Merge branch 'master' of /home/davem/src/GIT/linux-2.6/

This commit is contained in:
David S. Miller 2010-04-03 15:49:14 -07:00
commit 87e8b821ed
4501 changed files with 251939 additions and 122191 deletions

19
.gitignore vendored
View File

@ -34,13 +34,18 @@ modules.builtin
#
# Top-level generic files
#
tags
TAGS
vmlinux
vmlinuz
System.map
Module.markers
Module.symvers
/tags
/TAGS
/linux
/vmlinux
/vmlinuz
/System.map
/Module.markers
/Module.symvers
#
# git files that we don't want to ignore even it they are dot-files
#
!.gitignore
!.mailmap

View File

@ -0,0 +1,7 @@
What: /sys/devices/system/node/nodeX
Date: October 2002
Contact: Linux Memory Management list <linux-mm@kvack.org>
Description:
When CONFIG_NUMA is enabled, this is a directory containing
information on node X such as what CPUs are local to the
node.

View File

@ -159,3 +159,14 @@ Description:
device. This is useful to ensure auto probing won't
match the driver to the device. For example:
# echo "046d c315" > /sys/bus/usb/drivers/foo/remove_id
What: /sys/bus/usb/device/.../avoid_reset_quirk
Date: December 2009
Contact: Oliver Neukum <oliver@neukum.org>
Description:
Writing 1 to this file tells the kernel that this
device will morph into another mode when it is reset.
Drivers will not use reset for error handling for
such devices.
Users:
usb_modeswitch

View File

@ -1,4 +1,4 @@
What: /sys/devices/platform/asus-laptop/display
What: /sys/devices/platform/asus_laptop/display
Date: January 2007
KernelVersion: 2.6.20
Contact: "Corentin Chary" <corentincj@iksaif.net>
@ -13,7 +13,7 @@ Description:
Ex: - 0 (0000b) means no display
- 3 (0011b) CRT+LCD.
What: /sys/devices/platform/asus-laptop/gps
What: /sys/devices/platform/asus_laptop/gps
Date: January 2007
KernelVersion: 2.6.20
Contact: "Corentin Chary" <corentincj@iksaif.net>
@ -21,7 +21,7 @@ Description:
Control the gps device. 1 means on, 0 means off.
Users: Lapsus
What: /sys/devices/platform/asus-laptop/ledd
What: /sys/devices/platform/asus_laptop/ledd
Date: January 2007
KernelVersion: 2.6.20
Contact: "Corentin Chary" <corentincj@iksaif.net>
@ -29,11 +29,11 @@ Description:
Some models like the W1N have a LED display that can be
used to display several informations.
To control the LED display, use the following :
echo 0x0T000DDD > /sys/devices/platform/asus-laptop/
echo 0x0T000DDD > /sys/devices/platform/asus_laptop/
where T control the 3 letters display, and DDD the 3 digits display.
The DDD table can be found in Documentation/laptops/asus-laptop.txt
What: /sys/devices/platform/asus-laptop/bluetooth
What: /sys/devices/platform/asus_laptop/bluetooth
Date: January 2007
KernelVersion: 2.6.20
Contact: "Corentin Chary" <corentincj@iksaif.net>
@ -42,7 +42,7 @@ Description:
This may control the led, the device or both.
Users: Lapsus
What: /sys/devices/platform/asus-laptop/wlan
What: /sys/devices/platform/asus_laptop/wlan
Date: January 2007
KernelVersion: 2.6.20
Contact: "Corentin Chary" <corentincj@iksaif.net>

View File

@ -1,4 +1,4 @@
What: /sys/devices/platform/eeepc-laptop/disp
What: /sys/devices/platform/eeepc/disp
Date: May 2008
KernelVersion: 2.6.26
Contact: "Corentin Chary" <corentincj@iksaif.net>
@ -9,21 +9,21 @@ Description:
- 3 = LCD+CRT
If you run X11, you should use xrandr instead.
What: /sys/devices/platform/eeepc-laptop/camera
What: /sys/devices/platform/eeepc/camera
Date: May 2008
KernelVersion: 2.6.26
Contact: "Corentin Chary" <corentincj@iksaif.net>
Description:
Control the camera. 1 means on, 0 means off.
What: /sys/devices/platform/eeepc-laptop/cardr
What: /sys/devices/platform/eeepc/cardr
Date: May 2008
KernelVersion: 2.6.26
Contact: "Corentin Chary" <corentincj@iksaif.net>
Description:
Control the card reader. 1 means on, 0 means off.
What: /sys/devices/platform/eeepc-laptop/cpufv
What: /sys/devices/platform/eeepc/cpufv
Date: Jun 2009
KernelVersion: 2.6.31
Contact: "Corentin Chary" <corentincj@iksaif.net>
@ -42,7 +42,7 @@ Description:
`------------ Availables modes
For example, 0x301 means: mode 1 selected, 3 available modes.
What: /sys/devices/platform/eeepc-laptop/available_cpufv
What: /sys/devices/platform/eeepc/available_cpufv
Date: Jun 2009
KernelVersion: 2.6.31
Contact: "Corentin Chary" <corentincj@iksaif.net>

View File

@ -1,12 +1,12 @@
Dynamic DMA mapping
===================
Dynamic DMA mapping Guide
=========================
David S. Miller <davem@redhat.com>
Richard Henderson <rth@cygnus.com>
Jakub Jelinek <jakub@redhat.com>
This document describes the DMA mapping system in terms of the pci_
API. For a similar API that works for generic devices, see
This is a guide to device driver writers on how to use the DMA API
with example pseudo-code. For a concise description of the API, see
DMA-API.txt.
Most of the 64bit platforms have special hardware that translates bus
@ -26,12 +26,15 @@ mapped only for the time they are actually used and unmapped after the DMA
transfer.
The following API will work of course even on platforms where no such
hardware exists, see e.g. arch/x86/include/asm/pci.h for how it is implemented on
top of the virt_to_bus interface.
hardware exists.
Note that the DMA API works with any bus independent of the underlying
microprocessor architecture. You should use the DMA API rather than
the bus specific DMA API (e.g. pci_dma_*).
First of all, you should make sure
#include <linux/pci.h>
#include <linux/dma-mapping.h>
is in your driver. This file will obtain for you the definition of the
dma_addr_t (which can hold any valid DMA address for the platform)
@ -78,44 +81,43 @@ for you to DMA from/to.
DMA addressing limitations
Does your device have any DMA addressing limitations? For example, is
your device only capable of driving the low order 24-bits of address
on the PCI bus for SAC DMA transfers? If so, you need to inform the
PCI layer of this fact.
your device only capable of driving the low order 24-bits of address?
If so, you need to inform the kernel of this fact.
By default, the kernel assumes that your device can address the full
32-bits in a SAC cycle. For a 64-bit DAC capable device, this needs
to be increased. And for a device with limitations, as discussed in
the previous paragraph, it needs to be decreased.
32-bits. For a 64-bit capable device, this needs to be increased.
And for a device with limitations, as discussed in the previous
paragraph, it needs to be decreased.
pci_alloc_consistent() by default will return 32-bit DMA addresses.
PCI-X specification requires PCI-X devices to support 64-bit
addressing (DAC) for all transactions. And at least one platform (SGI
SN2) requires 64-bit consistent allocations to operate correctly when
the IO bus is in PCI-X mode. Therefore, like with pci_set_dma_mask(),
it's good practice to call pci_set_consistent_dma_mask() to set the
appropriate mask even if your device only supports 32-bit DMA
(default) and especially if it's a PCI-X device.
Special note about PCI: PCI-X specification requires PCI-X devices to
support 64-bit addressing (DAC) for all transactions. And at least
one platform (SGI SN2) requires 64-bit consistent allocations to
operate correctly when the IO bus is in PCI-X mode.
For correct operation, you must interrogate the PCI layer in your
device probe routine to see if the PCI controller on the machine can
properly support the DMA addressing limitation your device has. It is
good style to do this even if your device holds the default setting,
For correct operation, you must interrogate the kernel in your device
probe routine to see if the DMA controller on the machine can properly
support the DMA addressing limitation your device has. It is good
style to do this even if your device holds the default setting,
because this shows that you did think about these issues wrt. your
device.
The query is performed via a call to pci_set_dma_mask():
The query is performed via a call to dma_set_mask():
int pci_set_dma_mask(struct pci_dev *pdev, u64 device_mask);
int dma_set_mask(struct device *dev, u64 mask);
The query for consistent allocations is performed via a call to
pci_set_consistent_dma_mask():
dma_set_coherent_mask():
int pci_set_consistent_dma_mask(struct pci_dev *pdev, u64 device_mask);
int dma_set_coherent_mask(struct device *dev, u64 mask);
Here, pdev is a pointer to the PCI device struct of your device, and
device_mask is a bit mask describing which bits of a PCI address your
device supports. It returns zero if your card can perform DMA
properly on the machine given the address mask you provided.
Here, dev is a pointer to the device struct of your device, and mask
is a bit mask describing which bits of an address your device
supports. It returns zero if your card can perform DMA properly on
the machine given the address mask you provided. In general, the
device struct of your device is embedded in the bus specific device
struct of your device. For example, a pointer to the device struct of
your PCI device is pdev->dev (pdev is a pointer to the PCI device
struct of your device).
If it returns non-zero, your device cannot perform DMA properly on
this platform, and attempting to do so will result in undefined
@ -133,31 +135,30 @@ of your driver reports that performance is bad or that the device is not
even detected, you can ask them for the kernel messages to find out
exactly why.
The standard 32-bit addressing PCI device would do something like
this:
The standard 32-bit addressing device would do something like this:
if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
if (dma_set_mask(dev, DMA_BIT_MASK(32))) {
printk(KERN_WARNING
"mydev: No suitable DMA available.\n");
goto ignore_this_device;
}
Another common scenario is a 64-bit capable device. The approach
here is to try for 64-bit DAC addressing, but back down to a
32-bit mask should that fail. The PCI platform code may fail the
64-bit mask not because the platform is not capable of 64-bit
addressing. Rather, it may fail in this case simply because
32-bit SAC addressing is done more efficiently than DAC addressing.
Sparc64 is one platform which behaves in this way.
Another common scenario is a 64-bit capable device. The approach here
is to try for 64-bit addressing, but back down to a 32-bit mask that
should not fail. The kernel may fail the 64-bit mask not because the
platform is not capable of 64-bit addressing. Rather, it may fail in
this case simply because 32-bit addressing is done more efficiently
than 64-bit addressing. For example, Sparc64 PCI SAC addressing is
more efficient than DAC addressing.
Here is how you would handle a 64-bit capable device which can drive
all 64-bits when accessing streaming DMA:
int using_dac;
if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
if (!dma_set_mask(dev, DMA_BIT_MASK(64))) {
using_dac = 1;
} else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
} else if (!dma_set_mask(dev, DMA_BIT_MASK(32))) {
using_dac = 0;
} else {
printk(KERN_WARNING
@ -170,36 +171,36 @@ the case would look like this:
int using_dac, consistent_using_dac;
if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
if (!dma_set_mask(dev, DMA_BIT_MASK(64))) {
using_dac = 1;
consistent_using_dac = 1;
pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
} else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
} else if (!dma_set_mask(dev, DMA_BIT_MASK(32))) {
using_dac = 0;
consistent_using_dac = 0;
pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
} else {
printk(KERN_WARNING
"mydev: No suitable DMA available.\n");
goto ignore_this_device;
}
pci_set_consistent_dma_mask() will always be able to set the same or a
smaller mask as pci_set_dma_mask(). However for the rare case that a
dma_set_coherent_mask() will always be able to set the same or a
smaller mask as dma_set_mask(). However for the rare case that a
device driver only uses consistent allocations, one would have to
check the return value from pci_set_consistent_dma_mask().
check the return value from dma_set_coherent_mask().
Finally, if your device can only drive the low 24-bits of
address during PCI bus mastering you might do something like:
address you might do something like:
if (pci_set_dma_mask(pdev, DMA_BIT_MASK(24))) {
if (dma_set_mask(dev, DMA_BIT_MASK(24))) {
printk(KERN_WARNING
"mydev: 24-bit DMA addressing not available.\n");
goto ignore_this_device;
}
When pci_set_dma_mask() is successful, and returns zero, the PCI layer
saves away this mask you have provided. The PCI layer will use this
When dma_set_mask() is successful, and returns zero, the kernel saves
away this mask you have provided. The kernel will use this
information later when you make DMA mappings.
There is a case which we are aware of at this time, which is worth
@ -208,7 +209,7 @@ functions (for example a sound card provides playback and record
functions) and the various different functions have _different_
DMA addressing limitations, you may wish to probe each mask and
only provide the functionality which the machine can handle. It
is important that the last call to pci_set_dma_mask() be for the
is important that the last call to dma_set_mask() be for the
most specific mask.
Here is pseudo-code showing how this might be done:
@ -217,17 +218,17 @@ Here is pseudo-code showing how this might be done:
#define RECORD_ADDRESS_BITS DMA_BIT_MASK(24)
struct my_sound_card *card;
struct pci_dev *pdev;
struct device *dev;
...
if (!pci_set_dma_mask(pdev, PLAYBACK_ADDRESS_BITS)) {
if (!dma_set_mask(dev, PLAYBACK_ADDRESS_BITS)) {
card->playback_enabled = 1;
} else {
card->playback_enabled = 0;
printk(KERN_WARNING "%s: Playback disabled due to DMA limitations.\n",
card->name);
}
if (!pci_set_dma_mask(pdev, RECORD_ADDRESS_BITS)) {
if (!dma_set_mask(dev, RECORD_ADDRESS_BITS)) {
card->record_enabled = 1;
} else {
card->record_enabled = 0;
@ -252,8 +253,8 @@ There are two types of DMA mappings:
Think of "consistent" as "synchronous" or "coherent".
The current default is to return consistent memory in the low 32
bits of the PCI bus space. However, for future compatibility you
should set the consistent mask even if this default is fine for your
bits of the bus space. However, for future compatibility you should
set the consistent mask even if this default is fine for your
driver.
Good examples of what to use consistent mappings for are:
@ -285,9 +286,9 @@ There are two types of DMA mappings:
found in PCI bridges (such as by reading a register's value
after writing it).
- Streaming DMA mappings which are usually mapped for one DMA transfer,
unmapped right after it (unless you use pci_dma_sync_* below) and for which
hardware can optimize for sequential accesses.
- Streaming DMA mappings which are usually mapped for one DMA
transfer, unmapped right after it (unless you use dma_sync_* below)
and for which hardware can optimize for sequential accesses.
This of "streaming" as "asynchronous" or "outside the coherency
domain".
@ -302,8 +303,8 @@ There are two types of DMA mappings:
optimizations the hardware allows. To this end, when using
such mappings you must be explicit about what you want to happen.
Neither type of DMA mapping has alignment restrictions that come
from PCI, although some devices may have such restrictions.
Neither type of DMA mapping has alignment restrictions that come from
the underlying bus, although some devices may have such restrictions.
Also, systems with caches that aren't DMA-coherent will work better
when the underlying buffers don't share cache lines with other data.
@ -315,33 +316,27 @@ you should do:
dma_addr_t dma_handle;
cpu_addr = pci_alloc_consistent(pdev, size, &dma_handle);
cpu_addr = dma_alloc_coherent(dev, size, &dma_handle, gfp);
where pdev is a struct pci_dev *. This may be called in interrupt context.
You should use dma_alloc_coherent (see DMA-API.txt) for buses
where devices don't have struct pci_dev (like ISA, EISA).
This argument is needed because the DMA translations may be bus
specific (and often is private to the bus which the device is attached
to).
where device is a struct device *. This may be called in interrupt
context with the GFP_ATOMIC flag.
Size is the length of the region you want to allocate, in bytes.
This routine will allocate RAM for that region, so it acts similarly to
__get_free_pages (but takes size instead of a page order). If your
driver needs regions sized smaller than a page, you may prefer using
the pci_pool interface, described below.
the dma_pool interface, described below.
The consistent DMA mapping interfaces, for non-NULL pdev, will by
default return a DMA address which is SAC (Single Address Cycle)
addressable. Even if the device indicates (via PCI dma mask) that it
may address the upper 32-bits and thus perform DAC cycles, consistent
allocation will only return > 32-bit PCI addresses for DMA if the
consistent dma mask has been explicitly changed via
pci_set_consistent_dma_mask(). This is true of the pci_pool interface
as well.
The consistent DMA mapping interfaces, for non-NULL dev, will by
default return a DMA address which is 32-bit addressable. Even if the
device indicates (via DMA mask) that it may address the upper 32-bits,
consistent allocation will only return > 32-bit addresses for DMA if
the consistent DMA mask has been explicitly changed via
dma_set_coherent_mask(). This is true of the dma_pool interface as
well.
pci_alloc_consistent returns two values: the virtual address which you
dma_alloc_coherent returns two values: the virtual address which you
can use to access it from the CPU and dma_handle which you pass to the
card.
@ -354,54 +349,54 @@ buffer you receive will not cross a 64K boundary.
To unmap and free such a DMA region, you call:
pci_free_consistent(pdev, size, cpu_addr, dma_handle);
dma_free_coherent(dev, size, cpu_addr, dma_handle);
where pdev, size are the same as in the above call and cpu_addr and
dma_handle are the values pci_alloc_consistent returned to you.
where dev, size are the same as in the above call and cpu_addr and
dma_handle are the values dma_alloc_coherent returned to you.
This function may not be called in interrupt context.
If your driver needs lots of smaller memory regions, you can write
custom code to subdivide pages returned by pci_alloc_consistent,
or you can use the pci_pool API to do that. A pci_pool is like
a kmem_cache, but it uses pci_alloc_consistent not __get_free_pages.
custom code to subdivide pages returned by dma_alloc_coherent,
or you can use the dma_pool API to do that. A dma_pool is like
a kmem_cache, but it uses dma_alloc_coherent not __get_free_pages.
Also, it understands common hardware constraints for alignment,
like queue heads needing to be aligned on N byte boundaries.
Create a pci_pool like this:
Create a dma_pool like this:
struct pci_pool *pool;
struct dma_pool *pool;
pool = pci_pool_create(name, pdev, size, align, alloc);
pool = dma_pool_create(name, dev, size, align, alloc);
The "name" is for diagnostics (like a kmem_cache name); pdev and size
The "name" is for diagnostics (like a kmem_cache name); dev and size
are as above. The device's hardware alignment requirement for this
type of data is "align" (which is expressed in bytes, and must be a
power of two). If your device has no boundary crossing restrictions,
pass 0 for alloc; passing 4096 says memory allocated from this pool
must not cross 4KByte boundaries (but at that time it may be better to
go for pci_alloc_consistent directly instead).
go for dma_alloc_coherent directly instead).
Allocate memory from a pci pool like this:
Allocate memory from a dma pool like this:
cpu_addr = pci_pool_alloc(pool, flags, &dma_handle);
cpu_addr = dma_pool_alloc(pool, flags, &dma_handle);
flags are SLAB_KERNEL if blocking is permitted (not in_interrupt nor
holding SMP locks), SLAB_ATOMIC otherwise. Like pci_alloc_consistent,
holding SMP locks), SLAB_ATOMIC otherwise. Like dma_alloc_coherent,
this returns two values, cpu_addr and dma_handle.
Free memory that was allocated from a pci_pool like this:
Free memory that was allocated from a dma_pool like this:
pci_pool_free(pool, cpu_addr, dma_handle);
dma_pool_free(pool, cpu_addr, dma_handle);
where pool is what you passed to pci_pool_alloc, and cpu_addr and
dma_handle are the values pci_pool_alloc returned. This function
where pool is what you passed to dma_pool_alloc, and cpu_addr and
dma_handle are the values dma_pool_alloc returned. This function
may be called in interrupt context.
Destroy a pci_pool by calling:
Destroy a dma_pool by calling:
pci_pool_destroy(pool);
dma_pool_destroy(pool);
Make sure you've called pci_pool_free for all memory allocated
Make sure you've called dma_pool_free for all memory allocated
from a pool before you destroy the pool. This function may not
be called in interrupt context.
@ -411,15 +406,15 @@ The interfaces described in subsequent portions of this document
take a DMA direction argument, which is an integer and takes on
one of the following values:
PCI_DMA_BIDIRECTIONAL
PCI_DMA_TODEVICE
PCI_DMA_FROMDEVICE
PCI_DMA_NONE
DMA_BIDIRECTIONAL
DMA_TO_DEVICE
DMA_FROM_DEVICE
DMA_NONE
One should provide the exact DMA direction if you know it.
PCI_DMA_TODEVICE means "from main memory to the PCI device"
PCI_DMA_FROMDEVICE means "from the PCI device to main memory"
DMA_TO_DEVICE means "from main memory to the device"
DMA_FROM_DEVICE means "from the device to main memory"
It is the direction in which the data moves during the DMA
transfer.
@ -427,12 +422,12 @@ You are _strongly_ encouraged to specify this as precisely
as you possibly can.
If you absolutely cannot know the direction of the DMA transfer,
specify PCI_DMA_BIDIRECTIONAL. It means that the DMA can go in
specify DMA_BIDIRECTIONAL. It means that the DMA can go in
either direction. The platform guarantees that you may legally
specify this, and that it will work, but this may be at the
cost of performance for example.
The value PCI_DMA_NONE is to be used for debugging. One can
The value DMA_NONE is to be used for debugging. One can
hold this in a data structure before you come to know the
precise direction, and this will help catch cases where your
direction tracking logic has failed to set things up properly.
@ -442,21 +437,21 @@ potential platform-specific optimizations of such) is for debugging.
Some platforms actually have a write permission boolean which DMA
mappings can be marked with, much like page protections in the user
program address space. Such platforms can and do report errors in the
kernel logs when the PCI controller hardware detects violation of the
kernel logs when the DMA controller hardware detects violation of the
permission setting.
Only streaming mappings specify a direction, consistent mappings
implicitly have a direction attribute setting of
PCI_DMA_BIDIRECTIONAL.
DMA_BIDIRECTIONAL.
The SCSI subsystem tells you the direction to use in the
'sc_data_direction' member of the SCSI command your driver is
working on.
For Networking drivers, it's a rather simple affair. For transmit
packets, map/unmap them with the PCI_DMA_TODEVICE direction
packets, map/unmap them with the DMA_TO_DEVICE direction
specifier. For receive packets, just the opposite, map/unmap them
with the PCI_DMA_FROMDEVICE direction specifier.
with the DMA_FROM_DEVICE direction specifier.
Using Streaming DMA mappings
@ -467,43 +462,43 @@ scatterlist.
To map a single region, you do:
struct pci_dev *pdev = mydev->pdev;
struct device *dev = &my_dev->dev;
dma_addr_t dma_handle;
void *addr = buffer->ptr;
size_t size = buffer->len;
dma_handle = pci_map_single(pdev, addr, size, direction);
dma_handle = dma_map_single(dev, addr, size, direction);
and to unmap it:
pci_unmap_single(pdev, dma_handle, size, direction);
dma_unmap_single(dev, dma_handle, size, direction);
You should call pci_unmap_single when the DMA activity is finished, e.g.
You should call dma_unmap_single when the DMA activity is finished, e.g.
from the interrupt which told you that the DMA transfer is done.
Using cpu pointers like this for single mappings has a disadvantage,
you cannot reference HIGHMEM memory in this way. Thus, there is a
map/unmap interface pair akin to pci_{map,unmap}_single. These
map/unmap interface pair akin to dma_{map,unmap}_single. These
interfaces deal with page/offset pairs instead of cpu pointers.
Specifically:
struct pci_dev *pdev = mydev->pdev;
struct device *dev = &my_dev->dev;
dma_addr_t dma_handle;
struct page *page = buffer->page;
unsigned long offset = buffer->offset;
size_t size = buffer->len;
dma_handle = pci_map_page(pdev, page, offset, size, direction);
dma_handle = dma_map_page(dev, page, offset, size, direction);
...
pci_unmap_page(pdev, dma_handle, size, direction);
dma_unmap_page(dev, dma_handle, size, direction);
Here, "offset" means byte offset within the given page.
With scatterlists, you map a region gathered from several regions by:
int i, count = pci_map_sg(pdev, sglist, nents, direction);
int i, count = dma_map_sg(dev, sglist, nents, direction);
struct scatterlist *sg;
for_each_sg(sglist, sg, count, i) {
@ -527,16 +522,16 @@ accessed sg->address and sg->length as shown above.
To unmap a scatterlist, just call:
pci_unmap_sg(pdev, sglist, nents, direction);
dma_unmap_sg(dev, sglist, nents, direction);
Again, make sure DMA activity has already finished.
PLEASE NOTE: The 'nents' argument to the pci_unmap_sg call must be
the _same_ one you passed into the pci_map_sg call,
PLEASE NOTE: The 'nents' argument to the dma_unmap_sg call must be
the _same_ one you passed into the dma_map_sg call,
it should _NOT_ be the 'count' value _returned_ from the
pci_map_sg call.
dma_map_sg call.
Every pci_map_{single,sg} call should have its pci_unmap_{single,sg}
Every dma_map_{single,sg} call should have its dma_unmap_{single,sg}
counterpart, because the bus address space is a shared resource (although
in some ports the mapping is per each BUS so less devices contend for the
same bus address space) and you could render the machine unusable by eating
@ -547,14 +542,14 @@ the data in between the DMA transfers, the buffer needs to be synced
properly in order for the cpu and device to see the most uptodate and
correct copy of the DMA buffer.
So, firstly, just map it with pci_map_{single,sg}, and after each DMA
So, firstly, just map it with dma_map_{single,sg}, and after each DMA
transfer call either:
pci_dma_sync_single_for_cpu(pdev, dma_handle, size, direction);
dma_sync_single_for_cpu(dev, dma_handle, size, direction);
or:
pci_dma_sync_sg_for_cpu(pdev, sglist, nents, direction);
dma_sync_sg_for_cpu(dev, sglist, nents, direction);
as appropriate.
@ -562,27 +557,27 @@ Then, if you wish to let the device get at the DMA area again,
finish accessing the data with the cpu, and then before actually
giving the buffer to the hardware call either:
pci_dma_sync_single_for_device(pdev, dma_handle, size, direction);
dma_sync_single_for_device(dev, dma_handle, size, direction);
or:
pci_dma_sync_sg_for_device(dev, sglist, nents, direction);
dma_sync_sg_for_device(dev, sglist, nents, direction);
as appropriate.
After the last DMA transfer call one of the DMA unmap routines
pci_unmap_{single,sg}. If you don't touch the data from the first pci_map_*
call till pci_unmap_*, then you don't have to call the pci_dma_sync_*
dma_unmap_{single,sg}. If you don't touch the data from the first dma_map_*
call till dma_unmap_*, then you don't have to call the dma_sync_*
routines at all.
Here is pseudo code which shows a situation in which you would need
to use the pci_dma_sync_*() interfaces.
to use the dma_sync_*() interfaces.
my_card_setup_receive_buffer(struct my_card *cp, char *buffer, int len)
{
dma_addr_t mapping;
mapping = pci_map_single(cp->pdev, buffer, len, PCI_DMA_FROMDEVICE);
mapping = dma_map_single(cp->dev, buffer, len, DMA_FROM_DEVICE);
cp->rx_buf = buffer;
cp->rx_len = len;
@ -606,25 +601,25 @@ to use the pci_dma_sync_*() interfaces.
* the DMA transfer with the CPU first
* so that we see updated contents.
*/
pci_dma_sync_single_for_cpu(cp->pdev, cp->rx_dma,
cp->rx_len,
PCI_DMA_FROMDEVICE);
dma_sync_single_for_cpu(&cp->dev, cp->rx_dma,
cp->rx_len,
DMA_FROM_DEVICE);
/* Now it is safe to examine the buffer. */
hp = (struct my_card_header *) cp->rx_buf;
if (header_is_ok(hp)) {
pci_unmap_single(cp->pdev, cp->rx_dma, cp->rx_len,
PCI_DMA_FROMDEVICE);
dma_unmap_single(&cp->dev, cp->rx_dma, cp->rx_len,
DMA_FROM_DEVICE);
pass_to_upper_layers(cp->rx_buf);
make_and_setup_new_rx_buf(cp);
} else {
/* Just sync the buffer and give it back
* to the card.
*/
pci_dma_sync_single_for_device(cp->pdev,
cp->rx_dma,
cp->rx_len,
PCI_DMA_FROMDEVICE);
dma_sync_single_for_device(&cp->dev,
cp->rx_dma,
cp->rx_len,
DMA_FROM_DEVICE);
give_rx_buf_to_card(cp);
}
}
@ -634,19 +629,19 @@ Drivers converted fully to this interface should not use virt_to_bus any
longer, nor should they use bus_to_virt. Some drivers have to be changed a
little bit, because there is no longer an equivalent to bus_to_virt in the
dynamic DMA mapping scheme - you have to always store the DMA addresses
returned by the pci_alloc_consistent, pci_pool_alloc, and pci_map_single
calls (pci_map_sg stores them in the scatterlist itself if the platform
returned by the dma_alloc_coherent, dma_pool_alloc, and dma_map_single
calls (dma_map_sg stores them in the scatterlist itself if the platform
supports dynamic DMA mapping in hardware) in your driver structures and/or
in the card registers.
All PCI drivers should be using these interfaces with no exceptions.
It is planned to completely remove virt_to_bus() and bus_to_virt() as
All drivers should be using these interfaces with no exceptions. It
is planned to completely remove virt_to_bus() and bus_to_virt() as
they are entirely deprecated. Some ports already do not provide these
as it is impossible to correctly support them.
Optimizing Unmap State Space Consumption
On many platforms, pci_unmap_{single,page}() is simply a nop.
On many platforms, dma_unmap_{single,page}() is simply a nop.
Therefore, keeping track of the mapping address and length is a waste
of space. Instead of filling your drivers up with ifdefs and the like
to "work around" this (which would defeat the whole purpose of a
@ -655,7 +650,7 @@ portable API) the following facilities are provided.
Actually, instead of describing the macros one by one, we'll
transform some example code.
1) Use DECLARE_PCI_UNMAP_{ADDR,LEN} in state saving structures.
1) Use DEFINE_DMA_UNMAP_{ADDR,LEN} in state saving structures.
Example, before:
struct ring_state {
@ -668,14 +663,11 @@ transform some example code.
struct ring_state {
struct sk_buff *skb;
DECLARE_PCI_UNMAP_ADDR(mapping)
DECLARE_PCI_UNMAP_LEN(len)
DEFINE_DMA_UNMAP_ADDR(mapping);
DEFINE_DMA_UNMAP_LEN(len);
};
NOTE: DO NOT put a semicolon at the end of the DECLARE_*()
macro.
2) Use pci_unmap_{addr,len}_set to set these values.
2) Use dma_unmap_{addr,len}_set to set these values.
Example, before:
ringp->mapping = FOO;
@ -683,21 +675,21 @@ transform some example code.
after:
pci_unmap_addr_set(ringp, mapping, FOO);
pci_unmap_len_set(ringp, len, BAR);
dma_unmap_addr_set(ringp, mapping, FOO);
dma_unmap_len_set(ringp, len, BAR);
3) Use pci_unmap_{addr,len} to access these values.
3) Use dma_unmap_{addr,len} to access these values.
Example, before:
pci_unmap_single(pdev, ringp->mapping, ringp->len,
PCI_DMA_FROMDEVICE);
dma_unmap_single(dev, ringp->mapping, ringp->len,
DMA_FROM_DEVICE);
after:
pci_unmap_single(pdev,
pci_unmap_addr(ringp, mapping),
pci_unmap_len(ringp, len),
PCI_DMA_FROMDEVICE);
dma_unmap_single(dev,
dma_unmap_addr(ringp, mapping),
dma_unmap_len(ringp, len),
DMA_FROM_DEVICE);
It really should be self-explanatory. We treat the ADDR and LEN
separately, because it is possible for an implementation to only
@ -732,15 +724,15 @@ to "Closing".
DMA address space is limited on some architectures and an allocation
failure can be determined by:
- checking if pci_alloc_consistent returns NULL or pci_map_sg returns 0
- checking if dma_alloc_coherent returns NULL or dma_map_sg returns 0
- checking the returned dma_addr_t of pci_map_single and pci_map_page
by using pci_dma_mapping_error():
- checking the returned dma_addr_t of dma_map_single and dma_map_page
by using dma_mapping_error():
dma_addr_t dma_handle;
dma_handle = pci_map_single(pdev, addr, size, direction);
if (pci_dma_mapping_error(pdev, dma_handle)) {
dma_handle = dma_map_single(dev, addr, size, direction);
if (dma_mapping_error(dev, dma_handle)) {
/*
* reduce current DMA mapping usage,
* delay and try again later or

