mirror of https://gitee.com/openkylin/linux.git
Input: synaptics-rmi4 - add SPI transport driver
Add the transport driver for devices using RMI4 over SPI. Signed-off-by: Andrew Duggan <aduggan@synaptics.com> Tested-by: Benjamin Tissoires <benjamin.tissoires@redhat.com> Tested-by: Linus Walleij <linus.walleij@linaro.org> Tested-by: Bjorn Andersson <bjorn.andersson@linaro.org> Signed-off-by: Dmitry Torokhov <dmitry.torokhov@gmail.com>
This commit is contained in:
parent
562b42d3ee
commit
8d99758dee
|
@ -18,6 +18,15 @@ config RMI4_I2C
|
|||
|
||||
If unsure, say Y.
|
||||
|
||||
config RMI4_SPI
|
||||
tristate "RMI4 SPI Support"
|
||||
depends on RMI4_CORE && SPI
|
||||
help
|
||||
Say Y here if you want to support RMI4 devices connected to a SPI
|
||||
bus.
|
||||
|
||||
If unsure, say N.
|
||||
|
||||
config RMI4_2D_SENSOR
|
||||
bool
|
||||
depends on RMI4_CORE
|
||||
|
|
|
@ -10,3 +10,4 @@ rmi_core-$(CONFIG_RMI4_F30) += rmi_f30.o
|
|||
|
||||
# Transports
|
||||
obj-$(CONFIG_RMI4_I2C) += rmi_i2c.o
|
||||
obj-$(CONFIG_RMI4_SPI) += rmi_spi.o
|
||||
|
|
|
@ -0,0 +1,547 @@
|
|||
/*
|
||||
* Copyright (c) 2011-2016 Synaptics Incorporated
|
||||
* Copyright (c) 2011 Unixphere
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License version 2 as published by
|
||||
* the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/rmi.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/spi/spi.h>
|
||||
#include <linux/irq.h>
|
||||
#include "rmi_driver.h"
|
||||
|
||||
#define RMI_SPI_DEFAULT_XFER_BUF_SIZE 64
|
||||
|
||||
#define RMI_PAGE_SELECT_REGISTER 0x00FF
|
||||
#define RMI_SPI_PAGE(addr) (((addr) >> 8) & 0x80)
|
||||
#define RMI_SPI_XFER_SIZE_LIMIT 255
|
||||
|
||||
#define BUFFER_SIZE_INCREMENT 32
|
||||
|
||||
enum rmi_spi_op {
|
||||
RMI_SPI_WRITE = 0,
|
||||
RMI_SPI_READ,
|
||||
RMI_SPI_V2_READ_UNIFIED,
|
||||
RMI_SPI_V2_READ_SPLIT,
|
||||
RMI_SPI_V2_WRITE,
|
||||
};
|
||||
|
||||
struct rmi_spi_cmd {
|
||||
enum rmi_spi_op op;
|
||||
u16 addr;
|
||||
};
|
||||
|
||||
struct rmi_spi_xport {
|
||||
struct rmi_transport_dev xport;
|
||||
struct spi_device *spi;
|
||||
|
||||
struct mutex page_mutex;
|
||||
int page;
|
||||
|
||||
int irq;
|
||||
|
||||
u8 *rx_buf;
|
||||
u8 *tx_buf;
|
||||
int xfer_buf_size;
|
||||
|
||||
struct spi_transfer *rx_xfers;
|
||||
struct spi_transfer *tx_xfers;
|
||||
int rx_xfer_count;
|
||||
int tx_xfer_count;
|
||||
};
|
||||
|
||||
static int rmi_spi_manage_pools(struct rmi_spi_xport *rmi_spi, int len)
|
||||
{
|
||||
struct spi_device *spi = rmi_spi->spi;
|
||||
int buf_size = rmi_spi->xfer_buf_size
|
||||
? rmi_spi->xfer_buf_size : RMI_SPI_DEFAULT_XFER_BUF_SIZE;
|
||||
