mirror of https://gitee.com/openkylin/linux.git
bus: qcom: add EBI2 device tree bindings
This adds device tree bindings for the External Bus Interface 2, EBI2 to the Qualcomm SoC drivers. Cc: devicetree@vger.kernel.org Acked-by: Rob Herring <robh+dt@kernel.org> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
This commit is contained in:
parent
29b4817d40
commit
7e525b7dac
|
@ -0,0 +1,138 @@
|
|||
Qualcomm External Bus Interface 2 (EBI2)
|
||||
|
||||
The EBI2 contains two peripheral blocks: XMEM and LCDC. The XMEM handles any
|
||||
external memory (such as NAND or other memory-mapped peripherals) whereas
|
||||
LCDC handles LCD displays.
|
||||
|
||||
As it says it connects devices to an external bus interface, meaning address
|
||||
lines (up to 9 address lines so can only address 1KiB external memory space),
|
||||
data lines (16 bits), OE (output enable), ADV (address valid, used on some
|
||||
NOR flash memories), WE (write enable). This on top of 6 different chip selects
|
||||
(CS0 thru CS5) so that in theory 6 different devices can be connected.
|
||||
|
||||
Apparently this bus is clocked at 64MHz. It has dedicated pins on the package
|
||||
and the bus can only come out on these pins, however if some of the pins are
|
||||
unused they can be left unconnected or remuxed to be used as GPIO or in some
|
||||
cases other orthogonal functions as well.
|
||||
|
||||
Also CS1 and CS2 has -A and -B signals. Why they have that is unclear to me.
|
||||
|
||||
The chip selects have the following memory range assignments. This region of
|
||||
memory is referred to as "Chip Peripheral SS FPB0" and is 168MB big.
|
||||
|
||||
Chip Select Physical address base
|
||||
CS0 GPIO134 0x1a800000-0x1b000000 (8MB)
|
||||
CS1 GPIO39 (A) / GPIO123 (B) 0x1b000000-0x1b800000 (8MB)
|
||||
CS2 GPIO40 (A) / GPIO124 (B) 0x1b800000-0x1c000000 (8MB)
|
||||
CS3 GPIO133 0x1d000000-0x25000000 (128 MB)
|
||||
CS4 GPIO132 0x1c800000-0x1d000000 (8MB)
|
||||
CS5 GPIO131 0x1c000000-0x1c800000 (8MB)
|
||||
|
||||
The APQ8060 Qualcomm Application Processor User Guide, 80-N7150-14 Rev. A,
|
||||
August 6, 2012 contains some incomplete documentation of the EBI2.
|
||||
|
||||
FIXME: the manual mentions "write precharge cycles" and "precharge cycles".
|
||||
We have not been able to figure out which bit fields these correspond to
|
||||
in the hardware, or what valid values exist. The current hypothesis is that
|
||||
this is something just used on the FAST chip selects and that the SLOW
|
||||
chip selects are understood fully. There is also a "byte device enable"
|
||||
flag somewhere for 8bit memories.
|
||||
|
||||
FIXME: The chipselects have SLOW and FAST configuration registers. It's a bit
|
||||
unclear what this means, if they are mutually exclusive or can be used
|
||||
together, or if some chip selects are hardwired to be FAST and others are SLOW
|
||||
by design.
|
||||
|
||||
The XMEM registers are totally undocumented but could be partially decoded
|
||||
because the Cypress AN49576 Antioch Westbridge apparently has suspiciously
|
||||
similar register layout, see: http://www.cypress.com/file/105771/download
|
||||
|
||||
Required properties:
|
||||
- compatible: should be one of:
|
||||
"qcom,msm8660-ebi2"
|
||||
"qcom,apq8060-ebi2"
|
||||
- #address-cells: shoule be <2>: the first cell is the chipselect,
|
||||
the second cell is the offset inside the memory range
|
||||
- #size-cells: should be <1>
|
||||
- ranges: should be set to:
|
||||
ranges = <0 0x0 0x1a800000 0x00800000>,
|
||||
<1 0x0 0x1b000000 0x00800000>,
|
||||
<2 0x0 0x1b800000 0x00800000>,
|
||||
<3 0x0 0x1d000000 0x08000000>,
|
||||
<4 0x0 0x1c800000 0x00800000>,
|
||||
<5 0x0 0x1c000000 0x00800000>;
|
||||
- reg: two ranges of registers: EBI2 config and XMEM config areas
|
||||
- reg-names: should be "ebi2", "xmem"
|
||||
- clocks: two clocks, EBI_2X and EBI
|
||||
- clock-names: shoule be "ebi2x", "ebi2"
|
||||
|
||||
Optional subnodes:
|
||||
- Nodes inside the EBI2 will be considered device nodes.