View File

@ -4,20 +4,18 @@
James E.J. Bottomley <James.Bottomley@HansenPartnership.com>
This document describes the DMA API. For a more gentle introduction
phrased in terms of the pci_ equivalents (and actual examples) see
Documentation/PCI/PCI-DMA-mapping.txt.
of the API (and actual examples) see
Documentation/DMA-API-HOWTO.txt.
This API is split into two pieces. Part I describes the API and the
corresponding pci_ API. Part II describes the extensions to the API
for supporting non-consistent memory machines. Unless you know that
your driver absolutely has to support non-consistent platforms (this
is usually only legacy platforms) you should only use the API
described in part I.
This API is split into two pieces. Part I describes the API. Part II
describes the extensions to the API for supporting non-consistent
memory machines. Unless you know that your driver absolutely has to
support non-consistent platforms (this is usually only legacy
platforms) you should only use the API described in part I.
Part I - pci_ and dma_ Equivalent API
Part I - dma_ API
-------------------------------------
To get the pci_ API, you must #include <linux/pci.h>
To get the dma_ API, you must #include <linux/dma-mapping.h>
@ -27,9 +25,6 @@ Part Ia - Using large dma-coherent buffers
void *
dma_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t flag)
void *
pci_alloc_consistent(struct pci_dev *dev, size_t size,
dma_addr_t *dma_handle)
Consistent memory is memory for which a write by either the device or
the processor can immediately be read by the processor or device
@ -53,15 +48,11 @@ The simplest way to do that is to use the dma_pool calls (see below).
The flag parameter (dma_alloc_coherent only) allows the caller to
specify the GFP_ flags (see kmalloc) for the allocation (the
implementation may choose to ignore flags that affect the location of
the returned memory, like GFP_DMA). For pci_alloc_consistent, you
must assume GFP_ATOMIC behaviour.
the returned memory, like GFP_DMA).
void
dma_free_coherent(struct device *dev, size_t size, void *cpu_addr,
dma_addr_t dma_handle)
void
pci_free_consistent(struct pci_dev *dev, size_t size, void *cpu_addr,
dma_addr_t dma_handle)
Free the region of consistent memory you previously allocated. dev,
size and dma_handle must all be the same as those passed into the
@ -89,10 +80,6 @@ for alignment, like queue heads needing to be aligned on N-byte boundaries.
dma_pool_create(const char *name, struct device *dev,
size_t size, size_t align, size_t alloc);
struct pci_pool *
pci_pool_create(const char *name, struct pci_device *dev,
size_t size, size_t align, size_t alloc);
The pool create() routines initialize a pool of dma-coherent buffers
for use with a given device. It must be called in a context which
can sleep.
@ -108,9 +95,6 @@ from this pool must not cross 4KByte boundaries.
void *dma_pool_alloc(struct dma_pool *pool, gfp_t gfp_flags,
dma_addr_t *dma_handle);
void *pci_pool_alloc(struct pci_pool *pool, gfp_t gfp_flags,
dma_addr_t *dma_handle);
This allocates memory from the pool; the returned memory will meet the size
and alignment requirements specified at creation time. Pass GFP_ATOMIC to
prevent blocking, or if it's permitted (not in_interrupt, not holding SMP locks),
@ -122,9 +106,6 @@ pool's device.
void dma_pool_free(struct dma_pool *pool, void *vaddr,
dma_addr_t addr);
void pci_pool_free(struct pci_pool *pool, void *vaddr,
dma_addr_t addr);
This puts memory back into the pool. The pool is what was passed to
the pool allocation routine; the cpu (vaddr) and dma addresses are what
were returned when that routine allocated the memory being freed.
@ -132,8 +113,6 @@ were returned when that routine allocated the memory being freed.
void dma_pool_destroy(struct dma_pool *pool);
void pci_pool_destroy(struct pci_pool *pool);
The pool destroy() routines free the resources of the pool. They must be
called in a context which can sleep. Make sure you've freed all allocated
memory back to the pool before you destroy it.
@ -144,8 +123,6 @@ Part Ic - DMA addressing limitations
int
dma_supported(struct device *dev, u64 mask)
int
pci_dma_supported(struct pci_dev *hwdev, u64 mask)
Checks to see if the device can support DMA to the memory described by
mask.
@ -159,8 +136,14 @@ driver writers.
int
dma_set_mask(struct device *dev, u64 mask)
Checks to see if the mask is possible and updates the device
parameters if it is.
Returns: 0 if successful and a negative error if not.
int
pci_set_dma_mask(struct pci_device *dev, u64 mask)
dma_set_coherent_mask(struct device *dev, u64 mask)
Checks to see if the mask is possible and updates the device
parameters if it is.
@ -187,9 +170,6 @@ Part Id - Streaming DMA mappings
dma_addr_t
dma_map_single(struct device *dev, void *cpu_addr, size_t size,
enum dma_data_direction direction)
dma_addr_t
pci_map_single(struct pci_dev *hwdev, void *cpu_addr, size_t size,
int direction)
Maps a piece of processor virtual memory so it can be accessed by the
device and returns the physical handle of the memory.
@ -198,14 +178,10 @@ The direction for both api's may be converted freely by casting.
However the dma_ API uses a strongly typed enumerator for its
direction:
DMA_NONE = PCI_DMA_NONE no direction (used for
debugging)
DMA_TO_DEVICE = PCI_DMA_TODEVICE data is going from the
memory to the device
DMA_FROM_DEVICE = PCI_DMA_FROMDEVICE data is coming from
the device to the
memory
DMA_BIDIRECTIONAL = PCI_DMA_BIDIRECTIONAL direction isn't known
DMA_NONE no direction (used for debugging)
DMA_TO_DEVICE data is going from the memory to the device
DMA_FROM_DEVICE data is coming from the device to the memory
DMA_BIDIRECTIONAL direction isn't known
Notes: Not all memory regions in a machine can be mapped by this
API. Further, regions that appear to be physically contiguous in
@ -268,9 +244,6 @@ cache lines are updated with data that the device may have changed).
void
dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
enum dma_data_direction direction)
void
pci_unmap_single(struct pci_dev *hwdev, dma_addr_t dma_addr,
size_t size, int direction)
Unmaps the region previously mapped. All the parameters passed in
must be identical to those passed in (and returned) by the mapping
@ -280,15 +253,9 @@ dma_addr_t
dma_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction direction)
dma_addr_t
pci_map_page(struct pci_dev *hwdev, struct page *page,
unsigned long offset, size_t size, int direction)
void
dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size,
enum dma_data_direction direction)
void
pci_unmap_page(struct pci_dev *hwdev, dma_addr_t dma_address,
size_t size, int direction)
API for mapping and unmapping for pages. All the notes and warnings
for the other mapping APIs apply here. Also, although the <offset>
@ -299,9 +266,6 @@ cache width is.
int
dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
int
pci_dma_mapping_error(struct pci_dev *hwdev, dma_addr_t dma_addr)
In some circumstances dma_map_single and dma_map_page will fail to create
a mapping. A driver can check for these errors by testing the returned
dma address with dma_mapping_error(). A non-zero return value means the mapping
@ -311,9 +275,6 @@ reduce current DMA mapping usage or delay and try again later).
int
dma_map_sg(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction direction)
int
pci_map_sg(struct pci_dev *hwdev, struct scatterlist *sg,
int nents, int direction)
Returns: the number of physical segments mapped (this may be shorter
than <nents> passed in if some elements of the scatter/gather list are
@ -353,9 +314,6 @@ accessed sg->address and sg->length as shown above.
void
dma_unmap_sg(struct device *dev, struct scatterlist *sg,
int nhwentries, enum dma_data_direction direction)
void
pci_unmap_sg(struct pci_dev *hwdev, struct scatterlist *sg,
int nents, int direction)
Unmap the previously mapped scatter/gather list. All the parameters
must be the same as those and passed in to the scatter/gather mapping
@ -365,21 +323,23 @@ Note: <nents> must be the number you passed in, *not* the number of
physical entries returned.
void
dma_sync_single(struct device *dev, dma_addr_t dma_handle, size_t size,
enum dma_data_direction direction)
dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, size_t size,
enum dma_data_direction direction)
void
pci_dma_sync_single(struct pci_dev *hwdev, dma_addr_t dma_handle,
size_t size, int direction)
dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, size_t size,
enum dma_data_direction direction)
void
dma_sync_sg(struct device *dev, struct scatterlist *sg, int nelems,
enum dma_data_direction direction)
dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems,
enum dma_data_direction direction)
void
pci_dma_sync_sg(struct pci_dev *hwdev, struct scatterlist *sg,
int nelems, int direction)
dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nelems,
enum dma_data_direction direction)
Synchronise a single contiguous or scatter/gather mapping. All the
parameters must be the same as those passed into the single mapping
API.
Synchronise a single contiguous or scatter/gather mapping for the cpu
and device. With the sync_sg API, all the parameters must be the same
as those passed into the single mapping API. With the sync_single API,
you can use dma_handle and size parameters that aren't identical to
those passed into the single mapping API to do a partial sync.
Notes: You must do this:
@ -461,9 +421,9 @@ void whizco_dma_map_sg_attrs(struct device *dev, dma_addr_t dma_addr,
Part II - Advanced dma_ usage
-----------------------------
Warning: These pieces of the DMA API have no PCI equivalent. They
should also not be used in the majority of cases, since they cater for
unlikely corner cases that don't belong in usual drivers.
Warning: These pieces of the DMA API should not be used in the
majority of cases, since they cater for unlikely corner cases that
don't belong in usual drivers.
If you don't understand how cache line coherency works between a
processor and an I/O device, you should not be using this part of the
@ -513,16 +473,6 @@ line, but it will guarantee that one or more cache lines fit exactly
into the width returned by this call. It will also always be a power
of two for easy alignment.
void
dma_sync_single_range(struct device *dev, dma_addr_t dma_handle,
unsigned long offset, size_t size,
enum dma_data_direction direction)
Does a partial sync, starting at offset and continuing for size. You
must be careful to observe the cache alignment and width when doing
anything like this. You must also be extra careful about accessing
memory you intend to sync partially.
void
dma_cache_sync(struct device *dev, void *vaddr, size_t size,
enum dma_data_direction direction)

View File

@ -45,7 +45,7 @@
</sect1>
<sect1><title>Atomic and pointer manipulation</title>
!Iarch/x86/include/asm/atomic_32.h
!Iarch/x86/include/asm/atomic.h
!Iarch/x86/include/asm/unaligned.h
</sect1>

View File

@ -316,7 +316,7 @@ CPU B: spin_unlock_irqrestore(&amp;dev_lock, flags)
<chapter id="pubfunctions">
<title>Public Functions Provided</title>
!Iarch/x86/include/asm/io_32.h
!Iarch/x86/include/asm/io.h
!Elib/iomap.c
</chapter>

View File

@ -488,7 +488,7 @@ static void board_select_chip (struct mtd_info *mtd, int chip)
The ECC bytes must be placed immidiately after the data
bytes in order to make the syndrome generator work. This
is contrary to the usual layout used by software ECC. The
seperation of data and out of band area is not longer
separation of data and out of band area is not longer
possible. The nand driver code handles this layout and
the remaining free bytes in the oob area are managed by
the autoplacement code. Provide a matching oob-layout
@ -560,7 +560,7 @@ static void board_select_chip (struct mtd_info *mtd, int chip)
bad blocks. They have factory marked good blocks. The marker pattern
is erased when the block is erased to be reused. So in case of
powerloss before writing the pattern back to the chip this block
would be lost and added to the bad blocks. Therefor we scan the
would be lost and added to the bad blocks. Therefore we scan the
chip(s) when we detect them the first time for good blocks and
store this information in a bad block table before erasing any
of the blocks.
@ -1094,7 +1094,7 @@ in this page</entry>
manufacturers specifications. This applies similar to the spare area.
</para>
<para>
Therefor NAND aware filesystems must either write in page size chunks
Therefore NAND aware filesystems must either write in page size chunks
or hold a writebuffer to collect smaller writes until they sum up to
pagesize. Available NAND aware filesystems: JFFS2, YAFFS.
</para>

View File

@ -1170,7 +1170,7 @@ frames per second. If less than this number of frames is to be
captured or output, applications can request frame skipping or
duplicating on the driver side. This is especially useful when using
the &func-read; or &func-write;, which are not augmented by timestamps
or sequence counters, and to avoid unneccessary data copying.</para>
or sequence counters, and to avoid unnecessary data copying.</para>
<para>Finally these ioctls can be used to determine the number of
buffers used internally by a driver in read/write mode. For

View File

@ -55,7 +55,7 @@ captured or output, applications can request frame skipping or
duplicating on the driver side. This is especially useful when using
the <function>read()</function> or <function>write()</function>, which
are not augmented by timestamps or sequence counters, and to avoid
unneccessary data copying.</para>
unnecessary data copying.</para>
<para>Further these ioctls can be used to determine the number of
buffers used internally by a driver in read/write mode. For

View File

@ -221,8 +221,8 @@ branches. These different branches are:
- main 2.6.x kernel tree
- 2.6.x.y -stable kernel tree
- 2.6.x -git kernel patches
- 2.6.x -mm kernel patches
- subsystem specific kernel trees and patches
- the 2.6.x -next kernel tree for integration tests
2.6.x kernel tree
-----------------
@ -232,7 +232,7 @@ process is as follows:
- As soon as a new kernel is released a two weeks window is open,
during this period of time maintainers can submit big diffs to
Linus, usually the patches that have already been included in the
-mm kernel for a few weeks. The preferred way to submit big changes
-next kernel for a few weeks. The preferred way to submit big changes
is using git (the kernel's source management tool, more information
can be found at http://git.or.cz/) but plain patches are also just
fine.
@ -293,84 +293,43 @@ daily and represent the current state of Linus' tree. They are more
experimental than -rc kernels since they are generated automatically
without even a cursory glance to see if they are sane.
2.6.x -mm kernel patches
------------------------
These are experimental kernel patches released by Andrew Morton. Andrew
takes all of the different subsystem kernel trees and patches and mushes
them together, along with a lot of patches that have been plucked from
the linux-kernel mailing list. This tree serves as a proving ground for
new features and patches. Once a patch has proved its worth in -mm for
a while Andrew or the subsystem maintainer pushes it on to Linus for
inclusion in mainline.
It is heavily encouraged that all new patches get tested in the -mm tree
before they are sent to Linus for inclusion in the main kernel tree. Code
which does not make an appearance in -mm before the opening of the merge
window will prove hard to merge into the mainline.
These kernels are not appropriate for use on systems that are supposed
to be stable and they are more risky to run than any of the other
branches.
If you wish to help out with the kernel development process, please test
and use these kernel releases and provide feedback to the linux-kernel
mailing list if you have any problems, and if everything works properly.
In addition to all the other experimental patches, these kernels usually
also contain any changes in the mainline -git kernels available at the
time of release.
The -mm kernels are not released on a fixed schedule, but usually a few
-mm kernels are released in between each -rc kernel (1 to 3 is common).
Subsystem Specific kernel trees and patches
-------------------------------------------
A number of the different kernel subsystem developers expose their
development trees so that others can see what is happening in the
different areas of the kernel. These trees are pulled into the -mm
kernel releases as described above.
The maintainers of the various kernel subsystems --- and also many
kernel subsystem developers --- expose their current state of
development in source repositories. That way, others can see what is
happening in the different areas of the kernel. In areas where
development is rapid, a developer may be asked to base his submissions
onto such a subsystem kernel tree so that conflicts between the
submission and other already ongoing work are avoided.
Here is a list of some of the different kernel trees available:
git trees:
- Kbuild development tree, Sam Ravnborg <sam@ravnborg.org>
git.kernel.org:/pub/scm/linux/kernel/git/sam/kbuild.git
Most of these repositories are git trees, but there are also other SCMs
in use, or patch queues being published as quilt series. Addresses of
these subsystem repositories are listed in the MAINTAINERS file. Many
of them can be browsed at http://git.kernel.org/.
- ACPI development tree, Len Brown <len.brown@intel.com>
git.kernel.org:/pub/scm/linux/kernel/git/lenb/linux-acpi-2.6.git
Before a proposed patch is committed to such a subsystem tree, it is
subject to review which primarily happens on mailing lists (see the
respective section below). For several kernel subsystems, this review
process is tracked with the tool patchwork. Patchwork offers a web
interface which shows patch postings, any comments on a patch or
revisions to it, and maintainers can mark patches as under review,
accepted, or rejected. Most of these patchwork sites are listed at
http://patchwork.kernel.org/ or http://patchwork.ozlabs.org/.
- Block development tree, Jens Axboe <jens.axboe@oracle.com>
git.kernel.org:/pub/scm/linux/kernel/git/axboe/linux-2.6-block.git
2.6.x -next kernel tree for integration tests
---------------------------------------------
Before updates from subsystem trees are merged into the mainline 2.6.x
tree, they need to be integration-tested. For this purpose, a special
testing repository exists into which virtually all subsystem trees are
pulled on an almost daily basis:
http://git.kernel.org/?p=linux/kernel/git/sfr/linux-next.git
http://linux.f-seidel.de/linux-next/pmwiki/
- DRM development tree, Dave Airlie <airlied@linux.ie>
git.kernel.org:/pub/scm/linux/kernel/git/airlied/drm-2.6.git
This way, the -next kernel gives a summary outlook onto what will be
expected to go into the mainline kernel at the next merge period.
Adventurous testers are very welcome to runtime-test the -next kernel.
- ia64 development tree, Tony Luck <tony.luck@intel.com>
git.kernel.org:/pub/scm/linux/kernel/git/aegl/linux-2.6.git
- infiniband, Roland Dreier <rolandd@cisco.com>
git.kernel.org:/pub/scm/linux/kernel/git/roland/infiniband.git
- libata, Jeff Garzik <jgarzik@pobox.com>
git.kernel.org:/pub/scm/linux/kernel/git/jgarzik/libata-dev.git
- network drivers, Jeff Garzik <jgarzik@pobox.com>
git.kernel.org:/pub/scm/linux/kernel/git/jgarzik/netdev-2.6.git
- pcmcia, Dominik Brodowski <linux@dominikbrodowski.net>
git.kernel.org:/pub/scm/linux/kernel/git/brodo/pcmcia-2.6.git
- SCSI, James Bottomley <James.Bottomley@hansenpartnership.com>
git.kernel.org:/pub/scm/linux/kernel/git/jejb/scsi-misc-2.6.git
- x86, Ingo Molnar <mingo@elte.hu>
git://git.kernel.org/pub/scm/linux/kernel/git/x86/linux-2.6-x86.git
quilt trees:
- USB, Driver Core, and I2C, Greg Kroah-Hartman <gregkh@suse.de>
kernel.org/pub/linux/kernel/people/gregkh/gregkh-2.6/
Other kernel trees can be found listed at http://git.kernel.org/ and in
the MAINTAINERS file.
Bug Reporting
-------------

View File

@ -365,6 +365,7 @@ You can change this at module load time (for a module) with:
regshifts=<shift1>,<shift2>,...
slave_addrs=<addr1>,<addr2>,...
force_kipmid=<enable1>,<enable2>,...
kipmid_max_busy_us=<ustime1>,<ustime2>,...
unload_when_empty=[0|1]
Each of these except si_trydefaults is a list, the first item for the
@ -433,6 +434,7 @@ kernel command line as:
ipmi_si.regshifts=<shift1>,<shift2>,...
ipmi_si.slave_addrs=<addr1>,<addr2>,...
ipmi_si.force_kipmid=<enable1>,<enable2>,...
ipmi_si.kipmid_max_busy_us=<ustime1>,<ustime2>,...
It works the same as the module parameters of the same names.
@ -450,6 +452,16 @@ force this thread on or off. If you force it off and don't have
interrupts, the driver will run VERY slowly. Don't blame me,
these interfaces suck.
Unfortunately, this thread can use a lot of CPU depending on the
interface's performance. This can waste a lot of CPU and cause
various issues with detecting idle CPU and using extra power. To
avoid this, the kipmid_max_busy_us sets the maximum amount of time, in
microseconds, that kipmid will spin before sleeping for a tick. This
value sets a balance between performance and CPU waste and needs to be
tuned to your needs. Maybe, someday, auto-tuning will be added, but
that's not a simple thing and even the auto-tuning would need to be
tuned to the user's desired performance.
The driver supports a hot add and remove of interfaces. This way,
interfaces can be added or removed after the kernel is up and running.
This is done using /sys/modules/ipmi_si/parameters/hotmod, which is a

View File

@ -1,3 +1,3 @@
obj-m := DocBook/ accounting/ auxdisplay/ connector/ \
filesystems/configfs/ ia64/ networking/ \
pcmcia/ spi/ video4linux/ vm/ watchdog/src/
filesystems/ filesystems/configfs/ ia64/ laptops/ networking/ \
pcmcia/ spi/ timers/ video4linux/ vm/ watchdog/src/

View File

@ -9,10 +9,14 @@ Documentation/SubmittingPatches and elsewhere regarding submitting Linux
kernel patches.
1: Builds cleanly with applicable or modified CONFIG options =y, =m, and
1: If you use a facility then #include the file that defines/declares
that facility. Don't depend on other header files pulling in ones
that you use.
2: Builds cleanly with applicable or modified CONFIG options =y, =m, and
=n. No gcc warnings/errors, no linker warnings/errors.
2: Passes allnoconfig, allmodconfig
2b: Passes allnoconfig, allmodconfig
3: Builds on multiple CPU architectures by using local cross-compile tools
or some other build farm.

View File

@ -14,8 +14,8 @@ Introduction
how the clocks are arranged. The first implementation used as single
PLL to feed the ARM, memory and peripherals via a series of dividers
and muxes and this is the implementation that is documented here. A
newer version where there is a seperate PLL and clock divider for the
ARM core is available as a seperate driver.
newer version where there is a separate PLL and clock divider for the
ARM core is available as a separate driver.
Layout

View File

@ -0,0 +1,86 @@
Samsung ARM Linux Overview
==========================
Introduction
------------
The Samsung range of ARM SoCs spans many similar devices, from the initial
ARM9 through to the newest ARM cores. This document shows an overview of
the current kernel support, how to use it and where to find the code
that supports this.
The currently supported SoCs are:
- S3C24XX: See Documentation/arm/Samsung-S3C24XX/Overview.txt for full list
- S3C64XX: S3C6400 and S3C6410
- S5PC6440
S5PC100 and S5PC110 support is currently being merged
S3C24XX Systems
---------------
There is still documentation in Documnetation/arm/Samsung-S3C24XX/ which
deals with the architecture and drivers specific to these devices.
See Documentation/arm/Samsung-S3C24XX/Overview.txt for more information
on the implementation details and specific support.
Configuration
-------------
A number of configurations are supplied, as there is no current way of
unifying all the SoCs into one kernel.
s5p6440_defconfig - S5P6440 specific default configuration
s5pc100_defconfig - S5PC100 specific default configuration
Layout
------
The directory layout is currently being restructured, and consists of
several platform directories and then the machine specific directories
of the CPUs being built for.
plat-samsung provides the base for all the implementations, and is the
last in the line of include directories that are processed for the build
specific information. It contains the base clock, GPIO and device definitions
to get the system running.
plat-s3c is the s3c24xx/s3c64xx platform directory, although it is currently
involved in other builds this will be phased out once the relevant code is
moved elsewhere.
plat-s3c24xx is for s3c24xx specific builds, see the S3C24XX docs.
plat-s3c64xx is for the s3c64xx specific bits, see the S3C24XX docs.
plat-s5p is for s5p specific builds, more to be added.
[ to finish ]
Port Contributors
-----------------
Ben Dooks (BJD)
Vincent Sanders
Herbert Potzl
Arnaud Patard (RTP)
Roc Wu
Klaus Fetscher
Dimitry Andric
Shannon Holland
Guillaume Gourat (NexVision)
Christer Weinigel (wingel) (Acer N30)
Lucas Correia Villa Real (S3C2400 port)
Document Author
---------------
Copyright 2009-2010 Ben Dooks <ben-linux@fluff.org>

View File

@ -0,0 +1,167 @@
#!/usr/bin/awk -f
#
# Copyright 2010 Ben Dooks <ben-linux@fluff.org>
#
# Released under GPLv2
# example usage
# ./clksrc-change-registers.awk arch/arm/plat-s5pc1xx/include/plat/regs-clock.h < src > dst
function extract_value(s)
{
eqat = index(s, "=")
comat = index(s, ",")
return substr(s, eqat+2, (comat-eqat)-2)
}
function remove_brackets(b)
{
return substr(b, 2, length(b)-2)
}
function splitdefine(l, p)
{
r = split(l, tp)
p[0] = tp[2]
p[1] = remove_brackets(tp[3])
}
function find_length(f)
{
if (0)
printf "find_length " f "\n" > "/dev/stderr"
if (f ~ /0x1/)
return 1
else if (f ~ /0x3/)
return 2
else if (f ~ /0x7/)
return 3
else if (f ~ /0xf/)
return 4
printf "unknown legnth " f "\n" > "/dev/stderr"
exit
}
function find_shift(s)
{
id = index(s, "<")
if (id <= 0) {
printf "cannot find shift " s "\n" > "/dev/stderr"
exit
}
return substr(s, id+2)
}
BEGIN {
if (ARGC < 2) {
print "too few arguments" > "/dev/stderr"
exit
}
# read the header file and find the mask values that we will need
# to replace and create an associative array of values
while (getline line < ARGV[1] > 0) {
if (line ~ /\#define.*_MASK/ &&
!(line ~ /S5PC100_EPLL_MASK/) &&
!(line ~ /USB_SIG_MASK/)) {
splitdefine(line, fields)
name = fields[0]
if (0)
printf "MASK " line "\n" > "/dev/stderr"
dmask[name,0] = find_length(fields[1])
dmask[name,1] = find_shift(fields[1])
if (0)
printf "=> '" name "' LENGTH=" dmask[name,0] " SHIFT=" dmask[name,1] "\n" > "/dev/stderr"
} else {
}
}
delete ARGV[1]
}
/clksrc_clk.*=.*{/ {
shift=""
mask=""
divshift=""
reg_div=""
reg_src=""
indent=1
print $0
for(; indent >= 1;) {
if ((getline line) <= 0) {
printf "unexpected end of file" > "/dev/stderr"
exit 1;
}
if (line ~ /\.shift/) {
shift = extract_value(line)
} else if (line ~ /\.mask/) {
mask = extract_value(line)
} else if (line ~ /\.reg_divider/) {
reg_div = extract_value(line)
} else if (line ~ /\.reg_source/) {
reg_src = extract_value(line)
} else if (line ~ /\.divider_shift/) {
divshift = extract_value(line)
} else if (line ~ /{/) {
indent++
print line
} else if (line ~ /}/) {
indent--
if (indent == 0) {
if (0) {
printf "shift '" shift "' ='" dmask[shift,0] "'\n" > "/dev/stderr"
printf "mask '" mask "'\n" > "/dev/stderr"
printf "dshft '" divshift "'\n" > "/dev/stderr"
printf "rdiv '" reg_div "'\n" > "/dev/stderr"
printf "rsrc '" reg_src "'\n" > "/dev/stderr"
}
generated = mask
sub(reg_src, reg_div, generated)
if (0) {
printf "/* rsrc " reg_src " */\n"
printf "/* rdiv " reg_div " */\n"
printf "/* shift " shift " */\n"
printf "/* mask " mask " */\n"
printf "/* generated " generated " */\n"
}
if (reg_div != "") {
printf "\t.reg_div = { "
printf ".reg = " reg_div ", "
printf ".shift = " dmask[generated,1] ", "
printf ".size = " dmask[generated,0] ", "
printf "},\n"
}
printf "\t.reg_src = { "
printf ".reg = " reg_src ", "
printf ".shift = " dmask[mask,1] ", "
printf ".size = " dmask[mask,0] ", "
printf "},\n"
}
print line
} else {
print line
}
if (0)
printf indent ":" line "\n" > "/dev/stderr"
}
}
// && ! /clksrc_clk.*=.*{/ { print $0 }

View File

@ -159,42 +159,7 @@ two arguments: the CDROM device, and the slot number to which you wish
to change. If the slot number is -1, the drive is unloaded.
4. Compilation options
----------------------
There are a few additional options which can be set when compiling the
driver. Most people should not need to mess with any of these; they
are listed here simply for completeness. A compilation option can be
enabled by adding a line of the form `#define <option> 1' to the top
of ide-cd.c. All these options are disabled by default.
VERBOSE_IDE_CD_ERRORS
If this is set, ATAPI error codes will be translated into textual
descriptions. In addition, a dump is made of the command which
provoked the error. This is off by default to save the memory used
by the (somewhat long) table of error descriptions.
STANDARD_ATAPI
If this is set, the code needed to deal with certain drives which do
not properly implement the ATAPI spec will be disabled. If you know
your drive implements ATAPI properly, you can turn this on to get a
slightly smaller kernel.
NO_DOOR_LOCKING
If this is set, the driver will never attempt to lock the door of
the drive.
CDROM_NBLOCKS_BUFFER
This sets the size of the buffer to be used for a CDROMREADAUDIO
ioctl. The default is 8.
TEST
This currently enables an additional ioctl which enables a user-mode
program to execute an arbitrary packet command. See the source for
details. This should be left off unless you know what you're doing.
5. Common problems
4. Common problems
------------------
This section discusses some common problems encountered when trying to
@ -371,7 +336,7 @@ f. Data corruption.
expense of low system performance.
6. cdchange.c
5. cdchange.c
-------------
/*