struct spi_transfer *xfer_buf;
|
||||
void *buf;
|
||||
void *tmp;
|
||||
|
||||
while (buf_size < len)
|
||||
buf_size *= 2;
|
||||
|
||||
if (buf_size > RMI_SPI_XFER_SIZE_LIMIT)
|
||||
buf_size = RMI_SPI_XFER_SIZE_LIMIT;
|
||||
|
||||
tmp = rmi_spi->rx_buf;
|
||||
buf = devm_kzalloc(&spi->dev, buf_size * 2,
|
||||
GFP_KERNEL | GFP_DMA);
|
||||
if (!buf)
|
||||
return -ENOMEM;
|
||||
|
||||
rmi_spi->rx_buf = buf;
|
||||
rmi_spi->tx_buf = &rmi_spi->rx_buf[buf_size];
|
||||
rmi_spi->xfer_buf_size = buf_size;
|
||||
|
||||
if (tmp)
|
||||
devm_kfree(&spi->dev, tmp);
|
||||
|
||||
if (rmi_spi->xport.pdata.spi_data.read_delay_us)
|
||||
rmi_spi->rx_xfer_count = buf_size;
|
||||
else
|
||||
rmi_spi->rx_xfer_count = 1;
|
||||
|
||||
if (rmi_spi->xport.pdata.spi_data.write_delay_us)
|
||||
rmi_spi->tx_xfer_count = buf_size;
|
||||
else
|
||||
rmi_spi->tx_xfer_count = 1;
|
||||
|
||||
/*
|
||||
* Allocate a pool of spi_transfer buffers for devices which need
|
||||
* per byte delays.
|
||||
*/
|
||||
tmp = rmi_spi->rx_xfers;
|
||||
xfer_buf = devm_kzalloc(&spi->dev,
|
||||
(rmi_spi->rx_xfer_count + rmi_spi->tx_xfer_count)
|
||||
* sizeof(struct spi_transfer), GFP_KERNEL);
|
||||
if (!xfer_buf)
|
||||
return -ENOMEM;
|
||||
|
||||
rmi_spi->rx_xfers = xfer_buf;
|
||||
rmi_spi->tx_xfers = &xfer_buf[rmi_spi->rx_xfer_count];
|
||||
|
||||
if (tmp)
|
||||
devm_kfree(&spi->dev, tmp);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int rmi_spi_xfer(struct rmi_spi_xport *rmi_spi,
|
||||
const struct rmi_spi_cmd *cmd, const u8 *tx_buf,
|
||||
int tx_len, u8 *rx_buf, int rx_len)
|
||||
{
|
||||
struct spi_device *spi = rmi_spi->spi;
|
||||
struct rmi_device_platform_data_spi *spi_data =
|
||||
&rmi_spi->xport.pdata.spi_data;
|
||||
struct spi_message msg;
|
||||
struct spi_transfer *xfer;
|
||||
int ret = 0;
|
||||
int len;
|
||||
int cmd_len = 0;
|
||||
int total_tx_len;
|
||||
int i;
|
||||
u16 addr = cmd->addr;
|
||||
|
||||
spi_message_init(&msg);
|
||||
|
||||
switch (cmd->op) {
|
||||
case RMI_SPI_WRITE:
|
||||
case RMI_SPI_READ:
|
||||
cmd_len += 2;
|
||||
break;
|
||||
case RMI_SPI_V2_READ_UNIFIED:
|
||||
case RMI_SPI_V2_READ_SPLIT:
|
||||
case RMI_SPI_V2_WRITE:
|
||||
cmd_len += 4;
|
||||
break;
|
||||
}
|
||||
|
||||
total_tx_len = cmd_len + tx_len;
|
||||
len = max(total_tx_len, rx_len);
|
||||
|
||||
if (len > RMI_SPI_XFER_SIZE_LIMIT)
|
||||
return -EINVAL;
|
||||
|
||||
if (rmi_spi->xfer_buf_size < len)
|
||||
rmi_spi_manage_pools(rmi_spi, len);
|
||||
|
||||
if (addr == 0)
|
||||
/*
|
||||
* SPI needs an address. Use 0x7FF if we want to keep
|
||||
* reading from the last position of the register pointer.
