pwm: ep93xx: Unfold legacy callbacks into ep93xx_pwm_apply()

This just puts the implementation of ep93xx_pwm_disable(),
ep93xx_pwm_enable() and ep93xx_pwm_config() into their only caller.

Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Signed-off-by: Thierry Reding <thierry.reding@gmail.com>
This commit is contained in:
Uwe Kleine-König 2021-06-23 16:02:40 +02:00 committed by Thierry Reding
parent 6d45374af5
commit 72cce47fe8
1 changed files with 71 additions and 106 deletions

View File

@ -58,138 +58,103 @@ static void ep93xx_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm)
ep93xx_pwm_release_gpio(pdev); ep93xx_pwm_release_gpio(pdev);
} }
static int ep93xx_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
int duty_ns, int period_ns)
{
struct ep93xx_pwm *ep93xx_pwm = to_ep93xx_pwm(chip);
void __iomem *base = ep93xx_pwm->base;
unsigned long long c;
unsigned long period_cycles;
unsigned long duty_cycles;
unsigned long term;
int ret = 0;
/*
* The clock needs to be enabled to access the PWM registers.
* Configuration can be changed at any time.
*/
if (!pwm_is_enabled(pwm)) {
ret = clk_enable(ep93xx_pwm->clk);
if (ret)
return ret;
}
c = clk_get_rate(ep93xx_pwm->clk);
c *= period_ns;
do_div(c, 1000000000);
period_cycles = c;
c = period_cycles;
c *= duty_ns;
do_div(c, period_ns);
duty_cycles = c;
if (period_cycles < 0x10000 && duty_cycles < 0x10000) {
term = readw(base + EP93XX_PWMx_TERM_COUNT);
/* Order is important if PWM is running */
if (period_cycles > term) {
writew(period_cycles, base + EP93XX_PWMx_TERM_COUNT);
writew(duty_cycles, base + EP93XX_PWMx_DUTY_CYCLE);
} else {
writew(duty_cycles, base + EP93XX_PWMx_DUTY_CYCLE);
writew(period_cycles, base + EP93XX_PWMx_TERM_COUNT);
}
} else {
ret = -EINVAL;
}
if (!pwm_is_enabled(pwm))
clk_disable(ep93xx_pwm->clk);
return ret;
}
static int ep93xx_pwm_polarity(struct pwm_chip *chip, struct pwm_device *pwm,
enum pwm_polarity polarity)
{
struct ep93xx_pwm *ep93xx_pwm = to_ep93xx_pwm(chip);
int ret;
/*
* The clock needs to be enabled to access the PWM registers.
* Polarity can only be changed when the PWM is disabled.
*/
ret = clk_enable(ep93xx_pwm->clk);
if (ret)
return ret;
if (polarity == PWM_POLARITY_INVERSED)
writew(0x1, ep93xx_pwm->base + EP93XX_PWMx_INVERT);
else
writew(0x0, ep93xx_pwm->base + EP93XX_PWMx_INVERT);
clk_disable(ep93xx_pwm->clk);
return 0;
}
static int ep93xx_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm)
{
struct ep93xx_pwm *ep93xx_pwm = to_ep93xx_pwm(chip);
int ret;
ret = clk_enable(ep93xx_pwm->clk);
if (ret)
return ret;
writew(0x1, ep93xx_pwm->base + EP93XX_PWMx_ENABLE);
return 0;
}
static void ep93xx_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm)
{
struct ep93xx_pwm *ep93xx_pwm = to_ep93xx_pwm(chip);
writew(0x0, ep93xx_pwm->base + EP93XX_PWMx_ENABLE);
clk_disable(ep93xx_pwm->clk);
}
static int ep93xx_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, static int ep93xx_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_state *state) const struct pwm_state *state)
{ {
int ret; int ret;
struct ep93xx_pwm *ep93xx_pwm = to_ep93xx_pwm(chip);
bool enabled = state->enabled; bool enabled = state->enabled;
if (state->polarity != pwm->state.polarity) { if (state->polarity != pwm->state.polarity) {
if (enabled) { if (enabled) {
ep93xx_pwm_disable(chip, pwm); writew(0x0, ep93xx_pwm->base + EP93XX_PWMx_ENABLE);
clk_disable(ep93xx_pwm->clk);
enabled = false; enabled = false;
} }
ret = ep93xx_pwm_polarity(chip, pwm, state->polarity); /*
* The clock needs to be enabled to access the PWM registers.
* Polarity can only be changed when the PWM is disabled.
*/
ret = clk_enable(ep93xx_pwm->clk);
if (ret) if (ret)
return ret; return ret;
if (state->polarity == PWM_POLARITY_INVERSED)
writew(0x1, ep93xx_pwm->base + EP93XX_PWMx_INVERT);
else
writew(0x0, ep93xx_pwm->base + EP93XX_PWMx_INVERT);
clk_disable(ep93xx_pwm->clk);
} }
if (!state->enabled) { if (!state->enabled) {
if (enabled) if (enabled) {
ep93xx_pwm_disable(chip, pwm); writew(0x0, ep93xx_pwm->base + EP93XX_PWMx_ENABLE);
clk_disable(ep93xx_pwm->clk);
}
return 0; return 0;
} }
if (state->period != pwm->state.period || if (state->period != pwm->state.period ||
state->duty_cycle != pwm->state.duty_cycle) { state->duty_cycle != pwm->state.duty_cycle) {
ret = ep93xx_pwm_config(chip, pwm, (int)state->duty_cycle, struct ep93xx_pwm *ep93xx_pwm = to_ep93xx_pwm(chip);
(int)state->period); void __iomem *base = ep93xx_pwm->base;
unsigned long long c;
unsigned long period_cycles;
unsigned long duty_cycles;
unsigned long term;
/*
* The clock needs to be enabled to access the PWM registers.
* Configuration can be changed at any time.
*/
if (!pwm_is_enabled(pwm)) {
ret = clk_enable(ep93xx_pwm->clk);
if (ret)
return ret;
}
c = clk_get_rate(ep93xx_pwm->clk);
c *= state->period;
do_div(c, 1000000000);
period_cycles = c;
c = period_cycles;
c *= state->duty_cycle;
do_div(c, state->period);
duty_cycles = c;
if (period_cycles < 0x10000 && duty_cycles < 0x10000) {
term = readw(base + EP93XX_PWMx_TERM_COUNT);
/* Order is important if PWM is running */
if (period_cycles > term) {
writew(period_cycles, base + EP93XX_PWMx_TERM_COUNT);
writew(duty_cycles, base + EP93XX_PWMx_DUTY_CYCLE);
} else {
writew(duty_cycles, base + EP93XX_PWMx_DUTY_CYCLE);
writew(period_cycles, base + EP93XX_PWMx_TERM_COUNT);
}
} else {
ret = -EINVAL;
}
if (!pwm_is_enabled(pwm))
clk_disable(ep93xx_pwm->clk);
if (ret) if (ret)
return ret; return ret;
} }
if (!enabled) if (!enabled) {
return ep93xx_pwm_enable(chip, pwm); ret = clk_enable(ep93xx_pwm->clk);
if (ret)
return ret;
writew(0x1, ep93xx_pwm->base + EP93XX_PWMx_ENABLE);
}
return 0; return 0;
} }