This pull request brings in overlay plane support for vc4.

-----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABCgAGBQJWxNLgAAoJELXWKTbR/J7oxPQP/2XgTgdqKBRm+5z/rCJDM82c
 bC6GOuwa/1DiQgaEB+TcQJI5fUgQQy3j9iH7GrPd1INDpa8Uph0ykc8ksLfzT/dD
 xMXjB7eQuJzmQ731TbSEJ05y3ZJB1A5yoJocaPYH8V1VRi+LE2XmhQNzjkgT3CFU
 4Ie8Myrq6wPDWXMhHnsYXD9xzaIC3MjQBnISarze3PqtZK6XzvkzfuE6h03wUCRD
 AbZp8BiyxoXbC+NHbMiXo1gQ4rXF47nJWRRBGG1I567XKSeBCswk6oeiwOwk6D/T
 YtUKUmNqnAGAhmhnxVaEx/YsciHEyybi43GWw/AFGixJl7i08+erW7zXi6TkHkKL
 StOs63X6mIgZVTEfdb+mqqv67+qdGOuQJLvfk8Q1ZC0eoq6lcDq5itpI9jHVn35s
 FODMLmpjpl8MC6XtXJr0wYSw1lZbPD6QOYMfBZvljO0M0W46kadc0Mzw+MPeeg5L
 aLPaL+0wvqt0qfQmzJQ3HmWtXsWfgqvpd8ohuBfbdMN6rOZtL35mGc1Akx7c8B2O
 LKplwxLZ928aLTuFT+xOaiGp3ywFkLoq4bRmy0eyiAPU9KWON577UIZ566D6/yU4
 iOp33T/r5345UxklQ1oTqnOuHzoqVeXQXUaQudFc+BVCuN3XVVvb8mT72ACgQPMR
 e5SnfHyp3LZhPmXQMChr
 =Z9VX
 -----END PGP SIGNATURE-----

Merge tag 'drm-vc4-next-2016-02-17' of github.com:anholt/linux into drm-next

This pull request brings in overlay plane support for vc4.

* tag 'drm-vc4-next-2016-02-17' of github.com:anholt/linux:
  drm/vc4: Add support for YUV planes.
  drm/vc4: Add support a few more RGB display plane formats.
  drm/vc4: Add support for scaling of display planes.
  drm/vc4: Fix which value is being used for source image size.
  drm/vc4: Add more display planes to each CRTC.
  drm/vc4: Make the CRTCs cooperate on allocating display lists.
  drm/vc4: Add a proper short-circut path for legacy cursor updates.
  drm/vc4: Move the plane clipping/scaling setup to a separate function.
  drm/vc4: Add missing __iomem annotation to hw_dlist.
  drm/vc4: Improve comments on vc4_plane_state members.
This commit is contained in:
Dave Airlie 2016-02-19 12:51:43 +10:00
commit 9864fd76f3
6 changed files with 869 additions and 119 deletions