|
||||
*/
|
||||
addr = 0x7FF;
|
||||
|
||||
switch (cmd->op) {
|
||||
case RMI_SPI_WRITE:
|
||||
rmi_spi->tx_buf[0] = (addr >> 8);
|
||||
rmi_spi->tx_buf[1] = addr & 0xFF;
|
||||
break;
|
||||
case RMI_SPI_READ:
|
||||
rmi_spi->tx_buf[0] = (addr >> 8) | 0x80;
|
||||
rmi_spi->tx_buf[1] = addr & 0xFF;
|
||||
break;
|
||||
case RMI_SPI_V2_READ_UNIFIED:
|
||||
break;
|
||||
case RMI_SPI_V2_READ_SPLIT:
|
||||
break;
|
||||
case RMI_SPI_V2_WRITE:
|
||||
rmi_spi->tx_buf[0] = 0x40;
|
||||
rmi_spi->tx_buf[1] = (addr >> 8) & 0xFF;
|
||||
rmi_spi->tx_buf[2] = addr & 0xFF;
|
||||
rmi_spi->tx_buf[3] = tx_len;
|
||||
break;
|
||||
}
|
||||
|
||||
if (tx_buf)
|
||||
memcpy(&rmi_spi->tx_buf[cmd_len], tx_buf, tx_len);
|
||||
|
||||
if (rmi_spi->tx_xfer_count > 1) {
|
||||
for (i = 0; i < total_tx_len; i++) {
|
||||
xfer = &rmi_spi->tx_xfers[i];
|
||||
memset(xfer, 0, sizeof(struct spi_transfer));
|
||||
xfer->tx_buf = &rmi_spi->tx_buf[i];
|
||||
xfer->len = 1;
|
||||
xfer->delay_usecs = spi_data->write_delay_us;
|
||||
spi_message_add_tail(xfer, &msg);
|
||||
}
|
||||
} else {
|
||||
xfer = rmi_spi->tx_xfers;
|
||||
memset(xfer, 0, sizeof(struct spi_transfer));
|
||||
xfer->tx_buf = rmi_spi->tx_buf;
|
||||
xfer->len = total_tx_len;
|
||||
spi_message_add_tail(xfer, &msg);
|
||||
}
|
||||
|
||||
rmi_dbg(RMI_DEBUG_XPORT, &spi->dev, "%s: cmd: %s tx_buf len: %d tx_buf: %*ph\n",
|
||||
__func__, cmd->op == RMI_SPI_WRITE ? "WRITE" : "READ",
|
||||
total_tx_len, total_tx_len, rmi_spi->tx_buf);
|
||||
|
||||
if (rx_buf) {
|
||||
if (rmi_spi->rx_xfer_count > 1) {
|
||||
for (i = 0; i < rx_len; i++) {
|
||||
xfer = &rmi_spi->rx_xfers[i];
|
||||
memset(xfer, 0, sizeof(struct spi_transfer));
|
||||
xfer->rx_buf = &rmi_spi->rx_buf[i];
|
||||
xfer->len = 1;
|
||||
xfer->delay_usecs = spi_data->read_delay_us;
|
||||
spi_message_add_tail(xfer, &msg);
|
||||
}
|
||||
} else {
|
||||
xfer = rmi_spi->rx_xfers;
|
||||
memset(xfer, 0, sizeof(struct spi_transfer));
|
||||
xfer->rx_buf = rmi_spi->rx_buf;
|
||||
xfer->len = rx_len;
|
||||
spi_message_add_tail(xfer, &msg);
|
||||
}
|
||||
}
|
||||
|
||||
ret = spi_sync(spi, &msg);
|
||||
if (ret < 0) {
|
||||
dev_err(&spi->dev, "spi xfer failed: %d\n", ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
if (rx_buf) {
|
||||
memcpy(rx_buf, rmi_spi->rx_buf, rx_len);
|
||||
rmi_dbg(RMI_DEBUG_XPORT, &spi->dev, "%s: (%d) %*ph\n",
|
||||
__func__, rx_len, rx_len, rx_buf);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* rmi_set_page - Set RMI page
|
||||
* @xport: The pointer to the rmi_transport_dev struct
|
||||
* @page: The new page address.