View File

@ -0,0 +1,110 @@
/*
* cgroup_event_listener.c - Simple listener of cgroup events
*
* Copyright (C) Kirill A. Shutemov <kirill@shutemov.name>
*/
#include <assert.h>
#include <errno.h>
#include <fcntl.h>
#include <libgen.h>
#include <limits.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/eventfd.h>
#define USAGE_STR "Usage: cgroup_event_listener <path-to-control-file> <args>\n"
int main(int argc, char **argv)
{
int efd = -1;
int cfd = -1;
int event_control = -1;
char event_control_path[PATH_MAX];
char line[LINE_MAX];
int ret;
if (argc != 3) {
fputs(USAGE_STR, stderr);
return 1;
}
cfd = open(argv[1], O_RDONLY);
if (cfd == -1) {
fprintf(stderr, "Cannot open %s: %s\n", argv[1],
strerror(errno));
goto out;
}
ret = snprintf(event_control_path, PATH_MAX, "%s/cgroup.event_control",
dirname(argv[1]));
if (ret >= PATH_MAX) {
fputs("Path to cgroup.event_control is too long\n", stderr);
goto out;
}
event_control = open(event_control_path, O_WRONLY);
if (event_control == -1) {
fprintf(stderr, "Cannot open %s: %s\n", event_control_path,
strerror(errno));
goto out;
}
efd = eventfd(0, 0);
if (efd == -1) {
perror("eventfd() failed");
goto out;
}
ret = snprintf(line, LINE_MAX, "%d %d %s", efd, cfd, argv[2]);
if (ret >= LINE_MAX) {
fputs("Arguments string is too long\n", stderr);
goto out;
}
ret = write(event_control, line, strlen(line) + 1);
if (ret == -1) {
perror("Cannot write to cgroup.event_control");
goto out;
}
while (1) {
uint64_t result;
ret = read(efd, &result, sizeof(result));
if (ret == -1) {
if (errno == EINTR)
continue;
perror("Cannot read from eventfd");
break;
}
assert(ret == sizeof(result));
ret = access(event_control_path, W_OK);
if ((ret == -1) && (errno == ENOENT)) {
puts("The cgroup seems to have removed.");
ret = 0;
break;
}
if (ret == -1) {
perror("cgroup.event_control "
"is not accessable any more");
break;
}
printf("%s %s: crossed\n", argv[1], argv[2]);
}
out:
if (efd >= 0)
close(efd);
if (event_control >= 0)
close(event_control);
if (cfd >= 0)
close(cfd);
return (ret != 0);
}

View File

@ -22,6 +22,8 @@ CONTENTS:
2. Usage Examples and Syntax
2.1 Basic Usage
2.2 Attaching processes
2.3 Mounting hierarchies by name
2.4 Notification API
3. Kernel API
3.1 Overview
3.2 Synchronization
@ -434,6 +436,25 @@ you give a subsystem a name.
The name of the subsystem appears as part of the hierarchy description
in /proc/mounts and /proc/<pid>/cgroups.
2.4 Notification API
--------------------
There is mechanism which allows to get notifications about changing
status of a cgroup.
To register new notification handler you need:
- create a file descriptor for event notification using eventfd(2);
- open a control file to be monitored (e.g. memory.usage_in_bytes);
- write "<event_fd> <control_fd> <args>" to cgroup.event_control.
Interpretation of args is defined by control file implementation;
eventfd will be woken up by control file implementation or when the
cgroup is removed.
To unregister notification handler just close eventfd.
NOTE: Support of notifications should be implemented for the control
file. See documentation for the subsystem.
3. Kernel API
=============
@ -488,6 +509,11 @@ Each subsystem should:
- add an entry in linux/cgroup_subsys.h
- define a cgroup_subsys object called <name>_subsys
If a subsystem can be compiled as a module, it should also have in its
module initcall a call to cgroup_load_subsys(), and in its exitcall a
call to cgroup_unload_subsys(). It should also set its_subsys.module =
THIS_MODULE in its .c file.
Each subsystem may export the following methods. The only mandatory
methods are create/destroy. Any others that are null are presumed to
be successful no-ops.
@ -536,10 +562,21 @@ returns an error, this will abort the attach operation. If a NULL
task is passed, then a successful result indicates that *any*
unspecified task can be moved into the cgroup. Note that this isn't
called on a fork. If this method returns 0 (success) then this should
remain valid while the caller holds cgroup_mutex. If threadgroup is
remain valid while the caller holds cgroup_mutex and it is ensured that either
attach() or cancel_attach() will be called in future. If threadgroup is
true, then a successful result indicates that all threads in the given
thread's threadgroup can be moved together.
void cancel_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
struct task_struct *task, bool threadgroup)
(cgroup_mutex held by caller)
Called when a task attach operation has failed after can_attach() has succeeded.
A subsystem whose can_attach() has some side-effects should provide this
function, so that the subsytem can implement a rollback. If not, not necessary.
This will be called only about subsystems whose can_attach() operation have
succeeded.
void attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
struct cgroup *old_cgrp, struct task_struct *task,
bool threadgroup)

View File

@ -168,20 +168,20 @@ Each cpuset is represented by a directory in the cgroup file system
containing (on top of the standard cgroup files) the following
files describing that cpuset:
- cpus: list of CPUs in that cpuset
- mems: list of Memory Nodes in that cpuset
- memory_migrate flag: if set, move pages to cpusets nodes
- cpu_exclusive flag: is cpu placement exclusive?
- mem_exclusive flag: is memory placement exclusive?
- mem_hardwall flag: is memory allocation hardwalled
- memory_pressure: measure of how much paging pressure in cpuset
- memory_spread_page flag: if set, spread page cache evenly on allowed nodes
- memory_spread_slab flag: if set, spread slab cache evenly on allowed nodes
- sched_load_balance flag: if set, load balance within CPUs on that cpuset
- sched_relax_domain_level: the searching range when migrating tasks
- cpuset.cpus: list of CPUs in that cpuset
- cpuset.mems: list of Memory Nodes in that cpuset
- cpuset.memory_migrate flag: if set, move pages to cpusets nodes
- cpuset.cpu_exclusive flag: is cpu placement exclusive?
- cpuset.mem_exclusive flag: is memory placement exclusive?
- cpuset.mem_hardwall flag: is memory allocation hardwalled
- cpuset.memory_pressure: measure of how much paging pressure in cpuset
- cpuset.memory_spread_page flag: if set, spread page cache evenly on allowed nodes
- cpuset.memory_spread_slab flag: if set, spread slab cache evenly on allowed nodes
- cpuset.sched_load_balance flag: if set, load balance within CPUs on that cpuset
- cpuset.sched_relax_domain_level: the searching range when migrating tasks
In addition, the root cpuset only has the following file:
- memory_pressure_enabled flag: compute memory_pressure?
- cpuset.memory_pressure_enabled flag: compute memory_pressure?
New cpusets are created using the mkdir system call or shell
command. The properties of a cpuset, such as its flags, allowed
@ -229,7 +229,7 @@ If a cpuset is cpu or mem exclusive, no other cpuset, other than
a direct ancestor or descendant, may share any of the same CPUs or
Memory Nodes.
A cpuset that is mem_exclusive *or* mem_hardwall is "hardwalled",
A cpuset that is cpuset.mem_exclusive *or* cpuset.mem_hardwall is "hardwalled",
i.e. it restricts kernel allocations for page, buffer and other data
commonly shared by the kernel across multiple users. All cpusets,
whether hardwalled or not, restrict allocations of memory for user
@ -304,15 +304,15 @@ times 1000.
---------------------------
There are two boolean flag files per cpuset that control where the
kernel allocates pages for the file system buffers and related in
kernel data structures. They are called 'memory_spread_page' and
'memory_spread_slab'.
kernel data structures. They are called 'cpuset.memory_spread_page' and
'cpuset.memory_spread_slab'.
If the per-cpuset boolean flag file 'memory_spread_page' is set, then
If the per-cpuset boolean flag file 'cpuset.memory_spread_page' is set, then
the kernel will spread the file system buffers (page cache) evenly
over all the nodes that the faulting task is allowed to use, instead
of preferring to put those pages on the node where the task is running.
If the per-cpuset boolean flag file 'memory_spread_slab' is set,
If the per-cpuset boolean flag file 'cpuset.memory_spread_slab' is set,
then the kernel will spread some file system related slab caches,
such as for inodes and dentries evenly over all the nodes that the
faulting task is allowed to use, instead of preferring to put those
@ -337,21 +337,21 @@ their containing tasks memory spread settings. If memory spreading
is turned off, then the currently specified NUMA mempolicy once again
applies to memory page allocations.
Both 'memory_spread_page' and 'memory_spread_slab' are boolean flag
Both 'cpuset.memory_spread_page' and 'cpuset.memory_spread_slab' are boolean flag
files. By default they contain "0", meaning that the feature is off
for that cpuset. If a "1" is written to that file, then that turns
the named feature on.
The implementation is simple.
Setting the flag 'memory_spread_page' turns on a per-process flag
Setting the flag 'cpuset.memory_spread_page' turns on a per-process flag
PF_SPREAD_PAGE for each task that is in that cpuset or subsequently
joins that cpuset. The page allocation calls for the page cache
is modified to perform an inline check for this PF_SPREAD_PAGE task
flag, and if set, a call to a new routine cpuset_mem_spread_node()
returns the node to prefer for the allocation.
Similarly, setting 'memory_spread_slab' turns on the flag
Similarly, setting 'cpuset.memory_spread_slab' turns on the flag
PF_SPREAD_SLAB, and appropriately marked slab caches will allocate
pages from the node returned by cpuset_mem_spread_node().
@ -404,24 +404,24 @@ the following two situations:
system overhead on those CPUs, including avoiding task load
balancing if that is not needed.
When the per-cpuset flag "sched_load_balance" is enabled (the default
setting), it requests that all the CPUs in that cpusets allowed 'cpus'
When the per-cpuset flag "cpuset.sched_load_balance" is enabled (the default
setting), it requests that all the CPUs in that cpusets allowed 'cpuset.cpus'
be contained in a single sched domain, ensuring that load balancing
can move a task (not otherwised pinned, as by sched_setaffinity)
from any CPU in that cpuset to any other.
When the per-cpuset flag "sched_load_balance" is disabled, then the
When the per-cpuset flag "cpuset.sched_load_balance" is disabled, then the
scheduler will avoid load balancing across the CPUs in that cpuset,
--except-- in so far as is necessary because some overlapping cpuset
has "sched_load_balance" enabled.
So, for example, if the top cpuset has the flag "sched_load_balance"
So, for example, if the top cpuset has the flag "cpuset.sched_load_balance"
enabled, then the scheduler will have one sched domain covering all
CPUs, and the setting of the "sched_load_balance" flag in any other
CPUs, and the setting of the "cpuset.sched_load_balance" flag in any other
cpusets won't matter, as we're already fully load balancing.
Therefore in the above two situations, the top cpuset flag
"sched_load_balance" should be disabled, and only some of the smaller,
"cpuset.sched_load_balance" should be disabled, and only some of the smaller,
child cpusets have this flag enabled.
When doing this, you don't usually want to leave any unpinned tasks in
@ -433,7 +433,7 @@ scheduler might not consider the possibility of load balancing that
task to that underused CPU.
Of course, tasks pinned to a particular CPU can be left in a cpuset
that disables "sched_load_balance" as those tasks aren't going anywhere
that disables "cpuset.sched_load_balance" as those tasks aren't going anywhere
else anyway.
There is an impedance mismatch here, between cpusets and sched domains.
@ -443,19 +443,19 @@ overlap and each CPU is in at most one sched domain.
It is necessary for sched domains to be flat because load balancing
across partially overlapping sets of CPUs would risk unstable dynamics
that would be beyond our understanding. So if each of two partially
overlapping cpusets enables the flag 'sched_load_balance', then we
overlapping cpusets enables the flag 'cpuset.sched_load_balance', then we
form a single sched domain that is a superset of both. We won't move
a task to a CPU outside it cpuset, but the scheduler load balancing
code might waste some compute cycles considering that possibility.
This mismatch is why there is not a simple one-to-one relation
between which cpusets have the flag "sched_load_balance" enabled,
between which cpusets have the flag "cpuset.sched_load_balance" enabled,
and the sched domain configuration. If a cpuset enables the flag, it
will get balancing across all its CPUs, but if it disables the flag,
it will only be assured of no load balancing if no other overlapping
cpuset enables the flag.
If two cpusets have partially overlapping 'cpus' allowed, and only
If two cpusets have partially overlapping 'cpuset.cpus' allowed, and only
one of them has this flag enabled, then the other may find its
tasks only partially load balanced, just on the overlapping CPUs.
This is just the general case of the top_cpuset example given a few
@ -468,23 +468,23 @@ load balancing to the other CPUs.
1.7.1 sched_load_balance implementation details.
------------------------------------------------
The per-cpuset flag 'sched_load_balance' defaults to enabled (contrary
The per-cpuset flag 'cpuset.sched_load_balance' defaults to enabled (contrary
to most cpuset flags.) When enabled for a cpuset, the kernel will
ensure that it can load balance across all the CPUs in that cpuset
(makes sure that all the CPUs in the cpus_allowed of that cpuset are
in the same sched domain.)
If two overlapping cpusets both have 'sched_load_balance' enabled,
If two overlapping cpusets both have 'cpuset.sched_load_balance' enabled,
then they will be (must be) both in the same sched domain.
If, as is the default, the top cpuset has 'sched_load_balance' enabled,
If, as is the default, the top cpuset has 'cpuset.sched_load_balance' enabled,
then by the above that means there is a single sched domain covering
the whole system, regardless of any other cpuset settings.
The kernel commits to user space that it will avoid load balancing
where it can. It will pick as fine a granularity partition of sched
domains as it can while still providing load balancing for any set
of CPUs allowed to a cpuset having 'sched_load_balance' enabled.
of CPUs allowed to a cpuset having 'cpuset.sched_load_balance' enabled.
The internal kernel cpuset to scheduler interface passes from the
cpuset code to the scheduler code a partition of the load balanced
@ -495,9 +495,9 @@ all the CPUs that must be load balanced.
The cpuset code builds a new such partition and passes it to the
scheduler sched domain setup code, to have the sched domains rebuilt
as necessary, whenever:
- the 'sched_load_balance' flag of a cpuset with non-empty CPUs changes,
- the 'cpuset.sched_load_balance' flag of a cpuset with non-empty CPUs changes,
- or CPUs come or go from a cpuset with this flag enabled,
- or 'sched_relax_domain_level' value of a cpuset with non-empty CPUs
- or 'cpuset.sched_relax_domain_level' value of a cpuset with non-empty CPUs
and with this flag enabled changes,
- or a cpuset with non-empty CPUs and with this flag enabled is removed,
- or a cpu is offlined/onlined.
@ -542,7 +542,7 @@ As the result, task B on CPU X need to wait task A or wait load balance
on the next tick. For some applications in special situation, waiting
1 tick may be too long.
The 'sched_relax_domain_level' file allows you to request changing
The 'cpuset.sched_relax_domain_level' file allows you to request changing
this searching range as you like. This file takes int value which
indicates size of searching range in levels ideally as follows,
otherwise initial value -1 that indicates the cpuset has no request.
@ -559,8 +559,8 @@ The system default is architecture dependent. The system default
can be changed using the relax_domain_level= boot parameter.
This file is per-cpuset and affect the sched domain where the cpuset
belongs to. Therefore if the flag 'sched_load_balance' of a cpuset
is disabled, then 'sched_relax_domain_level' have no effect since
belongs to. Therefore if the flag 'cpuset.sched_load_balance' of a cpuset
is disabled, then 'cpuset.sched_relax_domain_level' have no effect since
there is no sched domain belonging the cpuset.
If multiple cpusets are overlapping and hence they form a single sched
@ -607,9 +607,9 @@ from one cpuset to another, then the kernel will adjust the tasks
memory placement, as above, the next time that the kernel attempts
to allocate a page of memory for that task.
If a cpuset has its 'cpus' modified, then each task in that cpuset
If a cpuset has its 'cpuset.cpus' modified, then each task in that cpuset
will have its allowed CPU placement changed immediately. Similarly,
if a tasks pid is written to another cpusets 'tasks' file, then its
if a tasks pid is written to another cpusets 'cpuset.tasks' file, then its
allowed CPU placement is changed immediately. If such a task had been
bound to some subset of its cpuset using the sched_setaffinity() call,
the task will be allowed to run on any CPU allowed in its new cpuset,
@ -622,8 +622,8 @@ and the processor placement is updated immediately.
Normally, once a page is allocated (given a physical page
of main memory) then that page stays on whatever node it
was allocated, so long as it remains allocated, even if the
cpusets memory placement policy 'mems' subsequently changes.
If the cpuset flag file 'memory_migrate' is set true, then when
cpusets memory placement policy 'cpuset.mems' subsequently changes.
If the cpuset flag file 'cpuset.memory_migrate' is set true, then when
tasks are attached to that cpuset, any pages that task had
allocated to it on nodes in its previous cpuset are migrated
to the tasks new cpuset. The relative placement of the page within
@ -631,12 +631,12 @@ the cpuset is preserved during these migration operations if possible.
For example if the page was on the second valid node of the prior cpuset
then the page will be placed on the second valid node of the new cpuset.
Also if 'memory_migrate' is set true, then if that cpusets
'mems' file is modified, pages allocated to tasks in that
cpuset, that were on nodes in the previous setting of 'mems',
Also if 'cpuset.memory_migrate' is set true, then if that cpusets
'cpuset.mems' file is modified, pages allocated to tasks in that
cpuset, that were on nodes in the previous setting of 'cpuset.mems',
will be moved to nodes in the new setting of 'mems.'
Pages that were not in the tasks prior cpuset, or in the cpusets
prior 'mems' setting, will not be moved.
prior 'cpuset.mems' setting, will not be moved.
There is an exception to the above. If hotplug functionality is used
to remove all the CPUs that are currently assigned to a cpuset,
@ -678,8 +678,8 @@ and then start a subshell 'sh' in that cpuset:
cd /dev/cpuset
mkdir Charlie
cd Charlie
/bin/echo 2-3 > cpus
/bin/echo 1 > mems
/bin/echo 2-3 > cpuset.cpus
/bin/echo 1 > cpuset.mems
/bin/echo $$ > tasks
sh
# The subshell 'sh' is now running in cpuset Charlie
@ -725,10 +725,13 @@ Now you want to do something with this cpuset.
In this directory you can find several files:
# ls
cpu_exclusive memory_migrate mems tasks
cpus memory_pressure notify_on_release
mem_exclusive memory_spread_page sched_load_balance
mem_hardwall memory_spread_slab sched_relax_domain_level
cpuset.cpu_exclusive cpuset.memory_spread_slab
cpuset.cpus cpuset.mems
cpuset.mem_exclusive cpuset.sched_load_balance
cpuset.mem_hardwall cpuset.sched_relax_domain_level
cpuset.memory_migrate notify_on_release
cpuset.memory_pressure tasks
cpuset.memory_spread_page
Reading them will give you information about the state of this cpuset:
the CPUs and Memory Nodes it can use, the processes that are using
@ -736,13 +739,13 @@ it, its properties. By writing to these files you can manipulate
the cpuset.
Set some flags:
# /bin/echo 1 > cpu_exclusive
# /bin/echo 1 > cpuset.cpu_exclusive
Add some cpus:
# /bin/echo 0-7 > cpus
# /bin/echo 0-7 > cpuset.cpus
Add some mems:
# /bin/echo 0-7 > mems
# /bin/echo 0-7 > cpuset.mems
Now attach your shell to this cpuset:
# /bin/echo $$ > tasks
@ -774,28 +777,28 @@ echo "/sbin/cpuset_release_agent" > /dev/cpuset/release_agent
This is the syntax to use when writing in the cpus or mems files
in cpuset directories:
# /bin/echo 1-4 > cpus -> set cpus list to cpus 1,2,3,4
# /bin/echo 1,2,3,4 > cpus -> set cpus list to cpus 1,2,3,4
# /bin/echo 1-4 > cpuset.cpus -> set cpus list to cpus 1,2,3,4
# /bin/echo 1,2,3,4 > cpuset.cpus -> set cpus list to cpus 1,2,3,4
To add a CPU to a cpuset, write the new list of CPUs including the
CPU to be added. To add 6 to the above cpuset:
# /bin/echo 1-4,6 > cpus -> set cpus list to cpus 1,2,3,4,6
# /bin/echo 1-4,6 > cpuset.cpus -> set cpus list to cpus 1,2,3,4,6
Similarly to remove a CPU from a cpuset, write the new list of CPUs
without the CPU to be removed.
To remove all the CPUs:
# /bin/echo "" > cpus -> clear cpus list
# /bin/echo "" > cpuset.cpus -> clear cpus list
2.3 Setting flags
-----------------
The syntax is very simple:
# /bin/echo 1 > cpu_exclusive -> set flag 'cpu_exclusive'
# /bin/echo 0 > cpu_exclusive -> unset flag 'cpu_exclusive'
# /bin/echo 1 > cpuset.cpu_exclusive -> set flag 'cpuset.cpu_exclusive'
# /bin/echo 0 > cpuset.cpu_exclusive -> unset flag 'cpuset.cpu_exclusive'
2.4 Attaching processes
-----------------------

View File

@ -1,6 +1,6 @@
Memory Resource Controller(Memcg) Implementation Memo.
Last Updated: 2009/1/20
Base Kernel Version: based on 2.6.29-rc2.
Last Updated: 2010/2
Base Kernel Version: based on 2.6.33-rc7-mm(candidate for 34).
Because VM is getting complex (one of reasons is memcg...), memcg's behavior
is complex. This is a document for memcg's internal behavior.
@ -337,7 +337,7 @@ Under below explanation, we assume CONFIG_MEM_RES_CTRL_SWAP=y.
race and lock dependency with other cgroup subsystems.
example)
# mount -t cgroup none /cgroup -t cpuset,memory,cpu,devices
# mount -t cgroup none /cgroup -o cpuset,memory,cpu,devices
and do task move, mkdir, rmdir etc...under this.
@ -348,7 +348,7 @@ Under below explanation, we assume CONFIG_MEM_RES_CTRL_SWAP=y.
For example, test like following is good.
(Shell-A)
# mount -t cgroup none /cgroup -t memory
# mount -t cgroup none /cgroup -o memory
# mkdir /cgroup/test
# echo 40M > /cgroup/test/memory.limit_in_bytes
# echo 0 > /cgroup/test/tasks
@ -378,3 +378,42 @@ Under below explanation, we assume CONFIG_MEM_RES_CTRL_SWAP=y.
#echo 50M > memory.limit_in_bytes
#echo 50M > memory.memsw.limit_in_bytes
run 51M of malloc
9.9 Move charges at task migration
Charges associated with a task can be moved along with task migration.
(Shell-A)
#mkdir /cgroup/A
#echo $$ >/cgroup/A/tasks
run some programs which uses some amount of memory in /cgroup/A.
(Shell-B)
#mkdir /cgroup/B
#echo 1 >/cgroup/B/memory.move_charge_at_immigrate
#echo "pid of the program running in group A" >/cgroup/B/tasks
You can see charges have been moved by reading *.usage_in_bytes or
memory.stat of both A and B.
See 8.2 of Documentation/cgroups/memory.txt to see what value should be
written to move_charge_at_immigrate.
9.10 Memory thresholds
Memory controler implements memory thresholds using cgroups notification
API. You can use Documentation/cgroups/cgroup_event_listener.c to test
it.
(Shell-A) Create cgroup and run event listener
# mkdir /cgroup/A
# ./cgroup_event_listener /cgroup/A/memory.usage_in_bytes 5M
(Shell-B) Add task to cgroup and try to allocate and free memory
# echo $$ >/cgroup/A/tasks
# a="$(dd if=/dev/zero bs=1M count=10)"
# a=
You will see message from cgroup_event_listener every time you cross
the thresholds.
Use /cgroup/A/memory.memsw.usage_in_bytes to test memsw thresholds.
It's good idea to test root cgroup as well.

View File

@ -182,6 +182,8 @@ list.
NOTE: Reclaim does not work for the root cgroup, since we cannot set any
limits on the root cgroup.
Note2: When panic_on_oom is set to "2", the whole system will panic.
2. Locking
The memory controller uses the following hierarchy
@ -262,10 +264,12 @@ some of the pages cached in the cgroup (page cache pages).
4.2 Task migration
When a task migrates from one cgroup to another, it's charge is not
carried forward. The pages allocated from the original cgroup still
carried forward by default. The pages allocated from the original cgroup still
remain charged to it, the charge is dropped when the page is freed or
reclaimed.
Note: You can move charges of a task along with task migration. See 8.
4.3 Removing a cgroup
A cgroup can be removed by rmdir, but as discussed in sections 4.1 and 4.2, a
@ -336,7 +340,7 @@ Note:
5.3 swappiness
Similar to /proc/sys/vm/swappiness, but affecting a hierarchy of groups only.
Following cgroups' swapiness can't be changed.
Following cgroups' swappiness can't be changed.
- root cgroup (uses /proc/sys/vm/swappiness).
- a cgroup which uses hierarchy and it has child cgroup.
- a cgroup which uses hierarchy and not the root of hierarchy.
@ -377,7 +381,8 @@ The feature can be disabled by
NOTE1: Enabling/disabling will fail if the cgroup already has other
cgroups created below it.
NOTE2: This feature can be enabled/disabled per subtree.
NOTE2: When panic_on_oom is set to "2", the whole system will panic in
case of an oom event in any cgroup.
7. Soft limits
@ -414,7 +419,76 @@ NOTE1: Soft limits take effect over a long period of time, since they involve
NOTE2: It is recommended to set the soft limit always below the hard limit,
otherwise the hard limit will take precedence.
8. TODO
8. Move charges at task migration
Users can move charges associated with a task along with task migration, that
is, uncharge task's pages from the old cgroup and charge them to the new cgroup.
This feature is not supported in !CONFIG_MMU environments because of lack of
page tables.
8.1 Interface
This feature is disabled by default. It can be enabled(and disabled again) by
writing to memory.move_charge_at_immigrate of the destination cgroup.
If you want to enable it:
# echo (some positive value) > memory.move_charge_at_immigrate
Note: Each bits of move_charge_at_immigrate has its own meaning about what type
of charges should be moved. See 8.2 for details.
Note: Charges are moved only when you move mm->owner, IOW, a leader of a thread
group.
Note: If we cannot find enough space for the task in the destination cgroup, we
try to make space by reclaiming memory. Task migration may fail if we
cannot make enough space.
Note: It can take several seconds if you move charges in giga bytes order.
And if you want disable it again:
# echo 0 > memory.move_charge_at_immigrate
8.2 Type of charges which can be move
Each bits of move_charge_at_immigrate has its own meaning about what type of
charges should be moved.
bit | what type of charges would be moved ?
-----+------------------------------------------------------------------------
0 | A charge of an anonymous page(or swap of it) used by the target task.
| Those pages and swaps must be used only by the target task. You must
| enable Swap Extension(see 2.4) to enable move of swap charges.
Note: Those pages and swaps must be charged to the old cgroup.
Note: More type of pages(e.g. file cache, shmem,) will be supported by other
bits in future.
8.3 TODO
- Add support for other types of pages(e.g. file cache, shmem, etc.).
- Implement madvise(2) to let users decide the vma to be moved or not to be
moved.
- All of moving charge operations are done under cgroup_mutex. It's not good
behavior to hold the mutex too long, so we may need some trick.
9. Memory thresholds
Memory controler implements memory thresholds using cgroups notification
API (see cgroups.txt). It allows to register multiple memory and memsw
thresholds and gets notifications when it crosses.
To register a threshold application need:
- create an eventfd using eventfd(2);
- open memory.usage_in_bytes or memory.memsw.usage_in_bytes;
- write string like "<event_fd> <memory.usage_in_bytes> <threshold>" to
cgroup.event_control.
Application will be notified through eventfd when memory usage crosses
threshold in any direction.
It's applicable for root and non-root cgroup.
10. TODO
1. Add support for accounting huge pages (as a separate controller)
2. Make per-cgroup scanner reclaim not-shared pages first

View File

@ -0,0 +1,234 @@
================
CIRCULAR BUFFERS
================
By: David Howells <dhowells@redhat.com>
Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Linux provides a number of features that can be used to implement circular
buffering. There are two sets of such features:
(1) Convenience functions for determining information about power-of-2 sized
buffers.
(2) Memory barriers for when the producer and the consumer of objects in the
buffer don't want to share a lock.
To use these facilities, as discussed below, there needs to be just one
producer and just one consumer. It is possible to handle multiple producers by
serialising them, and to handle multiple consumers by serialising them.
Contents:
(*) What is a circular buffer?
(*) Measuring power-of-2 buffers.
(*) Using memory barriers with circular buffers.
- The producer.
- The consumer.
==========================
WHAT IS A CIRCULAR BUFFER?
==========================
First of all, what is a circular buffer? A circular buffer is a buffer of
fixed, finite size into which there are two indices:
(1) A 'head' index - the point at which the producer inserts items into the
buffer.
(2) A 'tail' index - the point at which the consumer finds the next item in
the buffer.
Typically when the tail pointer is equal to the head pointer, the buffer is
empty; and the buffer is full when the head pointer is one less than the tail
pointer.
The head index is incremented when items are added, and the tail index when
items are removed. The tail index should never jump the head index, and both
indices should be wrapped to 0 when they reach the end of the buffer, thus
allowing an infinite amount of data to flow through the buffer.
Typically, items will all be of the same unit size, but this isn't strictly
required to use the techniques below. The indices can be increased by more
than 1 if multiple items or variable-sized items are to be included in the
buffer, provided that neither index overtakes the other. The implementer must
be careful, however, as a region more than one unit in size may wrap the end of
the buffer and be broken into two segments.
============================
MEASURING POWER-OF-2 BUFFERS
============================
Calculation of the occupancy or the remaining capacity of an arbitrarily sized
circular buffer would normally be a slow operation, requiring the use of a
modulus (divide) instruction. However, if the buffer is of a power-of-2 size,
then a much quicker bitwise-AND instruction can be used instead.
Linux provides a set of macros for handling power-of-2 circular buffers. These
can be made use of by:
#include <linux/circ_buf.h>
The macros are:
(*) Measure the remaining capacity of a buffer:
CIRC_SPACE(head_index, tail_index, buffer_size);
This returns the amount of space left in the buffer[1] into which items
can be inserted.
(*) Measure the maximum consecutive immediate space in a buffer:
CIRC_SPACE_TO_END(head_index, tail_index, buffer_size);
This returns the amount of consecutive space left in the buffer[1] into
which items can be immediately inserted without having to wrap back to the
beginning of the buffer.
(*) Measure the occupancy of a buffer:
CIRC_CNT(head_index, tail_index, buffer_size);
This returns the number of items currently occupying a buffer[2].
(*) Measure the non-wrapping occupancy of a buffer:
CIRC_CNT_TO_END(head_index, tail_index, buffer_size);
This returns the number of consecutive items[2] that can be extracted from
the buffer without having to wrap back to the beginning of the buffer.
Each of these macros will nominally return a value between 0 and buffer_size-1,
however:
[1] CIRC_SPACE*() are intended to be used in the producer. To the producer
they will return a lower bound as the producer controls the head index,
but the consumer may still be depleting the buffer on another CPU and
moving the tail index.
To the consumer it will show an upper bound as the producer may be busy
depleting the space.
[2] CIRC_CNT*() are intended to be used in the consumer. To the consumer they
will return a lower bound as the consumer controls the tail index, but the
producer may still be filling the buffer on another CPU and moving the
head index.
To the producer it will show an upper bound as the consumer may be busy
emptying the buffer.
[3] To a third party, the order in which the writes to the indices by the
producer and consumer become visible cannot be guaranteed as they are
independent and may be made on different CPUs - so the result in such a
situation will merely be a guess, and may even be negative.
===========================================
USING MEMORY BARRIERS WITH CIRCULAR BUFFERS
===========================================
By using memory barriers in conjunction with circular buffers, you can avoid
the need to:
(1) use a single lock to govern access to both ends of the buffer, thus
allowing the buffer to be filled and emptied at the same time; and
(2) use atomic counter operations.
There are two sides to this: the producer that fills the buffer, and the
consumer that empties it. Only one thing should be filling a buffer at any one
time, and only one thing should be emptying a buffer at any one time, but the
two sides can operate simultaneously.
THE PRODUCER
------------
The producer will look something like this:
spin_lock(&producer_lock);
unsigned long head = buffer->head;
unsigned long tail = ACCESS_ONCE(buffer->tail);
if (CIRC_SPACE(head, tail, buffer->size) >= 1) {
/* insert one item into the buffer */
struct item *item = buffer[head];
produce_item(item);
smp_wmb(); /* commit the item before incrementing the head */
buffer->head = (head + 1) & (buffer->size - 1);
/* wake_up() will make sure that the head is committed before
* waking anyone up */
wake_up(consumer);
}
spin_unlock(&producer_lock);
This will instruct the CPU that the contents of the new item must be written
before the head index makes it available to the consumer and then instructs the
CPU that the revised head index must be written before the consumer is woken.
Note that wake_up() doesn't have to be the exact mechanism used, but whatever
is used must guarantee a (write) memory barrier between the update of the head
index and the change of state of the consumer, if a change of state occurs.
THE CONSUMER
------------
The consumer will look something like this:
spin_lock(&consumer_lock);
unsigned long head = ACCESS_ONCE(buffer->head);
unsigned long tail = buffer->tail;
if (CIRC_CNT(head, tail, buffer->size) >= 1) {
/* read index before reading contents at that index */
smp_read_barrier_depends();
/* extract one item from the buffer */
struct item *item = buffer[tail];
consume_item(item);
smp_mb(); /* finish reading descriptor before incrementing tail */
buffer->tail = (tail + 1) & (buffer->size - 1);
}
spin_unlock(&consumer_lock);
This will instruct the CPU to make sure the index is up to date before reading
the new item, and then it shall make sure the CPU has finished reading the item
before it writes the new tail pointer, which will erase the item.
Note the use of ACCESS_ONCE() in both algorithms to read the opposition index.
This prevents the compiler from discarding and reloading its cached value -
which some compilers will do across smp_read_barrier_depends(). This isn't
strictly needed if you can be sure that the opposition index will _only_ be
used the once.
===============
FURTHER READING
===============
See also Documentation/memory-barriers.txt for a description of Linux's memory
barrier facilities.