View File

@ -49,22 +49,27 @@ struct vc4_crtc {
/* Which HVS channel we're using for our CRTC. */ /* Which HVS channel we're using for our CRTC. */
int channel; int channel;
/* Pointer to the actual hardware display list memory for the
* crtc.
*/
u32 __iomem *dlist;
u32 dlist_size; /* in dwords */
struct drm_pending_vblank_event *event; struct drm_pending_vblank_event *event;
}; };
struct vc4_crtc_state {
struct drm_crtc_state base;
/* Dlist area for this CRTC configuration. */
struct drm_mm_node mm;
};
static inline struct vc4_crtc * static inline struct vc4_crtc *
to_vc4_crtc(struct drm_crtc *crtc) to_vc4_crtc(struct drm_crtc *crtc)
{ {
return (struct vc4_crtc *)crtc; return (struct vc4_crtc *)crtc;
} }
static inline struct vc4_crtc_state *
to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
{
return (struct vc4_crtc_state *)crtc_state;
}
struct vc4_crtc_data { struct vc4_crtc_data {
/* Which channel of the HVS this pixelvalve sources from. */ /* Which channel of the HVS this pixelvalve sources from. */
int hvs_channel; int hvs_channel;
@ -319,11 +324,13 @@ static void vc4_crtc_enable(struct drm_crtc *crtc)
static int vc4_crtc_atomic_check(struct drm_crtc *crtc, static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
struct drm_crtc_state *state) struct drm_crtc_state *state)
{ {
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
struct drm_device *dev = crtc->dev; struct drm_device *dev = crtc->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_dev *vc4 = to_vc4_dev(dev);
struct drm_plane *plane; struct drm_plane *plane;
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); unsigned long flags;
u32 dlist_count = 0; u32 dlist_count = 0;
int ret;
/* The pixelvalve can only feed one encoder (and encoders are /* The pixelvalve can only feed one encoder (and encoders are
* 1:1 with connectors.) * 1:1 with connectors.)
@ -346,18 +353,12 @@ static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
dlist_count++; /* Account for SCALER_CTL0_END. */ dlist_count++; /* Account for SCALER_CTL0_END. */
if (!vc4_crtc->dlist || dlist_count > vc4_crtc->dlist_size) { spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
vc4_crtc->dlist = ((u32 __iomem *)vc4->hvs->dlist + ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
HVS_BOOTLOADER_DLIST_END); dlist_count, 1, 0);
vc4_crtc->dlist_size = ((SCALER_DLIST_SIZE >> 2) - spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
HVS_BOOTLOADER_DLIST_END); if (ret)
return ret;
if (dlist_count > vc4_crtc->dlist_size) {
DRM_DEBUG_KMS("dlist too large for CRTC (%d > %d).\n",
dlist_count, vc4_crtc->dlist_size);
return -EINVAL;
}
}
return 0; return 0;
} }
@ -368,47 +369,29 @@ static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
struct drm_device *dev = crtc->dev; struct drm_device *dev = crtc->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_dev *vc4 = to_vc4_dev(dev);
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
struct drm_plane *plane; struct drm_plane *plane;
bool debug_dump_regs = false; bool debug_dump_regs = false;
u32 __iomem *dlist_next = vc4_crtc->dlist; u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
u32 __iomem *dlist_next = dlist_start;
if (debug_dump_regs) { if (debug_dump_regs) {
DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc)); DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
vc4_hvs_dump_state(dev); vc4_hvs_dump_state(dev);
} }
/* Copy all the active planes' dlist contents to the hardware dlist. /* Copy all the active planes' dlist contents to the hardware dlist. */
*
* XXX: If the new display list was large enough that it
* overlapped a currently-read display list, we need to do
* something like disable scanout before putting in the new
* list. For now, we're safe because we only have the two
* planes.
*/
drm_atomic_crtc_for_each_plane(plane, crtc) { drm_atomic_crtc_for_each_plane(plane, crtc) {
dlist_next += vc4_plane_write_dlist(plane, dlist_next); dlist_next += vc4_plane_write_dlist(plane, dlist_next);
} }
if (dlist_next == vc4_crtc->dlist) { writel(SCALER_CTL0_END, dlist_next);
/* If no planes were enabled, use the SCALER_CTL0_END dlist_next++;
* at the start of the display list memory (in the
* bootloader section). We'll rewrite that
* SCALER_CTL0_END, just in case, though.
*/
writel(SCALER_CTL0_END, vc4->hvs->dlist);
HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), 0);
} else {
writel(SCALER_CTL0_END, dlist_next);
dlist_next++;
HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
(u32 __iomem *)vc4_crtc->dlist -
(u32 __iomem *)vc4->hvs->dlist);
/* Make the next display list start after ours. */ HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
vc4_crtc->dlist_size -= (dlist_next - vc4_crtc->dlist); vc4_state->mm.start);
vc4_crtc->dlist = dlist_next;
}
if (debug_dump_regs) { if (debug_dump_regs) {
DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc)); DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
@ -573,6 +556,36 @@ static int vc4_page_flip(struct drm_crtc *crtc,
return drm_atomic_helper_page_flip(crtc, fb, event, flags); return drm_atomic_helper_page_flip(crtc, fb, event, flags);
} }
static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
{
struct vc4_crtc_state *vc4_state;
vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
if (!vc4_state)
return NULL;
__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
return &vc4_state->base;
}
static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
struct drm_crtc_state *state)
{
struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
if (vc4_state->mm.allocated) {
unsigned long flags;
spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
drm_mm_remove_node(&vc4_state->mm);
spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
}
__drm_atomic_helper_crtc_destroy_state(crtc, state);
}
static const struct drm_crtc_funcs vc4_crtc_funcs = { static const struct drm_crtc_funcs vc4_crtc_funcs = {
.set_config = drm_atomic_helper_set_config, .set_config = drm_atomic_helper_set_config,
.destroy = vc4_crtc_destroy, .destroy = vc4_crtc_destroy,
@ -581,8 +594,8 @@ static const struct drm_crtc_funcs vc4_crtc_funcs = {
.cursor_set = NULL, /* handled by drm_mode_cursor_universal */ .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
.cursor_move = NULL, /* handled by drm_mode_cursor_universal */ .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
.reset = drm_atomic_helper_crtc_reset, .reset = drm_atomic_helper_crtc_reset,
.atomic_duplicate_state = drm_atomic_helper_crtc_duplicate_state, .atomic_duplicate_state = vc4_crtc_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_crtc_destroy_state, .atomic_destroy_state = vc4_crtc_destroy_state,
}; };
static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = { static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
@ -644,9 +657,9 @@ static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
struct vc4_dev *vc4 = to_vc4_dev(drm); struct vc4_dev *vc4 = to_vc4_dev(drm);
struct vc4_crtc *vc4_crtc; struct vc4_crtc *vc4_crtc;
struct drm_crtc *crtc; struct drm_crtc *crtc;
struct drm_plane *primary_plane, *cursor_plane; struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
const struct of_device_id *match; const struct of_device_id *match;
int ret; int ret, i;
vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL); vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
if (!vc4_crtc) if (!vc4_crtc)
@ -675,27 +688,49 @@ static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
goto err; goto err;
} }
cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR); drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
if (IS_ERR(cursor_plane)) {
dev_err(dev, "failed to construct cursor plane\n");
ret = PTR_ERR(cursor_plane);
goto err_primary;
}
drm_crtc_init_with_planes(drm, crtc, primary_plane, cursor_plane,
&vc4_crtc_funcs, NULL); &vc4_crtc_funcs, NULL);
drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs); drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
primary_plane->crtc = crtc; primary_plane->crtc = crtc;
cursor_plane->crtc = crtc;
vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc; vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc;
vc4_crtc->channel = vc4_crtc->data->hvs_channel; vc4_crtc->channel = vc4_crtc->data->hvs_channel;
/* Set up some arbitrary number of planes. We're not limited
* by a set number of physical registers, just the space in
* the HVS (16k) and how small an plane can be (28 bytes).
* However, each plane we set up takes up some memory, and
* increases the cost of looping over planes, which atomic
* modesetting does quite a bit. As a result, we pick a
* modest number of planes to expose, that should hopefully
* still cover any sane usecase.
*/
for (i = 0; i < 8; i++) {
struct drm_plane *plane =
vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
if (IS_ERR(plane))
continue;
plane->possible_crtcs = 1 << drm_crtc_index(crtc);
}
/* Set up the legacy cursor after overlay initialization,
* since we overlay planes on the CRTC in the order they were
* initialized.
*/
cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
if (!IS_ERR(cursor_plane)) {
cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
cursor_plane->crtc = crtc;
crtc->cursor = cursor_plane;
}
CRTC_WRITE(PV_INTEN, 0); CRTC_WRITE(PV_INTEN, 0);
CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
ret = devm_request_irq(dev, platform_get_irq(pdev, 0), ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc); vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
if (ret) if (ret)
goto err_cursor; goto err_destroy_planes;
vc4_set_crtc_possible_masks(drm, crtc); vc4_set_crtc_possible_masks(drm, crtc);
@ -703,10 +738,12 @@ static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
return 0; return 0;
err_cursor: err_destroy_planes:
cursor_plane->funcs->destroy(cursor_plane); list_for_each_entry_safe(destroy_plane, temp,
err_primary: &drm->mode_config.plane_list, head) {
primary_plane->funcs->destroy(primary_plane); if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
destroy_plane->funcs->destroy(destroy_plane);
}
err: err:
return ret; return ret;
} }

View File

@ -149,7 +149,17 @@ struct vc4_v3d {
struct vc4_hvs { struct vc4_hvs {
struct platform_device *pdev; struct platform_device *pdev;
void __iomem *regs; void __iomem *regs;
void __iomem *dlist; u32 __iomem *dlist;
/* Memory manager for CRTCs to allocate space in the display
* list. Units are dwords.
*/
struct drm_mm dlist_mm;
/* Memory manager for the LBM memory used by HVS scaling. */
struct drm_mm lbm_mm;
spinlock_t mm_lock;
struct drm_mm_node mitchell_netravali_filter;
}; };
struct vc4_plane { struct vc4_plane {