|
||||
*
|
||||
* RMI devices have 16-bit addressing, but some of the transport
|
||||
* implementations (like SMBus) only have 8-bit addressing. So RMI implements
|
||||
* a page address at 0xff of every page so we can reliable page addresses
|
||||
* every 256 registers.
|
||||
*
|
||||
* The page_mutex lock must be held when this function is entered.
|
||||
*
|
||||
* Returns zero on success, non-zero on failure.
|
||||
*/
|
||||
static int rmi_set_page(struct rmi_spi_xport *rmi_spi, u8 page)
|
||||
{
|
||||
struct rmi_spi_cmd cmd;
|
||||
int ret;
|
||||
|
||||
cmd.op = RMI_SPI_WRITE;
|
||||
cmd.addr = RMI_PAGE_SELECT_REGISTER;
|
||||
|
||||
ret = rmi_spi_xfer(rmi_spi, &cmd, &page, 1, NULL, 0);
|
||||
|
||||
if (ret)
|
||||
rmi_spi->page = page;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int rmi_spi_write_block(struct rmi_transport_dev *xport, u16 addr,
|
||||
const void *buf, size_t len)
|
||||
{
|
||||
struct rmi_spi_xport *rmi_spi =
|
||||
container_of(xport, struct rmi_spi_xport, xport);
|
||||
struct rmi_spi_cmd cmd;
|
||||
int ret;
|
||||
|
||||
mutex_lock(&rmi_spi->page_mutex);
|
||||
|
||||
if (RMI_SPI_PAGE(addr) != rmi_spi->page) {
|
||||
ret = rmi_set_page(rmi_spi, RMI_SPI_PAGE(addr));
|
||||
if (ret)
|
||||
goto exit;
|
||||
}
|
||||
|
||||
cmd.op = RMI_SPI_WRITE;
|
||||
cmd.addr = addr;
|
||||
|
||||
ret = rmi_spi_xfer(rmi_spi, &cmd, buf, len, NULL, 0);
|
||||
|
||||
exit:
|
||||
mutex_unlock(&rmi_spi->page_mutex);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int rmi_spi_read_block(struct rmi_transport_dev *xport, u16 addr,
|
||||
void *buf, size_t len)
|
||||
{
|
||||
struct rmi_spi_xport *rmi_spi =
|
||||
container_of(xport, struct rmi_spi_xport, xport);
|
||||
struct rmi_spi_cmd cmd;
|
||||
int ret;
|
||||
|
||||
mutex_lock(&rmi_spi->page_mutex);
|
||||
|
||||
if (RMI_SPI_PAGE(addr) != rmi_spi->page) {
|
||||
ret = rmi_set_page(rmi_spi, RMI_SPI_PAGE(addr));
|
||||
if (ret)
|
||||
goto exit;
|
||||
}
|
||||
|
||||
cmd.op = RMI_SPI_READ;
|
||||
cmd.addr = addr;
|
||||
|
||||
ret = rmi_spi_xfer(rmi_spi, &cmd, NULL, 0, buf, len);
|
||||
|
||||
exit:
|
||||
mutex_unlock(&rmi_spi->page_mutex);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static const struct rmi_transport_ops rmi_spi_ops = {
|
||||
.write_block = rmi_spi_write_block,
|
||||
.read_block = rmi_spi_read_block,
|
||||
};
|
||||
|
||||
static irqreturn_t rmi_spi_irq(int irq, void *dev_id)
|
||||
{
|
||||