View File

@ -74,7 +74,7 @@ driver takes over the consoles vacated by the driver. Binding, on the other
hand, will bind the driver to the consoles that are currently occupied by a
system driver.
NOTE1: Binding and binding must be selected in Kconfig. It's under:
NOTE1: Binding and unbinding must be selected in Kconfig. It's under:
Device Drivers -> Character devices -> Support for binding and unbinding
console drivers

View File

@ -0,0 +1,207 @@
/*
* pcc-cpufreq.txt - PCC interface documentation
*
* Copyright (C) 2009 Red Hat, Matthew Garrett <mjg@redhat.com>
* Copyright (C) 2009 Hewlett-Packard Development Company, L.P.
* Nagananda Chumbalkar <nagananda.chumbalkar@hp.com>
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or NON
* INFRINGEMENT. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 675 Mass Ave, Cambridge, MA 02139, USA.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*/
Processor Clocking Control Driver
---------------------------------
Contents:
---------
1. Introduction
1.1 PCC interface
1.1.1 Get Average Frequency
1.1.2 Set Desired Frequency
1.2 Platforms affected
2. Driver and /sys details
2.1 scaling_available_frequencies
2.2 cpuinfo_transition_latency
2.3 cpuinfo_cur_freq
2.4 related_cpus
3. Caveats
1. Introduction:
----------------
Processor Clocking Control (PCC) is an interface between the platform
firmware and OSPM. It is a mechanism for coordinating processor
performance (ie: frequency) between the platform firmware and the OS.
The PCC driver (pcc-cpufreq) allows OSPM to take advantage of the PCC
interface.
OS utilizes the PCC interface to inform platform firmware what frequency the
OS wants for a logical processor. The platform firmware attempts to achieve
the requested frequency. If the request for the target frequency could not be
satisfied by platform firmware, then it usually means that power budget
conditions are in place, and "power capping" is taking place.
1.1 PCC interface:
------------------
The complete PCC specification is available here:
http://www.acpica.org/download/Processor-Clocking-Control-v1p0.pdf
PCC relies on a shared memory region that provides a channel for communication
between the OS and platform firmware. PCC also implements a "doorbell" that
is used by the OS to inform the platform firmware that a command has been
sent.
The ACPI PCCH() method is used to discover the location of the PCC shared
memory region. The shared memory region header contains the "command" and
"status" interface. PCCH() also contains details on how to access the platform
doorbell.
The following commands are supported by the PCC interface:
* Get Average Frequency
* Set Desired Frequency
The ACPI PCCP() method is implemented for each logical processor and is
used to discover the offsets for the input and output buffers in the shared
memory region.
When PCC mode is enabled, the platform will not expose processor performance
or throttle states (_PSS, _TSS and related ACPI objects) to OSPM. Therefore,
the native P-state driver (such as acpi-cpufreq for Intel, powernow-k8 for
AMD) will not load.
However, OSPM remains in control of policy. The governor (eg: "ondemand")
computes the required performance for each processor based on server workload.
The PCC driver fills in the command interface, and the input buffer and
communicates the request to the platform firmware. The platform firmware is
responsible for delivering the requested performance.
Each PCC command is "global" in scope and can affect all the logical CPUs in
the system. Therefore, PCC is capable of performing "group" updates. With PCC
the OS is capable of getting/setting the frequency of all the logical CPUs in
the system with a single call to the BIOS.
1.1.1 Get Average Frequency:
----------------------------
This command is used by the OSPM to query the running frequency of the
processor since the last time this command was completed. The output buffer
indicates the average unhalted frequency of the logical processor expressed as
a percentage of the nominal (ie: maximum) CPU frequency. The output buffer
also signifies if the CPU frequency is limited by a power budget condition.
1.1.2 Set Desired Frequency:
----------------------------
This command is used by the OSPM to communicate to the platform firmware the
desired frequency for a logical processor. The output buffer is currently
ignored by OSPM. The next invocation of "Get Average Frequency" will inform
OSPM if the desired frequency was achieved or not.
1.2 Platforms affected:
-----------------------
The PCC driver will load on any system where the platform firmware:
* supports the PCC interface, and the associated PCCH() and PCCP() methods
* assumes responsibility for managing the hardware clocking controls in order
to deliver the requested processor performance
Currently, certain HP ProLiant platforms implement the PCC interface. On those
platforms PCC is the "default" choice.
However, it is possible to disable this interface via a BIOS setting. In
such an instance, as is also the case on platforms where the PCC interface
is not implemented, the PCC driver will fail to load silently.
2. Driver and /sys details:
---------------------------
When the driver loads, it merely prints the lowest and the highest CPU
frequencies supported by the platform firmware.
The PCC driver loads with a message such as:
pcc-cpufreq: (v1.00.00) driver loaded with frequency limits: 1600 MHz, 2933
MHz
This means that the OPSM can request the CPU to run at any frequency in
between the limits (1600 MHz, and 2933 MHz) specified in the message.
Internally, there is no need for the driver to convert the "target" frequency
to a corresponding P-state.
The VERSION number for the driver will be of the format v.xy.ab.
eg: 1.00.02
----- --
| |
| -- this will increase with bug fixes/enhancements to the driver
|-- this is the version of the PCC specification the driver adheres to
The following is a brief discussion on some of the fields exported via the
/sys filesystem and how their values are affected by the PCC driver:
2.1 scaling_available_frequencies:
----------------------------------
scaling_available_frequencies is not created in /sys. No intermediate
frequencies need to be listed because the BIOS will try to achieve any
frequency, within limits, requested by the governor. A frequency does not have
to be strictly associated with a P-state.
2.2 cpuinfo_transition_latency:
-------------------------------
The cpuinfo_transition_latency field is 0. The PCC specification does
not include a field to expose this value currently.
2.3 cpuinfo_cur_freq:
---------------------
A) Often cpuinfo_cur_freq will show a value different than what is declared
in the scaling_available_frequencies or scaling_cur_freq, or scaling_max_freq.
This is due to "turbo boost" available on recent Intel processors. If certain
conditions are met the BIOS can achieve a slightly higher speed than requested
by OSPM. An example:
scaling_cur_freq : 2933000
cpuinfo_cur_freq : 3196000
B) There is a round-off error associated with the cpuinfo_cur_freq value.
Since the driver obtains the current frequency as a "percentage" (%) of the
nominal frequency from the BIOS, sometimes, the values displayed by
scaling_cur_freq and cpuinfo_cur_freq may not match. An example:
scaling_cur_freq : 1600000
cpuinfo_cur_freq : 1583000
In this example, the nominal frequency is 2933 MHz. The driver obtains the
current frequency, cpuinfo_cur_freq, as 54% of the nominal frequency:
54% of 2933 MHz = 1583 MHz
Nominal frequency is the maximum frequency of the processor, and it usually
corresponds to the frequency of the P0 P-state.
2.4 related_cpus:
-----------------
The related_cpus field is identical to affected_cpus.
affected_cpus : 4
related_cpus : 4
Currently, the PCC driver does not evaluate _PSD. The platforms that support
PCC do not implement SW_ALL. So OSPM doesn't need to perform any coordination
to ensure that the same frequency is requested of all dependent CPUs.
3. Caveats:
-----------
The "cpufreq_stats" module in its present form cannot be loaded and
expected to work with the PCC driver. Since the "cpufreq_stats" module
provides information wrt each P-state, it is not applicable to the PCC driver.

View File

@ -122,3 +122,47 @@ volumeGroup-base: 0 2097152 snapshot-merge 254:11 254:12 P 16
brw------- 1 root root 254, 11 29 ago 18:15 /dev/mapper/volumeGroup-base-real
brw------- 1 root root 254, 12 29 ago 18:16 /dev/mapper/volumeGroup-base-cow
brw------- 1 root root 254, 10 29 ago 18:16 /dev/mapper/volumeGroup-base
How to determine when a merging is complete
===========================================
The snapshot-merge and snapshot status lines end with:
<sectors_allocated>/<total_sectors> <metadata_sectors>
Both <sectors_allocated> and <total_sectors> include both data and metadata.
During merging, the number of sectors allocated gets smaller and
smaller. Merging has finished when the number of sectors holding data
is zero, in other words <sectors_allocated> == <metadata_sectors>.
Here is a practical example (using a hybrid of lvm and dmsetup commands):
# lvs
LV VG Attr LSize Origin Snap% Move Log Copy% Convert
base volumeGroup owi-a- 4.00g
snap volumeGroup swi-a- 1.00g base 18.97
# dmsetup status volumeGroup-snap
0 8388608 snapshot 397896/2097152 1560
^^^^ metadata sectors
# lvconvert --merge -b volumeGroup/snap
Merging of volume snap started.
# lvs volumeGroup/snap
LV VG Attr LSize Origin Snap% Move Log Copy% Convert
base volumeGroup Owi-a- 4.00g 17.23
# dmsetup status volumeGroup-base
0 8388608 snapshot-merge 281688/2097152 1104
# dmsetup status volumeGroup-base
0 8388608 snapshot-merge 180480/2097152 712
# dmsetup status volumeGroup-base
0 8388608 snapshot-merge 16/2097152 16
Merging has finished.
# lvs
LV VG Attr LSize Origin Snap% Move Log Copy% Convert
base volumeGroup owi-a- 4.00g

View File

@ -192,7 +192,7 @@ command line. This will execute all matching early_param() callbacks.
User specified early platform devices will be registered at this point.
For the early serial console case the user can specify port on the
kernel command line as "earlyprintk=serial.0" where "earlyprintk" is
the class string, "serial" is the name of the platfrom driver and
the class string, "serial" is the name of the platform driver and
0 is the platform device id. If the id is -1 then the dot and the
id can be omitted.

View File

@ -171,7 +171,7 @@ device.
virtual_root.force_probe :
Force the probing code to probe EISA slots even when it cannot find an
EISA compliant mainboard (nothing appears on slot 0). Defaultd to 0
EISA compliant mainboard (nothing appears on slot 0). Defaults to 0
(don't force), and set to 1 (force probing) when either
CONFIG_ALPHA_JENSEN or CONFIG_EISA_VLB_PRIMING are set.

View File

@ -216,26 +216,14 @@ Works. Use "Insert file..." or external editor.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Gmail (Web GUI)
If you just have to use Gmail to send patches, it CAN be made to work. It
requires a bit of external help, though.
Does not work for sending patches.
The first problem is that Gmail converts tabs to spaces. This will
totally break your patches. To prevent this, you have to use a different
editor. There is a firefox extension called "ViewSourceWith"
(https://addons.mozilla.org/en-US/firefox/addon/394) which allows you to
edit any text box in the editor of your choice. Configure it to launch
your favorite editor. When you want to send a patch, use this technique.
Once you have crafted your messsage + patch, save and exit the editor,
which should reload the Gmail edit box. GMAIL WILL PRESERVE THE TABS.
Hoorah. Apparently you can cut-n-paste literal tabs, but Gmail will
convert those to spaces upon sending!
Gmail web client converts tabs to spaces automatically.
The second problem is that Gmail converts tabs to spaces on replies. If
you reply to a patch, don't expect to be able to apply it as a patch.
At the same time it wraps lines every 78 chars with CRLF style line breaks
although tab2space problem can be solved with external editor.
The last problem is that Gmail will base64-encode any message that has a
non-ASCII character. That includes things like European names. Be aware.
Gmail is not convenient for lkml patches, but CAN be made to work.
Another problem is that Gmail will base64-encode any message that has a
non-ASCII character. That includes things like European names.
###

View File

@ -0,0 +1,38 @@
The lkdtm module provides an interface to crash or injure the kernel at
predefined crashpoints to evaluate the reliability of crash dumps obtained
using different dumping solutions. The module uses KPROBEs to instrument
crashing points, but can also crash the kernel directly without KRPOBE
support.
You can provide the way either through module arguments when inserting
the module, or through a debugfs interface.
Usage: insmod lkdtm.ko [recur_count={>0}] cpoint_name=<> cpoint_type=<>
[cpoint_count={>0}]
recur_count : Recursion level for the stack overflow test. Default is 10.
cpoint_name : Crash point where the kernel is to be crashed. It can be
one of INT_HARDWARE_ENTRY, INT_HW_IRQ_EN, INT_TASKLET_ENTRY,
FS_DEVRW, MEM_SWAPOUT, TIMERADD, SCSI_DISPATCH_CMD,
IDE_CORE_CP, DIRECT
cpoint_type : Indicates the action to be taken on hitting the crash point.
It can be one of PANIC, BUG, EXCEPTION, LOOP, OVERFLOW,
CORRUPT_STACK, UNALIGNED_LOAD_STORE_WRITE, OVERWRITE_ALLOCATION,
WRITE_AFTER_FREE,
cpoint_count : Indicates the number of times the crash point is to be hit
to trigger an action. The default is 10.
You can also induce failures by mounting debugfs and writing the type to
<mountpoint>/provoke-crash/<crashpoint>. E.g.,
mount -t debugfs debugfs /mnt
echo EXCEPTION > /mnt/provoke-crash/INT_HARDWARE_ENTRY
A special file is `DIRECT' which will induce the crash directly without
KPROBE instrumentation. This mode is the only one available when the module
is built on a kernel without KPROBEs support.

View File

@ -117,19 +117,25 @@ Who: Mauro Carvalho Chehab <mchehab@infradead.org>
---------------------------
What: PCMCIA control ioctl (needed for pcmcia-cs [cardmgr, cardctl])
When: November 2005
When: 2.6.35/2.6.36
Files: drivers/pcmcia/: pcmcia_ioctl.c
Why: With the 16-bit PCMCIA subsystem now behaving (almost) like a
normal hotpluggable bus, and with it using the default kernel
infrastructure (hotplug, driver core, sysfs) keeping the PCMCIA
control ioctl needed by cardmgr and cardctl from pcmcia-cs is
unnecessary, and makes further cleanups and integration of the
unnecessary and potentially harmful (it does not provide for
proper locking), and makes further cleanups and integration of the
PCMCIA subsystem into the Linux kernel device driver model more
difficult. The features provided by cardmgr and cardctl are either
handled by the kernel itself now or are available in the new
pcmciautils package available at
http://kernel.org/pub/linux/utils/kernel/pcmcia/
Who: Dominik Brodowski <linux@brodo.de>
For all architectures except ARM, the associated config symbol
has been removed from kernel 2.6.34; for ARM, it will be likely
be removed from kernel 2.6.35. The actual code will then likely
be removed from kernel 2.6.36.
Who: Dominik Brodowski <linux@dominikbrodowski.net>
---------------------------
@ -443,12 +449,6 @@ Who: Alok N Kataria <akataria@vmware.com>
----------------------------
What: adt7473 hardware monitoring driver
When: February 2010
Why: Obsoleted by the adt7475 driver.
Who: Jean Delvare <khali@linux-fr.org>
---------------------------
What: Support for lcd_switch and display_get in asus-laptop driver
When: March 2010
Why: These two features use non-standard interfaces. There are the
@ -550,3 +550,42 @@ Why: udev fully replaces this special file system that only contains CAPI
NCCI TTY device nodes. User space (pppdcapiplugin) works without
noticing the difference.
Who: Jan Kiszka <jan.kiszka@web.de>
----------------------------
What: KVM memory aliases support
When: July 2010
Why: Memory aliasing support is used for speeding up guest vga access
through the vga windows.
Modern userspace no longer uses this feature, so it's just bitrotted
code and can be removed with no impact.
Who: Avi Kivity <avi@redhat.com>
----------------------------
What: KVM kernel-allocated memory slots
When: July 2010
Why: Since 2.6.25, kvm supports user-allocated memory slots, which are
much more flexible than kernel-allocated slots. All current userspace
supports the newer interface and this code can be removed with no
impact.
Who: Avi Kivity <avi@redhat.com>
----------------------------
What: KVM paravirt mmu host support
When: January 2011
Why: The paravirt mmu host support is slower than non-paravirt mmu, both
on newer and older hardware. It is already not exposed to the guest,
and kept only for live migration purposes.
Who: Avi Kivity <avi@redhat.com>
----------------------------
What: "acpi=ht" boot option
When: 2.6.35
Why: Useful in 2003, implementation is a hack.
Generally invoked by accident today.
Seen as doing more harm than good.
Who: Len Brown <len.brown@intel.com>

View File

@ -16,6 +16,8 @@ befs.txt
- information about the BeOS filesystem for Linux.
bfs.txt
- info for the SCO UnixWare Boot Filesystem (BFS).
ceph.txt
- info for the Ceph Distributed File System
cifs.txt
- description of the CIFS filesystem.
coda.txt
@ -32,6 +34,8 @@ dlmfs.txt
- info on the userspace interface to the OCFS2 DLM.
dnotify.txt
- info about directory notification in Linux.
dnotify_test.c
- example program for dnotify
ecryptfs.txt
- docs on eCryptfs: stacked cryptographic filesystem for Linux.
exofs.txt
@ -62,6 +66,8 @@ jfs.txt
- info and mount options for the JFS filesystem.
locks.txt
- info on file locking implementations, flock() vs. fcntl(), etc.
logfs.txt
- info on the LogFS flash filesystem.
mandatory-locking.txt
- info on the Linux implementation of Sys V mandatory file locking.
ncpfs.txt

View File

@ -460,13 +460,6 @@ in sys_read() and friends.
--------------------------- dquot_operations -------------------------------
prototypes:
int (*initialize) (struct inode *, int);
int (*drop) (struct inode *);
int (*alloc_space) (struct inode *, qsize_t, int);
int (*alloc_inode) (const struct inode *, unsigned long);
int (*free_space) (struct inode *, qsize_t);
int (*free_inode) (const struct inode *, unsigned long);
int (*transfer) (struct inode *, struct iattr *);
int (*write_dquot) (struct dquot *);
int (*acquire_dquot) (struct dquot *);
int (*release_dquot) (struct dquot *);
@ -479,13 +472,6 @@ a proper locking wrt the filesystem and call the generic quota operations.
What filesystem should expect from the generic quota functions:
FS recursion Held locks when called
initialize: yes maybe dqonoff_sem
drop: yes -
alloc_space: ->mark_dirty() -
alloc_inode: ->mark_dirty() -
free_space: ->mark_dirty() -
free_inode: ->mark_dirty() -
transfer: yes -
write_dquot: yes dqonoff_sem or dqptr_sem
acquire_dquot: yes dqonoff_sem or dqptr_sem
release_dquot: yes dqonoff_sem or dqptr_sem
@ -495,10 +481,6 @@ write_info: yes dqonoff_sem
FS recursion means calling ->quota_read() and ->quota_write() from superblock
operations.
->alloc_space(), ->alloc_inode(), ->free_space(), ->free_inode() are called
only directly by the filesystem and do not call any fs functions only
the ->mark_dirty() operation.
More details about quota locking can be found in fs/dquot.c.
--------------------------- vm_operations_struct -----------------------------

View File

@ -0,0 +1,8 @@
# kbuild trick to avoid linker error. Can be omitted if a module is built.
obj- := dummy.o
# List of programs to build
hostprogs-y := dnotify_test
# Tell kbuild to always build the programs
always := $(hostprogs-y)

View File

@ -0,0 +1,140 @@
Ceph Distributed File System
============================
Ceph is a distributed network file system designed to provide good
performance, reliability, and scalability.
Basic features include:
* POSIX semantics
* Seamless scaling from 1 to many thousands of nodes
* High availability and reliability. No single point of failure.
* N-way replication of data across storage nodes
* Fast recovery from node failures
* Automatic rebalancing of data on node addition/removal
* Easy deployment: most FS components are userspace daemons
Also,
* Flexible snapshots (on any directory)
* Recursive accounting (nested files, directories, bytes)
In contrast to cluster filesystems like GFS, OCFS2, and GPFS that rely
on symmetric access by all clients to shared block devices, Ceph
separates data and metadata management into independent server
clusters, similar to Lustre. Unlike Lustre, however, metadata and
storage nodes run entirely as user space daemons. Storage nodes
utilize btrfs to store data objects, leveraging its advanced features
(checksumming, metadata replication, etc.). File data is striped
across storage nodes in large chunks to distribute workload and
facilitate high throughputs. When storage nodes fail, data is
re-replicated in a distributed fashion by the storage nodes themselves
(with some minimal coordination from a cluster monitor), making the
system extremely efficient and scalable.
Metadata servers effectively form a large, consistent, distributed
in-memory cache above the file namespace that is extremely scalable,
dynamically redistributes metadata in response to workload changes,
and can tolerate arbitrary (well, non-Byzantine) node failures. The
metadata server takes a somewhat unconventional approach to metadata
storage to significantly improve performance for common workloads. In
particular, inodes with only a single link are embedded in
directories, allowing entire directories of dentries and inodes to be
loaded into its cache with a single I/O operation. The contents of
extremely large directories can be fragmented and managed by
independent metadata servers, allowing scalable concurrent access.
The system offers automatic data rebalancing/migration when scaling
from a small cluster of just a few nodes to many hundreds, without
requiring an administrator carve the data set into static volumes or
go through the tedious process of migrating data between servers.
When the file system approaches full, new nodes can be easily added
and things will "just work."
Ceph includes flexible snapshot mechanism that allows a user to create
a snapshot on any subdirectory (and its nested contents) in the
system. Snapshot creation and deletion are as simple as 'mkdir
.snap/foo' and 'rmdir .snap/foo'.
Ceph also provides some recursive accounting on directories for nested
files and bytes. That is, a 'getfattr -d foo' on any directory in the
system will reveal the total number of nested regular files and
subdirectories, and a summation of all nested file sizes. This makes
the identification of large disk space consumers relatively quick, as
no 'du' or similar recursive scan of the file system is required.
Mount Syntax
============
The basic mount syntax is:
# mount -t ceph monip[:port][,monip2[:port]...]:/[subdir] mnt
You only need to specify a single monitor, as the client will get the
full list when it connects. (However, if the monitor you specify
happens to be down, the mount won't succeed.) The port can be left
off if the monitor is using the default. So if the monitor is at
1.2.3.4,
# mount -t ceph 1.2.3.4:/ /mnt/ceph
is sufficient. If /sbin/mount.ceph is installed, a hostname can be
used instead of an IP address.
Mount Options
=============
ip=A.B.C.D[:N]
Specify the IP and/or port the client should bind to locally.
There is normally not much reason to do this. If the IP is not
specified, the client's IP address is determined by looking at the
address it's connection to the monitor originates from.
wsize=X
Specify the maximum write size in bytes. By default there is no
maximum. Ceph will normally size writes based on the file stripe
size.
rsize=X
Specify the maximum readahead.
mount_timeout=X
Specify the timeout value for mount (in seconds), in the case
of a non-responsive Ceph file system. The default is 30
seconds.
rbytes
When stat() is called on a directory, set st_size to 'rbytes',
the summation of file sizes over all files nested beneath that
directory. This is the default.
norbytes
When stat() is called on a directory, set st_size to the
number of entries in that directory.
nocrc
Disable CRC32C calculation for data writes. If set, the storage node
must rely on TCP's error correction to detect data corruption
in the data payload.
noasyncreaddir
Disable client's use its local cache to satisfy readdir
requests. (This does not change correctness; the client uses
cached metadata only when a lease or capability ensures it is
valid.)
More Information
================
For more information on Ceph, see the home page at
http://ceph.newdream.net/
The Linux kernel client source tree is available at
git://ceph.newdream.net/git/ceph-client.git
git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph-client.git
and the source for the full system is at
git://ceph.newdream.net/git/ceph.git

View File

@ -62,38 +62,9 @@ disabled, fcntl(fd, F_NOTIFY, ...) will return -EINVAL.
Example
-------
See Documentation/filesystems/dnotify_test.c for an example.
#define _GNU_SOURCE /* needed to get the defines */
#include <fcntl.h> /* in glibc 2.2 this has the needed
values defined */
#include <signal.h>
#include <stdio.h>
#include <unistd.h>
static volatile int event_fd;
static void handler(int sig, siginfo_t *si, void *data)
{
event_fd = si->si_fd;
}
int main(void)
{
struct sigaction act;
int fd;
act.sa_sigaction = handler;
sigemptyset(&act.sa_mask);
act.sa_flags = SA_SIGINFO;
sigaction(SIGRTMIN + 1, &act, NULL);
fd = open(".", O_RDONLY);
fcntl(fd, F_SETSIG, SIGRTMIN + 1);
fcntl(fd, F_NOTIFY, DN_MODIFY|DN_CREATE|DN_MULTISHOT);
/* we will now be notified if any of the files
in "." is modified or new files are created */
while (1) {
pause();
printf("Got event on fd=%d\n", event_fd);
}
}
NOTE
----
Beginning with Linux 2.6.13, dnotify has been replaced by inotify.
See Documentation/filesystems/inotify.txt for more information on it.

View File

@ -0,0 +1,34 @@
#define _GNU_SOURCE /* needed to get the defines */
#include <fcntl.h> /* in glibc 2.2 this has the needed
values defined */
#include <signal.h>
#include <stdio.h>
#include <unistd.h>
static volatile int event_fd;
static void handler(int sig, siginfo_t *si, void *data)
{
event_fd = si->si_fd;
}
int main(void)
{
struct sigaction act;
int fd;
act.sa_sigaction = handler;
sigemptyset(&act.sa_mask);
act.sa_flags = SA_SIGINFO;
sigaction(SIGRTMIN + 1, &act, NULL);
fd = open(".", O_RDONLY);
fcntl(fd, F_SETSIG, SIGRTMIN + 1);
fcntl(fd, F_NOTIFY, DN_MODIFY|DN_CREATE|DN_MULTISHOT);
/* we will now be notified if any of the files
in "." is modified or new files are created */
while (1) {
pause();
printf("Got event on fd=%d\n", event_fd);
}
}

View File

@ -0,0 +1,241 @@
The LogFS Flash Filesystem
==========================
Specification
=============
Superblocks
-----------
Two superblocks exist at the beginning and end of the filesystem.
Each superblock is 256 Bytes large, with another 3840 Bytes reserved
for future purposes, making a total of 4096 Bytes.
Superblock locations may differ for MTD and block devices. On MTD the
first non-bad block contains a superblock in the first 4096 Bytes and
the last non-bad block contains a superblock in the last 4096 Bytes.
On block devices, the first 4096 Bytes of the device contain the first
superblock and the last aligned 4096 Byte-block contains the second
superblock.
For the most part, the superblocks can be considered read-only. They
are written only to correct errors detected within the superblocks,
move the journal and change the filesystem parameters through tunefs.
As a result, the superblock does not contain any fields that require
constant updates, like the amount of free space, etc.
Segments
--------
The space in the device is split up into equal-sized segments.
Segments are the primary write unit of LogFS. Within each segments,
writes happen from front (low addresses) to back (high addresses. If
only a partial segment has been written, the segment number, the
current position within and optionally a write buffer are stored in
the journal.
Segments are erased as a whole. Therefore Garbage Collection may be
required to completely free a segment before doing so.
Journal
--------
The journal contains all global information about the filesystem that
is subject to frequent change. At mount time, it has to be scanned
for the most recent commit entry, which contains a list of pointers to
all currently valid entries.
Object Store
------------
All space except for the superblocks and journal is part of the object
store. Each segment contains a segment header and a number of
objects, each consisting of the object header and the payload.
Objects are either inodes, directory entries (dentries), file data
blocks or indirect blocks.
Levels
------
Garbage collection (GC) may fail if all data is written
indiscriminately. One requirement of GC is that data is seperated
roughly according to the distance between the tree root and the data.
Effectively that means all file data is on level 0, indirect blocks
are on levels 1, 2, 3 4 or 5 for 1x, 2x, 3x, 4x or 5x indirect blocks,
respectively. Inode file data is on level 6 for the inodes and 7-11
for indirect blocks.
Each segment contains objects of a single level only. As a result,
each level requires its own seperate segment to be open for writing.
Inode File
----------
All inodes are stored in a special file, the inode file. Single
exception is the inode file's inode (master inode) which for obvious
reasons is stored in the journal instead. Instead of data blocks, the
leaf nodes of the inode files are inodes.
Aliases
-------
Writes in LogFS are done by means of a wandering tree. A naïve
implementation would require that for each write or a block, all
parent blocks are written as well, since the block pointers have
changed. Such an implementation would not be very efficient.
In LogFS, the block pointer changes are cached in the journal by means
of alias entries. Each alias consists of its logical address - inode
number, block index, level and child number (index into block) - and
the changed data. Any 8-byte word can be changes in this manner.
Currently aliases are used for block pointers, file size, file used
bytes and the height of an inodes indirect tree.
Segment Aliases
---------------
Related to regular aliases, these are used to handle bad blocks.
Initially, bad blocks are handled by moving the affected segment
content to a spare segment and noting this move in the journal with a
segment alias, a simple (to, from) tupel. GC will later empty this
segment and the alias can be removed again. This is used on MTD only.
Vim
---
By cleverly predicting the life time of data, it is possible to
seperate long-living data from short-living data and thereby reduce
the GC overhead later. Each type of distinc life expectency (vim) can
have a seperate segment open for writing. Each (level, vim) tupel can
be open just once. If an open segment with unknown vim is encountered
at mount time, it is closed and ignored henceforth.
Indirect Tree
-------------
Inodes in LogFS are similar to FFS-style filesystems with direct and
indirect block pointers. One difference is that LogFS uses a single
indirect pointer that can be either a 1x, 2x, etc. indirect pointer.
A height field in the inode defines the height of the indirect tree
and thereby the indirection of the pointer.
Another difference is the addressing of indirect blocks. In LogFS,
the first 16 pointers in the first indirect block are left empty,
corresponding to the 16 direct pointers in the inode. In ext2 (maybe
others as well) the first pointer in the first indirect block
corresponds to logical block 12, skipping the 12 direct pointers.
So where ext2 is using arithmetic to better utilize space, LogFS keeps
arithmetic simple and uses compression to save space.
Compression
-----------
Both file data and metadata can be compressed. Compression for file
data can be enabled with chattr +c and disabled with chattr -c. Doing
so has no effect on existing data, but new data will be stored
accordingly. New inodes will inherit the compression flag of the
parent directory.
Metadata is always compressed. However, the space accounting ignores
this and charges for the uncompressed size. Failing to do so could
result in GC failures when, after moving some data, indirect blocks
compress worse than previously. Even on a 100% full medium, GC may
not consume any extra space, so the compression gains are lost space
to the user.
However, they are not lost space to the filesystem internals. By
cheating the user for those bytes, the filesystem gained some slack
space and GC will run less often and faster.
Garbage Collection and Wear Leveling
------------------------------------
Garbage collection is invoked whenever the number of free segments
falls below a threshold. The best (known) candidate is picked based
on the least amount of valid data contained in the segment. All
remaining valid data is copied elsewhere, thereby invalidating it.
The GC code also checks for aliases and writes then back if their
number gets too large.
Wear leveling is done by occasionally picking a suboptimal segment for
garbage collection. If a stale segments erase count is significantly
lower than the active segments' erase counts, it will be picked. Wear
leveling is rate limited, so it will never monopolize the device for
more than one segment worth at a time.
Values for "occasionally", "significantly lower" are compile time
constants.
Hashed directories
------------------
To satisfy efficient lookup(), directory entries are hashed and
located based on the hash. In order to both support large directories
and not be overly inefficient for small directories, several hash
tables of increasing size are used. For each table, the hash value
modulo the table size gives the table index.
Tables sizes are chosen to limit the number of indirect blocks with a
fully populated table to 0, 1, 2 or 3 respectively. So the first
table contains 16 entries, the second 512-16, etc.
The last table is special in several ways. First its size depends on
the effective 32bit limit on telldir/seekdir cookies. Since logfs
uses the upper half of the address space for indirect blocks, the size
is limited to 2^31. Secondly the table contains hash buckets with 16
entries each.
Using single-entry buckets would result in birthday "attacks". At
just 2^16 used entries, hash collisions would be likely (P >= 0.5).
My math skills are insufficient to do the combinatorics for the 17x
collisions necessary to overflow a bucket, but testing showed that in
10,000 runs the lowest directory fill before a bucket overflow was
188,057,130 entries with an average of 315,149,915 entries. So for
directory sizes of up to a million, bucket overflows should be
virtually impossible under normal circumstances.
With carefully chosen filenames, it is obviously possible to cause an
overflow with just 21 entries (4 higher tables + 16 entries + 1). So
there may be a security concern if a malicious user has write access
to a directory.
Open For Discussion
===================
Device Address Space
--------------------
A device address space is used for caching. Both block devices and
MTD provide functions to either read a single page or write a segment.
Partial segments may be written for data integrity, but where possible
complete segments are written for performance on simple block device
flash media.
Meta Inodes
-----------
Inodes are stored in the inode file, which is just a regular file for
most purposes. At umount time, however, the inode file needs to
remain open until all dirty inodes are written. So
generic_shutdown_super() may not close this inode, but shouldn't
complain about remaining inodes due to the inode file either. Same
goes for mapping inode of the device address space.
Currently logfs uses a hack that essentially copies part of fs/inode.c
code over. A general solution would be preferred.
Indirect block mapping
----------------------
With compression, the block device (or mapping inode) cannot be used
to cache indirect blocks. Some other place is required. Currently
logfs uses the top half of each inode's address space. The low 8TB
(on 32bit) are filled with file data, the high 8TB are used for
indirect blocks.
One problem is that 16TB files created on 64bit systems actually have
data in the top 8TB. But files >16TB would cause problems anyway, so
only the limit has changed.

