sched/deadline: Track the "total rq utilization" too

The total rq utilization is defined as the sum of the utilisations of
tasks that are "assigned" to a runqueue, independently from their state
(TASK_RUNNING or blocked)

Tested-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Luca Abeni <luca.abeni@santannapisa.it>
Signed-off-by: Claudio Scordino <claudio@evidence.eu.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tommaso Cucinotta <tommaso.cucinotta@sssup.it>
Link: http://lkml.kernel.org/r/1495138417-6203-8-git-send-email-luca.abeni@santannapisa.it
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit is contained in:
Luca Abeni 2017-05-18 22:13:34 +02:00 committed by Ingo Molnar
parent 2d4283e9d5
commit 8fd27231c3
2 changed files with 95 additions and 34 deletions

View File

@ -51,6 +51,7 @@ void add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
dl_rq->running_bw += dl_bw;
SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
}
static inline
@ -65,25 +66,52 @@ void sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
dl_rq->running_bw = 0;
}
static inline
void add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
{
u64 old = dl_rq->this_bw;
lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
dl_rq->this_bw += dl_bw;
SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
}
static inline
void sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
{
u64 old = dl_rq->this_bw;
lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
dl_rq->this_bw -= dl_bw;
SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
if (dl_rq->this_bw > old)
dl_rq->this_bw = 0;
SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
}
void dl_change_utilization(struct task_struct *p, u64 new_bw)
{
struct rq *rq;
if (task_on_rq_queued(p))
return;
if (!p->dl.dl_non_contending)
return;
sub_running_bw(p->dl.dl_bw, &task_rq(p)->dl);
p->dl.dl_non_contending = 0;
/*
* If the timer handler is currently running and the
* timer cannot be cancelled, inactive_task_timer()
* will see that dl_not_contending is not set, and
* will not touch the rq's active utilization,
* so we are still safe.
*/
if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
put_task_struct(p);
rq = task_rq(p);
if (p->dl.dl_non_contending) {
sub_running_bw(p->dl.dl_bw, &rq->dl);
p->dl.dl_non_contending = 0;
/*
* If the timer handler is currently running and the
* timer cannot be cancelled, inactive_task_timer()
* will see that dl_not_contending is not set, and
* will not touch the rq's active utilization,
* so we are still safe.
*/
if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
put_task_struct(p);
}
sub_rq_bw(p->dl.dl_bw, &rq->dl);
add_rq_bw(new_bw, &rq->dl);
}
/*
@ -178,6 +206,8 @@ static void task_non_contending(struct task_struct *p)
if (!dl_task(p) || p->state == TASK_DEAD) {
struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
if (p->state == TASK_DEAD)
sub_rq_bw(p->dl.dl_bw, &rq->dl);
raw_spin_lock(&dl_b->lock);
__dl_clear(dl_b, p->dl.dl_bw);
__dl_clear_params(p);
@ -192,7 +222,7 @@ static void task_non_contending(struct task_struct *p)
hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL);
}
static void task_contending(struct sched_dl_entity *dl_se)
static void task_contending(struct sched_dl_entity *dl_se, int flags)
{
struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
@ -203,6 +233,9 @@ static void task_contending(struct sched_dl_entity *dl_se)
if (dl_se->dl_runtime == 0)
return;
if (flags & ENQUEUE_MIGRATED)
add_rq_bw(dl_se->dl_bw, dl_rq);
if (dl_se->dl_non_contending) {
dl_se->dl_non_contending = 0;
/*
@ -268,6 +301,7 @@ void init_dl_rq(struct dl_rq *dl_rq)
#endif
dl_rq->running_bw = 0;
dl_rq->this_bw = 0;
init_dl_rq_bw_ratio(dl_rq);
}
@ -1042,6 +1076,7 @@ static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
if (p->state == TASK_DEAD && dl_se->dl_non_contending) {
sub_running_bw(p->dl.dl_bw, dl_rq_of_se(&p->dl));
sub_rq_bw(p->dl.dl_bw, dl_rq_of_se(&p->dl));
dl_se->dl_non_contending = 0;
}
@ -1207,7 +1242,7 @@ enqueue_dl_entity(struct sched_dl_entity *dl_se,
* we want a replenishment of its runtime.
*/
if (flags & ENQUEUE_WAKEUP) {
task_contending(dl_se);
task_contending(dl_se, flags);
update_dl_entity(dl_se, pi_se);
} else if (flags & ENQUEUE_REPLENISH) {
replenish_dl_entity(dl_se, pi_se);