struct rmi_spi_xport *rmi_spi = dev_id;
|
||||
struct rmi_device *rmi_dev = rmi_spi->xport.rmi_dev;
|
||||
int ret;
|
||||
|
||||
ret = rmi_process_interrupt_requests(rmi_dev);
|
||||
if (ret)
|
||||
rmi_dbg(RMI_DEBUG_XPORT, &rmi_dev->dev,
|
||||
"Failed to process interrupt request: %d\n", ret);
|
||||
|
||||
return IRQ_HANDLED;
|
||||
}
|
||||
|
||||
static int rmi_spi_init_irq(struct spi_device *spi)
|
||||
{
|
||||
struct rmi_spi_xport *rmi_spi = spi_get_drvdata(spi);
|
||||
int irq_flags = irqd_get_trigger_type(irq_get_irq_data(rmi_spi->irq));
|
||||
int ret;
|
||||
|
||||
if (!irq_flags)
|
||||
irq_flags = IRQF_TRIGGER_LOW;
|
||||
|
||||
ret = devm_request_threaded_irq(&spi->dev, rmi_spi->irq, NULL,
|
||||
rmi_spi_irq, irq_flags | IRQF_ONESHOT,
|
||||
dev_name(&spi->dev), rmi_spi);
|
||||
if (ret < 0) {
|
||||
dev_warn(&spi->dev, "Failed to register interrupt %d\n",
|
||||
rmi_spi->irq);
|
||||
return ret;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int rmi_spi_probe(struct spi_device *spi)
|
||||
{
|
||||
struct rmi_spi_xport *rmi_spi;
|
||||
struct rmi_device_platform_data *pdata;
|
||||
struct rmi_device_platform_data *spi_pdata = spi->dev.platform_data;
|
||||
int retval;
|
||||
|
||||
if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
|
||||
return -EINVAL;
|
||||
|
||||
rmi_spi = devm_kzalloc(&spi->dev, sizeof(struct rmi_spi_xport),
|
||||
GFP_KERNEL);
|
||||
if (!rmi_spi)
|
||||
return -ENOMEM;
|
||||
|
||||
pdata = &rmi_spi->xport.pdata;
|
||||
|
||||
if (spi_pdata)
|
||||
*pdata = *spi_pdata;
|
||||
|
||||
if (pdata->spi_data.bits_per_word)
|
||||
spi->bits_per_word = pdata->spi_data.bits_per_word;
|
||||
|
||||
if (pdata->spi_data.mode)
|
||||
spi->mode = pdata->spi_data.mode;
|
||||
|
||||
retval = spi_setup(spi);
|
||||
if (retval < 0) {
|
||||
dev_err(&spi->dev, "spi_setup failed!\n");
|
||||
return retval;
|
||||
}
|
||||
|
||||
if (spi->irq > 0)
|
||||
rmi_spi->irq = spi->irq;
|
||||
|
||||
rmi_spi->spi = spi;
|
||||
mutex_init(&rmi_spi->page_mutex);
|
||||
|
||||
rmi_spi->xport.dev = &spi->dev;
|
||||
rmi_spi->xport.proto_name = "spi";
|
||||
rmi_spi->xport.ops = &rmi_spi_ops;
|
||||
|
||||
spi_set_drvdata(spi, rmi_spi);
|
||||
|
||||
retval = rmi_spi_manage_pools(rmi_spi, RMI_SPI_DEFAULT_XFER_BUF_SIZE);
|
||||
if (retval)
|
||||
return retval;
|
||||
|
||||
/*
|
||||
* Setting the page to zero will (a) make sure the PSR is in a
|
||||
* known state, and (b) make sure we can talk to the device.