View File

@ -17,8 +17,7 @@ kernels must turn 4.1 on or off *before* turning support for version 4
on or off; rpc.nfsd does this correctly.)
The NFSv4 minorversion 1 (NFSv4.1) implementation in nfsd is based
on the latest NFSv4.1 Internet Draft:
http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-29
on RFC 5661.
From the many new features in NFSv4.1 the current implementation
focuses on the mandatory-to-implement NFSv4.1 Sessions, providing
@ -44,7 +43,7 @@ interoperability problems with future clients. Known issues:
trunking, but this is a mandatory feature, and its use is
recommended to clients in a number of places. (E.g. to ensure
timely renewal in case an existing connection's retry timeouts
have gotten too long; see section 8.3 of the draft.)
have gotten too long; see section 8.3 of the RFC.)
Therefore, lack of this feature may cause future clients to
fail.
- Incomplete backchannel support: incomplete backchannel gss

View File

@ -74,6 +74,9 @@ norecovery Disable recovery of the filesystem on mount.
This disables every write access on the device for
read-only mounts or snapshots. This option will fail
for r/w mounts on an unclean volume.
discard Issue discard/TRIM commands to the underlying block
device when blocks are freed. This is useful for SSD
devices and sparse/thinly-provisioned LUNs.
NILFS2 usage
============

View File

@ -164,6 +164,7 @@ read the file /proc/PID/status:
VmExe: 68 kB
VmLib: 1412 kB
VmPTE: 20 kb
VmSwap: 0 kB
Threads: 1
SigQ: 0/28578
SigPnd: 0000000000000000
@ -188,7 +189,13 @@ memory usage. Its seven fields are explained in Table 1-3. The stat file
contains details information about the process itself. Its fields are
explained in Table 1-4.
Table 1-2: Contents of the statm files (as of 2.6.30-rc7)
(for SMP CONFIG users)
For making accounting scalable, RSS related information are handled in
asynchronous manner and the vaule may not be very precise. To see a precise
snapshot of a moment, you can see /proc/<pid>/smaps file and scan page table.
It's slow but very precise.
Table 1-2: Contents of the status files (as of 2.6.30-rc7)
..............................................................................
Field Content
Name filename of the executable
@ -213,6 +220,7 @@ Table 1-2: Contents of the statm files (as of 2.6.30-rc7)
VmExe size of text segment
VmLib size of shared library code
VmPTE size of page table entries
VmSwap size of swap usage (the number of referred swapents)
Threads number of threads
SigQ number of signals queued/max. number for queue
SigPnd bitmap of pending signals for the thread
@ -430,6 +438,7 @@ Table 1-5: Kernel info in /proc
modules List of loaded modules
mounts Mounted filesystems
net Networking info (see text)
pagetypeinfo Additional page allocator information (see text) (2.5)
partitions Table of partitions known to the system
pci Deprecated info of PCI bus (new way -> /proc/bus/pci/,
decoupled by lspci (2.4)
@ -584,7 +593,7 @@ Node 0, zone DMA 0 4 5 4 4 3 ...
Node 0, zone Normal 1 0 0 1 101 8 ...
Node 0, zone HighMem 2 0 0 1 1 0 ...
Memory fragmentation is a problem under some workloads, and buddyinfo is a
External fragmentation is a problem under some workloads, and buddyinfo is a
useful tool for helping diagnose these problems. Buddyinfo will give you a
clue as to how big an area you can safely allocate, or why a previous
allocation failed.
@ -594,6 +603,48 @@ available. In this case, there are 0 chunks of 2^0*PAGE_SIZE available in
ZONE_DMA, 4 chunks of 2^1*PAGE_SIZE in ZONE_DMA, 101 chunks of 2^4*PAGE_SIZE
available in ZONE_NORMAL, etc...
More information relevant to external fragmentation can be found in
pagetypeinfo.
> cat /proc/pagetypeinfo
Page block order: 9
Pages per block: 512
Free pages count per migrate type at order 0 1 2 3 4 5 6 7 8 9 10
Node 0, zone DMA, type Unmovable 0 0 0 1 1 1 1 1 1 1 0
Node 0, zone DMA, type Reclaimable 0 0 0 0 0 0 0 0 0 0 0
Node 0, zone DMA, type Movable 1 1 2 1 2 1 1 0 1 0 2
Node 0, zone DMA, type Reserve 0 0 0 0 0 0 0 0 0 1 0
Node 0, zone DMA, type Isolate 0 0 0 0 0 0 0 0 0 0 0
Node 0, zone DMA32, type Unmovable 103 54 77 1 1 1 11 8 7 1 9
Node 0, zone DMA32, type Reclaimable 0 0 2 1 0 0 0 0 1 0 0
Node 0, zone DMA32, type Movable 169 152 113 91 77 54 39 13 6 1 452
Node 0, zone DMA32, type Reserve 1 2 2 2 2 0 1 1 1 1 0
Node 0, zone DMA32, type Isolate 0 0 0 0 0 0 0 0 0 0 0
Number of blocks type Unmovable Reclaimable Movable Reserve Isolate
Node 0, zone DMA 2 0 5 1 0
Node 0, zone DMA32 41 6 967 2 0
Fragmentation avoidance in the kernel works by grouping pages of different
migrate types into the same contiguous regions of memory called page blocks.
A page block is typically the size of the default hugepage size e.g. 2MB on
X86-64. By keeping pages grouped based on their ability to move, the kernel
can reclaim pages within a page block to satisfy a high-order allocation.
The pagetypinfo begins with information on the size of a page block. It
then gives the same type of information as buddyinfo except broken down
by migrate-type and finishes with details on how many page blocks of each
type exist.
If min_free_kbytes has been tuned correctly (recommendations made by hugeadm
from libhugetlbfs http://sourceforge.net/projects/libhugetlbfs/), one can
make an estimate of the likely number of huge pages that can be allocated
at a given point in time. All the "Movable" blocks should be allocatable
unless memory has been mlock()'d. Some of the Reclaimable blocks should
also be allocatable although a lot of filesystem metadata may have to be
reclaimed to achieve this.
..............................................................................
meminfo:

View File

@ -837,6 +837,9 @@ replicas continue to be exactly same.
individual lists does not affect propagation or the way propagation
tree is modified by operations.
All vfsmounts in a peer group have the same ->mnt_master. If it is
non-NULL, they form a contiguous (ordered) segment of slave list.
A example propagation tree looks as shown in the figure below.
[ NOTE: Though it looks like a forest, if we consider all the shared
mounts as a conceptual entity called 'pnode', it becomes a tree]
@ -874,8 +877,19 @@ replicas continue to be exactly same.
NOTE: The propagation tree is orthogonal to the mount tree.
8B Locking:
8B Algorithm:
->mnt_share, ->mnt_slave, ->mnt_slave_list, ->mnt_master are protected
by namespace_sem (exclusive for modifications, shared for reading).
Normally we have ->mnt_flags modifications serialized by vfsmount_lock.
There are two exceptions: do_add_mount() and clone_mnt().
The former modifies a vfsmount that has not been visible in any shared
data structures yet.
The latter holds namespace_sem and the only references to vfsmount
are in lists that can't be traversed without namespace_sem.
8C Algorithm:
The crux of the implementation resides in rbind/move operation.

View File

@ -82,11 +82,13 @@ tmpfs has a mount option to set the NUMA memory allocation policy for
all files in that instance (if CONFIG_NUMA is enabled) - which can be
adjusted on the fly via 'mount -o remount ...'
mpol=default prefers to allocate memory from the local node
mpol=default use the process allocation policy
(see set_mempolicy(2))
mpol=prefer:Node prefers to allocate memory from the given Node
mpol=bind:NodeList allocates memory only from nodes in NodeList
mpol=interleave prefers to allocate from each node in turn
mpol=interleave:NodeList allocates from each node of NodeList in turn
mpol=local prefers to allocate memory from the local node
NodeList format is a comma-separated list of decimal numbers and ranges,
a range being two hyphen-separated decimal numbers, the smallest and
@ -134,3 +136,5 @@ Author:
Christoph Rohland <cr@sap.com>, 1.12.01
Updated:
Hugh Dickins, 4 June 2007
Updated:
KOSAKI Motohiro, 16 Mar 2010

View File

@ -253,6 +253,70 @@ pin setup (e.g. controlling which pin the GPIO uses, pullup/pulldown).
Also note that it's your responsibility to have stopped using a GPIO
before you free it.
Considering in most cases GPIOs are actually configured right after they
are claimed, three additional calls are defined:
/* request a single GPIO, with initial configuration specified by
* 'flags', identical to gpio_request() wrt other arguments and
* return value
*/
int gpio_request_one(unsigned gpio, unsigned long flags, const char *label);
/* request multiple GPIOs in a single call
*/
int gpio_request_array(struct gpio *array, size_t num);
/* release multiple GPIOs in a single call
*/
void gpio_free_array(struct gpio *array, size_t num);
where 'flags' is currently defined to specify the following properties:
* GPIOF_DIR_IN - to configure direction as input
* GPIOF_DIR_OUT - to configure direction as output
* GPIOF_INIT_LOW - as output, set initial level to LOW
* GPIOF_INIT_HIGH - as output, set initial level to HIGH
since GPIOF_INIT_* are only valid when configured as output, so group valid
combinations as:
* GPIOF_IN - configure as input
* GPIOF_OUT_INIT_LOW - configured as output, initial level LOW
* GPIOF_OUT_INIT_HIGH - configured as output, initial level HIGH
In the future, these flags can be extended to support more properties such
as open-drain status.
Further more, to ease the claim/release of multiple GPIOs, 'struct gpio' is
introduced to encapsulate all three fields as:
struct gpio {
unsigned gpio;
unsigned long flags;
const char *label;
};
A typical example of usage:
static struct gpio leds_gpios[] = {
{ 32, GPIOF_OUT_INIT_HIGH, "Power LED" }, /* default to ON */
{ 33, GPIOF_OUT_INIT_LOW, "Green LED" }, /* default to OFF */
{ 34, GPIOF_OUT_INIT_LOW, "Red LED" }, /* default to OFF */
{ 35, GPIOF_OUT_INIT_LOW, "Blue LED" }, /* default to OFF */
{ ... },
};
err = gpio_request_one(31, GPIOF_IN, "Reset Button");
if (err)
...
err = gpio_request_array(leds_gpios, ARRAY_SIZE(leds_gpios));
if (err)
...
gpio_free_array(leds_gpios, ARRAY_SIZE(leds_gpios));
GPIOs mapped to IRQs
--------------------

View File

@ -30,7 +30,7 @@ Supported chips:
bank1_types=1,1,0,0,0,0,0,2,0,0,0,0,2,0,0,1
You may also need to specify the fan_sensors option for these boards
fan_sensors=5
2) There is a seperate abituguru3 driver for these motherboards,
2) There is a separate abituguru3 driver for these motherboards,
the abituguru (without the 3 !) driver will not work on these
motherboards (and visa versa)!

View File

@ -0,0 +1,42 @@
Kernel driver adt7411
=====================
Supported chips:
* Analog Devices ADT7411
Prefix: 'adt7411'
Addresses scanned: 0x48, 0x4a, 0x4b
Datasheet: Publicly available at the Analog Devices website
Author: Wolfram Sang (based on adt7470 by Darrick J. Wong)
Description
-----------
This driver implements support for the Analog Devices ADT7411 chip. There may
be other chips that implement this interface.
The ADT7411 can use an I2C/SMBus compatible 2-wire interface or an
SPI-compatible 4-wire interface. It provides a 10-bit analog to digital
converter which measures 1 temperature, vdd and 8 input voltages. It has an
internal temperature sensor, but an external one can also be connected (one
loses 2 inputs then). There are high- and low-limit registers for all inputs.
Check the datasheet for details.
sysfs-Interface
---------------
in0_input - vdd voltage input
in[1-8]_input - analog 1-8 input
temp1_input - temperature input
Besides standard interfaces, this driver adds (0 = off, 1 = on):
adc_ref_vdd - Use vdd as reference instead of 2.25 V
fast_sampling - Sample at 22.5 kHz instead of 1.4 kHz, but drop filters
no_average - Turn off averaging over 16 samples
Notes
-----
SPI, external temperature sensor and limit registers are not supported yet.

View File

@ -1,74 +0,0 @@
Kernel driver adt7473
======================
Supported chips:
* Analog Devices ADT7473
Prefix: 'adt7473'
Addresses scanned: I2C 0x2C, 0x2D, 0x2E
Datasheet: Publicly available at the Analog Devices website
Author: Darrick J. Wong
This driver is depreacted, please use the adt7475 driver instead.
Description
-----------
This driver implements support for the Analog Devices ADT7473 chip family.
The ADT7473 uses the 2-wire interface compatible with the SMBUS 2.0
specification. Using an analog to digital converter it measures three (3)
temperatures and two (2) voltages. It has four (4) 16-bit counters for
measuring fan speed. There are three (3) PWM outputs that can be used
to control fan speed.
A sophisticated control system for the PWM outputs is designed into the
ADT7473 that allows fan speed to be adjusted automatically based on any of the
three temperature sensors. Each PWM output is individually adjustable and
programmable. Once configured, the ADT7473 will adjust the PWM outputs in
response to the measured temperatures without further host intervention.
This feature can also be disabled for manual control of the PWM's.
Each of the measured inputs (voltage, temperature, fan speed) has
corresponding high/low limit values. The ADT7473 will signal an ALARM if
any measured value exceeds either limit.
The ADT7473 samples all inputs continuously. The driver will not read
the registers more often than once every other second. Further,
configuration data is only read once per minute.
Special Features
----------------
The ADT7473 have a 10-bit ADC and can therefore measure temperatures
with 0.25 degC resolution. Temperature readings can be configured either
for twos complement format or "Offset 64" format, wherein 63 is subtracted
from the raw value to get the temperature value.
The Analog Devices datasheet is very detailed and describes a procedure for
determining an optimal configuration for the automatic PWM control.
Configuration Notes
-------------------
Besides standard interfaces driver adds the following:
* PWM Control
* pwm#_auto_point1_pwm and temp#_auto_point1_temp and
* pwm#_auto_point2_pwm and temp#_auto_point2_temp -
point1: Set the pwm speed at a lower temperature bound.
point2: Set the pwm speed at a higher temperature bound.
The ADT7473 will scale the pwm between the lower and higher pwm speed when
the temperature is between the two temperature boundaries. PWM values range
from 0 (off) to 255 (full speed). Fan speed will be set to maximum when the
temperature sensor associated with the PWM control exceeds temp#_max.
Notes
-----
The NVIDIA binary driver presents an ADT7473 chip via an on-card i2c bus.
Unfortunately, they fail to set the i2c adapter class, so this driver may
fail to find the chip until the nvidia driver is patched.

296
Documentation/hwmon/asc7621 Normal file
View File

@ -0,0 +1,296 @@
Kernel driver asc7621
==================
Supported chips:
Andigilog aSC7621 and aSC7621a
Prefix: 'asc7621'
Addresses scanned: I2C 0x2c, 0x2d, 0x2e
Datasheet: http://www.fairview5.com/linux/asc7621/asc7621.pdf
Author:
George Joseph
Description provided by Dave Pivin @ Andigilog:
Andigilog has both the PECI and pre-PECI versions of the Heceta-6, as
Intel calls them. Heceta-6e has high frequency PWM and Heceta-6p has
added PECI and a 4th thermal zone. The Andigilog aSC7611 is the
Heceta-6e part and aSC7621 is the Heceta-6p part. They are both in
volume production, shipping to Intel and their subs.
We have enhanced both parts relative to the governing Intel
specification. First enhancement is temperature reading resolution. We
have used registers below 20h for vendor-specific functions in addition
to those in the Intel-specified vendor range.
Our conversion process produces a result that is reported as two bytes.
The fan speed control uses this finer value to produce a "step-less" fan
PWM output. These two bytes are "read-locked" to guarantee that once a
high or low byte is read, the other byte is locked-in until after the
next read of any register. So to get an atomic reading, read high or low
byte, then the very next read should be the opposite byte. Our data
sheet says 10-bits of resolution, although you may find the lower bits
are active, they are not necessarily reliable or useful externally. We
chose not to mask them.
We employ significant filtering that is user tunable as described in the
data sheet. Our temperature reports and fan PWM outputs are very smooth
when compared to the competition, in addition to the higher resolution
temperature reports. The smoother PWM output does not require user
intervention.
We offer GPIO features on the former VID pins. These are open-drain
outputs or inputs and may be used as general purpose I/O or as alarm
outputs that are based on temperature limits. These are in 19h and 1Ah.
We offer flexible mapping of temperature readings to thermal zones. Any
temperature may be mapped to any zone, which has a default assignment
that follows Intel's specs.
Since there is a fan to zone assignment that allows for the "hotter" of
a set of zones to control the PWM of an individual fan, but there is no
indication to the user, we have added an indicator that shows which zone
is currently controlling the PWM for a given fan. This is in register
00h.
Both remote diode temperature readings may be given an offset value such
that the reported reading as well as the temperature used to determine
PWM may be offset for system calibration purposes.
PECI Extended configuration allows for having more than two domains per
PECI address and also provides an enabling function for each PECI
address. One could use our flexible zone assignment to have a zone
assigned to up to 4 PECI addresses. This is not possible in the default
Intel configuration. This would be useful in multi-CPU systems with
individual fans on each that would benefit from individual fan control.
This is in register 0Eh.
The tachometer measurement system is flexible and able to adapt to many
fan types. We can also support pulse-stretched PWM so that 3-wire fans
may be used. These characteristics are in registers 04h to 07h.
Finally, we have added a tach disable function that turns off the tach
measurement system for individual tachs in order to save power. That is
in register 75h.
--
aSC7621 Product Description
The aSC7621 has a two wire digital interface compatible with SMBus 2.0.
Using a 10-bit ADC, the aSC7621 measures the temperature of two remote diode
connected transistors as well as its own die. Support for Platform
Environmental Control Interface (PECI) is included.
Using temperature information from these four zones, an automatic fan speed
control algorithm is employed to minimize acoustic impact while achieving
recommended CPU temperature under varying operational loads.
To set fan speed, the aSC7621 has three independent pulse width modulation
(PWM) outputs that are controlled by one, or a combination of three,
temperature zones. Both high- and low-frequency PWM ranges are supported.
The aSC7621 also includes a digital filter that can be invoked to smooth
temperature readings for better control of fan speed and minimum acoustic
impact.
The aSC7621 has tachometer inputs to measure fan speed on up to four fans.
Limit and status registers for all measured values are included to alert
the system host that any measurements are outside of programmed limits
via status registers.
System voltages of VCCP, 2.5V, 3.3V, 5.0V, and 12V motherboard power are
monitored efficiently with internal scaling resistors.
Features
- Supports PECI interface and monitors internal and remote thermal diodes
- 2-wire, SMBus 2.0 compliant, serial interface
- 10-bit ADC
- Monitors VCCP, 2.5V, 3.3V, 5.0V, and 12V motherboard/processor supplies
- Programmable autonomous fan control based on temperature readings
- Noise filtering of temperature reading for fan speed control
- 0.25C digital temperature sensor resolution
- 3 PWM fan speed control outputs for 2-, 3- or 4-wire fans and up to 4 fan
tachometer inputs
- Enhanced measured temperature to Temperature Zone assignment.
- Provides high and low PWM frequency ranges
- 3 GPIO pins for custom use
- 24-Lead QSOP package
Configuration Notes
===================
Except where noted below, the sysfs entries created by this driver follow
the standards defined in "sysfs-interface".
temp1_source
0 (default) peci_legacy = 0, Remote 1 Temperature
peci_legacy = 1, PECI Processor Temperature 0
1 Remote 1 Temperature
2 Remote 2 Temperature
3 Internal Temperature
4 PECI Processor Temperature 0
5 PECI Processor Temperature 1
6 PECI Processor Temperature 2
7 PECI Processor Temperature 3
temp2_source
0 (default) Internal Temperature
1 Remote 1 Temperature
2 Remote 2 Temperature
3 Internal Temperature
4 PECI Processor Temperature 0
5 PECI Processor Temperature 1
6 PECI Processor Temperature 2
7 PECI Processor Temperature 3
temp3_source
0 (default) Remote 2 Temperature
1 Remote 1 Temperature
2 Remote 2 Temperature
3 Internal Temperature
4 PECI Processor Temperature 0
5 PECI Processor Temperature 1
6 PECI Processor Temperature 2
7 PECI Processor Temperature 3
temp4_source
0 (default) peci_legacy = 0, PECI Processor Temperature 0
peci_legacy = 1, Remote 1 Temperature
1 Remote 1 Temperature
2 Remote 2 Temperature
3 Internal Temperature
4 PECI Processor Temperature 0
5 PECI Processor Temperature 1
6 PECI Processor Temperature 2
7 PECI Processor Temperature 3
temp[1-4]_smoothing_enable
temp[1-4]_smoothing_time
Smooths spikes in temp readings caused by noise.
Valid values in milliseconds are:
35000
17600
11800
7000
4400
3000
1600
800
temp[1-4]_crit
When the corresponding zone temperature reaches this value,
ALL pwm outputs will got to 100%.
temp[5-8]_input
temp[5-8]_enable
The aSC7621 can also read temperatures provided by the processor
via the PECI bus. Usually these are "core" temps and are relative
to the point where the automatic thermal control circuit starts
throttling. This means that these are usually negative numbers.
pwm[1-3]_enable
0 Fan off.
1 Fan on manual control.
2 Fan on automatic control and will run at the minimum pwm
if the temperature for the zone is below the minimum.
3 Fan on automatic control but will be off if the temperature
for the zone is below the minimum.
4-254 Ignored.
255 Fan on full.
pwm[1-3]_auto_channels
Bitmap as described in sysctl-interface with the following
exceptions...
Only the following combination of zones (and their corresponding masks)
are valid:
1
2
3
2,3
1,2,3
4
1,2,3,4
Special values:
0 Disabled.
16 Fan on manual control.
31 Fan on full.
pwm[1-3]_invert
When set, inverts the meaning of pwm[1-3].
i.e. when pwm = 0, the fan will be on full and
when pwm = 255 the fan will be off.
pwm[1-3]_freq
PWM frequency in Hz
Valid values in Hz are:
10
15
23
30 (default)
38
47
62
94
23000
24000
25000
26000
27000
28000
29000
30000
Setting any other value will be ignored.
peci_enable
Enables or disables PECI
peci_avg
Input filter average time.
0 0 Sec. (no Smoothing) (default)
1 0.25 Sec.
2 0.5 Sec.
3 1.0 Sec.
4 2.0 Sec.
5 4.0 Sec.
6 8.0 Sec.
7 0.0 Sec.
peci_legacy
0 Standard Mode (default)
Remote Diode 1 reading is associated with
Temperature Zone 1, PECI is associated with
Zone 4
1 Legacy Mode
PECI is associated with Temperature Zone 1,
Remote Diode 1 is associated with Zone 4
peci_diode
Diode filter
0 0.25 Sec.
1 1.1 Sec.
2 2.4 Sec. (default)
3 3.4 Sec.
4 5.0 Sec.
5 6.8 Sec.
6 10.2 Sec.
7 16.4 Sec.
peci_4domain
Four domain enable
0 1 or 2 Domains for enabled processors (default)
1 3 or 4 Domains for enabled processors
peci_domain
Domain
0 Processor contains a single domain (0) (default)
1 Processor contains two domains (0,1)

View File

@ -5,31 +5,23 @@ Supported chips:
* IT8705F
Prefix: 'it87'
Addresses scanned: from Super I/O config space (8 I/O ports)
Datasheet: Publicly available at the ITE website
http://www.ite.com.tw/product_info/file/pc/IT8705F_V.0.4.1.pdf
Datasheet: Once publicly available at the ITE website, but no longer
* IT8712F
Prefix: 'it8712'
Addresses scanned: from Super I/O config space (8 I/O ports)
Datasheet: Publicly available at the ITE website
http://www.ite.com.tw/product_info/file/pc/IT8712F_V0.9.1.pdf
http://www.ite.com.tw/product_info/file/pc/Errata%20V0.1%20for%20IT8712F%20V0.9.1.pdf
http://www.ite.com.tw/product_info/file/pc/IT8712F_V0.9.3.pdf
Datasheet: Once publicly available at the ITE website, but no longer
* IT8716F/IT8726F
Prefix: 'it8716'
Addresses scanned: from Super I/O config space (8 I/O ports)
Datasheet: Publicly available at the ITE website
http://www.ite.com.tw/product_info/file/pc/IT8716F_V0.3.ZIP
http://www.ite.com.tw/product_info/file/pc/IT8726F_V0.3.pdf
Datasheet: Once publicly available at the ITE website, but no longer
* IT8718F
Prefix: 'it8718'
Addresses scanned: from Super I/O config space (8 I/O ports)
Datasheet: Publicly available at the ITE website
http://www.ite.com.tw/product_info/file/pc/IT8718F_V0.2.zip
http://www.ite.com.tw/product_info/file/pc/IT8718F_V0%203_(for%20C%20version).zip
Datasheet: Once publicly available at the ITE website, but no longer
* IT8720F
Prefix: 'it8720'
Addresses scanned: from Super I/O config space (8 I/O ports)
Datasheet: Not yet publicly available.
Datasheet: Not publicly available
* SiS950 [clone of IT8705F]
Prefix: 'it87'
Addresses scanned: from Super I/O config space (8 I/O ports)
@ -136,6 +128,10 @@ registers are read whenever any data is read (unless it is less than 1.5
seconds since the last update). This means that you can easily miss
once-only alarms.
Out-of-limit readings can also result in beeping, if the chip is properly
wired and configured. Beeping can be enabled or disabled per sensor type
(temperatures, voltages and fans.)
The IT87xx only updates its values each 1.5 seconds; reading it more often
will do no harm, but will return 'old' values.
@ -150,11 +146,38 @@ Fan speed control
-----------------
The fan speed control features are limited to manual PWM mode. Automatic
"Smart Guardian" mode control handling is not implemented. However
if you want to go for "manual mode" just write 1 to pwmN_enable.
"Smart Guardian" mode control handling is only implemented for older chips
(see below.) However if you want to go for "manual mode" just write 1 to
pwmN_enable.
If you are only able to control the fan speed with very small PWM values,
try lowering the PWM base frequency (pwm1_freq). Depending on the fan,
it may give you a somewhat greater control range. The same frequency is
used to drive all fan outputs, which is why pwm2_freq and pwm3_freq are
read-only.
Automatic fan speed control (old interface)
-------------------------------------------
The driver supports the old interface to automatic fan speed control
which is implemented by IT8705F chips up to revision F and IT8712F
chips up to revision G.
This interface implements 4 temperature vs. PWM output trip points.
The PWM output of trip point 4 is always the maximum value (fan running
at full speed) while the PWM output of the other 3 trip points can be
freely chosen. The temperature of all 4 trip points can be freely chosen.
Additionally, trip point 1 has an hysteresis temperature attached, to
prevent fast switching between fan on and off.
The chip automatically computes the PWM output value based on the input
temperature, based on this simple rule: if the temperature value is
between trip point N and trip point N+1 then the PWM output value is
the one of trip point N. The automatic control mode is less flexible
than the manual control mode, but it reacts faster, is more robust and
doesn't use CPU cycles.
Trip points must be set properly before switching to automatic fan speed
control mode. The driver will perform basic integrity checks before
actually switching to automatic control mode.

