mtd: rawnand: Add Macronix raw NAND controller driver

Add a driver for Macronix raw NAND controller.

Signed-off-by: Mason Yang <masonccyang@mxic.com.tw>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
This commit is contained in:
Mason Yang 2019-08-19 15:19:08 +08:00 committed by Miquel Raynal
parent 86aa04f4c2
commit 738b0ca55f
3 changed files with 589 additions and 0 deletions

View File

@ -407,6 +407,12 @@ config MTD_NAND_MTK
Enables support for NAND controller on MTK SoCs. Enables support for NAND controller on MTK SoCs.
This controller is found on mt27xx, mt81xx, mt65xx SoCs. This controller is found on mt27xx, mt81xx, mt65xx SoCs.
config MTD_NAND_MXIC
tristate "Macronix raw NAND controller"
depends on HAS_IOMEM || COMPILE_TEST
help
This selects the Macronix raw NAND controller driver.
config MTD_NAND_TEGRA config MTD_NAND_TEGRA
tristate "NVIDIA Tegra NAND controller" tristate "NVIDIA Tegra NAND controller"
depends on ARCH_TEGRA || COMPILE_TEST depends on ARCH_TEGRA || COMPILE_TEST

View File

@ -54,6 +54,7 @@ obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o
obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/ obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/
obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o
obj-$(CONFIG_MTD_NAND_MTK) += mtk_ecc.o mtk_nand.o obj-$(CONFIG_MTD_NAND_MTK) += mtk_ecc.o mtk_nand.o
obj-$(CONFIG_MTD_NAND_MXIC) += mxic_nand.o
obj-$(CONFIG_MTD_NAND_TEGRA) += tegra_nand.o obj-$(CONFIG_MTD_NAND_TEGRA) += tegra_nand.o
obj-$(CONFIG_MTD_NAND_STM32_FMC2) += stm32_fmc2_nand.o obj-$(CONFIG_MTD_NAND_STM32_FMC2) += stm32_fmc2_nand.o
obj-$(CONFIG_MTD_NAND_MESON) += meson_nand.o obj-$(CONFIG_MTD_NAND_MESON) += meson_nand.o

View File

@ -0,0 +1,582 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2019 Macronix International Co., Ltd.
*
* Author:
* Mason Yang <masonccyang@mxic.com.tw>
*/
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/nand_ecc.h>
#include <linux/platform_device.h>
#include "internals.h"
#define HC_CFG 0x0
#define HC_CFG_IF_CFG(x) ((x) << 27)
#define HC_CFG_DUAL_SLAVE BIT(31)
#define HC_CFG_INDIVIDUAL BIT(30)
#define HC_CFG_NIO(x) (((x) / 4) << 27)
#define HC_CFG_TYPE(s, t) ((t) << (23 + ((s) * 2)))
#define HC_CFG_TYPE_SPI_NOR 0
#define HC_CFG_TYPE_SPI_NAND 1
#define HC_CFG_TYPE_SPI_RAM 2
#define HC_CFG_TYPE_RAW_NAND 3
#define HC_CFG_SLV_ACT(x) ((x) << 21)
#define HC_CFG_CLK_PH_EN BIT(20)
#define HC_CFG_CLK_POL_INV BIT(19)
#define HC_CFG_BIG_ENDIAN BIT(18)
#define HC_CFG_DATA_PASS BIT(17)
#define HC_CFG_IDLE_SIO_LVL(x) ((x) << 16)
#define HC_CFG_MAN_START_EN BIT(3)
#define HC_CFG_MAN_START BIT(2)
#define HC_CFG_MAN_CS_EN BIT(1)
#define HC_CFG_MAN_CS_ASSERT BIT(0)
#define INT_STS 0x4
#define INT_STS_EN 0x8
#define INT_SIG_EN 0xc
#define INT_STS_ALL GENMASK(31, 0)
#define INT_RDY_PIN BIT(26)
#define INT_RDY_SR BIT(25)
#define INT_LNR_SUSP BIT(24)
#define INT_ECC_ERR BIT(17)
#define INT_CRC_ERR BIT(16)
#define INT_LWR_DIS BIT(12)