|
||||
*/
|
||||
retval = rmi_set_page(rmi_spi, 0);
|
||||
if (retval) {
|
||||
dev_err(&spi->dev, "Failed to set page select to 0.\n");
|
||||
return retval;
|
||||
}
|
||||
|
||||
retval = rmi_register_transport_device(&rmi_spi->xport);
|
||||
if (retval) {
|
||||
dev_err(&spi->dev, "failed to register transport.\n");
|
||||
return retval;
|
||||
}
|
||||
|
||||
retval = rmi_spi_init_irq(spi);
|
||||
if (retval < 0)
|
||||
return retval;
|
||||
|
||||
dev_info(&spi->dev, "registered RMI SPI driver\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int rmi_spi_remove(struct spi_device *spi)
|
||||
{
|
||||
struct rmi_spi_xport *rmi_spi = spi_get_drvdata(spi);
|
||||
|
||||
rmi_unregister_transport_device(&rmi_spi->xport);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_PM_SLEEP
|
||||
static int rmi_spi_suspend(struct device *dev)
|
||||
{
|
||||
struct spi_device *spi = to_spi_device(dev);
|
||||
struct rmi_spi_xport *rmi_spi = spi_get_drvdata(spi);
|
||||
int ret;
|
||||
|
||||
ret = rmi_driver_suspend(rmi_spi->xport.rmi_dev);
|
||||
if (ret)
|
||||
dev_warn(dev, "Failed to resume device: %d\n", ret);
|
||||
|
||||
disable_irq(rmi_spi->irq);
|
||||
if (device_may_wakeup(&spi->dev)) {
|
||||
ret = enable_irq_wake(rmi_spi->irq);
|
||||
if (!ret)
|
||||
dev_warn(dev, "Failed to enable irq for wake: %d\n",
|
||||
ret);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int rmi_spi_resume(struct device *dev)
|
||||
{
|
||||
struct spi_device *spi = to_spi_device(dev);
|
||||
struct rmi_spi_xport *rmi_spi = spi_get_drvdata(spi);
|
||||
int ret;
|
||||
|
||||
enable_irq(rmi_spi->irq);
|
||||
if (device_may_wakeup(&spi->dev)) {
|
||||
ret = disable_irq_wake(rmi_spi->irq);
|
||||
if (!ret)
|
||||
dev_warn(dev, "Failed to disable irq for wake: %d\n",
|
||||
ret);
|
||||
}
|
||||
|
||||
ret = rmi_driver_resume(rmi_spi->xport.rmi_dev);
|
||||
if (ret)
|
||||
dev_warn(dev, "Failed to resume device: %d\n", ret);
|
||||
|
||||
return ret;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_PM
|
||||
static int rmi_spi_runtime_suspend(struct device *dev)
|
||||
{
|
||||
struct spi_device *spi = to_spi_device(dev);
|
||||
struct rmi_spi_xport *rmi_spi = spi_get_drvdata(spi);
|
||||
int ret;
|
||||
|
||||
ret = rmi_driver_suspend(rmi_spi->xport.rmi_dev);
|
||||
if (ret)
|
||||
dev_warn(dev, "Failed to resume device: %d\n", ret);
|
||||
|
||||
disable_irq(rmi_spi->irq);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int rmi_spi_runtime_resume(struct device *dev)
|
||||
{
|
||||
struct spi_device *spi = to_spi_device(dev);
|
||||
struct rmi_spi_xport *rmi_spi = spi_get_drvdata(spi);
|
||||
int ret;
|
||||
|
||||
enable_irq(rmi_spi->irq);
|
||||
|
||||
ret = rmi_driver_resume(rmi_spi->xport.rmi_dev);
|
||||
if (ret)
|
||||
dev_warn(dev, "Failed to resume device: %d\n", ret);
|
||||
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
static const struct dev_pm_ops rmi_spi_pm = {
|
||||
SET_SYSTEM_SLEEP_PM_OPS(rmi_spi_suspend, rmi_spi_resume)
|
||||
SET_RUNTIME_PM_OPS(rmi_spi_runtime_suspend, rmi_spi_runtime_resume,
|
||||
NULL)
|
||||
};
|
||||
|
||||
static const struct spi_device_id rmi_id[] = {
|
||||
{ "rmi4_spi", 0 },
|
||||
{ }
|
||||
};
|
||||
MODULE_DEVICE_TABLE(spi, rmi_id);
|
||||
|
||||
static struct spi_driver rmi_spi_driver = {
|
||||
.driver = {
|
||||
.name = "rmi4_spi",
|
||||
.pm = &rmi_spi_pm,
|
||||
},
|
||||
.id_table = rmi_id,
|
||||
.probe = rmi_spi_probe,