View File

@ -84,6 +84,10 @@ Supported chips:
Addresses scanned: I2C 0x4c
Datasheet: Publicly available at the Maxim website
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3500
* Winbond/Nuvoton W83L771AWG/ASG
Prefix: 'w83l771'
Addresses scanned: I2C 0x4c
Datasheet: Not publicly available, can be requested from Nuvoton
Author: Jean Delvare <khali@linux-fr.org>
@ -147,6 +151,12 @@ MAX6680 and MAX6681:
* Selectable address
* Remote sensor type selection
W83L771AWG/ASG
* The AWG and ASG variants only differ in package format.
* Filter and alert configuration register at 0xBF
* Diode ideality factor configuration (remote sensor) at 0xE3
* Moving average (depending on conversion rate)
All temperature values are given in degrees Celsius. Resolution
is 1.0 degree for the local temperature, 0.125 degree for the remote
temperature, except for the MAX6657, MAX6658 and MAX6659 which have a
@ -163,6 +173,18 @@ The lm90 driver will not update its values more frequently than every
other second; reading them more often will do no harm, but will return
'old' values.
SMBus Alert Support
-------------------
This driver has basic support for SMBus alert. When an alert is received,
the status register is read and the faulty temperature channel is logged.
The Analog Devices chips (ADM1032 and ADT7461) do not implement the SMBus
alert protocol properly so additional care is needed: the ALERT output is
disabled when an alert is received, and is re-enabled only when the alarm
is gone. Otherwise the chip would block alerts from other chips in the bus
as long as the alarm is active.
PEC Support
-----------

View File

@ -15,7 +15,8 @@ Supported adapters:
* Intel 82801I (ICH9)
* Intel EP80579 (Tolapai)
* Intel 82801JI (ICH10)
* Intel PCH
* Intel 3400/5 Series (PCH)
* Intel Cougar Point (PCH)
Datasheets: Publicly available at the Intel website
Authors:

View File

@ -29,6 +29,9 @@ can be easily added when needed.
Earlier kernels defaulted to type=0 (Philips). But now, if the type
parameter is missing, the driver will simply fail to initialize.
SMBus alert support is available on adapters which have this line properly
connected to the parallel port's interrupt pin.
Building your own adapter
-------------------------

View File

@ -9,3 +9,14 @@ parport handling is not an option. The drawback is a reduced portability
and the impossibility to daisy-chain other parallel port devices.
Please see i2c-parport for documentation.
Module parameters:
* type: type of adapter (see i2c-parport or modinfo)
* base: base I/O address
Default is 0x378 which is fairly common for parallel ports, at least on PC.
* irq: optional IRQ
This must be passed if you want SMBus alert support, assuming your adapter
actually supports this.

View File

@ -185,6 +185,22 @@ the protocol. All ARP communications use slave address 0x61 and
require PEC checksums.
SMBus Alert
===========
SMBus Alert was introduced in Revision 1.0 of the specification.
The SMBus alert protocol allows several SMBus slave devices to share a
single interrupt pin on the SMBus master, while still allowing the master
to know which slave triggered the interrupt.
This is implemented the following way in the Linux kernel:
* I2C bus drivers which support SMBus alert should call
i2c_setup_smbus_alert() to setup SMBus alert support.
* I2C drivers for devices which can trigger SMBus alerts should implement
the optional alert() callback.
I2C Block Transactions
======================

View File

@ -318,8 +318,9 @@ Plain I2C communication
These routines read and write some bytes from/to a client. The client
contains the i2c address, so you do not have to include it. The second
parameter contains the bytes to read/write, the third the number of bytes
to read/write (must be less than the length of the buffer.) Returned is
the actual number of bytes read/written.
to read/write (must be less than the length of the buffer, also should be
less than 64k since msg.len is u16.) Returned is the actual number of bytes
read/written.
int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msg,
int num);

49
Documentation/init.txt Normal file
View File

@ -0,0 +1,49 @@
Explaining the dreaded "No init found." boot hang message
=========================================================
OK, so you've got this pretty unintuitive message (currently located
in init/main.c) and are wondering what the H*** went wrong.
Some high-level reasons for failure (listed roughly in order of execution)
to load the init binary are:
A) Unable to mount root FS
B) init binary doesn't exist on rootfs
C) broken console device
D) binary exists but dependencies not available
E) binary cannot be loaded
Detailed explanations:
0) Set "debug" kernel parameter (in bootloader config file or CONFIG_CMDLINE)
to get more detailed kernel messages.
A) make sure you have the correct root FS type
(and root= kernel parameter points to the correct partition),
required drivers such as storage hardware (such as SCSI or USB!)
and filesystem (ext3, jffs2 etc.) are builtin (alternatively as modules,
to be pre-loaded by an initrd)
C) Possibly a conflict in console= setup --> initial console unavailable.
E.g. some serial consoles are unreliable due to serial IRQ issues (e.g.
missing interrupt-based configuration).
Try using a different console= device or e.g. netconsole= .
D) e.g. required library dependencies of the init binary such as
/lib/ld-linux.so.2 missing or broken. Use readelf -d <INIT>|grep NEEDED
to find out which libraries are required.
E) make sure the binary's architecture matches your hardware.
E.g. i386 vs. x86_64 mismatch, or trying to load x86 on ARM hardware.
In case you tried loading a non-binary file here (shell script?),
you should make sure that the script specifies an interpreter in its shebang
header line (#!/...) that is fully working (including its library
dependencies). And before tackling scripts, better first test a simple
non-script binary such as /bin/sh and confirm its successful execution.
To find out more, add code to init/main.c to display kernel_execve()s
return values.
Please extend this explanation whenever you find new failure causes
(after all loading the init binary is a CRITICAL and hard transition step
which needs to be made as painless as possible), then submit patch to LKML.
Further TODOs:
- Implement the various run_init_process() invocations via a struct array
which can then store the kernel_execve() result value and on failure
log it all by iterating over _all_ results (very important usability fix).
- try to make the implementation itself more helpful in general,
e.g. by providing additional error messages at affected places.
Andreas Mohr <andi at lisas period de>

View File

@ -75,7 +75,7 @@ and the number of steps or will clamp at the maximum and zero depending on
the configuration.
Because GPIO to IRQ mapping is platform specific, this information must
be given in seperately to the driver. See the example below.
be given in separately to the driver. See the example below.
---------<snip>---------

View File

@ -139,7 +139,6 @@ Code Seq#(hex) Include File Comments
'K' all linux/kd.h
'L' 00-1F linux/loop.h conflict!
'L' 10-1F drivers/scsi/mpt2sas/mpt2sas_ctl.h conflict!
'L' 20-2F linux/usb/vstusb.h
'L' E0-FF linux/ppdd.h encrypted disk device driver
<http://linux01.gwdg.de/~alatham/ppdd.html>
'M' all linux/soundcard.h conflict!
@ -292,6 +291,7 @@ Code Seq#(hex) Include File Comments
0x92 00-0F drivers/usb/mon/mon_bin.c
0x93 60-7F linux/auto_fs.h
0x94 all fs/btrfs/ioctl.h
0x97 00-7F fs/ceph/ioctl.h Ceph file system
0x99 00-0F 537-Addinboard driver
<mailto:buk@buks.ipn.de>
0xA0 all linux/sdp/sdp.h Industrial Device Project

View File

@ -200,10 +200,6 @@ and is between 256 and 4096 characters. It is defined in the file
acpi_display_output=video
See above.
acpi_early_pdc_eval [HW,ACPI] Evaluate processor _PDC methods
early. Needed on some platforms to properly
initialize the EC.
acpi_irq_balance [HW,ACPI]
ACPI will balance active IRQs
default in APIC mode
@ -1794,6 +1790,12 @@ and is between 256 and 4096 characters. It is defined in the file
purges which is reported from either PAL_VM_SUMMARY or
SAL PALO.
nr_cpus= [SMP] Maximum number of processors that an SMP kernel
could support. nr_cpus=n : n >= 1 limits the kernel to
supporting 'n' processors. Later in runtime you can not
use hotplug cpu feature to put more cpu back to online.
just like you compile the kernel NR_CPUS=n
nr_uarts= [SERIAL] maximum number of UARTs to be registered.
numa_zonelist_order= [KNL, BOOT] Select zonelist order for NUMA.
@ -2828,6 +2830,12 @@ and is between 256 and 4096 characters. It is defined in the file
default x2apic cluster mode on platforms
supporting x2apic.
x86_mrst_timer= [X86-32,APBT]
Choose timer option for x86 Moorestown MID platform.
Two valid options are apbt timer only and lapic timer
plus one apbt timer for broadcast timer.
x86_mrst_timer=apbt_only | lapic_and_apbt
xd= [HW,XT] Original XT pre-IDE (RLL encoded) disks.
xd_geo= See header of drivers/block/xd.c.

View File

@ -59,37 +59,56 @@ nice to have in other objects. The C language does not allow for the
direct expression of inheritance, so other techniques - such as structure
embedding - must be used.
So, for example, the UIO code has a structure that defines the memory
region associated with a uio device:
(As an aside, for those familiar with the kernel linked list implementation,
this is analogous as to how "list_head" structs are rarely useful on
their own, but are invariably found embedded in the larger objects of
interest.)
struct uio_mem {
So, for example, the UIO code in drivers/uio/uio.c has a structure that
defines the memory region associated with a uio device:
struct uio_map {
struct kobject kobj;
unsigned long addr;
unsigned long size;
int memtype;
void __iomem *internal_addr;
};
struct uio_mem *mem;
};
If you have a struct uio_mem structure, finding its embedded kobject is
If you have a struct uio_map structure, finding its embedded kobject is
just a matter of using the kobj member. Code that works with kobjects will
often have the opposite problem, however: given a struct kobject pointer,
what is the pointer to the containing structure? You must avoid tricks
(such as assuming that the kobject is at the beginning of the structure)
and, instead, use the container_of() macro, found in <linux/kernel.h>:
container_of(pointer, type, member)
container_of(pointer, type, member)
where pointer is the pointer to the embedded kobject, type is the type of
the containing structure, and member is the name of the structure field to
which pointer points. The return value from container_of() is a pointer to
the given type. So, for example, a pointer "kp" to a struct kobject
embedded within a struct uio_mem could be converted to a pointer to the
containing uio_mem structure with:
where:
struct uio_mem *u_mem = container_of(kp, struct uio_mem, kobj);
* "pointer" is the pointer to the embedded kobject,
* "type" is the type of the containing structure, and
* "member" is the name of the structure field to which "pointer" points.
Programmers often define a simple macro for "back-casting" kobject pointers
to the containing type.
The return value from container_of() is a pointer to the corresponding
container type. So, for example, a pointer "kp" to a struct kobject
embedded *within* a struct uio_map could be converted to a pointer to the
*containing* uio_map structure with:
struct uio_map *u_map = container_of(kp, struct uio_map, kobj);
For convenience, programmers often define a simple macro for "back-casting"
kobject pointers to the containing type. Exactly this happens in the
earlier drivers/uio/uio.c, as you can see here:
struct uio_map {
struct kobject kobj;
struct uio_mem *mem;
};
#define to_map(map) container_of(map, struct uio_map, kobj)
where the macro argument "map" is a pointer to the struct kobject in
question. That macro is subsequently invoked with:
struct uio_map *map = to_map(kobj);
Initialization of kobjects
@ -266,7 +285,7 @@ kobj_type:
struct kobj_type {
void (*release)(struct kobject *);
struct sysfs_ops *sysfs_ops;
const struct sysfs_ops *sysfs_ops;
struct attribute **default_attrs;
};
@ -387,4 +406,5 @@ called, and the objects in the former circle release each other.
Example code to copy from
For a more complete example of using ksets and kobjects properly, see the
sample/kobject/kset-example.c code.
example programs samples/kobject/{kobject-example.c,kset-example.c},
which will be built as loadable modules if you select CONFIG_SAMPLE_KOBJECT.

View File

@ -1,6 +1,7 @@
Title : Kernel Probes (Kprobes)
Authors : Jim Keniston <jkenisto@us.ibm.com>
: Prasanna S Panchamukhi <prasanna@in.ibm.com>
: Prasanna S Panchamukhi <prasanna.panchamukhi@gmail.com>
: Masami Hiramatsu <mhiramat@redhat.com>
CONTENTS
@ -15,6 +16,7 @@ CONTENTS
9. Jprobes Example
10. Kretprobes Example
Appendix A: The kprobes debugfs interface
Appendix B: The kprobes sysctl interface
1. Concepts: Kprobes, Jprobes, Return Probes
@ -42,13 +44,13 @@ registration/unregistration of a group of *probes. These functions
can speed up unregistration process when you have to unregister
a lot of probes at once.
The next three subsections explain how the different types of
probes work. They explain certain things that you'll need to
know in order to make the best use of Kprobes -- e.g., the
difference between a pre_handler and a post_handler, and how
to use the maxactive and nmissed fields of a kretprobe. But
if you're in a hurry to start using Kprobes, you can skip ahead
to section 2.
The next four subsections explain how the different types of
probes work and how jump optimization works. They explain certain
things that you'll need to know in order to make the best use of
Kprobes -- e.g., the difference between a pre_handler and
a post_handler, and how to use the maxactive and nmissed fields of
a kretprobe. But if you're in a hurry to start using Kprobes, you
can skip ahead to section 2.
1.1 How Does a Kprobe Work?
@ -161,13 +163,125 @@ In case probed function is entered but there is no kretprobe_instance
object available, then in addition to incrementing the nmissed count,
the user entry_handler invocation is also skipped.
1.4 How Does Jump Optimization Work?
If you configured your kernel with CONFIG_OPTPROBES=y (currently
this option is supported on x86/x86-64, non-preemptive kernel) and
the "debug.kprobes_optimization" kernel parameter is set to 1 (see
sysctl(8)), Kprobes tries to reduce probe-hit overhead by using a jump
instruction instead of a breakpoint instruction at each probepoint.
1.4.1 Init a Kprobe
When a probe is registered, before attempting this optimization,
Kprobes inserts an ordinary, breakpoint-based kprobe at the specified
address. So, even if it's not possible to optimize this particular
probepoint, there'll be a probe there.
1.4.2 Safety Check
Before optimizing a probe, Kprobes performs the following safety checks:
- Kprobes verifies that the region that will be replaced by the jump
instruction (the "optimized region") lies entirely within one function.
(A jump instruction is multiple bytes, and so may overlay multiple
instructions.)
- Kprobes analyzes the entire function and verifies that there is no
jump into the optimized region. Specifically:
- the function contains no indirect jump;
- the function contains no instruction that causes an exception (since
the fixup code triggered by the exception could jump back into the
optimized region -- Kprobes checks the exception tables to verify this);
and
- there is no near jump to the optimized region (other than to the first
byte).
- For each instruction in the optimized region, Kprobes verifies that
the instruction can be executed out of line.
1.4.3 Preparing Detour Buffer
Next, Kprobes prepares a "detour" buffer, which contains the following
instruction sequence:
- code to push the CPU's registers (emulating a breakpoint trap)
- a call to the trampoline code which calls user's probe handlers.
- code to restore registers
- the instructions from the optimized region
- a jump back to the original execution path.
1.4.4 Pre-optimization
After preparing the detour buffer, Kprobes verifies that none of the
following situations exist:
- The probe has either a break_handler (i.e., it's a jprobe) or a
post_handler.
- Other instructions in the optimized region are probed.
- The probe is disabled.
In any of the above cases, Kprobes won't start optimizing the probe.
Since these are temporary situations, Kprobes tries to start
optimizing it again if the situation is changed.
If the kprobe can be optimized, Kprobes enqueues the kprobe to an
optimizing list, and kicks the kprobe-optimizer workqueue to optimize
it. If the to-be-optimized probepoint is hit before being optimized,
Kprobes returns control to the original instruction path by setting
the CPU's instruction pointer to the copied code in the detour buffer
-- thus at least avoiding the single-step.
1.4.5 Optimization
The Kprobe-optimizer doesn't insert the jump instruction immediately;
rather, it calls synchronize_sched() for safety first, because it's
possible for a CPU to be interrupted in the middle of executing the
optimized region(*). As you know, synchronize_sched() can ensure
that all interruptions that were active when synchronize_sched()
was called are done, but only if CONFIG_PREEMPT=n. So, this version
of kprobe optimization supports only kernels with CONFIG_PREEMPT=n.(**)
After that, the Kprobe-optimizer calls stop_machine() to replace
the optimized region with a jump instruction to the detour buffer,
using text_poke_smp().
1.4.6 Unoptimization
When an optimized kprobe is unregistered, disabled, or blocked by
another kprobe, it will be unoptimized. If this happens before
the optimization is complete, the kprobe is just dequeued from the
optimized list. If the optimization has been done, the jump is
replaced with the original code (except for an int3 breakpoint in
the first byte) by using text_poke_smp().
(*)Please imagine that the 2nd instruction is interrupted and then
the optimizer replaces the 2nd instruction with the jump *address*
while the interrupt handler is running. When the interrupt
returns to original address, there is no valid instruction,
and it causes an unexpected result.
(**)This optimization-safety checking may be replaced with the
stop-machine method that ksplice uses for supporting a CONFIG_PREEMPT=y
kernel.
NOTE for geeks:
The jump optimization changes the kprobe's pre_handler behavior.
Without optimization, the pre_handler can change the kernel's execution
path by changing regs->ip and returning 1. However, when the probe
is optimized, that modification is ignored. Thus, if you want to
tweak the kernel's execution path, you need to suppress optimization,
using one of the following techniques:
- Specify an empty function for the kprobe's post_handler or break_handler.
or
- Config CONFIG_OPTPROBES=n.
or
- Execute 'sysctl -w debug.kprobes_optimization=n'
2. Architectures Supported
Kprobes, jprobes, and return probes are implemented on the following
architectures:
- i386
- x86_64 (AMD-64, EM64T)
- i386 (Supports jump optimization)
- x86_64 (AMD-64, EM64T) (Supports jump optimization)
- ppc64
- ia64 (Does not support probes on instruction slot1.)
- sparc64 (Return probes not yet implemented.)
@ -193,6 +307,10 @@ it useful to "Compile the kernel with debug info" (CONFIG_DEBUG_INFO),
so you can use "objdump -d -l vmlinux" to see the source-to-object
code mapping.
If you want to reduce probing overhead, set "Kprobes jump optimization
support" (CONFIG_OPTPROBES) to "y". You can find this option under the
"Kprobes" line.
4. API Reference
The Kprobes API includes a "register" function and an "unregister"
@ -389,7 +507,10 @@ the probe which has been registered.
Kprobes allows multiple probes at the same address. Currently,
however, there cannot be multiple jprobes on the same function at
the same time.
the same time. Also, a probepoint for which there is a jprobe or
a post_handler cannot be optimized. So if you install a jprobe,
or a kprobe with a post_handler, at an optimized probepoint, the
probepoint will be unoptimized automatically.
In general, you can install a probe anywhere in the kernel.
In particular, you can probe interrupt handlers. Known exceptions
@ -453,6 +574,38 @@ reason, Kprobes doesn't support return probes (or kprobes or jprobes)
on the x86_64 version of __switch_to(); the registration functions
return -EINVAL.
On x86/x86-64, since the Jump Optimization of Kprobes modifies
instructions widely, there are some limitations to optimization. To
explain it, we introduce some terminology. Imagine a 3-instruction
sequence consisting of a two 2-byte instructions and one 3-byte
instruction.
IA
|
[-2][-1][0][1][2][3][4][5][6][7]
[ins1][ins2][ ins3 ]
[<- DCR ->]
[<- JTPR ->]
ins1: 1st Instruction
ins2: 2nd Instruction
ins3: 3rd Instruction
IA: Insertion Address
JTPR: Jump Target Prohibition Region
DCR: Detoured Code Region
The instructions in DCR are copied to the out-of-line buffer
of the kprobe, because the bytes in DCR are replaced by
a 5-byte jump instruction. So there are several limitations.
a) The instructions in DCR must be relocatable.
b) The instructions in DCR must not include a call instruction.
c) JTPR must not be targeted by any jump or call instruction.
d) DCR must not straddle the border betweeen functions.
Anyway, these limitations are checked by the in-kernel instruction
decoder, so you don't need to worry about that.
6. Probe Overhead
On a typical CPU in use in 2005, a kprobe hit takes 0.5 to 1.0
@ -476,6 +629,19 @@ k = 0.49 usec; j = 0.76; r = 0.80; kr = 0.82; jr = 1.07
ppc64: POWER5 (gr), 1656 MHz (SMT disabled, 1 virtual CPU per physical CPU)
k = 0.77 usec; j = 1.31; r = 1.26; kr = 1.45; jr = 1.99
6.1 Optimized Probe Overhead
Typically, an optimized kprobe hit takes 0.07 to 0.1 microseconds to
process. Here are sample overhead figures (in usec) for x86 architectures.
k = unoptimized kprobe, b = boosted (single-step skipped), o = optimized kprobe,
r = unoptimized kretprobe, rb = boosted kretprobe, ro = optimized kretprobe.
i386: Intel(R) Xeon(R) E5410, 2.33GHz, 4656.90 bogomips
k = 0.80 usec; b = 0.33; o = 0.05; r = 1.10; rb = 0.61; ro = 0.33
x86-64: Intel(R) Xeon(R) E5410, 2.33GHz, 4656.90 bogomips
k = 0.99 usec; b = 0.43; o = 0.06; r = 1.24; rb = 0.68; ro = 0.30
7. TODO
a. SystemTap (http://sourceware.org/systemtap): Provides a simplified
@ -523,7 +689,8 @@ is also specified. Following columns show probe status. If the probe is on
a virtual address that is no longer valid (module init sections, module
virtual addresses that correspond to modules that've been unloaded),
such probes are marked with [GONE]. If the probe is temporarily disabled,
such probes are marked with [DISABLED].
such probes are marked with [DISABLED]. If the probe is optimized, it is
marked with [OPTIMIZED].
/sys/kernel/debug/kprobes/enabled: Turn kprobes ON/OFF forcibly.
@ -533,3 +700,19 @@ registered probes will be disarmed, till such time a "1" is echoed to this
file. Note that this knob just disarms and arms all kprobes and doesn't
change each probe's disabling state. This means that disabled kprobes (marked
[DISABLED]) will be not enabled if you turn ON all kprobes by this knob.
Appendix B: The kprobes sysctl interface
/proc/sys/debug/kprobes-optimization: Turn kprobes optimization ON/OFF.
When CONFIG_OPTPROBES=y, this sysctl interface appears and it provides
a knob to globally and forcibly turn jump optimization (see section
1.4) ON or OFF. By default, jump optimization is allowed (ON).
If you echo "0" to this file or set "debug.kprobes_optimization" to
0 via sysctl, all optimized probes will be unoptimized, and any new
probes registered after that will not be optimized. Note that this
knob *changes* the optimized state. This means that optimized probes
(marked [OPTIMIZED]) will be unoptimized ([OPTIMIZED] tag will be
removed). If the knob is turned on, they will be optimized again.

View File

@ -23,12 +23,12 @@ of a virtual machine. The ioctls belong to three classes
Only run vcpu ioctls from the same thread that was used to create the
vcpu.
2. File descritpors
2. File descriptors
The kvm API is centered around file descriptors. An initial
open("/dev/kvm") obtains a handle to the kvm subsystem; this handle
can be used to issue system ioctls. A KVM_CREATE_VM ioctl on this
handle will create a VM file descripror which can be used to issue VM
handle will create a VM file descriptor which can be used to issue VM
ioctls. A KVM_CREATE_VCPU ioctl on a VM fd will create a virtual cpu
and return a file descriptor pointing to it. Finally, ioctls on a vcpu
fd can be used to control the vcpu, including the important task of
@ -643,7 +643,7 @@ Type: vm ioctl
Parameters: struct kvm_clock_data (in)
Returns: 0 on success, -1 on error
Sets the current timestamp of kvmclock to the valued specific in its parameter.
Sets the current timestamp of kvmclock to the value specified in its parameter.
In conjunction with KVM_GET_CLOCK, it is used to ensure monotonicity on scenarios
such as migration.
@ -795,11 +795,11 @@ Unused.
__u64 data_offset; /* relative to kvm_run start */
} io;
If exit_reason is KVM_EXIT_IO_IN or KVM_EXIT_IO_OUT, then the vcpu has
If exit_reason is KVM_EXIT_IO, then the vcpu has
executed a port I/O instruction which could not be satisfied by kvm.
data_offset describes where the data is located (KVM_EXIT_IO_OUT) or
where kvm expects application code to place the data for the next
KVM_RUN invocation (KVM_EXIT_IO_IN). Data format is a patcked array.
KVM_RUN invocation (KVM_EXIT_IO_IN). Data format is a packed array.
struct {
struct kvm_debug_exit_arch arch;
@ -815,7 +815,7 @@ Unused.
__u8 is_write;
} mmio;
If exit_reason is KVM_EXIT_MMIO or KVM_EXIT_IO_OUT, then the vcpu has
If exit_reason is KVM_EXIT_MMIO, then the vcpu has
executed a memory-mapped I/O instruction which could not be satisfied
by kvm. The 'data' member contains the written data if 'is_write' is
true, and should be filled by application code otherwise.

View File

@ -2,6 +2,12 @@
- This file
acer-wmi.txt
- information on the Acer Laptop WMI Extras driver.
asus-laptop.txt
- information on the Asus Laptop Extras driver.
disk-shock-protection.txt
- information on hard disk shock protection.
dslm.c
- Simple Disk Sleep Monitor program
laptop-mode.txt
- how to conserve battery power using laptop-mode.
sony-laptop.txt

View File

@ -0,0 +1,8 @@
# kbuild trick to avoid linker error. Can be omitted if a module is built.
obj- := dummy.o
# List of programs to build
hostprogs-y := dslm
# Tell kbuild to always build the programs
always := $(hostprogs-y)

View File

@ -0,0 +1,166 @@
/*
* dslm.c
* Simple Disk Sleep Monitor
* by Bartek Kania
* Licenced under the GPL
*/
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <errno.h>
#include <time.h>
#include <string.h>
#include <signal.h>
#include <sys/ioctl.h>
#include <linux/hdreg.h>
#ifdef DEBUG
#define D(x) x
#else
#define D(x)
#endif
int endit = 0;
/* Check if the disk is in powersave-mode
* Most of the code is stolen from hdparm.
* 1 = active, 0 = standby/sleep, -1 = unknown */
static int check_powermode(int fd)
{
unsigned char args[4] = {WIN_CHECKPOWERMODE1,0,0,0};
int state;
if (ioctl(fd, HDIO_DRIVE_CMD, &args)
&& (args[0] = WIN_CHECKPOWERMODE2) /* try again with 0x98 */
&& ioctl(fd, HDIO_DRIVE_CMD, &args)) {
if (errno != EIO || args[0] != 0 || args[1] != 0) {
state = -1; /* "unknown"; */
} else
state = 0; /* "sleeping"; */
} else {
state = (args[2] == 255) ? 1 : 0;
}
D(printf(" drive state is: %d\n", state));
return state;
}
static char *state_name(int i)
{
if (i == -1) return "unknown";
if (i == 0) return "sleeping";
if (i == 1) return "active";
return "internal error";
}
static char *myctime(time_t time)
{
char *ts = ctime(&time);
ts[strlen(ts) - 1] = 0;
return ts;
}
static void measure(int fd)
{
time_t start_time;
int last_state;
time_t last_time;
int curr_state;
time_t curr_time = 0;
time_t time_diff;
time_t active_time = 0;
time_t sleep_time = 0;
time_t unknown_time = 0;
time_t total_time = 0;
int changes = 0;
float tmp;
printf("Starting measurements\n");
last_state = check_powermode(fd);
start_time = last_time = time(0);
printf(" System is in state %s\n\n", state_name(last_state));
while(!endit) {
sleep(1);
curr_state = check_powermode(fd);
if (curr_state != last_state || endit) {
changes++;
curr_time = time(0);
time_diff = curr_time - last_time;
if (last_state == 1) active_time += time_diff;
else if (last_state == 0) sleep_time += time_diff;
else unknown_time += time_diff;
last_state = curr_state;
last_time = curr_time;
printf("%s: State-change to %s\n", myctime(curr_time),
state_name(curr_state));
}
}
changes--; /* Compensate for SIGINT */
total_time = time(0) - start_time;
printf("\nTotal running time: %lus\n", curr_time - start_time);
printf(" State changed %d times\n", changes);
tmp = (float)sleep_time / (float)total_time * 100;
printf(" Time in sleep state: %lus (%.2f%%)\n", sleep_time, tmp);
tmp = (float)active_time / (float)total_time * 100;
printf(" Time in active state: %lus (%.2f%%)\n", active_time, tmp);
tmp = (float)unknown_time / (float)total_time * 100;
printf(" Time in unknown state: %lus (%.2f%%)\n", unknown_time, tmp);
}
static void ender(int s)
{
endit = 1;
}
static void usage(void)
{
puts("usage: dslm [-w <time>] <disk>");
exit(0);
}
int main(int argc, char **argv)
{
int fd;
char *disk = 0;
int settle_time = 60;
/* Parse the simple command-line */
if (argc == 2)
disk = argv[1];
else if (argc == 4) {
settle_time = atoi(argv[2]);
disk = argv[3];
} else
usage();
if (!(fd = open(disk, O_RDONLY|O_NONBLOCK))) {
printf("Can't open %s, because: %s\n", disk, strerror(errno));
exit(-1);
}
if (settle_time) {
printf("Waiting %d seconds for the system to settle down to "
"'normal'\n", settle_time);
sleep(settle_time);
} else
puts("Not waiting for system to settle down");
signal(SIGINT, ender);
measure(fd);
close(fd);
return 0;
}

View File

@ -779,172 +779,4 @@ Monitoring tool
---------------
Bartek Kania submitted this, it can be used to measure how much time your disk
spends spun up/down.
---------------------------dslm.c BEGIN-----------------------------------------
/*
* Simple Disk Sleep Monitor
* by Bartek Kania
* Licenced under the GPL
*/
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <errno.h>
#include <time.h>
#include <string.h>
#include <signal.h>
#include <sys/ioctl.h>
#include <linux/hdreg.h>
#ifdef DEBUG
#define D(x) x
#else
#define D(x)
#endif
int endit = 0;
/* Check if the disk is in powersave-mode
* Most of the code is stolen from hdparm.
* 1 = active, 0 = standby/sleep, -1 = unknown */
int check_powermode(int fd)
{
unsigned char args[4] = {WIN_CHECKPOWERMODE1,0,0,0};
int state;
if (ioctl(fd, HDIO_DRIVE_CMD, &args)
&& (args[0] = WIN_CHECKPOWERMODE2) /* try again with 0x98 */
&& ioctl(fd, HDIO_DRIVE_CMD, &args)) {
if (errno != EIO || args[0] != 0 || args[1] != 0) {
state = -1; /* "unknown"; */
} else
state = 0; /* "sleeping"; */
} else {
state = (args[2] == 255) ? 1 : 0;
}
D(printf(" drive state is: %d\n", state));
return state;
}
char *state_name(int i)
{
if (i == -1) return "unknown";
if (i == 0) return "sleeping";
if (i == 1) return "active";
return "internal error";
}
char *myctime(time_t time)
{
char *ts = ctime(&time);
ts[strlen(ts) - 1] = 0;
return ts;
}
void measure(int fd)
{
time_t start_time;
int last_state;
time_t last_time;
int curr_state;
time_t curr_time = 0;
time_t time_diff;
time_t active_time = 0;
time_t sleep_time = 0;
time_t unknown_time = 0;
time_t total_time = 0;
int changes = 0;
float tmp;
printf("Starting measurements\n");
last_state = check_powermode(fd);
start_time = last_time = time(0);
printf(" System is in state %s\n\n", state_name(last_state));
while(!endit) {
sleep(1);
curr_state = check_powermode(fd);
if (curr_state != last_state || endit) {
changes++;
curr_time = time(0);
time_diff = curr_time - last_time;
if (last_state == 1) active_time += time_diff;
else if (last_state == 0) sleep_time += time_diff;
else unknown_time += time_diff;
last_state = curr_state;
last_time = curr_time;
printf("%s: State-change to %s\n", myctime(curr_time),
state_name(curr_state));
}
}
changes--; /* Compensate for SIGINT */
total_time = time(0) - start_time;
printf("\nTotal running time: %lus\n", curr_time - start_time);
printf(" State changed %d times\n", changes);
tmp = (float)sleep_time / (float)total_time * 100;
printf(" Time in sleep state: %lus (%.2f%%)\n", sleep_time, tmp);
tmp = (float)active_time / (float)total_time * 100;
printf(" Time in active state: %lus (%.2f%%)\n", active_time, tmp);
tmp = (float)unknown_time / (float)total_time * 100;
printf(" Time in unknown state: %lus (%.2f%%)\n", unknown_time, tmp);
}
void ender(int s)
{
endit = 1;
}
void usage()
{
puts("usage: dslm [-w <time>] <disk>");
exit(0);
}
int main(int argc, char **argv)
{
int fd;
char *disk = 0;
int settle_time = 60;
/* Parse the simple command-line */
if (argc == 2)
disk = argv[1];
else if (argc == 4) {
settle_time = atoi(argv[2]);
disk = argv[3];
} else
usage();
if (!(fd = open(disk, O_RDONLY|O_NONBLOCK))) {
printf("Can't open %s, because: %s\n", disk, strerror(errno));
exit(-1);
}
if (settle_time) {
printf("Waiting %d seconds for the system to settle down to "
"'normal'\n", settle_time);
sleep(settle_time);
} else
puts("Not waiting for system to settle down");
signal(SIGINT, ender);
measure(fd);
close(fd);
return 0;
}
---------------------------dslm.c END-------------------------------------------
spends spun up/down. See Documentation/laptops/dslm.c

View File

@ -650,6 +650,10 @@ LCD, CRT or DVI (if available). The following commands are available:
echo expand_toggle > /proc/acpi/ibm/video
echo video_switch > /proc/acpi/ibm/video
NOTE: Access to this feature is restricted to processes owning the
CAP_SYS_ADMIN capability for safety reasons, as it can interact badly
enough with some versions of X.org to crash it.
Each video output device can be enabled or disabled individually.
Reading /proc/acpi/ibm/video shows the status of each device.