#define INT_LRD_DIS BIT(11)
#define INT_SDMA_INT BIT(10)
#define INT_DMA_FINISH BIT(9)
#define INT_RX_NOT_FULL BIT(3)
#define INT_RX_NOT_EMPTY BIT(2)
#define INT_TX_NOT_FULL BIT(1)
#define INT_TX_EMPTY BIT(0)
#define HC_EN 0x10
#define HC_EN_BIT BIT(0)
#define TXD(x) (0x14 + ((x) * 4))
#define RXD 0x24
#define SS_CTRL(s) (0x30 + ((s) * 4))
#define LRD_CFG 0x44
#define LWR_CFG 0x80
#define RWW_CFG 0x70
#define OP_READ BIT(23)
#define OP_DUMMY_CYC(x) ((x) << 17)
#define OP_ADDR_BYTES(x) ((x) << 14)
#define OP_CMD_BYTES(x) (((x) - 1) << 13)
#define OP_OCTA_CRC_EN BIT(12)
#define OP_DQS_EN BIT(11)
#define OP_ENHC_EN BIT(10)
#define OP_PREAMBLE_EN BIT(9)
#define OP_DATA_DDR BIT(8)
#define OP_DATA_BUSW(x) ((x) << 6)
#define OP_ADDR_DDR BIT(5)
#define OP_ADDR_BUSW(x) ((x) << 3)
#define OP_CMD_DDR BIT(2)
#define OP_CMD_BUSW(x) (x)
#define OP_BUSW_1 0
#define OP_BUSW_2 1
#define OP_BUSW_4 2
#define OP_BUSW_8 3
#define OCTA_CRC 0x38
#define OCTA_CRC_IN_EN(s) BIT(3 + ((s) * 16))
#define OCTA_CRC_CHUNK(s, x) ((fls((x) / 32)) << (1 + ((s) * 16)))
#define OCTA_CRC_OUT_EN(s) BIT(0 + ((s) * 16))
#define ONFI_DIN_CNT(s) (0x3c + (s))
#define LRD_CTRL 0x48
#define RWW_CTRL 0x74
#define LWR_CTRL 0x84
#define LMODE_EN BIT(31)
#define LMODE_SLV_ACT(x) ((x) << 21)
#define LMODE_CMD1(x) ((x) << 8)
#define LMODE_CMD0(x) (x)
#define LRD_ADDR 0x4c
#define LWR_ADDR 0x88
#define LRD_RANGE 0x50
#define LWR_RANGE 0x8c
#define AXI_SLV_ADDR 0x54
#define DMAC_RD_CFG 0x58
#define DMAC_WR_CFG 0x94
#define DMAC_CFG_PERIPH_EN BIT(31)
#define DMAC_CFG_ALLFLUSH_EN BIT(30)
#define DMAC_CFG_LASTFLUSH_EN BIT(29)
#define DMAC_CFG_QE(x) (((x) + 1) << 16)
#define DMAC_CFG_BURST_LEN(x) (((x) + 1) << 12)
#define DMAC_CFG_BURST_SZ(x) ((x) << 8)
#define DMAC_CFG_DIR_READ BIT(1)
#define DMAC_CFG_START BIT(0)
#define DMAC_RD_CNT 0x5c
#define DMAC_WR_CNT 0x98
#define SDMA_ADDR 0x60
#define DMAM_CFG 0x64
#define DMAM_CFG_START BIT(31)
#define DMAM_CFG_CONT BIT(30)
#define DMAM_CFG_SDMA_GAP(x) (fls((x) / 8192) << 2)
#define DMAM_CFG_DIR_READ BIT(1)
#define DMAM_CFG_EN BIT(0)
#define DMAM_CNT 0x68
#define LNR_TIMER_TH 0x6c
#define RDM_CFG0 0x78
#define RDM_CFG0_POLY(x) (x)
#define RDM_CFG1 0x7c
#define RDM_CFG1_RDM_EN BIT(31)
#define RDM_CFG1_SEED(x) (x)
#define LWR_SUSP_CTRL 0x90
#define LWR_SUSP_CTRL_EN BIT(31)
#define DMAS_CTRL 0x9c
#define DMAS_CTRL_EN BIT(31)
#define DMAS_CTRL_DIR_READ BIT(30)
#define DATA_STROB 0xa0
#define DATA_STROB_EDO_EN BIT(2)
#define DATA_STROB_INV_POL BIT(1)
#define DATA_STROB_DELAY_2CYC BIT(0)
#define IDLY_CODE(x) (0xa4 + ((x) * 4))
#define IDLY_CODE_VAL(x, v) ((v) << (((x) % 4) * 8))
#define GPIO 0xc4
#define GPIO_PT(x) BIT(3 + ((x) * 16))
#define GPIO_RESET(x) BIT(2 + ((x) * 16))
#define GPIO_HOLDB(x) BIT(1 + ((x) * 16))
#define GPIO_WPB(x) BIT((x) * 16)
#define HC_VER 0xd0
#define HW_TEST(x) (0xe0 + ((x) * 4))
#define MXIC_NFC_MAX_CLK_HZ 50000000
#define IRQ_TIMEOUT 1000
struct mxic_nand_ctlr {
struct clk *ps_clk;
struct clk *send_clk;