|
||||
.remove = rmi_spi_remove,
|
||||
};
|
||||
|
||||
module_spi_driver(rmi_spi_driver);
|
||||
|
||||
MODULE_AUTHOR("Christopher Heiny <cheiny@synaptics.com>");
|
||||
MODULE_AUTHOR("Andrew Duggan <aduggan@synaptics.com>");
|
||||
MODULE_DESCRIPTION("RMI SPI driver");
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_VERSION(RMI_DRIVER_VERSION);
|
|
@ -149,6 +149,55 @@ struct rmi_f01_power_management {
|
|||
u8 doze_interval;
|
||||
};
|
||||
|
||||
/**
|
||||
* struct rmi_device_platform_data_spi - provides parameters used in SPI
|
||||
* communications. All Synaptics SPI products support a standard SPI
|
||||
* interface; some also support what is called SPI V2 mode, depending on
|
||||
* firmware and/or ASIC limitations. In V2 mode, the touch sensor can
|
||||
* support shorter delays during certain operations, and these are specified
|
||||
* separately from the standard mode delays.
|
||||
*
|
||||
* @block_delay - for standard SPI transactions consisting of both a read and
|
||||
* write operation, the delay (in microseconds) between the read and write
|
||||
* operations.
|
||||
* @split_read_block_delay_us - for V2 SPI transactions consisting of both a
|
||||
* read and write operation, the delay (in microseconds) between the read and
|
||||
* write operations.
|
||||
* @read_delay_us - the delay between each byte of a read operation in normal
|
||||
* SPI mode.
|
||||
* @write_delay_us - the delay between each byte of a write operation in normal
|
||||
* SPI mode.
|
||||
* @split_read_byte_delay_us - the delay between each byte of a read operation
|
||||
* in V2 mode.
|
||||
* @pre_delay_us - the delay before the start of a SPI transaction. This is
|
||||
* typically useful in conjunction with custom chip select assertions (see
|
||||
* below).
|
||||
* @post_delay_us - the delay after the completion of an SPI transaction. This
|
||||
* is typically useful in conjunction with custom chip select assertions (see
|
||||
* below).
|
||||
* @cs_assert - For systems where the SPI subsystem does not control the CS/SSB
|
||||
* line, or where such control is broken, you can provide a custom routine to
|
||||
* handle a GPIO as CS/SSB. This routine will be called at the beginning and
|
||||
* end of each SPI transaction. The RMI SPI implementation will wait
|
||||
* pre_delay_us after this routine returns before starting the SPI transfer;
|
||||
* and post_delay_us after completion of the SPI transfer(s) before calling it
|
||||
* with assert==FALSE.
|
||||
*/
|
||||
struct rmi_device_platform_data_spi {
|
||||
u32 block_delay_us;
|
||||
u32 split_read_block_delay_us;
|
||||
u32 read_delay_us;
|
||||
u32 write_delay_us;
|
||||
u32 split_read_byte_delay_us;
|
||||
u32 pre_delay_us;
|
||||
u32 post_delay_us;
|
||||
u8 bits_per_word;
|
||||
u16 mode;
|
||||
|
||||
void *cs_assert_data;
|
||||
int (*cs_assert)(const void *cs_assert_data, const bool assert);
|
||||
};
|
||||
|
||||
/**
|
||||
* struct rmi_device_platform_data - system specific configuration info.
|
||||
*
|
||||
|
@ -159,6 +208,8 @@ struct rmi_f01_power_management {
|
|||
struct rmi_device_platform_data {
|
||||
int reset_delay_ms;
|
||||
|
||||
struct rmi_device_platform_data_spi spi_data;
|
||||
|
||||
/* function handler pdata */
|
||||
struct rmi_2d_sensor_platform_data *sensor_pdata;
|
||||
struct rmi_f01_power_management power_management;
|
||||
|
|
Loading…
Reference in New Issue