tracing/ring_buffer: Try harder to allocate

ftrace can fail to allocate per-CPU ring buffer on systems with a large
number of CPUs coupled while large amounts of cache happening in the
page cache. Currently the ring buffer allocation doesn't retry in the VM
implementation even if direct-reclaim made some progress but still
wasn't able to find a free page. On retrying I see that the allocations
almost always succeed. The retry doesn't happen because __GFP_NORETRY is
used in the tracer to prevent the case where we might OOM, however if we
drop __GFP_NORETRY, we risk destabilizing the system if OOM killer is
triggered. To prevent this situation, use the __GFP_RETRY_MAYFAIL flag
introduced recently [1].

Tested the following still succeeds without destabilizing a system with
1GB memory.
echo 300000 > /sys/kernel/debug/tracing/buffer_size_kb

[1] https://marc.info/?l=linux-mm&m=149820805124906&w=2

Link: http://lkml.kernel.org/r/20170713021416.8897-1-joelaf@google.com

Cc: Tim Murray <timmurray@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Joel Fernandes <joelaf@google.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
This commit is contained in:
Joel Fernandes 2017-07-12 19:14:16 -07:00 committed by Steven Rostedt (VMware)
parent 5771a8c088
commit 848618857d
1 changed files with 5 additions and 5 deletions

View File

@ -1136,12 +1136,12 @@ static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
for (i = 0; i < nr_pages; i++) {
struct page *page;
/*
* __GFP_NORETRY flag makes sure that the allocation fails
* gracefully without invoking oom-killer and the system is
* not destabilized.
* __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
* gracefully without invoking oom-killer and the system is not
* destabilized.
*/
bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
GFP_KERNEL | __GFP_NORETRY,
GFP_KERNEL | __GFP_RETRY_MAYFAIL,
cpu_to_node(cpu));
if (!bpage)
goto free_pages;
@ -1149,7 +1149,7 @@ static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
list_add(&bpage->list, pages);
page = alloc_pages_node(cpu_to_node(cpu),
GFP_KERNEL | __GFP_NORETRY, 0);
GFP_KERNEL | __GFP_RETRY_MAYFAIL, 0);
if (!page)
goto free_pages;
bpage->page = page_address(page);