@ -1260,8 +1295,10 @@ static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
if (!p->dl.dl_throttled && dl_is_constrained(&p->dl))
dl_check_constrained_dl(&p->dl);
if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE)
if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
add_rq_bw(p->dl.dl_bw, &rq->dl);
add_running_bw(p->dl.dl_bw, &rq->dl);
}
/*
* If p is throttled, we do not enqueue it. In fact, if it exhausted
@ -1277,7 +1314,7 @@ static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
*/
if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
if (flags & ENQUEUE_WAKEUP)
task_contending(&p->dl);
task_contending(&p->dl, flags);
return;
}
@ -1299,8 +1336,10 @@ static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
update_curr_dl(rq);
__dequeue_task_dl(rq, p, flags);
if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE)
if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
sub_running_bw(p->dl.dl_bw, &rq->dl);
sub_rq_bw(p->dl.dl_bw, &rq->dl);
}
/*
* This check allows to start the inactive timer (or to immediately
@ -1394,7 +1433,7 @@ static void migrate_task_rq_dl(struct task_struct *p)
{
struct rq *rq;
if (!(p->state == TASK_WAKING) || !(p->dl.dl_non_contending))
if (p->state != TASK_WAKING)
return;
rq = task_rq(p);
@ -1404,18 +1443,20 @@ static void migrate_task_rq_dl(struct task_struct *p)
* rq->lock is not... So, lock it
*/
raw_spin_lock(&rq->lock);
sub_running_bw(p->dl.dl_bw, &rq->dl);
p->dl.dl_non_contending = 0;
/*
* If the timer handler is currently running and the
* timer cannot be cancelled, inactive_task_timer()
* will see that dl_not_contending is not set, and
* will not touch the rq's active utilization,
* so we are still safe.
*/
if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
put_task_struct(p);
if (p->dl.dl_non_contending) {
sub_running_bw(p->dl.dl_bw, &rq->dl);
p->dl.dl_non_contending = 0;
/*
* If the timer handler is currently running and the
* timer cannot be cancelled, inactive_task_timer()
* will see that dl_not_contending is not set, and
* will not touch the rq's active utilization,
* so we are still safe.
*/
if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
put_task_struct(p);
}
sub_rq_bw(p->dl.dl_bw, &rq->dl);
raw_spin_unlock(&rq->lock);
}
@ -1858,7 +1899,9 @@ static int push_dl_task(struct rq *rq)
deactivate_task(rq, next_task, 0);
sub_running_bw(next_task->dl.dl_bw, &rq->dl);
sub_rq_bw(next_task->dl.dl_bw, &rq->dl);
set_task_cpu(next_task, later_rq->cpu);
add_rq_bw(next_task->dl.dl_bw, &later_rq->dl);
add_running_bw(next_task->dl.dl_bw, &later_rq->dl);
activate_task(later_rq, next_task, 0);
ret = 1;
@ -1948,7 +1991,9 @@ static void pull_dl_task(struct rq *this_rq)
deactivate_task(src_rq, p, 0);
sub_running_bw(p->dl.dl_bw, &src_rq->dl);
sub_rq_bw(p->dl.dl_bw, &src_rq->dl);
set_task_cpu(p, this_cpu);
add_rq_bw(p->dl.dl_bw, &this_rq->dl);
add_running_bw(p->dl.dl_bw, &this_rq->dl);
activate_task(this_rq, p, 0);
dmin = p->dl.deadline;
@ -2057,6 +2102,9 @@ static void switched_from_dl(struct rq *rq, struct task_struct *p)
if (task_on_rq_queued(p) && p->dl.dl_runtime)
task_non_contending(p);
if (!task_on_rq_queued(p))
sub_rq_bw(p->dl.dl_bw, &rq->dl);
/*
* We cannot use inactive_task_timer() to invoke sub_running_bw()
* at the 0-lag time, because the task could have been migrated
@ -2086,9 +2134,11 @@ static void switched_to_dl(struct rq *rq, struct task_struct *p)
put_task_struct(p);
/* If p is not queued we will update its parameters at next wakeup. */
if (!task_on_rq_queued(p))
return;
if (!task_on_rq_queued(p)) {
add_rq_bw(p->dl.dl_bw, &rq->dl);
return;
}
/*
* If p is boosted we already updated its params in
* rt_mutex_setprio()->enqueue_task(..., ENQUEUE_REPLENISH),

View File

@ -566,6 +566,17 @@ struct dl_rq {
*/
u64 running_bw;
/*
* Utilization of the tasks "assigned" to this runqueue (including
* the tasks that are in runqueue and the tasks that executed on this
* CPU and blocked). Increased when a task moves to this runqueue, and
* decreased when the task moves away (migrates, changes scheduling
* policy, or terminates).
* This is needed to compute the "inactive utilization" for the
* runqueue (inactive utilization = this_bw - running_bw).
*/
u64 this_bw;
/*
* Inverse of the fraction of CPU utilization that can be reclaimed
* by the GRUB algorithm.