- Some cleanups for the timer-of, use %p0F and the unique device name

(Geert Uytterhoeven)
 
  - Use timer-of for the renesas-ostm and the device name to prevent
    name collision in case of multiple timers (Geert Uytterhoeven)
 
  - Check if there is an error after calling of_clk_get in asm9260
    (Chuhong Yuan)
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQRuKdf4M92Gi9vqihve5qtOL396pgUCXb/z1wAKCRDe5qtOL396
 pot/AQCodxfvuLKrIlIuj67XDJ6zSdDgSvDy2AIWqfmvsd/26wD9EtkofyKiPpyX
 L6B+UmavGyo4VHCJphQza63NdQPK7wc=
 =9C23
 -----END PGP SIGNATURE-----

Merge tag 'timers-v5.6' of https://git.linaro.org/people/daniel.lezcano/linux into timers/core

Pull clockevent updates from Daniel Lezcano:

 - Some cleanups for the timer-of, use %p0F and the unique device name
   (Geert Uytterhoeven)

 - Use timer-of for the renesas-ostm and the device name to prevent
   name collision in case of multiple timers (Geert Uytterhoeven)

 - Check if there is an error after calling of_clk_get in asm9260
   (Chuhong Yuan)
This commit is contained in:
Thomas Gleixner 2019-11-04 18:49:13 +01:00
commit 7252f1405d
4 changed files with 79 additions and 119 deletions

View File

@ -528,6 +528,7 @@ config SH_TIMER_MTU2
config RENESAS_OSTM config RENESAS_OSTM
bool "Renesas OSTM timer driver" if COMPILE_TEST bool "Renesas OSTM timer driver" if COMPILE_TEST
select CLKSRC_MMIO select CLKSRC_MMIO
select TIMER_OF
help help
Enables the support for the Renesas OSTM. Enables the support for the Renesas OSTM.

View File

@ -194,6 +194,10 @@ static int __init asm9260_timer_init(struct device_node *np)
} }
clk = of_clk_get(np, 0); clk = of_clk_get(np, 0);
if (IS_ERR(clk)) {
pr_err("Failed to get clk!\n");
return PTR_ERR(clk);
}
ret = clk_prepare_enable(clk); ret = clk_prepare_enable(clk);
if (ret) { if (ret) {