View File

@ -100,12 +100,76 @@ int vc4_hvs_debugfs_regs(struct seq_file *m, void *unused)
} }
#endif #endif
/* The filter kernel is composed of dwords each containing 3 9-bit
* signed integers packed next to each other.
*/
#define VC4_INT_TO_COEFF(coeff) (coeff & 0x1ff)
#define VC4_PPF_FILTER_WORD(c0, c1, c2) \
((((c0) & 0x1ff) << 0) | \
(((c1) & 0x1ff) << 9) | \
(((c2) & 0x1ff) << 18))
/* The whole filter kernel is arranged as the coefficients 0-16 going
* up, then a pad, then 17-31 going down and reversed within the
* dwords. This means that a linear phase kernel (where it's
* symmetrical at the boundary between 15 and 16) has the last 5
* dwords matching the first 5, but reversed.
*/
#define VC4_LINEAR_PHASE_KERNEL(c0, c1, c2, c3, c4, c5, c6, c7, c8, \
c9, c10, c11, c12, c13, c14, c15) \
{VC4_PPF_FILTER_WORD(c0, c1, c2), \
VC4_PPF_FILTER_WORD(c3, c4, c5), \
VC4_PPF_FILTER_WORD(c6, c7, c8), \
VC4_PPF_FILTER_WORD(c9, c10, c11), \
VC4_PPF_FILTER_WORD(c12, c13, c14), \
VC4_PPF_FILTER_WORD(c15, c15, 0)}
#define VC4_LINEAR_PHASE_KERNEL_DWORDS 6
#define VC4_KERNEL_DWORDS (VC4_LINEAR_PHASE_KERNEL_DWORDS * 2 - 1)
/* Recommended B=1/3, C=1/3 filter choice from Mitchell/Netravali.
* http://www.cs.utexas.edu/~fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf
*/
static const u32 mitchell_netravali_1_3_1_3_kernel[] =
VC4_LINEAR_PHASE_KERNEL(0, -2, -6, -8, -10, -8, -3, 2, 18,
50, 82, 119, 155, 187, 213, 227);
static int vc4_hvs_upload_linear_kernel(struct vc4_hvs *hvs,
struct drm_mm_node *space,
const u32 *kernel)
{
int ret, i;
u32 __iomem *dst_kernel;
ret = drm_mm_insert_node(&hvs->dlist_mm, space, VC4_KERNEL_DWORDS, 1,
0);
if (ret) {
DRM_ERROR("Failed to allocate space for filter kernel: %d\n",
ret);
return ret;
}
dst_kernel = hvs->dlist + space->start;
for (i = 0; i < VC4_KERNEL_DWORDS; i++) {
if (i < VC4_LINEAR_PHASE_KERNEL_DWORDS)
writel(kernel[i], &dst_kernel[i]);
else {
writel(kernel[VC4_KERNEL_DWORDS - i - 1],
&dst_kernel[i]);
}
}
return 0;
}
static int vc4_hvs_bind(struct device *dev, struct device *master, void *data) static int vc4_hvs_bind(struct device *dev, struct device *master, void *data)
{ {
struct platform_device *pdev = to_platform_device(dev); struct platform_device *pdev = to_platform_device(dev);
struct drm_device *drm = dev_get_drvdata(master); struct drm_device *drm = dev_get_drvdata(master);
struct vc4_dev *vc4 = drm->dev_private; struct vc4_dev *vc4 = drm->dev_private;
struct vc4_hvs *hvs = NULL; struct vc4_hvs *hvs = NULL;
int ret;
hvs = devm_kzalloc(&pdev->dev, sizeof(*hvs), GFP_KERNEL); hvs = devm_kzalloc(&pdev->dev, sizeof(*hvs), GFP_KERNEL);
if (!hvs) if (!hvs)
@ -119,6 +183,33 @@ static int vc4_hvs_bind(struct device *dev, struct device *master, void *data)
hvs->dlist = hvs->regs + SCALER_DLIST_START; hvs->dlist = hvs->regs + SCALER_DLIST_START;
spin_lock_init(&hvs->mm_lock);
/* Set up the HVS display list memory manager. We never
* overwrite the setup from the bootloader (just 128b out of
* our 16K), since we don't want to scramble the screen when
* transitioning from the firmware's boot setup to runtime.
*/
drm_mm_init(&hvs->dlist_mm,
HVS_BOOTLOADER_DLIST_END,
(SCALER_DLIST_SIZE >> 2) - HVS_BOOTLOADER_DLIST_END);
/* Set up the HVS LBM memory manager. We could have some more
* complicated data structure that allowed reuse of LBM areas
* between planes when they don't overlap on the screen, but
* for now we just allocate globally.
*/
drm_mm_init(&hvs->lbm_mm, 0, 96 * 1024);
/* Upload filter kernels. We only have the one for now, so we
* keep it around for the lifetime of the driver.
*/
ret = vc4_hvs_upload_linear_kernel(hvs,
&hvs->mitchell_netravali_filter,
mitchell_netravali_1_3_1_3_kernel);
if (ret)
return ret;
vc4->hvs = hvs; vc4->hvs = hvs;
return 0; return 0;
} }
@ -129,6 +220,12 @@ static void vc4_hvs_unbind(struct device *dev, struct device *master,
struct drm_device *drm = dev_get_drvdata(master); struct drm_device *drm = dev_get_drvdata(master);
struct vc4_dev *vc4 = drm->dev_private; struct vc4_dev *vc4 = drm->dev_private;
if (vc4->hvs->mitchell_netravali_filter.allocated)
drm_mm_remove_node(&vc4->hvs->mitchell_netravali_filter);
drm_mm_takedown(&vc4->hvs->dlist_mm);
drm_mm_takedown(&vc4->hvs->lbm_mm);
vc4->hvs = NULL; vc4->hvs = NULL;
} }

View File

@ -49,6 +49,15 @@ vc4_atomic_complete_commit(struct vc4_commit *c)
drm_atomic_helper_commit_modeset_enables(dev, state); drm_atomic_helper_commit_modeset_enables(dev, state);
/* Make sure that drm_atomic_helper_wait_for_vblanks()
* actually waits for vblank. If we're doing a full atomic
* modeset (as opposed to a vc4_update_plane() short circuit),
* then we need to wait for scanout to be done with our
* display lists before we free it and potentially reallocate
* and overwrite the dlist memory with a new modeset.
*/
state->legacy_cursor_update = false;
drm_atomic_helper_wait_for_vblanks(dev, state); drm_atomic_helper_wait_for_vblanks(dev, state);
drm_atomic_helper_cleanup_planes(dev, state); drm_atomic_helper_cleanup_planes(dev, state);