View File

@ -3,6 +3,7 @@
============================
By: David Howells <dhowells@redhat.com>
Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Contents:
@ -60,6 +61,10 @@ Contents:
- And then there's the Alpha.
(*) Example uses.
- Circular buffers.
(*) References.
@ -2226,6 +2231,21 @@ The Alpha defines the Linux kernel's memory barrier model.
See the subsection on "Cache Coherency" above.
============
EXAMPLE USES
============
CIRCULAR BUFFERS
----------------
Memory barriers can be used to implement circular buffering without the need
of a lock to serialise the producer with the consumer. See:
Documentation/circular-buffers.txt
for details.
==========
REFERENCES
==========

View File

@ -32,6 +32,8 @@ cs89x0.txt
- the Crystal LAN (CS8900/20-based) Ethernet ISA adapter driver
cxacru.txt
- Conexant AccessRunner USB ADSL Modem
cxacru-cf.py
- Conexant AccessRunner USB ADSL Modem configuration file parser
de4x5.txt
- the Digital EtherWORKS DE4?? and DE5?? PCI Ethernet driver
decnet.txt

View File

@ -6,3 +6,5 @@ hostprogs-y := ifenslave
# Tell kbuild to always build the programs
always := $(hostprogs-y)
obj-m := timestamping/

View File

@ -0,0 +1,48 @@
#!/usr/bin/env python
# Copyright 2009 Simon Arlott
#
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation; either version 2 of the License, or (at your option)
# any later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
# more details.
#
# You should have received a copy of the GNU General Public License along with
# this program; if not, write to the Free Software Foundation, Inc., 59
# Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
# Usage: cxacru-cf.py < cxacru-cf.bin
# Output: values string suitable for the sysfs adsl_config attribute
#
# Warning: cxacru-cf.bin with MD5 hash cdbac2689969d5ed5d4850f117702110
# contains mis-aligned values which will stop the modem from being able
# to make a connection. If the first and last two bytes are removed then
# the values become valid, but the modulation will be forced to ANSI
# T1.413 only which may not be appropriate.
#
# The original binary format is a packed list of le32 values.
import sys
import struct
i = 0
while True:
buf = sys.stdin.read(4)
if len(buf) == 0:
break
elif len(buf) != 4:
sys.stdout.write("\n")
sys.stderr.write("Error: read {0} not 4 bytes\n".format(len(buf)))
sys.exit(1)
if i > 0:
sys.stdout.write(" ")
sys.stdout.write("{0:x}={1}".format(i, struct.unpack("<I", buf)[0]))
i += 1
sys.stdout.write("\n")

View File

@ -4,6 +4,12 @@ While it is capable of managing/maintaining the ADSL connection without the
module loaded, the device will sometimes stop responding after unloading the
driver and it is necessary to unplug/remove power to the device to fix this.
Note: support for cxacru-cf.bin has been removed. It was not loaded correctly
so it had no effect on the device configuration. Fixing it could have stopped
existing devices working when an invalid configuration is supplied.
There is a script cxacru-cf.py to convert an existing file to the sysfs form.
Detected devices will appear as ATM devices named "cxacru". In /sys/class/atm/
these are directories named cxacruN where N is the device number. A symlink
named device points to the USB interface device's directory which contains
@ -15,6 +21,15 @@ several sysfs attribute files for retrieving device statistics:
* adsl_headend_environment
Information about the remote headend.
* adsl_config
Configuration writing interface.
Write parameters in hexadecimal format <index>=<value>,
separated by whitespace, e.g.:
"1=0 a=5"
Up to 7 parameters at a time will be sent and the modem will restart
the ADSL connection when any value is set. These are logged for future
reference.
* downstream_attenuation (dB)
* downstream_bits_per_frame
* downstream_rate (kbps)
@ -61,6 +76,7 @@ several sysfs attribute files for retrieving device statistics:
* mac_address
* modulation
"" (when not connected)
"ANSI T1.413"
"ITU-T G.992.1 (G.DMT)"
"ITU-T G.992.2 (G.LITE)"

View File

@ -68,7 +68,7 @@ Compaq adapters (not tested):
=======================
From v2.01 on, the driver is integrated in the linux kernel sources.
Therefor, the installation is the same as for any other adapter
Therefore, the installation is the same as for any other adapter
supported by the kernel.
Refer to the manual of your distribution about the installation
of network adapters.

View File

@ -1,6 +1,13 @@
CPPFLAGS = -I../../../include
# kbuild trick to avoid linker error. Can be omitted if a module is built.
obj- := dummy.o
timestamping: timestamping.c
# List of programs to build
hostprogs-y := timestamping
# Tell kbuild to always build the programs
always := $(hostprogs-y)
HOSTCFLAGS_timestamping.o += -I$(objtree)/usr/include
clean:
rm -f timestamping

View File

@ -41,9 +41,9 @@
#include <arpa/inet.h>
#include <net/if.h>
#include "asm/types.h"
#include "linux/net_tstamp.h"
#include "linux/errqueue.h"
#include <asm/types.h>
#include <linux/net_tstamp.h>
#include <linux/errqueue.h>
#ifndef SO_TIMESTAMPING
# define SO_TIMESTAMPING 37
@ -164,7 +164,7 @@ static void printpacket(struct msghdr *msg, int res,
gettimeofday(&now, 0);
printf("%ld.%06ld: received %s data, %d bytes from %s, %d bytes control messages\n",
printf("%ld.%06ld: received %s data, %d bytes from %s, %zu bytes control messages\n",
(long)now.tv_sec, (long)now.tv_usec,
(recvmsg_flags & MSG_ERRQUEUE) ? "error" : "regular",
res,
@ -173,7 +173,7 @@ static void printpacket(struct msghdr *msg, int res,
for (cmsg = CMSG_FIRSTHDR(msg);
cmsg;
cmsg = CMSG_NXTHDR(msg, cmsg)) {
printf(" cmsg len %d: ", cmsg->cmsg_len);
printf(" cmsg len %zu: ", cmsg->cmsg_len);
switch (cmsg->cmsg_level) {
case SOL_SOCKET:
printf("SOL_SOCKET ");
@ -370,7 +370,7 @@ int main(int argc, char **argv)
}
sock = socket(PF_INET, SOCK_DGRAM, IPPROTO_UDP);
if (socket < 0)
if (sock < 0)
bail("socket");
memset(&device, 0, sizeof(device));

View File

@ -57,7 +57,7 @@ PC standard floppy disk controller
# cat resources
DISABLED
- Notice the string "DISABLED". THis means the device is not active.
- Notice the string "DISABLED". This means the device is not active.
3.) check the device's possible configurations (optional)
# cat options
@ -139,7 +139,7 @@ Plug and Play but it is planned to be in the near future.
Requirements for a Linux PnP protocol:
1.) the protocol must use EISA IDs
2.) the protocol must inform the PnP Layer of a devices current configuration
2.) the protocol must inform the PnP Layer of a device's current configuration
- the ability to set resources is optional but preferred.
The following are PnP protocol related functions:
@ -158,7 +158,7 @@ pnp_remove_device
- automatically will free mem used by the device and related structures
pnp_add_id
- adds a EISA ID to the list of supported IDs for the specified device
- adds an EISA ID to the list of supported IDs for the specified device
For more information consult the source of a protocol such as
/drivers/pnp/pnpbios/core.c.
@ -167,7 +167,7 @@ For more information consult the source of a protocol such as
Linux Plug and Play Drivers
---------------------------
This section contains information for linux PnP driver developers.
This section contains information for Linux PnP driver developers.
The New Way
...........
@ -235,11 +235,10 @@ static int __init serial8250_pnp_init(void)
The Old Way
...........
a series of compatibility functions have been created to make it easy to convert
A series of compatibility functions have been created to make it easy to convert
ISAPNP drivers. They should serve as a temporary solution only.
they are as follows:
They are as follows:
struct pnp_card *pnp_find_card(unsigned short vendor,
unsigned short device,

View File

@ -224,6 +224,12 @@ defined in include/linux/pm.h:
RPM_SUSPENDED, which means that each device is initially regarded by the
PM core as 'suspended', regardless of its real hardware status
unsigned int runtime_auto;
- if set, indicates that the user space has allowed the device driver to
power manage the device at run time via the /sys/devices/.../power/control
interface; it may only be modified with the help of the pm_runtime_allow()
and pm_runtime_forbid() helper functions
All of the above fields are members of the 'power' member of 'struct device'.
4. Run-time PM Device Helper Functions
@ -250,7 +256,7 @@ drivers/base/power/runtime.c and include/linux/pm_runtime.h:
to suspend the device again in future
int pm_runtime_resume(struct device *dev);
- execute the subsystem-leve resume callback for the device; returns 0 on
- execute the subsystem-level resume callback for the device; returns 0 on
success, 1 if the device's run-time PM status was already 'active' or
error code on failure, where -EAGAIN means it may be safe to attempt to
resume the device again in future, but 'power.runtime_error' should be
@ -329,6 +335,20 @@ drivers/base/power/runtime.c and include/linux/pm_runtime.h:
'power.runtime_error' is set or 'power.disable_depth' is greater than
zero)
bool pm_runtime_suspended(struct device *dev);
- return true if the device's runtime PM status is 'suspended', or false
otherwise
void pm_runtime_allow(struct device *dev);
- set the power.runtime_auto flag for the device and decrease its usage
counter (used by the /sys/devices/.../power/control interface to
effectively allow the device to be power managed at run time)
void pm_runtime_forbid(struct device *dev);
- unset the power.runtime_auto flag for the device and increase its usage
counter (used by the /sys/devices/.../power/control interface to
effectively prevent the device from being power managed at run time)
It is safe to execute the following helper functions from interrupt context:
pm_request_idle()
@ -382,6 +402,18 @@ may be desirable to suspend the device as soon as ->probe() or ->remove() has
finished, so the PM core uses pm_runtime_idle_sync() to invoke the
subsystem-level idle callback for the device at that time.
The user space can effectively disallow the driver of the device to power manage
it at run time by changing the value of its /sys/devices/.../power/control
attribute to "on", which causes pm_runtime_forbid() to be called. In principle,
this mechanism may also be used by the driver to effectively turn off the
run-time power management of the device until the user space turns it on.
Namely, during the initialization the driver can make sure that the run-time PM
status of the device is 'active' and call pm_runtime_forbid(). It should be
noted, however, that if the user space has already intentionally changed the
value of /sys/devices/.../power/control to "auto" to allow the driver to power
manage the device at run time, the driver may confuse it by using
pm_runtime_forbid() this way.
6. Run-time PM and System Sleep
Run-time PM and system sleep (i.e., system suspend and hibernation, also known
@ -431,3 +463,64 @@ The PM core always increments the run-time usage counter before calling the
->prepare() callback and decrements it after calling the ->complete() callback.
Hence disabling run-time PM temporarily like this will not cause any run-time
suspend callbacks to be lost.
7. Generic subsystem callbacks
Subsystems may wish to conserve code space by using the set of generic power
management callbacks provided by the PM core, defined in
driver/base/power/generic_ops.c:
int pm_generic_runtime_idle(struct device *dev);
- invoke the ->runtime_idle() callback provided by the driver of this
device, if defined, and call pm_runtime_suspend() for this device if the
return value is 0 or the callback is not defined
int pm_generic_runtime_suspend(struct device *dev);
- invoke the ->runtime_suspend() callback provided by the driver of this
device and return its result, or return -EINVAL if not defined
int pm_generic_runtime_resume(struct device *dev);
- invoke the ->runtime_resume() callback provided by the driver of this
device and return its result, or return -EINVAL if not defined
int pm_generic_suspend(struct device *dev);
- if the device has not been suspended at run time, invoke the ->suspend()
callback provided by its driver and return its result, or return 0 if not
defined
int pm_generic_resume(struct device *dev);
- invoke the ->resume() callback provided by the driver of this device and,
if successful, change the device's runtime PM status to 'active'
int pm_generic_freeze(struct device *dev);
- if the device has not been suspended at run time, invoke the ->freeze()
callback provided by its driver and return its result, or return 0 if not
defined
int pm_generic_thaw(struct device *dev);
- if the device has not been suspended at run time, invoke the ->thaw()
callback provided by its driver and return its result, or return 0 if not
defined
int pm_generic_poweroff(struct device *dev);
- if the device has not been suspended at run time, invoke the ->poweroff()
callback provided by its driver and return its result, or return 0 if not
defined
int pm_generic_restore(struct device *dev);
- invoke the ->restore() callback provided by the driver of this device and,
if successful, change the device's runtime PM status to 'active'
These functions can be assigned to the ->runtime_idle(), ->runtime_suspend(),
->runtime_resume(), ->suspend(), ->resume(), ->freeze(), ->thaw(), ->poweroff(),
or ->restore() callback pointers in the subsystem-level dev_pm_ops structures.
If a subsystem wishes to use all of them at the same time, it can simply assign
the GENERIC_SUBSYS_PM_OPS macro, defined in include/linux/pm.h, to its
dev_pm_ops structure pointer.
Device drivers that wish to use the same function as a system suspend, freeze,
poweroff and run-time suspend callback, and similarly for system resume, thaw,
restore, and run-time resume, can achieve this with the help of the
UNIVERSAL_DEV_PM_OPS macro defined in include/linux/pm.h (possibly setting its
last argument to NULL).

View File

@ -21,6 +21,15 @@ Required properties:
- fsl,qe-num-snums: define how many serial number(SNUM) the QE can use for the
threads.
Optional properties:
- fsl,firmware-phandle:
Usage: required only if there is no fsl,qe-firmware child node
Value type: <phandle>
Definition: Points to a firmware node (see "QE Firmware Node" below)
that contains the firmware that should be uploaded for this QE.
The compatible property for the firmware node should say,
"fsl,qe-firmware".
Recommended properties
- brg-frequency : the internal clock source frequency for baud-rate
generators in Hz.
@ -59,3 +68,48 @@ Example:
reg = <0 c000>;
};
};
* QE Firmware Node
This node defines a firmware binary that is embedded in the device tree, for
the purpose of passing the firmware from bootloader to the kernel, or from
the hypervisor to the guest.
The firmware node itself contains the firmware binary contents, a compatible
property, and any firmware-specific properties. The node should be placed
inside a QE node that needs it. Doing so eliminates the need for a
fsl,firmware-phandle property. Other QE nodes that need the same firmware
should define an fsl,firmware-phandle property that points to the firmware node
in the first QE node.
The fsl,firmware property can be specified in the DTS (possibly using incbin)
or can be inserted by the boot loader at boot time.
Required properties:
- compatible
Usage: required
Value type: <string>
Definition: A standard property. Specify a string that indicates what
kind of firmware it is. For QE, this should be "fsl,qe-firmware".
- fsl,firmware
Usage: required
Value type: <prop-encoded-array>, encoded as an array of bytes
Definition: A standard property. This property contains the firmware
binary "blob".
Example:
qe1@e0080000 {
compatible = "fsl,qe";
qe_firmware:qe-firmware {
compatible = "fsl,qe-firmware";
fsl,firmware = [0x70 0xcd 0x00 0x00 0x01 0x46 0x45 ...];
};
...
};
qe2@e0090000 {
compatible = "fsl,qe";
fsl,firmware-phandle = <&qe_firmware>;
...
};

View File

@ -44,21 +44,29 @@ Example:
compatible = "fsl,mpc8349-dma-channel", "fsl,elo-dma-channel";
cell-index = <0>;
reg = <0 0x80>;
interrupt-parent = <&ipic>;
interrupts = <71 8>;
};
dma-channel@80 {
compatible = "fsl,mpc8349-dma-channel", "fsl,elo-dma-channel";
cell-index = <1>;
reg = <0x80 0x80>;
interrupt-parent = <&ipic>;
interrupts = <71 8>;
};
dma-channel@100 {
compatible = "fsl,mpc8349-dma-channel", "fsl,elo-dma-channel";
cell-index = <2>;
reg = <0x100 0x80>;
interrupt-parent = <&ipic>;
interrupts = <71 8>;
};
dma-channel@180 {
compatible = "fsl,mpc8349-dma-channel", "fsl,elo-dma-channel";
cell-index = <3>;
reg = <0x180 0x80>;
interrupt-parent = <&ipic>;
interrupts = <71 8>;
};
};

View File

@ -2,15 +2,14 @@
Required properties :
- device_type : Should be "i2c"
- reg : Offset and length of the register set for the device
- compatible : should be "fsl,CHIP-i2c" where CHIP is the name of a
compatible processor, e.g. mpc8313, mpc8543, mpc8544, mpc5121,
mpc5200 or mpc5200b. For the mpc5121, an additional node
"fsl,mpc5121-i2c-ctrl" is required as shown in the example below.
Recommended properties :
- compatible : compatibility list with 2 entries, the first should
be "fsl,CHIP-i2c" where CHIP is the name of a compatible processor,
e.g. mpc8313, mpc8543, mpc8544, mpc5200 or mpc5200b. The second one
should be "fsl-i2c".
- interrupts : <a b> where a is the interrupt number and b is a
field that represents an encoding of the sense and level
information for the interrupt. This should be encoded based on
@ -24,25 +23,40 @@ Recommended properties :
Examples :
/* MPC5121 based board */
i2c@1740 {
#address-cells = <1>;
#size-cells = <0>;
compatible = "fsl,mpc5121-i2c", "fsl-i2c";
reg = <0x1740 0x20>;
interrupts = <11 0x8>;
interrupt-parent = <&ipic>;
clock-frequency = <100000>;
};
i2ccontrol@1760 {
compatible = "fsl,mpc5121-i2c-ctrl";
reg = <0x1760 0x8>;
};
/* MPC5200B based board */
i2c@3d00 {
#address-cells = <1>;
#size-cells = <0>;
compatible = "fsl,mpc5200b-i2c","fsl,mpc5200-i2c","fsl-i2c";
cell-index = <0>;
reg = <0x3d00 0x40>;
interrupts = <2 15 0>;
interrupt-parent = <&mpc5200_pic>;
fsl,preserve-clocking;
};
/* MPC8544 base board */
i2c@3100 {
#address-cells = <1>;
#size-cells = <0>;
cell-index = <1>;
compatible = "fsl,mpc8544-i2c", "fsl-i2c";
reg = <0x3100 0x100>;
interrupts = <43 2>;
interrupt-parent = <&mpic>;
clock-frequency = <400000>;
};

View File

@ -102,7 +102,7 @@ args: unsigned long
see also: include/linux/kvm.h
This ioctl stores the state of the cpu at the guest real address given as
argument, unless one of the following values defined in include/linux/kvm.h
is given as arguement:
is given as argument:
KVM_S390_STORE_STATUS_NOADDR - the CPU stores its status to the save area in
absolute lowcore as defined by the principles of operation
KVM_S390_STORE_STATUS_PREFIXED - the CPU stores its status to the save area in

View File

@ -989,8 +989,8 @@ Changes from 20040709 to 20040716
* Remove redundant port_cmp != 2 check in if
(!port_cmp) { .... if (port_cmp != 2).... }
* Clock changes: removed struct clk_data and timerList.
* Clock changes: seperate nodev_tmo and els_retry_delay into 2
seperate timers and convert to 1 argument changed
* Clock changes: separate nodev_tmo and els_retry_delay into 2
separate timers and convert to 1 argument changed
LPFC_NODE_FARP_PEND_t to struct lpfc_node_farp_pend convert
ipfarp_tmo to 1 argument convert target struct tmofunc and
rtplunfunc to 1 argument * cr_count, cr_delay and
@ -1514,7 +1514,7 @@ Changes from 20040402 to 20040409
* Remove unused elxclock declaration in elx_sli.h.
* Since everywhere IOCB_ENTRY is used, the return value is cast,
move the cast into the macro.
* Split ioctls out into seperate files
* Split ioctls out into separate files
Changes from 20040326 to 20040402
@ -1534,7 +1534,7 @@ Changes from 20040326 to 20040402
* Unused variable cleanup
* Use Linux list macros for DMABUF_t
* Break up ioctls into 3 sections, dfc, util, hbaapi
rearranged code so this could be easily seperated into a
rearranged code so this could be easily separated into a
differnet module later All 3 are currently turned on by
defines in lpfc_ioctl.c LPFC_DFC_IOCTL, LPFC_UTIL_IOCTL,
LPFC_HBAAPI_IOCTL
@ -1551,7 +1551,7 @@ Changes from 20040326 to 20040402
started by lpfc_online(). lpfc_offline() only stopped
els_timeout routine. It now stops all timeout routines
associated with that hba.
* Replace seperate next and prev pointers in struct
* Replace separate next and prev pointers in struct
lpfc_bindlist with list_head type. In elxHBA_t, replace
fc_nlpbind_start and _end with fc_nlpbind_list and use
list_head macros to access it.

View File

@ -105,6 +105,10 @@ write_wakeup() - May be called at any point between open and close.
is permitted to call the driver write method from
this function. In such a situation defer it.
dcd_change() - Report to the tty line the current DCD pin status
changes and the relative timestamp. The timestamp
can be NULL.
Driver Access

View File

@ -1812,7 +1812,7 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
Module snd-ua101
----------------
Module for the Edirol UA-101 audio/MIDI interface.
Module for the Edirol UA-101/UA-1000 audio/MIDI interfaces.
This module supports multiple devices, autoprobe and hotplugging.

View File

@ -573,11 +573,14 @@ Because other nodes' memory may be free. This means system total status
may be not fatal yet.
If this is set to 2, the kernel panics compulsorily even on the
above-mentioned.
above-mentioned. Even oom happens under memory cgroup, the whole
system panics.
The default value is 0.
1 and 2 are for failover of clustering. Please select either
according to your policy of failover.
panic_on_oom=2+kdump gives you very strong tool to investigate
why oom happens. You can get snapshot.
=============================================================

View File

@ -4,6 +4,8 @@ highres.txt
- High resolution timers and dynamic ticks design notes
hpet.txt
- High Precision Event Timer Driver for Linux
hpet_example.c
- sample hpet timer test program
hrtimers.txt
- subsystem for high-resolution kernel timers
timer_stats.txt

View File

@ -0,0 +1,8 @@
# kbuild trick to avoid linker error. Can be omitted if a module is built.
obj- := dummy.o
# List of programs to build
hostprogs-y := hpet_example
# Tell kbuild to always build the programs
always := $(hostprogs-y)

View File

@ -26,274 +26,5 @@ initialization. An example of this initialization can be found in
arch/x86/kernel/hpet.c.
The driver provides a userspace API which resembles the API found in the
RTC driver framework. An example user space program is provided below.
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <memory.h>
#include <malloc.h>
#include <time.h>
#include <ctype.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <signal.h>
#include <fcntl.h>
#include <errno.h>
#include <sys/time.h>
#include <linux/hpet.h>
extern void hpet_open_close(int, const char **);
extern void hpet_info(int, const char **);
extern void hpet_poll(int, const char **);
extern void hpet_fasync(int, const char **);
extern void hpet_read(int, const char **);
#include <sys/poll.h>
#include <sys/ioctl.h>
#include <signal.h>
struct hpet_command {
char *command;
void (*func)(int argc, const char ** argv);
} hpet_command[] = {
{
"open-close",
hpet_open_close
},
{
"info",
hpet_info
},
{
"poll",
hpet_poll
},
{
"fasync",
hpet_fasync
},
};
int
main(int argc, const char ** argv)
{
int i;
argc--;
argv++;
if (!argc) {
fprintf(stderr, "-hpet: requires command\n");
return -1;
}
for (i = 0; i < (sizeof (hpet_command) / sizeof (hpet_command[0])); i++)
if (!strcmp(argv[0], hpet_command[i].command)) {
argc--;
argv++;
fprintf(stderr, "-hpet: executing %s\n",
hpet_command[i].command);
hpet_command[i].func(argc, argv);
return 0;
}
fprintf(stderr, "do_hpet: command %s not implemented\n", argv[0]);
return -1;
}
void
hpet_open_close(int argc, const char **argv)
{
int fd;
if (argc != 1) {
fprintf(stderr, "hpet_open_close: device-name\n");
return;
}
fd = open(argv[0], O_RDONLY);
if (fd < 0)
fprintf(stderr, "hpet_open_close: open failed\n");
else
close(fd);
return;
}
void
hpet_info(int argc, const char **argv)
{
}
void
hpet_poll(int argc, const char **argv)
{
unsigned long freq;
int iterations, i, fd;
struct pollfd pfd;
struct hpet_info info;
struct timeval stv, etv;
struct timezone tz;
long usec;
if (argc != 3) {
fprintf(stderr, "hpet_poll: device-name freq iterations\n");
return;
}
freq = atoi(argv[1]);
iterations = atoi(argv[2]);
fd = open(argv[0], O_RDONLY);
if (fd < 0) {
fprintf(stderr, "hpet_poll: open of %s failed\n", argv[0]);
return;
}
if (ioctl(fd, HPET_IRQFREQ, freq) < 0) {
fprintf(stderr, "hpet_poll: HPET_IRQFREQ failed\n");
goto out;
}
if (ioctl(fd, HPET_INFO, &info) < 0) {
fprintf(stderr, "hpet_poll: failed to get info\n");
goto out;
}
fprintf(stderr, "hpet_poll: info.hi_flags 0x%lx\n", info.hi_flags);
if (info.hi_flags && (ioctl(fd, HPET_EPI, 0) < 0)) {
fprintf(stderr, "hpet_poll: HPET_EPI failed\n");
goto out;
}
if (ioctl(fd, HPET_IE_ON, 0) < 0) {
fprintf(stderr, "hpet_poll, HPET_IE_ON failed\n");
goto out;
}
pfd.fd = fd;
pfd.events = POLLIN;
for (i = 0; i < iterations; i++) {
pfd.revents = 0;
gettimeofday(&stv, &tz);
if (poll(&pfd, 1, -1) < 0)
fprintf(stderr, "hpet_poll: poll failed\n");
else {
long data;
gettimeofday(&etv, &tz);
usec = stv.tv_sec * 1000000 + stv.tv_usec;
usec = (etv.tv_sec * 1000000 + etv.tv_usec) - usec;
fprintf(stderr,
"hpet_poll: expired time = 0x%lx\n", usec);
fprintf(stderr, "hpet_poll: revents = 0x%x\n",
pfd.revents);
if (read(fd, &data, sizeof(data)) != sizeof(data)) {
fprintf(stderr, "hpet_poll: read failed\n");
}
else
fprintf(stderr, "hpet_poll: data 0x%lx\n",
data);
}
}
out:
close(fd);
return;
}
static int hpet_sigio_count;
static void
hpet_sigio(int val)
{
fprintf(stderr, "hpet_sigio: called\n");
hpet_sigio_count++;
}
void
hpet_fasync(int argc, const char **argv)
{
unsigned long freq;
int iterations, i, fd, value;
sig_t oldsig;
struct hpet_info info;
hpet_sigio_count = 0;
fd = -1;
if ((oldsig = signal(SIGIO, hpet_sigio)) == SIG_ERR) {
fprintf(stderr, "hpet_fasync: failed to set signal handler\n");
return;
}
if (argc != 3) {
fprintf(stderr, "hpet_fasync: device-name freq iterations\n");
goto out;
}
fd = open(argv[0], O_RDONLY);
if (fd < 0) {
fprintf(stderr, "hpet_fasync: failed to open %s\n", argv[0]);
return;
}
if ((fcntl(fd, F_SETOWN, getpid()) == 1) ||
((value = fcntl(fd, F_GETFL)) == 1) ||
(fcntl(fd, F_SETFL, value | O_ASYNC) == 1)) {
fprintf(stderr, "hpet_fasync: fcntl failed\n");
goto out;
}
freq = atoi(argv[1]);
iterations = atoi(argv[2]);
if (ioctl(fd, HPET_IRQFREQ, freq) < 0) {
fprintf(stderr, "hpet_fasync: HPET_IRQFREQ failed\n");
goto out;
}
if (ioctl(fd, HPET_INFO, &info) < 0) {
fprintf(stderr, "hpet_fasync: failed to get info\n");
goto out;
}
fprintf(stderr, "hpet_fasync: info.hi_flags 0x%lx\n", info.hi_flags);
if (info.hi_flags && (ioctl(fd, HPET_EPI, 0) < 0)) {
fprintf(stderr, "hpet_fasync: HPET_EPI failed\n");
goto out;
}
if (ioctl(fd, HPET_IE_ON, 0) < 0) {
fprintf(stderr, "hpet_fasync, HPET_IE_ON failed\n");
goto out;
}
for (i = 0; i < iterations; i++) {
(void) pause();
fprintf(stderr, "hpet_fasync: count = %d\n", hpet_sigio_count);
}
out:
signal(SIGIO, oldsig);
if (fd >= 0)
close(fd);
return;
}
RTC driver framework. An example user space program is provided in
file:Documentation/timers/hpet_example.c