View File

@ -6,14 +6,14 @@
* Copyright (C) 2017 Chris Brandt * Copyright (C) 2017 Chris Brandt
*/ */
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/clk.h> #include <linux/clk.h>
#include <linux/clockchips.h> #include <linux/clockchips.h>
#include <linux/interrupt.h> #include <linux/interrupt.h>
#include <linux/sched_clock.h> #include <linux/sched_clock.h>
#include <linux/slab.h> #include <linux/slab.h>
#include "timer-of.h"
/* /*
* The OSTM contains independent channels. * The OSTM contains independent channels.
* The first OSTM channel probed will be set up as a free running * The first OSTM channel probed will be set up as a free running
@ -24,12 +24,6 @@
* driven clock event. * driven clock event.
*/ */
struct ostm_device {
void __iomem *base;
unsigned long ticks_per_jiffy;
struct clock_event_device ced;
};
static void __iomem *system_clock; /* For sched_clock() */ static void __iomem *system_clock; /* For sched_clock() */
/* OSTM REGISTERS */ /* OSTM REGISTERS */
@ -47,41 +41,32 @@ static void __iomem *system_clock; /* For sched_clock() */
#define CTL_ONESHOT 0x02 #define CTL_ONESHOT 0x02
#define CTL_FREERUN 0x02 #define CTL_FREERUN 0x02
static struct ostm_device *ced_to_ostm(struct clock_event_device *ced) static void ostm_timer_stop(struct timer_of *to)
{ {
return container_of(ced, struct ostm_device, ced); if (readb(timer_of_base(to) + OSTM_TE) & TE) {
} writeb(TT, timer_of_base(to) + OSTM_TT);
static void ostm_timer_stop(struct ostm_device *ostm)
{
if (readb(ostm->base + OSTM_TE) & TE) {
writeb(TT, ostm->base + OSTM_TT);
/* /*
* Read back the register simply to confirm the write operation * Read back the register simply to confirm the write operation
* has completed since I/O writes can sometimes get queued by * has completed since I/O writes can sometimes get queued by
* the bus architecture. * the bus architecture.
*/ */
while (readb(ostm->base + OSTM_TE) & TE) while (readb(timer_of_base(to) + OSTM_TE) & TE)
; ;
} }
} }
static int __init ostm_init_clksrc(struct ostm_device *ostm, unsigned long rate) static int __init ostm_init_clksrc(struct timer_of *to)
{ {
/* ostm_timer_stop(to);
* irq not used (clock sources don't use interrupts)
*/
ostm_timer_stop(ostm); writel(0, timer_of_base(to) + OSTM_CMP);
writeb(CTL_FREERUN, timer_of_base(to) + OSTM_CTL);
writeb(TS, timer_of_base(to) + OSTM_TS);
writel(0, ostm->base + OSTM_CMP); return clocksource_mmio_init(timer_of_base(to) + OSTM_CNT,
writeb(CTL_FREERUN, ostm->base + OSTM_CTL); to->np->full_name, timer_of_rate(to), 300,
writeb(TS, ostm->base + OSTM_TS); 32, clocksource_mmio_readl_up);
return clocksource_mmio_init(ostm->base + OSTM_CNT,
"ostm", rate,
300, 32, clocksource_mmio_readl_up);
} }
static u64 notrace ostm_read_sched_clock(void) static u64 notrace ostm_read_sched_clock(void)
@ -89,87 +74,75 @@ static u64 notrace ostm_read_sched_clock(void)
return readl(system_clock); return readl(system_clock);
} }
static void __init ostm_init_sched_clock(struct ostm_device *ostm, static void __init ostm_init_sched_clock(struct timer_of *to)
unsigned long rate)
{ {
system_clock = ostm->base + OSTM_CNT; system_clock = timer_of_base(to) + OSTM_CNT;
sched_clock_register(ostm_read_sched_clock, 32, rate); sched_clock_register(ostm_read_sched_clock, 32, timer_of_rate(to));
} }
static int ostm_clock_event_next(unsigned long delta, static int ostm_clock_event_next(unsigned long delta,
struct clock_event_device *ced) struct clock_event_device *ced)
{ {
struct ostm_device *ostm = ced_to_ostm(ced); struct timer_of *to = to_timer_of(ced);
ostm_timer_stop(ostm); ostm_timer_stop(to);
writel(delta, ostm->base + OSTM_CMP); writel(delta, timer_of_base(to) + OSTM_CMP);
writeb(CTL_ONESHOT, ostm->base + OSTM_CTL); writeb(CTL_ONESHOT, timer_of_base(to) + OSTM_CTL);
writeb(TS, ostm->base + OSTM_TS); writeb(TS, timer_of_base(to) + OSTM_TS);
return 0; return 0;
} }
static int ostm_shutdown(struct clock_event_device *ced) static int ostm_shutdown(struct clock_event_device *ced)
{ {
struct ostm_device *ostm = ced_to_ostm(ced); struct timer_of *to = to_timer_of(ced);
ostm_timer_stop(ostm); ostm_timer_stop(to);
return 0; return 0;
} }
static int ostm_set_periodic(struct clock_event_device *ced) static int ostm_set_periodic(struct clock_event_device *ced)
{ {
struct ostm_device *ostm = ced_to_ostm(ced); struct timer_of *to = to_timer_of(ced);
if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced)) if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
ostm_timer_stop(ostm); ostm_timer_stop(to);
writel(ostm->ticks_per_jiffy - 1, ostm->base + OSTM_CMP); writel(timer_of_period(to) - 1, timer_of_base(to) + OSTM_CMP);
writeb(CTL_PERIODIC, ostm->base + OSTM_CTL); writeb(CTL_PERIODIC, timer_of_base(to) + OSTM_CTL);
writeb(TS, ostm->base + OSTM_TS); writeb(TS, timer_of_base(to) + OSTM_TS);
return 0; return 0;
} }