struct clk *send_dly_clk;
struct completion complete;
void __iomem *regs;
struct nand_controller controller;
struct device *dev;
struct nand_chip chip;
};
static int mxic_nfc_clk_enable(struct mxic_nand_ctlr *nfc)
{
int ret;
ret = clk_prepare_enable(nfc->ps_clk);
if (ret)
return ret;
ret = clk_prepare_enable(nfc->send_clk);
if (ret)
goto err_ps_clk;
ret = clk_prepare_enable(nfc->send_dly_clk);
if (ret)
goto err_send_dly_clk;
return ret;
err_send_dly_clk:
clk_disable_unprepare(nfc->send_clk);
err_ps_clk:
clk_disable_unprepare(nfc->ps_clk);
return ret;
}
static void mxic_nfc_clk_disable(struct mxic_nand_ctlr *nfc)
{
clk_disable_unprepare(nfc->send_clk);
clk_disable_unprepare(nfc->send_dly_clk);
clk_disable_unprepare(nfc->ps_clk);
}
static void mxic_nfc_set_input_delay(struct mxic_nand_ctlr *nfc, u8 idly_code)
{
writel(IDLY_CODE_VAL(0, idly_code) |
IDLY_CODE_VAL(1, idly_code) |
IDLY_CODE_VAL(2, idly_code) |
IDLY_CODE_VAL(3, idly_code),
nfc->regs + IDLY_CODE(0));
writel(IDLY_CODE_VAL(4, idly_code) |
IDLY_CODE_VAL(5, idly_code) |
IDLY_CODE_VAL(6, idly_code) |
IDLY_CODE_VAL(7, idly_code),
nfc->regs + IDLY_CODE(1));
}
static int mxic_nfc_clk_setup(struct mxic_nand_ctlr *nfc, unsigned long freq)
{
int ret;
ret = clk_set_rate(nfc->send_clk, freq);
if (ret)
return ret;
ret = clk_set_rate(nfc->send_dly_clk, freq);
if (ret)
return ret;
/*
* A constant delay range from 0x0 ~ 0x1F for input delay,
* the unit is 78 ps, the max input delay is 2.418 ns.
*/
mxic_nfc_set_input_delay(nfc, 0xf);
/*
* Phase degree = 360 * freq * output-delay
* where output-delay is a constant value 1 ns in FPGA.
*
* Get Phase degree = 360 * freq * 1 ns
* = 360 * freq * 1 sec / 1000000000
* = 9 * freq / 25000000
*/
ret = clk_set_phase(nfc->send_dly_clk, 9 * freq / 25000000);
if (ret)
return ret;
return 0;
}
static int mxic_nfc_set_freq(struct mxic_nand_ctlr *nfc, unsigned long freq)
{
int ret;
if (freq > MXIC_NFC_MAX_CLK_HZ)
freq = MXIC_NFC_MAX_CLK_HZ;
mxic_nfc_clk_disable(nfc);
ret = mxic_nfc_clk_setup(nfc, freq);
if (ret)
return ret;
ret = mxic_nfc_clk_enable(nfc);
if (ret)
return ret;
return 0;
}
static irqreturn_t mxic_nfc_isr(int irq, void *dev_id)
{
struct mxic_nand_ctlr *nfc = dev_id;
u32 sts;
sts = readl(nfc->regs + INT_STS);
if (sts & INT_RDY_PIN)
complete(&nfc->complete);
else
return IRQ_NONE;
return IRQ_HANDLED;
}
static void mxic_nfc_hw_init(struct mxic_nand_ctlr *nfc)
{
writel(HC_CFG_NIO(8) | HC_CFG_TYPE(1, HC_CFG_TYPE_RAW_NAND) |
HC_CFG_SLV_ACT(0) | HC_CFG_MAN_CS_EN |
HC_CFG_IDLE_SIO_LVL(1), nfc->regs + HC_CFG);
writel(INT_STS_ALL, nfc->regs + INT_STS_EN);
writel(INT_RDY_PIN, nfc->regs + INT_SIG_EN);
writel(0x0, nfc->regs + ONFI_DIN_CNT(0));
writel(0, nfc->regs + LRD_CFG);
writel(0, nfc->regs + LRD_CTRL);
writel(0x0, nfc->regs + HC_EN);
}
static void mxic_nfc_cs_enable(struct mxic_nand_ctlr *nfc)
{
writel(readl(nfc->regs + HC_CFG) | HC_CFG_MAN_CS_EN,
nfc->regs + HC_CFG);
writel(HC_CFG_MAN_CS_ASSERT | readl(nfc->regs + HC_CFG),