View File

@ -24,19 +24,52 @@
#include "drm_fb_cma_helper.h" #include "drm_fb_cma_helper.h"
#include "drm_plane_helper.h" #include "drm_plane_helper.h"
enum vc4_scaling_mode {
VC4_SCALING_NONE,
VC4_SCALING_TPZ,
VC4_SCALING_PPF,
};
struct vc4_plane_state { struct vc4_plane_state {
struct drm_plane_state base; struct drm_plane_state base;
/* System memory copy of the display list for this element, computed
* at atomic_check time.
*/
u32 *dlist; u32 *dlist;
u32 dlist_size; /* Number of dwords in allocated for the display list */ u32 dlist_size; /* Number of dwords allocated for the display list */
u32 dlist_count; /* Number of used dwords in the display list. */ u32 dlist_count; /* Number of used dwords in the display list. */
/* Offset in the dlist to pointer word 0. */ /* Offset in the dlist to various words, for pageflip or
u32 pw0_offset; * cursor updates.
*/
u32 pos0_offset;
u32 pos2_offset;
u32 ptr0_offset;
/* Offset where the plane's dlist was last stored in the /* Offset where the plane's dlist was last stored in the
hardware at vc4_crtc_atomic_flush() time. * hardware at vc4_crtc_atomic_flush() time.
*/ */
u32 *hw_dlist; u32 __iomem *hw_dlist;
/* Clipped coordinates of the plane on the display. */
int crtc_x, crtc_y, crtc_w, crtc_h;
/* Clipped area being scanned from in the FB. */
u32 src_x, src_y;
u32 src_w[2], src_h[2];
/* Scaling selection for the RGB/Y plane and the Cb/Cr planes. */
enum vc4_scaling_mode x_scaling[2], y_scaling[2];
bool is_unity;
bool is_yuv;
/* Offset to start scanning out from the start of the plane's
* BO.
*/
u32 offsets[3];
/* Our allocation in LBM for temporary storage during scaling. */
struct drm_mm_node lbm;
}; };
static inline struct vc4_plane_state * static inline struct vc4_plane_state *
@ -50,6 +83,7 @@ static const struct hvs_format {
u32 hvs; /* HVS_FORMAT_* */ u32 hvs; /* HVS_FORMAT_* */
u32 pixel_order; u32 pixel_order;
bool has_alpha; bool has_alpha;
bool flip_cbcr;
} hvs_formats[] = { } hvs_formats[] = {
{ {
.drm = DRM_FORMAT_XRGB8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888, .drm = DRM_FORMAT_XRGB8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
@ -59,6 +93,48 @@ static const struct hvs_format {
.drm = DRM_FORMAT_ARGB8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888, .drm = DRM_FORMAT_ARGB8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
.pixel_order = HVS_PIXEL_ORDER_ABGR, .has_alpha = true, .pixel_order = HVS_PIXEL_ORDER_ABGR, .has_alpha = true,
}, },
{
.drm = DRM_FORMAT_RGB565, .hvs = HVS_PIXEL_FORMAT_RGB565,
.pixel_order = HVS_PIXEL_ORDER_XRGB, .has_alpha = false,
},
{
.drm = DRM_FORMAT_BGR565, .hvs = HVS_PIXEL_FORMAT_RGB565,
.pixel_order = HVS_PIXEL_ORDER_XBGR, .has_alpha = false,
},
{
.drm = DRM_FORMAT_ARGB1555, .hvs = HVS_PIXEL_FORMAT_RGBA5551,
.pixel_order = HVS_PIXEL_ORDER_ABGR, .has_alpha = true,
},
{
.drm = DRM_FORMAT_XRGB1555, .hvs = HVS_PIXEL_FORMAT_RGBA5551,
.pixel_order = HVS_PIXEL_ORDER_ABGR, .has_alpha = false,
},
{
.drm = DRM_FORMAT_YUV422,
.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
},
{
.drm = DRM_FORMAT_YVU422,
.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
.flip_cbcr = true,
},
{
.drm = DRM_FORMAT_YUV420,
.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
},
{
.drm = DRM_FORMAT_YVU420,
.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
.flip_cbcr = true,
},
{
.drm = DRM_FORMAT_NV12,
.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
},
{
.drm = DRM_FORMAT_NV16,
.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
},
}; };
static const struct hvs_format *vc4_get_hvs_format(u32 drm_format) static const struct hvs_format *vc4_get_hvs_format(u32 drm_format)
@ -73,6 +149,16 @@ static const struct hvs_format *vc4_get_hvs_format(u32 drm_format)
return NULL; return NULL;
} }
static enum vc4_scaling_mode vc4_get_scaling_mode(u32 src, u32 dst)
{
if (dst > src)
return VC4_SCALING_PPF;
else if (dst < src)
return VC4_SCALING_TPZ;
else
return VC4_SCALING_NONE;
}
static bool plane_enabled(struct drm_plane_state *state) static bool plane_enabled(struct drm_plane_state *state)
{ {
return state->fb && state->crtc; return state->fb && state->crtc;
@ -89,6 +175,8 @@ static struct drm_plane_state *vc4_plane_duplicate_state(struct drm_plane *plane
if (!vc4_state) if (!vc4_state)
return NULL; return NULL;
memset(&vc4_state->lbm, 0, sizeof(vc4_state->lbm));
__drm_atomic_helper_plane_duplicate_state(plane, &vc4_state->base); __drm_atomic_helper_plane_duplicate_state(plane, &vc4_state->base);
if (vc4_state->dlist) { if (vc4_state->dlist) {
@ -108,8 +196,17 @@ static struct drm_plane_state *vc4_plane_duplicate_state(struct drm_plane *plane
static void vc4_plane_destroy_state(struct drm_plane *plane, static void vc4_plane_destroy_state(struct drm_plane *plane,
struct drm_plane_state *state) struct drm_plane_state *state)
{ {
struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
if (vc4_state->lbm.allocated) {
unsigned long irqflags;
spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
drm_mm_remove_node(&vc4_state->lbm);
spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
}
kfree(vc4_state->dlist); kfree(vc4_state->dlist);
__drm_atomic_helper_plane_destroy_state(plane, &vc4_state->base); __drm_atomic_helper_plane_destroy_state(plane, &vc4_state->base);
kfree(state); kfree(state);
@ -148,84 +245,400 @@ static void vc4_dlist_write(struct vc4_plane_state *vc4_state, u32 val)
vc4_state->dlist[vc4_state->dlist_count++] = val; vc4_state->dlist[vc4_state->dlist_count++] = val;
} }
/* Returns the scl0/scl1 field based on whether the dimensions need to
* be up/down/non-scaled.
*
* This is a replication of a table from the spec.
*/
static u32 vc4_get_scl_field(struct drm_plane_state *state, int plane)
{
struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
switch (vc4_state->x_scaling[plane] << 2 | vc4_state->y_scaling[plane]) {
case VC4_SCALING_PPF << 2 | VC4_SCALING_PPF:
return SCALER_CTL0_SCL_H_PPF_V_PPF;
case VC4_SCALING_TPZ << 2 | VC4_SCALING_PPF:
return SCALER_CTL0_SCL_H_TPZ_V_PPF;
case VC4_SCALING_PPF << 2 | VC4_SCALING_TPZ:
return SCALER_CTL0_SCL_H_PPF_V_TPZ;
case VC4_SCALING_TPZ << 2 | VC4_SCALING_TPZ:
return SCALER_CTL0_SCL_H_TPZ_V_TPZ;
case VC4_SCALING_PPF << 2 | VC4_SCALING_NONE:
return SCALER_CTL0_SCL_H_PPF_V_NONE;
case VC4_SCALING_NONE << 2 | VC4_SCALING_PPF:
return SCALER_CTL0_SCL_H_NONE_V_PPF;
case VC4_SCALING_NONE << 2 | VC4_SCALING_TPZ:
return SCALER_CTL0_SCL_H_NONE_V_TPZ;
case VC4_SCALING_TPZ << 2 | VC4_SCALING_NONE:
return SCALER_CTL0_SCL_H_TPZ_V_NONE;
default:
case VC4_SCALING_NONE << 2 | VC4_SCALING_NONE:
/* The unity case is independently handled by
* SCALER_CTL0_UNITY.
*/
return 0;
}
}
static int vc4_plane_setup_clipping_and_scaling(struct drm_plane_state *state)
{
struct drm_plane *plane = state->plane;
struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
struct drm_framebuffer *fb = state->fb;
struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0);
u32 subpixel_src_mask = (1 << 16) - 1;
u32 format = fb->pixel_format;
int num_planes = drm_format_num_planes(format);
u32 h_subsample = 1;
u32 v_subsample = 1;
int i;
for (i = 0; i < num_planes; i++)
vc4_state->offsets[i] = bo->paddr + fb->offsets[i];
/* We don't support subpixel source positioning for scaling. */
if ((state->src_x & subpixel_src_mask) ||
(state->src_y & subpixel_src_mask) ||
(state->src_w & subpixel_src_mask) ||
(state->src_h & subpixel_src_mask)) {
return -EINVAL;
}
vc4_state->src_x = state->src_x >> 16;
vc4_state->src_y = state->src_y >> 16;
vc4_state->src_w[0] = state->src_w >> 16;
vc4_state->src_h[0] = state->src_h >> 16;
vc4_state->crtc_x = state->crtc_x;
vc4_state->crtc_y = state->crtc_y;
vc4_state->crtc_w = state->crtc_w;
vc4_state->crtc_h = state->crtc_h;
vc4_state->x_scaling[0] = vc4_get_scaling_mode(vc4_state->src_w[0],
vc4_state->crtc_w);
vc4_state->y_scaling[0] = vc4_get_scaling_mode(vc4_state->src_h[0],
vc4_state->crtc_h);
if (num_planes > 1) {
vc4_state->is_yuv = true;
h_subsample = drm_format_horz_chroma_subsampling(format);
v_subsample = drm_format_vert_chroma_subsampling(format);
vc4_state->src_w[1] = vc4_state->src_w[0] / h_subsample;
vc4_state->src_h[1] = vc4_state->src_h[0] / v_subsample;
vc4_state->x_scaling[1] =
vc4_get_scaling_mode(vc4_state->src_w[1],
vc4_state->crtc_w);
vc4_state->y_scaling[1] =
vc4_get_scaling_mode(vc4_state->src_h[1],
vc4_state->crtc_h);
/* YUV conversion requires that scaling be enabled,
* even on a plane that's otherwise 1:1. Choose TPZ
* for simplicity.
*/
if (vc4_state->x_scaling[0] == VC4_SCALING_NONE)
vc4_state->x_scaling[0] = VC4_SCALING_TPZ;
if (vc4_state->y_scaling[0] == VC4_SCALING_NONE)
vc4_state->y_scaling[0] = VC4_SCALING_TPZ;
}
vc4_state->is_unity = (vc4_state->x_scaling[0] == VC4_SCALING_NONE &&
vc4_state->y_scaling[0] == VC4_SCALING_NONE &&
vc4_state->x_scaling[1] == VC4_SCALING_NONE &&
vc4_state->y_scaling[1] == VC4_SCALING_NONE);
/* No configuring scaling on the cursor plane, since it gets
non-vblank-synced updates, and scaling requires requires
LBM changes which have to be vblank-synced.
*/
if (plane->type == DRM_PLANE_TYPE_CURSOR && !vc4_state->is_unity)
return -EINVAL;
/* Clamp the on-screen start x/y to 0. The hardware doesn't
* support negative y, and negative x wastes bandwidth.
*/
if (vc4_state->crtc_x < 0) {
for (i = 0; i < num_planes; i++) {
u32 cpp = drm_format_plane_cpp(fb->pixel_format, i);
u32 subs = ((i == 0) ? 1 : h_subsample);
vc4_state->offsets[i] += (cpp *
(-vc4_state->crtc_x) / subs);
}
vc4_state->src_w[0] += vc4_state->crtc_x;
vc4_state->src_w[1] += vc4_state->crtc_x / h_subsample;
vc4_state->crtc_x = 0;
}
if (vc4_state->crtc_y < 0) {
for (i = 0; i < num_planes; i++) {
u32 subs = ((i == 0) ? 1 : v_subsample);
vc4_state->offsets[i] += (fb->pitches[i] *
(-vc4_state->crtc_y) / subs);
}
vc4_state->src_h[0] += vc4_state->crtc_y;
vc4_state->src_h[1] += vc4_state->crtc_y / v_subsample;
vc4_state->crtc_y = 0;
}
return 0;
}
static void vc4_write_tpz(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
{
u32 scale, recip;
scale = (1 << 16) * src / dst;
/* The specs note that while the reciprocal would be defined
* as (1<<32)/scale, ~0 is close enough.
*/
recip = ~0 / scale;
vc4_dlist_write(vc4_state,
VC4_SET_FIELD(scale, SCALER_TPZ0_SCALE) |
VC4_SET_FIELD(0, SCALER_TPZ0_IPHASE));
vc4_dlist_write(vc4_state,
VC4_SET_FIELD(recip, SCALER_TPZ1_RECIP));
}
static void vc4_write_ppf(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
{
u32 scale = (1 << 16) * src / dst;
vc4_dlist_write(vc4_state,
SCALER_PPF_AGC |
VC4_SET_FIELD(scale, SCALER_PPF_SCALE) |
VC4_SET_FIELD(0, SCALER_PPF_IPHASE));
}
static u32 vc4_lbm_size(struct drm_plane_state *state)
{
struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
/* This is the worst case number. One of the two sizes will
* be used depending on the scaling configuration.
*/
u32 pix_per_line = max(vc4_state->src_w[0], (u32)vc4_state->crtc_w);
u32 lbm;
if (!vc4_state->is_yuv) {
if (vc4_state->is_unity)
return 0;
else if (vc4_state->y_scaling[0] == VC4_SCALING_TPZ)
lbm = pix_per_line * 8;
else {
/* In special cases, this multiplier might be 12. */
lbm = pix_per_line * 16;
}
} else {
/* There are cases for this going down to a multiplier
* of 2, but according to the firmware source, the
* table in the docs is somewhat wrong.
*/
lbm = pix_per_line * 16;
}
lbm = roundup(lbm, 32);
return lbm;
}
static void vc4_write_scaling_parameters(struct drm_plane_state *state,
int channel)
{
struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
/* Ch0 H-PPF Word 0: Scaling Parameters */
if (vc4_state->x_scaling[channel] == VC4_SCALING_PPF) {
vc4_write_ppf(vc4_state,
vc4_state->src_w[channel], vc4_state->crtc_w);
}
/* Ch0 V-PPF Words 0-1: Scaling Parameters, Context */
if (vc4_state->y_scaling[channel] == VC4_SCALING_PPF) {
vc4_write_ppf(vc4_state,
vc4_state->src_h[channel], vc4_state->crtc_h);
vc4_dlist_write(vc4_state, 0xc0c0c0c0);
}
/* Ch0 H-TPZ Words 0-1: Scaling Parameters, Recip */
if (vc4_state->x_scaling[channel] == VC4_SCALING_TPZ) {