View File

@ -0,0 +1,269 @@
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <memory.h>
#include <malloc.h>
#include <time.h>
#include <ctype.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <signal.h>
#include <fcntl.h>
#include <errno.h>
#include <sys/time.h>
#include <linux/hpet.h>
extern void hpet_open_close(int, const char **);
extern void hpet_info(int, const char **);
extern void hpet_poll(int, const char **);
extern void hpet_fasync(int, const char **);
extern void hpet_read(int, const char **);
#include <sys/poll.h>
#include <sys/ioctl.h>
#include <signal.h>
struct hpet_command {
char *command;
void (*func)(int argc, const char ** argv);
} hpet_command[] = {
{
"open-close",
hpet_open_close
},
{
"info",
hpet_info
},
{
"poll",
hpet_poll
},
{
"fasync",
hpet_fasync
},
};
int
main(int argc, const char ** argv)
{
int i;
argc--;
argv++;
if (!argc) {
fprintf(stderr, "-hpet: requires command\n");
return -1;
}
for (i = 0; i < (sizeof (hpet_command) / sizeof (hpet_command[0])); i++)
if (!strcmp(argv[0], hpet_command[i].command)) {
argc--;
argv++;
fprintf(stderr, "-hpet: executing %s\n",
hpet_command[i].command);
hpet_command[i].func(argc, argv);
return 0;
}
fprintf(stderr, "do_hpet: command %s not implemented\n", argv[0]);
return -1;
}
void
hpet_open_close(int argc, const char **argv)
{
int fd;
if (argc != 1) {
fprintf(stderr, "hpet_open_close: device-name\n");
return;
}
fd = open(argv[0], O_RDONLY);
if (fd < 0)
fprintf(stderr, "hpet_open_close: open failed\n");
else
close(fd);
return;
}
void
hpet_info(int argc, const char **argv)
{
}
void
hpet_poll(int argc, const char **argv)
{
unsigned long freq;
int iterations, i, fd;
struct pollfd pfd;
struct hpet_info info;
struct timeval stv, etv;
struct timezone tz;
long usec;
if (argc != 3) {
fprintf(stderr, "hpet_poll: device-name freq iterations\n");
return;
}
freq = atoi(argv[1]);
iterations = atoi(argv[2]);
fd = open(argv[0], O_RDONLY);
if (fd < 0) {
fprintf(stderr, "hpet_poll: open of %s failed\n", argv[0]);
return;
}
if (ioctl(fd, HPET_IRQFREQ, freq) < 0) {
fprintf(stderr, "hpet_poll: HPET_IRQFREQ failed\n");
goto out;
}
if (ioctl(fd, HPET_INFO, &info) < 0) {
fprintf(stderr, "hpet_poll: failed to get info\n");
goto out;
}
fprintf(stderr, "hpet_poll: info.hi_flags 0x%lx\n", info.hi_flags);
if (info.hi_flags && (ioctl(fd, HPET_EPI, 0) < 0)) {
fprintf(stderr, "hpet_poll: HPET_EPI failed\n");
goto out;
}
if (ioctl(fd, HPET_IE_ON, 0) < 0) {
fprintf(stderr, "hpet_poll, HPET_IE_ON failed\n");
goto out;
}
pfd.fd = fd;
pfd.events = POLLIN;
for (i = 0; i < iterations; i++) {
pfd.revents = 0;
gettimeofday(&stv, &tz);
if (poll(&pfd, 1, -1) < 0)
fprintf(stderr, "hpet_poll: poll failed\n");
else {
long data;
gettimeofday(&etv, &tz);
usec = stv.tv_sec * 1000000 + stv.tv_usec;
usec = (etv.tv_sec * 1000000 + etv.tv_usec) - usec;
fprintf(stderr,
"hpet_poll: expired time = 0x%lx\n", usec);
fprintf(stderr, "hpet_poll: revents = 0x%x\n",
pfd.revents);
if (read(fd, &data, sizeof(data)) != sizeof(data)) {
fprintf(stderr, "hpet_poll: read failed\n");
}
else
fprintf(stderr, "hpet_poll: data 0x%lx\n",
data);
}
}
out:
close(fd);
return;
}
static int hpet_sigio_count;
static void
hpet_sigio(int val)
{
fprintf(stderr, "hpet_sigio: called\n");
hpet_sigio_count++;
}
void
hpet_fasync(int argc, const char **argv)
{
unsigned long freq;
int iterations, i, fd, value;
sig_t oldsig;
struct hpet_info info;
hpet_sigio_count = 0;
fd = -1;
if ((oldsig = signal(SIGIO, hpet_sigio)) == SIG_ERR) {
fprintf(stderr, "hpet_fasync: failed to set signal handler\n");
return;
}
if (argc != 3) {
fprintf(stderr, "hpet_fasync: device-name freq iterations\n");
goto out;
}
fd = open(argv[0], O_RDONLY);
if (fd < 0) {
fprintf(stderr, "hpet_fasync: failed to open %s\n", argv[0]);
return;
}
if ((fcntl(fd, F_SETOWN, getpid()) == 1) ||
((value = fcntl(fd, F_GETFL)) == 1) ||
(fcntl(fd, F_SETFL, value | O_ASYNC) == 1)) {
fprintf(stderr, "hpet_fasync: fcntl failed\n");
goto out;
}
freq = atoi(argv[1]);
iterations = atoi(argv[2]);
if (ioctl(fd, HPET_IRQFREQ, freq) < 0) {
fprintf(stderr, "hpet_fasync: HPET_IRQFREQ failed\n");
goto out;
}
if (ioctl(fd, HPET_INFO, &info) < 0) {
fprintf(stderr, "hpet_fasync: failed to get info\n");
goto out;
}
fprintf(stderr, "hpet_fasync: info.hi_flags 0x%lx\n", info.hi_flags);
if (info.hi_flags && (ioctl(fd, HPET_EPI, 0) < 0)) {
fprintf(stderr, "hpet_fasync: HPET_EPI failed\n");
goto out;
}
if (ioctl(fd, HPET_IE_ON, 0) < 0) {
fprintf(stderr, "hpet_fasync, HPET_IE_ON failed\n");
goto out;
}
for (i = 0; i < iterations; i++) {
(void) pause();
fprintf(stderr, "hpet_fasync: count = %d\n", hpet_sigio_count);
}
out:
signal(SIGIO, oldsig);
if (fd >= 0)
close(fd);
return;
}

View File

@ -1588,7 +1588,7 @@ module author does not need to worry about it.
When tracing is enabled, kstop_machine is called to prevent
races with the CPUS executing code being modified (which can
cause the CPU to do undesireable things), and the nops are
cause the CPU to do undesirable things), and the nops are
patched back to calls. But this time, they do not call mcount
(which is just a function stub). They now call into the ftrace
infrastructure.

View File

@ -41,8 +41,8 @@ USB-specific:
-EFBIG Host controller driver can't schedule that many ISO frames.
-EPIPE Specified endpoint is stalled. For non-control endpoints,
reset this status with usb_clear_halt().
-EPIPE The pipe type specified in the URB doesn't match the
endpoint's actual type.
-EMSGSIZE (a) endpoint maxpacket size is zero; it is not usable
in the current interface altsetting.
@ -60,6 +60,8 @@ USB-specific:
-EHOSTUNREACH URB was rejected because the device is suspended.
-ENOEXEC A control URB doesn't contain a Setup packet.
**************************************************************************
* Error codes returned by in urb->status *

View File

@ -2,7 +2,7 @@
Alan Stern <stern@rowland.harvard.edu>
November 10, 2009
December 11, 2009
@ -29,9 +29,9 @@ covered to some extent (see Documentation/power/*.txt for more
information about system PM).
Note: Dynamic PM support for USB is present only if the kernel was
built with CONFIG_USB_SUSPEND enabled. System PM support is present
only if the kernel was built with CONFIG_SUSPEND or CONFIG_HIBERNATION
enabled.
built with CONFIG_USB_SUSPEND enabled (which depends on
CONFIG_PM_RUNTIME). System PM support is present only if the kernel
was built with CONFIG_SUSPEND or CONFIG_HIBERNATION enabled.
What is Remote Wakeup?
@ -229,6 +229,11 @@ necessary operations by hand or add them to a udev script. You can
also change the idle-delay time; 2 seconds is not the best choice for
every device.
If a driver knows that its device has proper suspend/resume support,
it can enable autosuspend all by itself. For example, the video
driver for a laptop's webcam might do this, since these devices are
rarely used and so should normally be autosuspended.
Sometimes it turns out that even when a device does work okay with
autosuspend there are still problems. For example, there are
experimental patches adding autosuspend support to the usbhid driver,
@ -321,69 +326,81 @@ driver does so by calling these six functions:
void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
The functions work by maintaining a counter in the usb_interface
structure. When intf->pm_usage_count is > 0 then the interface is
deemed to be busy, and the kernel will not autosuspend the interface's
device. When intf->pm_usage_count is <= 0 then the interface is
considered to be idle, and the kernel may autosuspend the device.
The functions work by maintaining a usage counter in the
usb_interface's embedded device structure. When the counter is > 0
then the interface is deemed to be busy, and the kernel will not
autosuspend the interface's device. When the usage counter is = 0
then the interface is considered to be idle, and the kernel may
autosuspend the device.
(There is a similar pm_usage_count field in struct usb_device,
(There is a similar usage counter field in struct usb_device,
associated with the device itself rather than any of its interfaces.
This field is used only by the USB core.)
This counter is used only by the USB core.)
Drivers must not modify intf->pm_usage_count directly; its value
should be changed only be using the functions listed above. Drivers
are responsible for insuring that the overall change to pm_usage_count
during their lifetime balances out to 0 (it may be necessary for the
disconnect method to call usb_autopm_put_interface() one or more times
to fulfill this requirement). The first two routines use the PM mutex
in struct usb_device for mutual exclusion; drivers using the async
routines are responsible for their own synchronization and mutual
exclusion.
Drivers need not be concerned about balancing changes to the usage
counter; the USB core will undo any remaining "get"s when a driver
is unbound from its interface. As a corollary, drivers must not call
any of the usb_autopm_* functions after their diconnect() routine has
returned.
usb_autopm_get_interface() increments pm_usage_count and
attempts an autoresume if the new value is > 0 and the
device is suspended.
Drivers using the async routines are responsible for their own
synchronization and mutual exclusion.
usb_autopm_put_interface() decrements pm_usage_count and
attempts an autosuspend if the new value is <= 0 and the
device isn't suspended.
usb_autopm_get_interface() increments the usage counter and
does an autoresume if the device is suspended. If the
autoresume fails, the counter is decremented back.
usb_autopm_put_interface() decrements the usage counter and
attempts an autosuspend if the new value is = 0.
usb_autopm_get_interface_async() and
usb_autopm_put_interface_async() do almost the same things as
their non-async counterparts. The differences are: they do
not acquire the PM mutex, and they use a workqueue to do their
their non-async counterparts. The big difference is that they
use a workqueue to do the resume or suspend part of their
jobs. As a result they can be called in an atomic context,
such as an URB's completion handler, but when they return the
device will not generally not yet be in the desired state.
device will generally not yet be in the desired state.
usb_autopm_get_interface_no_resume() and
usb_autopm_put_interface_no_suspend() merely increment or
decrement the pm_usage_count value; they do not attempt to
carry out an autoresume or an autosuspend. Hence they can be
called in an atomic context.
decrement the usage counter; they do not attempt to carry out
an autoresume or an autosuspend. Hence they can be called in
an atomic context.
The conventional usage pattern is that a driver calls
The simplest usage pattern is that a driver calls
usb_autopm_get_interface() in its open routine and
usb_autopm_put_interface() in its close or release routine. But
other patterns are possible.
usb_autopm_put_interface() in its close or release routine. But other
patterns are possible.
The autosuspend attempts mentioned above will often fail for one
reason or another. For example, the power/level attribute might be
set to "on", or another interface in the same device might not be
idle. This is perfectly normal. If the reason for failure was that
the device hasn't been idle for long enough, a delayed workqueue
routine is automatically set up to carry out the operation when the
autosuspend idle-delay has expired.
the device hasn't been idle for long enough, a timer is scheduled to
carry out the operation automatically when the autosuspend idle-delay
has expired.
Autoresume attempts also can fail, although failure would mean that
the device is no longer present or operating properly. Unlike
autosuspend, there's no delay for an autoresume.
autosuspend, there's no idle-delay for an autoresume.
Other parts of the driver interface
-----------------------------------
Drivers can enable autosuspend for their devices by calling
usb_enable_autosuspend(struct usb_device *udev);
in their probe() routine, if they know that the device is capable of
suspending and resuming correctly. This is exactly equivalent to
writing "auto" to the device's power/level attribute. Likewise,
drivers can disable autosuspend by calling
usb_disable_autosuspend(struct usb_device *udev);
This is exactly the same as writing "on" to the power/level attribute.
Sometimes a driver needs to make sure that remote wakeup is enabled
during autosuspend. For example, there's not much point
autosuspending a keyboard if the user can't cause the keyboard to do a
@ -395,26 +412,27 @@ though, setting this flag won't cause the kernel to autoresume it.
Normally a driver would set this flag in its probe method, at which
time the device is guaranteed not to be autosuspended.)
The synchronous usb_autopm_* routines have to run in a sleepable
process context; they must not be called from an interrupt handler or
while holding a spinlock. In fact, the entire autosuspend mechanism
is not well geared toward interrupt-driven operation. However there
is one thing a driver can do in an interrupt handler:
If a driver does its I/O asynchronously in interrupt context, it
should call usb_autopm_get_interface_async() before starting output and
usb_autopm_put_interface_async() when the output queue drains. When
it receives an input event, it should call
usb_mark_last_busy(struct usb_device *udev);
This sets udev->last_busy to the current time. udev->last_busy is the
field used for idle-delay calculations; updating it will cause any
pending autosuspend to be moved back. The usb_autopm_* routines will
also set the last_busy field to the current time.
in the event handler. This sets udev->last_busy to the current time.
udev->last_busy is the field used for idle-delay calculations;
updating it will cause any pending autosuspend to be moved back. Most
of the usb_autopm_* routines will also set the last_busy field to the
current time.
Calling urb_mark_last_busy() from within an URB completion handler is
subject to races: The kernel may have just finished deciding the
device has been idle for long enough but not yet gotten around to
calling the driver's suspend method. The driver would have to be
responsible for synchronizing its suspend method with its URB
completion handler and causing the autosuspend to fail with -EBUSY if
an URB had completed too recently.
Asynchronous operation is always subject to races. For example, a
driver may call one of the usb_autopm_*_interface_async() routines at
a time when the core has just finished deciding the device has been
idle for long enough but not yet gotten around to calling the driver's
suspend method. The suspend method must be responsible for
synchronizing with the output request routine and the URB completion
handler; it should cause autosuspends to fail with -EBUSY if the
driver needs to use the device.
External suspend calls should never be allowed to fail in this way,
only autosuspend calls. The driver can tell them apart by checking
@ -422,75 +440,23 @@ the PM_EVENT_AUTO bit in the message.event argument to the suspend
method; this bit will be set for internal PM events (autosuspend) and
clear for external PM events.
Many of the ingredients in the autosuspend framework are oriented
towards interfaces: The usb_interface structure contains the
pm_usage_cnt field, and the usb_autopm_* routines take an interface
pointer as their argument. But somewhat confusingly, a few of the
pieces (i.e., usb_mark_last_busy()) use the usb_device structure
instead. Drivers need to keep this straight; they can call
interface_to_usbdev() to find the device structure for a given
interface.
Mutual exclusion
----------------
Locking requirements
--------------------
All three suspend/resume methods are always called while holding the
usb_device's PM mutex. For external events -- but not necessarily for
autosuspend or autoresume -- the device semaphore (udev->dev.sem) will
also be held. This implies that external suspend/resume events are
mutually exclusive with calls to probe, disconnect, pre_reset, and
post_reset; the USB core guarantees that this is true of internal
suspend/resume events as well.
For external events -- but not necessarily for autosuspend or
autoresume -- the device semaphore (udev->dev.sem) will be held when a
suspend or resume method is called. This implies that external
suspend/resume events are mutually exclusive with calls to probe,
disconnect, pre_reset, and post_reset; the USB core guarantees that
this is true of autosuspend/autoresume events as well.
If a driver wants to block all suspend/resume calls during some
critical section, it can simply acquire udev->pm_mutex. Note that
calls to resume may be triggered indirectly. Block IO due to memory
allocations can make the vm subsystem resume a device. Thus while
holding this lock you must not allocate memory with GFP_KERNEL or
GFP_NOFS.
Alternatively, if the critical section might call some of the
usb_autopm_* routines, the driver can avoid deadlock by doing:
down(&udev->dev.sem);
rc = usb_autopm_get_interface(intf);
and at the end of the critical section:
if (!rc)
usb_autopm_put_interface(intf);
up(&udev->dev.sem);
Holding the device semaphore will block all external PM calls, and the
usb_autopm_get_interface() will prevent any internal PM calls, even if
it fails. (Exercise: Why?)
The rules for locking order are:
Never acquire any device semaphore while holding any PM mutex.
Never acquire udev->pm_mutex while holding the PM mutex for
a device that isn't a descendant of udev.
In other words, PM mutexes should only be acquired going up the device
tree, and they should be acquired only after locking all the device
semaphores you need to hold. These rules don't matter to drivers very
much; they usually affect just the USB core.
Still, drivers do need to be careful. For example, many drivers use a
private mutex to synchronize their normal I/O activities with their
disconnect method. Now if the driver supports autosuspend then it
must call usb_autopm_put_interface() from somewhere -- maybe from its
close method. It should make the call while holding the private mutex,
since a driver shouldn't call any of the usb_autopm_* functions for an
interface from which it has been unbound.
But the usb_autpm_* routines always acquire the device's PM mutex, and
consequently the locking order has to be: private mutex first, PM
mutex second. Since the suspend method is always called with the PM
mutex held, it mustn't try to acquire the private mutex. It has to
synchronize with the driver's I/O activities in some other way.
critical section, the best way is to lock the device and call
usb_autopm_get_interface() (and do the reverse at the end of the
critical section). Holding the device semaphore will block all
external PM calls, and the usb_autopm_get_interface() will prevent any
internal PM calls, even if it fails. (Exercise: Why?)
Interaction between dynamic PM and system PM
@ -499,22 +465,11 @@ synchronize with the driver's I/O activities in some other way.
Dynamic power management and system power management can interact in
a couple of ways.
Firstly, a device may already be manually suspended or autosuspended
when a system suspend occurs. Since system suspends are supposed to
be as transparent as possible, the device should remain suspended
following the system resume. The 2.6.23 kernel obeys this principle
for manually suspended devices but not for autosuspended devices; they
do get resumed when the system wakes up. (Presumably they will be
autosuspended again after their idle-delay time expires.) In later
kernels this behavior will be fixed.
(There is an exception. If a device would undergo a reset-resume
instead of a normal resume, and the device is enabled for remote
wakeup, then the reset-resume takes place even if the device was
already suspended when the system suspend began. The justification is
that a reset-resume is a kind of remote-wakeup event. Or to put it
another way, a device which needs a reset won't be able to generate
normal remote-wakeup signals, so it ought to be resumed immediately.)
Firstly, a device may already be autosuspended when a system suspend
occurs. Since system suspends are supposed to be as transparent as
possible, the device should remain suspended following the system
resume. But this theory may not work out well in practice; over time
the kernel's behavior in this regard has changed.
Secondly, a dynamic power-management event may occur as a system
suspend is underway. The window for this is short, since system

View File

@ -4,23 +4,35 @@ active_mm.txt
- An explanation from Linus about tsk->active_mm vs tsk->mm.
balance
- various information on memory balancing.
hugepage-mmap.c
- Example app using huge page memory with the mmap system call.
hugepage-shm.c
- Example app using huge page memory with Sys V shared memory system calls.
hugetlbpage.txt
- a brief summary of hugetlbpage support in the Linux kernel.
hwpoison.txt
- explains what hwpoison is
ksm.txt
- how to use the Kernel Samepage Merging feature.
locking
- info on how locking and synchronization is done in the Linux vm code.
map_hugetlb.c
- an example program that uses the MAP_HUGETLB mmap flag.
numa
- information about NUMA specific code in the Linux vm.
numa_memory_policy.txt
- documentation of concepts and APIs of the 2.6 memory policy support.
overcommit-accounting
- description of the Linux kernels overcommit handling modes.
page-types.c
- Tool for querying page flags
page_migration
- description of page migration in NUMA systems.
pagemap.txt
- pagemap, from the userspace perspective
slabinfo.c
- source code for a tool to get reports about slabs.
slub.txt
- a short users guide for SLUB.
map_hugetlb.c
- an example program that uses the MAP_HUGETLB mmap flag.
unevictable-lru.txt
- Unevictable LRU infrastructure

View File

@ -2,7 +2,7 @@
obj- := dummy.o
# List of programs to build
hostprogs-y := slabinfo page-types
hostprogs-y := slabinfo page-types hugepage-mmap hugepage-shm map_hugetlb
# Tell kbuild to always build the programs
always := $(hostprogs-y)

View File

@ -0,0 +1,91 @@
/*
* hugepage-mmap:
*
* Example of using huge page memory in a user application using the mmap
* system call. Before running this application, make sure that the
* administrator has mounted the hugetlbfs filesystem (on some directory
* like /mnt) using the command mount -t hugetlbfs nodev /mnt. In this
* example, the app is requesting memory of size 256MB that is backed by
* huge pages.
*
* For the ia64 architecture, the Linux kernel reserves Region number 4 for
* huge pages. That means that if one requires a fixed address, a huge page
* aligned address starting with 0x800000... will be required. If a fixed
* address is not required, the kernel will select an address in the proper
* range.
* Other architectures, such as ppc64, i386 or x86_64 are not so constrained.
*/
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/mman.h>
#include <fcntl.h>
#define FILE_NAME "/mnt/hugepagefile"
#define LENGTH (256UL*1024*1024)
#define PROTECTION (PROT_READ | PROT_WRITE)
/* Only ia64 requires this */
#ifdef __ia64__
#define ADDR (void *)(0x8000000000000000UL)
#define FLAGS (MAP_SHARED | MAP_FIXED)
#else
#define ADDR (void *)(0x0UL)
#define FLAGS (MAP_SHARED)
#endif
static void check_bytes(char *addr)
{
printf("First hex is %x\n", *((unsigned int *)addr));
}
static void write_bytes(char *addr)
{
unsigned long i;
for (i = 0; i < LENGTH; i++)
*(addr + i) = (char)i;
}
static void read_bytes(char *addr)
{
unsigned long i;
check_bytes(addr);
for (i = 0; i < LENGTH; i++)
if (*(addr + i) != (char)i) {
printf("Mismatch at %lu\n", i);
break;
}
}
int main(void)
{
void *addr;
int fd;
fd = open(FILE_NAME, O_CREAT | O_RDWR, 0755);
if (fd < 0) {
perror("Open failed");
exit(1);
}
addr = mmap(ADDR, LENGTH, PROTECTION, FLAGS, fd, 0);
if (addr == MAP_FAILED) {
perror("mmap");
unlink(FILE_NAME);
exit(1);
}
printf("Returned address is %p\n", addr);
check_bytes(addr);
write_bytes(addr);
read_bytes(addr);
munmap(addr, LENGTH);
close(fd);
unlink(FILE_NAME);
return 0;
}

View File

@ -0,0 +1,98 @@
/*
* hugepage-shm:
*
* Example of using huge page memory in a user application using Sys V shared
* memory system calls. In this example the app is requesting 256MB of
* memory that is backed by huge pages. The application uses the flag
* SHM_HUGETLB in the shmget system call to inform the kernel that it is
* requesting huge pages.
*
* For the ia64 architecture, the Linux kernel reserves Region number 4 for
* huge pages. That means that if one requires a fixed address, a huge page
* aligned address starting with 0x800000... will be required. If a fixed
* address is not required, the kernel will select an address in the proper
* range.
* Other architectures, such as ppc64, i386 or x86_64 are not so constrained.
*
* Note: The default shared memory limit is quite low on many kernels,
* you may need to increase it via:
*
* echo 268435456 > /proc/sys/kernel/shmmax
*
* This will increase the maximum size per shared memory segment to 256MB.
* The other limit that you will hit eventually is shmall which is the
* total amount of shared memory in pages. To set it to 16GB on a system
* with a 4kB pagesize do:
*
* echo 4194304 > /proc/sys/kernel/shmall
*/
#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/mman.h>
#ifndef SHM_HUGETLB
#define SHM_HUGETLB 04000
#endif
#define LENGTH (256UL*1024*1024)
#define dprintf(x) printf(x)
/* Only ia64 requires this */
#ifdef __ia64__
#define ADDR (void *)(0x8000000000000000UL)
#define SHMAT_FLAGS (SHM_RND)
#else
#define ADDR (void *)(0x0UL)
#define SHMAT_FLAGS (0)
#endif
int main(void)
{
int shmid;
unsigned long i;
char *shmaddr;
if ((shmid = shmget(2, LENGTH,
SHM_HUGETLB | IPC_CREAT | SHM_R | SHM_W)) < 0) {
perror("shmget");
exit(1);
}
printf("shmid: 0x%x\n", shmid);
shmaddr = shmat(shmid, ADDR, SHMAT_FLAGS);
if (shmaddr == (char *)-1) {
perror("Shared memory attach failure");
shmctl(shmid, IPC_RMID, NULL);
exit(2);
}
printf("shmaddr: %p\n", shmaddr);
dprintf("Starting the writes:\n");
for (i = 0; i < LENGTH; i++) {
shmaddr[i] = (char)(i);
if (!(i % (1024 * 1024)))
dprintf(".");
}
dprintf("\n");
dprintf("Starting the Check...");
for (i = 0; i < LENGTH; i++)
if (shmaddr[i] != (char)i)
printf("\nIndex %lu mismatched\n", i);
dprintf("Done.\n");
if (shmdt((const void *)shmaddr) != 0) {
perror("Detach failure");
shmctl(shmid, IPC_RMID, NULL);
exit(3);
}
shmctl(shmid, IPC_RMID, NULL);
return 0;
}

View File

@ -299,176 +299,11 @@ map_hugetlb.c.
*******************************************************************
/*
* Example of using huge page memory in a user application using Sys V shared
* memory system calls. In this example the app is requesting 256MB of
* memory that is backed by huge pages. The application uses the flag
* SHM_HUGETLB in the shmget system call to inform the kernel that it is
* requesting huge pages.
*
* For the ia64 architecture, the Linux kernel reserves Region number 4 for
* huge pages. That means that if one requires a fixed address, a huge page
* aligned address starting with 0x800000... will be required. If a fixed
* address is not required, the kernel will select an address in the proper
* range.
* Other architectures, such as ppc64, i386 or x86_64 are not so constrained.
*
* Note: The default shared memory limit is quite low on many kernels,
* you may need to increase it via:
*
* echo 268435456 > /proc/sys/kernel/shmmax
*
* This will increase the maximum size per shared memory segment to 256MB.
* The other limit that you will hit eventually is shmall which is the
* total amount of shared memory in pages. To set it to 16GB on a system
* with a 4kB pagesize do:
*
* echo 4194304 > /proc/sys/kernel/shmall
* hugepage-shm: see Documentation/vm/hugepage-shm.c
*/
#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/mman.h>
#ifndef SHM_HUGETLB
#define SHM_HUGETLB 04000
#endif
#define LENGTH (256UL*1024*1024)
#define dprintf(x) printf(x)
#define ADDR (void *)(0x0UL) /* let kernel choose address */
#define SHMAT_FLAGS (0)
int main(void)
{
int shmid;
unsigned long i;
char *shmaddr;
if ((shmid = shmget(2, LENGTH,
SHM_HUGETLB | IPC_CREAT | SHM_R | SHM_W)) < 0) {
perror("shmget");
exit(1);
}
printf("shmid: 0x%x\n", shmid);
shmaddr = shmat(shmid, ADDR, SHMAT_FLAGS);
if (shmaddr == (char *)-1) {
perror("Shared memory attach failure");
shmctl(shmid, IPC_RMID, NULL);
exit(2);
}
printf("shmaddr: %p\n", shmaddr);
dprintf("Starting the writes:\n");
for (i = 0; i < LENGTH; i++) {
shmaddr[i] = (char)(i);
if (!(i % (1024 * 1024)))
dprintf(".");
}
dprintf("\n");
dprintf("Starting the Check...");
for (i = 0; i < LENGTH; i++)
if (shmaddr[i] != (char)i)
printf("\nIndex %lu mismatched\n", i);
dprintf("Done.\n");
if (shmdt((const void *)shmaddr) != 0) {
perror("Detach failure");
shmctl(shmid, IPC_RMID, NULL);
exit(3);
}
shmctl(shmid, IPC_RMID, NULL);
return 0;
}
*******************************************************************
/*
* Example of using huge page memory in a user application using the mmap
* system call. Before running this application, make sure that the
* administrator has mounted the hugetlbfs filesystem (on some directory
* like /mnt) using the command mount -t hugetlbfs nodev /mnt. In this
* example, the app is requesting memory of size 256MB that is backed by
* huge pages.
*
* For the ia64 architecture, the Linux kernel reserves Region number 4 for
* huge pages. That means that if one requires a fixed address, a huge page
* aligned address starting with 0x800000... will be required. If a fixed
* address is not required, the kernel will select an address in the proper
* range.
* Other architectures, such as ppc64, i386 or x86_64 are not so constrained.
* hugepage-mmap: see Documentation/vm/hugepage-mmap.c
*/
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/mman.h>
#include <fcntl.h>
#define FILE_NAME "/mnt/hugepagefile"
#define LENGTH (256UL*1024*1024)
#define PROTECTION (PROT_READ | PROT_WRITE)
#define ADDR (void *)(0x0UL) /* let kernel choose address */
#define FLAGS (MAP_SHARED)
void check_bytes(char *addr)
{
printf("First hex is %x\n", *((unsigned int *)addr));
}
void write_bytes(char *addr)
{
unsigned long i;
for (i = 0; i < LENGTH; i++)
*(addr + i) = (char)i;
}
void read_bytes(char *addr)
{
unsigned long i;
check_bytes(addr);
for (i = 0; i < LENGTH; i++)
if (*(addr + i) != (char)i) {
printf("Mismatch at %lu\n", i);
break;
}
}
int main(void)
{
void *addr;
int fd;
fd = open(FILE_NAME, O_CREAT | O_RDWR, 0755);
if (fd < 0) {
perror("Open failed");
exit(1);
}
addr = mmap(ADDR, LENGTH, PROTECTION, FLAGS, fd, 0);
if (addr == MAP_FAILED) {
perror("mmap");
unlink(FILE_NAME);
exit(1);
}
printf("Returned address is %p\n", addr);
check_bytes(addr);
write_bytes(addr);
read_bytes(addr);
munmap(addr, LENGTH);
close(fd);
unlink(FILE_NAME);
return 0;
}

Some files were not shown because too many files have changed in this diff Show More