nfc->regs + HC_CFG);
}
static void mxic_nfc_cs_disable(struct mxic_nand_ctlr *nfc)
{
writel(~HC_CFG_MAN_CS_ASSERT & readl(nfc->regs + HC_CFG),
nfc->regs + HC_CFG);
}
static int mxic_nfc_wait_ready(struct nand_chip *chip)
{
struct mxic_nand_ctlr *nfc = nand_get_controller_data(chip);
int ret;
ret = wait_for_completion_timeout(&nfc->complete,
msecs_to_jiffies(IRQ_TIMEOUT));
if (!ret) {
dev_err(nfc->dev, "nand device timeout\n");
return -ETIMEDOUT;
}
return 0;
}
static int mxic_nfc_data_xfer(struct mxic_nand_ctlr *nfc, const void *txbuf,
void *rxbuf, unsigned int len)
{
unsigned int pos = 0;
while (pos < len) {
unsigned int nbytes = len - pos;
u32 data = 0xffffffff;
u32 sts;
int ret;
if (nbytes > 4)
nbytes = 4;
if (txbuf)
memcpy(&data, txbuf + pos, nbytes);
ret = readl_poll_timeout(nfc->regs + INT_STS, sts,
sts & INT_TX_EMPTY, 0, USEC_PER_SEC);
if (ret)
return ret;
writel(data, nfc->regs + TXD(nbytes % 4));
ret = readl_poll_timeout(nfc->regs + INT_STS, sts,
sts & INT_TX_EMPTY, 0, USEC_PER_SEC);
if (ret)
return ret;
ret = readl_poll_timeout(nfc->regs + INT_STS, sts,
sts & INT_RX_NOT_EMPTY, 0,
USEC_PER_SEC);
if (ret)
return ret;
data = readl(nfc->regs + RXD);
if (rxbuf) {
data >>= (8 * (4 - nbytes));
memcpy(rxbuf + pos, &data, nbytes);
}
if (readl(nfc->regs + INT_STS) & INT_RX_NOT_EMPTY)
dev_warn(nfc->dev, "RX FIFO not empty\n");
pos += nbytes;
}
return 0;
}
static int mxic_nfc_exec_op(struct nand_chip *chip,
const struct nand_operation *op, bool check_only)
{
struct mxic_nand_ctlr *nfc = nand_get_controller_data(chip);
const struct nand_op_instr *instr = NULL;
int ret = 0;
unsigned int op_id;
mxic_nfc_cs_enable(nfc);
init_completion(&nfc->complete);
for (op_id = 0; op_id < op->ninstrs; op_id++) {
instr = &op->instrs[op_id];
switch (instr->type) {
case NAND_OP_CMD_INSTR:
writel(0, nfc->regs + HC_EN);
writel(HC_EN_BIT, nfc->regs + HC_EN);
writel(OP_CMD_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) |
OP_CMD_BYTES(0), nfc->regs + SS_CTRL(0));
ret = mxic_nfc_data_xfer(nfc,
&instr->ctx.cmd.opcode,
NULL, 1);
break;
case NAND_OP_ADDR_INSTR:
writel(OP_ADDR_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) |
OP_ADDR_BYTES(instr->ctx.addr.naddrs),
nfc->regs + SS_CTRL(0));
ret = mxic_nfc_data_xfer(nfc,
instr->ctx.addr.addrs, NULL,
instr->ctx.addr.naddrs);
break;
case NAND_OP_DATA_IN_INSTR:
writel(0x0, nfc->regs + ONFI_DIN_CNT(0));
writel(OP_DATA_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) |
OP_READ, nfc->regs + SS_CTRL(0));
ret = mxic_nfc_data_xfer(nfc, NULL,
instr->ctx.data.buf.in,
instr->ctx.data.len);
break;
case NAND_OP_DATA_OUT_INSTR:
writel(instr->ctx.data.len,
nfc->regs + ONFI_DIN_CNT(0));
writel(OP_DATA_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F),
nfc->regs + SS_CTRL(0));
ret = mxic_nfc_data_xfer(nfc,
instr->ctx.data.buf.out, NULL,
instr->ctx.data.len);
break;
case NAND_OP_WAITRDY_INSTR:
ret = mxic_nfc_wait_ready(chip);
break;
}
}
mxic_nfc_cs_disable(nfc);
return ret;
}