vc4_write_tpz(vc4_state,
vc4_state->src_w[channel], vc4_state->crtc_w);
}
/* Ch0 V-TPZ Words 0-2: Scaling Parameters, Recip, Context */
if (vc4_state->y_scaling[channel] == VC4_SCALING_TPZ) {
vc4_write_tpz(vc4_state,
vc4_state->src_h[channel], vc4_state->crtc_h);
vc4_dlist_write(vc4_state, 0xc0c0c0c0);
}
}
/* Writes out a full display list for an active plane to the plane's /* Writes out a full display list for an active plane to the plane's
* private dlist state. * private dlist state.
*/ */
static int vc4_plane_mode_set(struct drm_plane *plane, static int vc4_plane_mode_set(struct drm_plane *plane,
struct drm_plane_state *state) struct drm_plane_state *state)
{ {
struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
struct drm_framebuffer *fb = state->fb; struct drm_framebuffer *fb = state->fb;
struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0);
u32 ctl0_offset = vc4_state->dlist_count; u32 ctl0_offset = vc4_state->dlist_count;
const struct hvs_format *format = vc4_get_hvs_format(fb->pixel_format); const struct hvs_format *format = vc4_get_hvs_format(fb->pixel_format);
uint32_t offset = fb->offsets[0]; int num_planes = drm_format_num_planes(format->drm);
int crtc_x = state->crtc_x; u32 scl0, scl1;
int crtc_y = state->crtc_y; u32 lbm_size;
int crtc_w = state->crtc_w; unsigned long irqflags;
int crtc_h = state->crtc_h; int ret, i;
if (state->crtc_w << 16 != state->src_w || ret = vc4_plane_setup_clipping_and_scaling(state);
state->crtc_h << 16 != state->src_h) { if (ret)
/* We don't support scaling yet, which involves return ret;
* allocating the LBM memory for scaling temporary
* storage, and putting filter kernels in the HVS /* Allocate the LBM memory that the HVS will use for temporary
* context. * storage due to our scaling/format conversion.
*/ */
return -EINVAL; lbm_size = vc4_lbm_size(state);
if (lbm_size) {
if (!vc4_state->lbm.allocated) {
spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
ret = drm_mm_insert_node(&vc4->hvs->lbm_mm,
&vc4_state->lbm,
lbm_size, 32, 0);
spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
} else {
WARN_ON_ONCE(lbm_size != vc4_state->lbm.size);
}
} }
if (crtc_x < 0) { if (ret)
offset += drm_format_plane_cpp(fb->pixel_format, 0) * -crtc_x; return ret;
crtc_w += crtc_x;
crtc_x = 0; /* SCL1 is used for Cb/Cr scaling of planar formats. For RGB
} * and 4:4:4, scl1 should be set to scl0 so both channels of
* the scaler do the same thing. For YUV, the Y plane needs
if (crtc_y < 0) { * to be put in channel 1 and Cb/Cr in channel 0, so we swap
offset += fb->pitches[0] * -crtc_y; * the scl fields here.
crtc_h += crtc_y; */
crtc_y = 0; if (num_planes == 1) {
scl0 = vc4_get_scl_field(state, 1);
scl1 = scl0;
} else {
scl0 = vc4_get_scl_field(state, 1);
scl1 = vc4_get_scl_field(state, 0);
} }
/* Control word */
vc4_dlist_write(vc4_state, vc4_dlist_write(vc4_state,
SCALER_CTL0_VALID | SCALER_CTL0_VALID |
(format->pixel_order << SCALER_CTL0_ORDER_SHIFT) | (format->pixel_order << SCALER_CTL0_ORDER_SHIFT) |
(format->hvs << SCALER_CTL0_PIXEL_FORMAT_SHIFT) | (format->hvs << SCALER_CTL0_PIXEL_FORMAT_SHIFT) |
SCALER_CTL0_UNITY); (vc4_state->is_unity ? SCALER_CTL0_UNITY : 0) |
VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) |
VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1));
/* Position Word 0: Image Positions and Alpha Value */ /* Position Word 0: Image Positions and Alpha Value */
vc4_state->pos0_offset = vc4_state->dlist_count;
vc4_dlist_write(vc4_state, vc4_dlist_write(vc4_state,
VC4_SET_FIELD(0xff, SCALER_POS0_FIXED_ALPHA) | VC4_SET_FIELD(0xff, SCALER_POS0_FIXED_ALPHA) |
VC4_SET_FIELD(crtc_x, SCALER_POS0_START_X) | VC4_SET_FIELD(vc4_state->crtc_x, SCALER_POS0_START_X) |
VC4_SET_FIELD(crtc_y, SCALER_POS0_START_Y)); VC4_SET_FIELD(vc4_state->crtc_y, SCALER_POS0_START_Y));
/* Position Word 1: Scaled Image Dimensions. /* Position Word 1: Scaled Image Dimensions. */
* Skipped due to SCALER_CTL0_UNITY scaling. if (!vc4_state->is_unity) {
*/ vc4_dlist_write(vc4_state,
VC4_SET_FIELD(vc4_state->crtc_w,
SCALER_POS1_SCL_WIDTH) |
VC4_SET_FIELD(vc4_state->crtc_h,
SCALER_POS1_SCL_HEIGHT));
}
/* Position Word 2: Source Image Size, Alpha Mode */ /* Position Word 2: Source Image Size, Alpha Mode */
vc4_state->pos2_offset = vc4_state->dlist_count;
vc4_dlist_write(vc4_state, vc4_dlist_write(vc4_state,
VC4_SET_FIELD(format->has_alpha ? VC4_SET_FIELD(format->has_alpha ?
SCALER_POS2_ALPHA_MODE_PIPELINE : SCALER_POS2_ALPHA_MODE_PIPELINE :
SCALER_POS2_ALPHA_MODE_FIXED, SCALER_POS2_ALPHA_MODE_FIXED,
SCALER_POS2_ALPHA_MODE) | SCALER_POS2_ALPHA_MODE) |
VC4_SET_FIELD(crtc_w, SCALER_POS2_WIDTH) | VC4_SET_FIELD(vc4_state->src_w[0], SCALER_POS2_WIDTH) |
VC4_SET_FIELD(crtc_h, SCALER_POS2_HEIGHT)); VC4_SET_FIELD(vc4_state->src_h[0], SCALER_POS2_HEIGHT));
/* Position Word 3: Context. Written by the HVS. */ /* Position Word 3: Context. Written by the HVS. */
vc4_dlist_write(vc4_state, 0xc0c0c0c0); vc4_dlist_write(vc4_state, 0xc0c0c0c0);
vc4_state->pw0_offset = vc4_state->dlist_count;
/* Pointer Word 0: RGB / Y Pointer */ /* Pointer Word 0/1/2: RGB / Y / Cb / Cr Pointers
vc4_dlist_write(vc4_state, bo->paddr + offset); *
* The pointers may be any byte address.
*/
vc4_state->ptr0_offset = vc4_state->dlist_count;
if (!format->flip_cbcr) {
for (i = 0; i < num_planes; i++)
vc4_dlist_write(vc4_state, vc4_state->offsets[i]);
} else {
WARN_ON_ONCE(num_planes != 3);
vc4_dlist_write(vc4_state, vc4_state->offsets[0]);
vc4_dlist_write(vc4_state, vc4_state->offsets[2]);
vc4_dlist_write(vc4_state, vc4_state->offsets[1]);
}
/* Pointer Context Word 0: Written by the HVS */ /* Pointer Context Word 0/1/2: Written by the HVS */
vc4_dlist_write(vc4_state, 0xc0c0c0c0); for (i = 0; i < num_planes; i++)
vc4_dlist_write(vc4_state, 0xc0c0c0c0);
/* Pitch word 0: Pointer 0 Pitch */ /* Pitch word 0/1/2 */
vc4_dlist_write(vc4_state, for (i = 0; i < num_planes; i++) {
VC4_SET_FIELD(fb->pitches[0], SCALER_SRC_PITCH)); vc4_dlist_write(vc4_state,
VC4_SET_FIELD(fb->pitches[i], SCALER_SRC_PITCH));