|
||||
|
||||
The following optional properties are properties that can be tagged onto
|
||||
any device subnode. We are assuming that there can be only ONE device per
|
||||
chipselect subnode, else the properties will become ambigous.
|
||||
|
||||
Optional properties arrays for SLOW chip selects:
|
||||
- qcom,xmem-recovery-cycles: recovery cycles is the time the memory continues to
|
||||
drive the data bus after OE is de-asserted, in order to avoid contention on
|
||||
the data bus. They are inserted when reading one CS and switching to another
|
||||
CS or read followed by write on the same CS. Valid values 0 thru 15. Minimum
|
||||
value is actually 1, so a value of 0 will still yield 1 recovery cycle.
|
||||
- qcom,xmem-write-hold-cycles: write hold cycles, these are extra cycles
|
||||
inserted after every write minimum 1. The data out is driven from the time
|
||||
WE is asserted until CS is asserted. With a hold of 1 (value = 0), the CS
|
||||
stays active for 1 extra cycle etc. Valid values 0 thru 15.
|
||||
- qcom,xmem-write-delta-cycles: initial latency for write cycles inserted for
|
||||
the first write to a page or burst memory. Valid values 0 thru 255.
|
||||
- qcom,xmem-read-delta-cycles: initial latency for read cycles inserted for the
|
||||
first read to a page or burst memory. Valid values 0 thru 255.
|
||||
- qcom,xmem-write-wait-cycles: number of wait cycles for every write access, 0=1
|
||||
cycle. Valid values 0 thru 15.
|
||||
- qcom,xmem-read-wait-cycles: number of wait cycles for every read access, 0=1
|
||||
cycle. Valid values 0 thru 15.
|
||||
|
||||
Optional properties arrays for FAST chip selects:
|
||||
- qcom,xmem-address-hold-enable: this is a boolean property stating that we
|
||||
shall hold the address for an extra cycle to meet hold time requirements
|
||||
with ADV assertion.
|
||||
- qcom,xmem-adv-to-oe-recovery-cycles: the number of cycles elapsed before an OE
|
||||
assertion, with respect to the cycle where ADV (address valid) is asserted.
|
||||
2 means 2 cycles between ADV and OE. Valid values 0, 1, 2 or 3.
|
||||
- qcom,xmem-read-hold-cycles: the length in cycles of the first segment of a
|
||||
read transfer. For a single read trandfer this will be the time from CS
|
||||
assertion to OE assertion. Valid values 0 thru 15.
|
||||
|
||||
|
||||
Example:
|
||||
|
||||
ebi2@1a100000 {
|
||||
compatible = "qcom,apq8060-ebi2";
|
||||
#address-cells = <2>;
|
||||
#size-cells = <1>;
|
||||
ranges = <0 0x0 0x1a800000 0x00800000>,
|
||||
<1 0x0 0x1b000000 0x00800000>,
|
||||
<2 0x0 0x1b800000 0x00800000>,
|
||||
<3 0x0 0x1d000000 0x08000000>,
|
||||
<4 0x0 0x1c800000 0x00800000>,
|
||||
<5 0x0 0x1c000000 0x00800000>;
|
||||
reg = <0x1a100000 0x1000>, <0x1a110000 0x1000>;
|
||||
reg-names = "ebi2", "xmem";
|
||||
clocks = <&gcc EBI2_2X_CLK>, <&gcc EBI2_CLK>;
|
||||
clock-names = "ebi2x", "ebi2";
|
||||
/* Make sure to set up the pin control for the EBI2 */
|
||||
pinctrl-names = "default";
|
||||
pinctrl-0 = <&foo_ebi2_pins>;
|
||||
|
||||
foo-ebi2@2,0 {
|
||||
compatible = "foo";
|
||||
reg = <2 0x0 0x100>;
|
||||
(...)
|
||||
qcom,xmem-recovery-cycles = <0>;
|
||||
qcom,xmem-write-hold-cycles = <3>;
|
||||
qcom,xmem-write-delta-cycles = <31>;
|
||||
qcom,xmem-read-delta-cycles = <28>;
|
||||
qcom,xmem-write-wait-cycles = <9>;
|
||||
qcom,xmem-read-wait-cycles = <9>;
|
||||
};
|
||||
};
|
Loading…
Reference in New Issue