static int mxic_nfc_setup_data_interface(struct nand_chip *chip, int chipnr,
const struct nand_data_interface *conf)
{
struct mxic_nand_ctlr *nfc = nand_get_controller_data(chip);
const struct nand_sdr_timings *sdr;
unsigned long freq;
int ret;
sdr = nand_get_sdr_timings(conf);
if (IS_ERR(sdr))
return PTR_ERR(sdr);
if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
return 0;
freq = NSEC_PER_SEC / (sdr->tRC_min / 1000);
ret = mxic_nfc_set_freq(nfc, freq);
if (ret)
dev_err(nfc->dev, "set freq:%ld failed\n", freq);
if (sdr->tRC_min < 30000)
writel(DATA_STROB_EDO_EN, nfc->regs + DATA_STROB);
return 0;
}
static const struct nand_controller_ops mxic_nand_controller_ops = {
.exec_op = mxic_nfc_exec_op,
.setup_data_interface = mxic_nfc_setup_data_interface,
};
static int mxic_nfc_probe(struct platform_device *pdev)
{
struct device_node *nand_np, *np = pdev->dev.of_node;
struct mtd_info *mtd;
struct mxic_nand_ctlr *nfc;
struct nand_chip *nand_chip;
int err;
int irq;
nfc = devm_kzalloc(&pdev->dev, sizeof(struct mxic_nand_ctlr),
GFP_KERNEL);
if (!nfc)
return -ENOMEM;
nfc->ps_clk = devm_clk_get(&pdev->dev, "ps");
if (IS_ERR(nfc->ps_clk))
return PTR_ERR(nfc->ps_clk);
nfc->send_clk = devm_clk_get(&pdev->dev, "send");
if (IS_ERR(nfc->send_clk))
return PTR_ERR(nfc->send_clk);
nfc->send_dly_clk = devm_clk_get(&pdev->dev, "send_dly");
if (IS_ERR(nfc->send_dly_clk))
return PTR_ERR(nfc->send_dly_clk);
nfc->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(nfc->regs))
return PTR_ERR(nfc->regs);
nand_chip = &nfc->chip;
mtd = nand_to_mtd(nand_chip);
mtd->dev.parent = &pdev->dev;
for_each_child_of_node(np, nand_np)
nand_set_flash_node(nand_chip, nand_np);
nand_chip->priv = nfc;
nfc->dev = &pdev->dev;
nfc->controller.ops = &mxic_nand_controller_ops;
nand_controller_init(&nfc->controller);
nand_chip->controller = &nfc->controller;
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(&pdev->dev, "failed to retrieve irq\n");
return irq;
}
mxic_nfc_hw_init(nfc);
err = devm_request_irq(&pdev->dev, irq, mxic_nfc_isr,
0, "mxic-nfc", nfc);
if (err)
goto fail;
err = nand_scan(nand_chip, 1);
if (err)
goto fail;
err = mtd_device_register(mtd, NULL, 0);
if (err)
goto fail;
platform_set_drvdata(pdev, nfc);
return 0;
fail:
mxic_nfc_clk_disable(nfc);
return err;
}
static int mxic_nfc_remove(struct platform_device *pdev)
{
struct mxic_nand_ctlr *nfc = platform_get_drvdata(pdev);
nand_release(&nfc->chip);
mxic_nfc_clk_disable(nfc);
return 0;
}
static const struct of_device_id mxic_nfc_of_ids[] = {
{ .compatible = "mxic,multi-itfc-v009-nand-controller", },
{},
};
MODULE_DEVICE_TABLE(of, mxic_nfc_of_ids);
static struct platform_driver mxic_nfc_driver = {
.probe = mxic_nfc_probe,
.remove = mxic_nfc_remove,
.driver = {
.name = "mxic-nfc",
.of_match_table = mxic_nfc_of_ids,
},
};
module_platform_driver(mxic_nfc_driver);
MODULE_AUTHOR("Mason Yang <masonccyang@mxic.com.tw>");
MODULE_DESCRIPTION("Macronix raw NAND controller driver");
MODULE_LICENSE("GPL v2");