static int ostm_set_oneshot(struct clock_event_device *ced) static int ostm_set_oneshot(struct clock_event_device *ced)
{ {
struct ostm_device *ostm = ced_to_ostm(ced); struct timer_of *to = to_timer_of(ced);
ostm_timer_stop(ostm); ostm_timer_stop(to);
return 0; return 0;
} }
static irqreturn_t ostm_timer_interrupt(int irq, void *dev_id) static irqreturn_t ostm_timer_interrupt(int irq, void *dev_id)
{ {
struct ostm_device *ostm = dev_id; struct clock_event_device *ced = dev_id;
if (clockevent_state_oneshot(&ostm->ced)) if (clockevent_state_oneshot(ced))
ostm_timer_stop(ostm); ostm_timer_stop(to_timer_of(ced));
/* notify clockevent layer */ /* notify clockevent layer */
if (ostm->ced.event_handler) if (ced->event_handler)
ostm->ced.event_handler(&ostm->ced); ced->event_handler(ced);
return IRQ_HANDLED; return IRQ_HANDLED;
} }
static int __init ostm_init_clkevt(struct ostm_device *ostm, int irq, static int __init ostm_init_clkevt(struct timer_of *to)
unsigned long rate)
{ {
struct clock_event_device *ced = &ostm->ced; struct clock_event_device *ced = &to->clkevt;
int ret = -ENXIO;
ret = request_irq(irq, ostm_timer_interrupt,
IRQF_TIMER | IRQF_IRQPOLL,
"ostm", ostm);
if (ret) {
pr_err("ostm: failed to request irq\n");
return ret;
}
ced->name = "ostm";
ced->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC; ced->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC;
ced->set_state_shutdown = ostm_shutdown; ced->set_state_shutdown = ostm_shutdown;
ced->set_state_periodic = ostm_set_periodic; ced->set_state_periodic = ostm_set_periodic;
@ -178,79 +151,61 @@ static int __init ostm_init_clkevt(struct ostm_device *ostm, int irq,
ced->shift = 32; ced->shift = 32;
ced->rating = 300; ced->rating = 300;
ced->cpumask = cpumask_of(0); ced->cpumask = cpumask_of(0);
clockevents_config_and_register(ced, rate, 0xf, 0xffffffff); clockevents_config_and_register(ced, timer_of_rate(to), 0xf,
0xffffffff);
return 0; return 0;
} }
static int __init ostm_init(struct device_node *np) static int __init ostm_init(struct device_node *np)
{ {
struct ostm_device *ostm; struct timer_of *to;
int ret = -EFAULT; int ret;
struct clk *ostm_clk = NULL;
int irq;
unsigned long rate;
ostm = kzalloc(sizeof(*ostm), GFP_KERNEL); to = kzalloc(sizeof(*to), GFP_KERNEL);
if (!ostm) if (!to)
return -ENOMEM; return -ENOMEM;
ostm->base = of_iomap(np, 0); to->flags = TIMER_OF_BASE | TIMER_OF_CLOCK;
if (!ostm->base) { if (system_clock) {
pr_err("ostm: failed to remap I/O memory\n"); /*
goto err; * clock sources don't use interrupts, clock events do
*/
to->flags |= TIMER_OF_IRQ;
to->of_irq.flags = IRQF_TIMER | IRQF_IRQPOLL;
to->of_irq.handler = ostm_timer_interrupt;
} }
irq = irq_of_parse_and_map(np, 0); ret = timer_of_init(np, to);
if (irq < 0) { if (ret)
pr_err("ostm: Failed to get irq\n"); goto err_free;
goto err;
}
ostm_clk = of_clk_get(np, 0);
if (IS_ERR(ostm_clk)) {
pr_err("ostm: Failed to get clock\n");
ostm_clk = NULL;
goto err;
}
ret = clk_prepare_enable(ostm_clk);
if (ret) {
pr_err("ostm: Failed to enable clock\n");
goto err;
}
rate = clk_get_rate(ostm_clk);
ostm->ticks_per_jiffy = DIV_ROUND_CLOSEST(rate, HZ);
/* /*
* First probed device will be used as system clocksource. Any * First probed device will be used as system clocksource. Any
* additional devices will be used as clock events. * additional devices will be used as clock events.
*/ */
if (!system_clock) { if (!system_clock) {
ret = ostm_init_clksrc(ostm, rate); ret = ostm_init_clksrc(to);
if (ret)
if (!ret) { goto err_cleanup;
ostm_init_sched_clock(ostm, rate);
pr_info("ostm: used for clocksource\n");
}
ostm_init_sched_clock(to);
pr_info("%pOF: used for clocksource\n", np);
} else { } else {
ret = ostm_init_clkevt(ostm, irq, rate); ret = ostm_init_clkevt(to);
if (ret)
goto err_cleanup;
if (!ret) pr_info("%pOF: used for clock events\n", np);
pr_info("ostm: used for clock events\n");
}
err:
if (ret) {
clk_disable_unprepare(ostm_clk);
iounmap(ostm->base);
kfree(ostm);
return ret;
} }
return 0; return 0;
err_cleanup:
timer_of_cleanup(to);
err_free:
kfree(to);
return ret;
} }
TIMER_OF_DECLARE(ostm, "renesas,ostm", ostm_init); TIMER_OF_DECLARE(ostm, "renesas,ostm", ostm_init);

View File

@ -57,8 +57,8 @@ static __init int timer_of_irq_init(struct device_node *np,
if (of_irq->name) { if (of_irq->name) {
of_irq->irq = ret = of_irq_get_byname(np, of_irq->name); of_irq->irq = ret = of_irq_get_byname(np, of_irq->name);
if (ret < 0) { if (ret < 0) {
pr_err("Failed to get interrupt %s for %s\n", pr_err("Failed to get interrupt %s for %pOF\n",
of_irq->name, np->full_name); of_irq->name, np);
return ret; return ret;
} }
} else { } else {
@ -192,7 +192,7 @@ int __init timer_of_init(struct device_node *np, struct timer_of *to)
} }
if (!to->clkevt.name) if (!to->clkevt.name)
to->clkevt.name = np->name; to->clkevt.name = np->full_name;
to->np = np; to->np = np;