}
/* Colorspace conversion words */
if (vc4_state->is_yuv) {
vc4_dlist_write(vc4_state, SCALER_CSC0_ITR_R_601_5);
vc4_dlist_write(vc4_state, SCALER_CSC1_ITR_R_601_5);
vc4_dlist_write(vc4_state, SCALER_CSC2_ITR_R_601_5);
}
if (!vc4_state->is_unity) {
/* LBM Base Address. */
if (vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
vc4_state->y_scaling[1] != VC4_SCALING_NONE) {
vc4_dlist_write(vc4_state, vc4_state->lbm.start);
}
if (num_planes > 1) {
/* Emit Cb/Cr as channel 0 and Y as channel
* 1. This matches how we set up scl0/scl1
* above.
*/
vc4_write_scaling_parameters(state, 1);
}
vc4_write_scaling_parameters(state, 0);
/* If any PPF setup was done, then all the kernel
* pointers get uploaded.
*/
if (vc4_state->x_scaling[0] == VC4_SCALING_PPF ||
vc4_state->y_scaling[0] == VC4_SCALING_PPF ||
vc4_state->x_scaling[1] == VC4_SCALING_PPF ||
vc4_state->y_scaling[1] == VC4_SCALING_PPF) {
u32 kernel = VC4_SET_FIELD(vc4->hvs->mitchell_netravali_filter.start,
SCALER_PPF_KERNEL_OFFSET);
/* HPPF plane 0 */
vc4_dlist_write(vc4_state, kernel);
/* VPPF plane 0 */
vc4_dlist_write(vc4_state, kernel);
/* HPPF plane 1 */
vc4_dlist_write(vc4_state, kernel);
/* VPPF plane 1 */
vc4_dlist_write(vc4_state, kernel);
}
}
vc4_state->dlist[ctl0_offset] |= vc4_state->dlist[ctl0_offset] |=
VC4_SET_FIELD(vc4_state->dlist_count, SCALER_CTL0_SIZE); VC4_SET_FIELD(vc4_state->dlist_count, SCALER_CTL0_SIZE);
@ -303,13 +716,13 @@ void vc4_plane_async_set_fb(struct drm_plane *plane, struct drm_framebuffer *fb)
* scanout will start from this address as soon as the FIFO * scanout will start from this address as soon as the FIFO
* needs to refill with pixels. * needs to refill with pixels.
*/ */
writel(addr, &vc4_state->hw_dlist[vc4_state->pw0_offset]); writel(addr, &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
/* Also update the CPU-side dlist copy, so that any later /* Also update the CPU-side dlist copy, so that any later
* atomic updates that don't do a new modeset on our plane * atomic updates that don't do a new modeset on our plane
* also use our updated address. * also use our updated address.
*/ */
vc4_state->dlist[vc4_state->pw0_offset] = addr; vc4_state->dlist[vc4_state->ptr0_offset] = addr;
} }
static const struct drm_plane_helper_funcs vc4_plane_helper_funcs = { static const struct drm_plane_helper_funcs vc4_plane_helper_funcs = {
@ -325,8 +738,83 @@ static void vc4_plane_destroy(struct drm_plane *plane)
drm_plane_cleanup(plane); drm_plane_cleanup(plane);
} }
/* Implements immediate (non-vblank-synced) updates of the cursor
* position, or falls back to the atomic helper otherwise.
*/
static int
vc4_update_plane(struct drm_plane *plane,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
int crtc_x, int crtc_y,
unsigned int crtc_w, unsigned int crtc_h,
uint32_t src_x, uint32_t src_y,
uint32_t src_w, uint32_t src_h)
{
struct drm_plane_state *plane_state;
struct vc4_plane_state *vc4_state;
if (plane != crtc->cursor)
goto out;
plane_state = plane->state;
vc4_state = to_vc4_plane_state(plane_state);
if (!plane_state)
goto out;
/* If we're changing the cursor contents, do that in the
* normal vblank-synced atomic path.
*/
if (fb != plane_state->fb)
goto out;
/* No configuring new scaling in the fast path. */
if (crtc_w != plane_state->crtc_w ||
crtc_h != plane_state->crtc_h ||
src_w != plane_state->src_w ||
src_h != plane_state->src_h) {
goto out;
}
/* Set the cursor's position on the screen. This is the
* expected change from the drm_mode_cursor_universal()
* helper.
*/
plane_state->crtc_x = crtc_x;
plane_state->crtc_y = crtc_y;
/* Allow changing the start position within the cursor BO, if
* that matters.
*/
plane_state->src_x = src_x;
plane_state->src_y = src_y;
/* Update the display list based on the new crtc_x/y. */
vc4_plane_atomic_check(plane, plane_state);
/* Note that we can't just call vc4_plane_write_dlist()
* because that would smash the context data that the HVS is
* currently using.
*/
writel(vc4_state->dlist[vc4_state->pos0_offset],
&vc4_state->hw_dlist[vc4_state->pos0_offset]);
writel(vc4_state->dlist[vc4_state->pos2_offset],
&vc4_state->hw_dlist[vc4_state->pos2_offset]);
writel(vc4_state->dlist[vc4_state->ptr0_offset],
&vc4_state->hw_dlist[vc4_state->ptr0_offset]);
return 0;
out:
return drm_atomic_helper_update_plane(plane, crtc, fb,
crtc_x, crtc_y,
crtc_w, crtc_h,
src_x, src_y,
src_w, src_h);
}
static const struct drm_plane_funcs vc4_plane_funcs = { static const struct drm_plane_funcs vc4_plane_funcs = {
.update_plane = drm_atomic_helper_update_plane, .update_plane = vc4_update_plane,
.disable_plane = drm_atomic_helper_disable_plane, .disable_plane = drm_atomic_helper_disable_plane,
.destroy = vc4_plane_destroy, .destroy = vc4_plane_destroy,
.set_property = NULL, .set_property = NULL,
@ -341,6 +829,7 @@ struct drm_plane *vc4_plane_init(struct drm_device *dev,
struct drm_plane *plane = NULL; struct drm_plane *plane = NULL;
struct vc4_plane *vc4_plane; struct vc4_plane *vc4_plane;
u32 formats[ARRAY_SIZE(hvs_formats)]; u32 formats[ARRAY_SIZE(hvs_formats)];
u32 num_formats = 0;
int ret = 0; int ret = 0;
unsigned i; unsigned i;
@ -351,12 +840,20 @@ struct drm_plane *vc4_plane_init(struct drm_device *dev,
goto fail; goto fail;
} }
for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) {
formats[i] = hvs_formats[i].drm; /* Don't allow YUV in cursor planes, since that means
* tuning on the scaler, which we don't allow for the
* cursor.
*/
if (type != DRM_PLANE_TYPE_CURSOR ||
hvs_formats[i].hvs < HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE) {
formats[num_formats++] = hvs_formats[i].drm;
}
}
plane = &vc4_plane->base; plane = &vc4_plane->base;
ret = drm_universal_plane_init(dev, plane, 0xff, ret = drm_universal_plane_init(dev, plane, 0xff,
&vc4_plane_funcs, &vc4_plane_funcs,
formats, ARRAY_SIZE(formats), formats, num_formats,
type, NULL); type, NULL);
drm_plane_helper_add(plane, &vc4_plane_helper_funcs); drm_plane_helper_add(plane, &vc4_plane_helper_funcs);

