|
|
@ -382,6 +382,13 @@ static inline int ocfs2_supports_xattr(struct ocfs2_super *osb)
|
|||
return 0;
|
||||
}
|
||||
|
||||
static inline int ocfs2_meta_ecc(struct ocfs2_super *osb)
|
||||
{
|
||||
if (osb->s_feature_incompat & OCFS2_FEATURE_INCOMPAT_META_ECC)
|
||||
return 1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* set / clear functions because cluster events can make these happen
|
||||
* in parallel so we want the transitions to be atomic. this also
|
||||
* means that any future flags osb_flags must be protected by spinlock
|
||||
|
@ -615,5 +622,6 @@ static inline s16 ocfs2_get_inode_steal_slot(struct ocfs2_super *osb)
|
|||
#define ocfs2_clear_bit ext2_clear_bit
|
||||
#define ocfs2_test_bit ext2_test_bit
|
||||
#define ocfs2_find_next_zero_bit ext2_find_next_zero_bit
|
||||
#define ocfs2_find_next_bit ext2_find_next_bit
|
||||
#endif /* OCFS2_H */
|
||||
|
||||
|
|
Loading…
Reference in New Issue