View File

@ -503,7 +503,12 @@ enum hvs_pixel_format {
HVS_PIXEL_FORMAT_RGB888 = 5, HVS_PIXEL_FORMAT_RGB888 = 5,
HVS_PIXEL_FORMAT_RGBA6666 = 6, HVS_PIXEL_FORMAT_RGBA6666 = 6,
/* 32bpp */ /* 32bpp */
HVS_PIXEL_FORMAT_RGBA8888 = 7 HVS_PIXEL_FORMAT_RGBA8888 = 7,
HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE = 8,
HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE = 9,
HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE = 10,
HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE = 11,
}; };
/* Note: the LSB is the rightmost character shown. Only valid for /* Note: the LSB is the rightmost character shown. Only valid for
@ -536,6 +541,21 @@ enum hvs_pixel_format {
#define SCALER_CTL0_ORDER_MASK VC4_MASK(14, 13) #define SCALER_CTL0_ORDER_MASK VC4_MASK(14, 13)
#define SCALER_CTL0_ORDER_SHIFT 13 #define SCALER_CTL0_ORDER_SHIFT 13
#define SCALER_CTL0_SCL1_MASK VC4_MASK(10, 8)
#define SCALER_CTL0_SCL1_SHIFT 8
#define SCALER_CTL0_SCL0_MASK VC4_MASK(7, 5)
#define SCALER_CTL0_SCL0_SHIFT 5
#define SCALER_CTL0_SCL_H_PPF_V_PPF 0
#define SCALER_CTL0_SCL_H_TPZ_V_PPF 1
#define SCALER_CTL0_SCL_H_PPF_V_TPZ 2
#define SCALER_CTL0_SCL_H_TPZ_V_TPZ 3
#define SCALER_CTL0_SCL_H_PPF_V_NONE 4
#define SCALER_CTL0_SCL_H_NONE_V_PPF 5
#define SCALER_CTL0_SCL_H_NONE_V_TPZ 6
#define SCALER_CTL0_SCL_H_TPZ_V_NONE 7
/* Set to indicate no scaling. */ /* Set to indicate no scaling. */
#define SCALER_CTL0_UNITY BIT(4) #define SCALER_CTL0_UNITY BIT(4)
@ -551,6 +571,12 @@ enum hvs_pixel_format {
#define SCALER_POS0_START_X_MASK VC4_MASK(11, 0) #define SCALER_POS0_START_X_MASK VC4_MASK(11, 0)
#define SCALER_POS0_START_X_SHIFT 0 #define SCALER_POS0_START_X_SHIFT 0
#define SCALER_POS1_SCL_HEIGHT_MASK VC4_MASK(27, 16)
#define SCALER_POS1_SCL_HEIGHT_SHIFT 16
#define SCALER_POS1_SCL_WIDTH_MASK VC4_MASK(11, 0)
#define SCALER_POS1_SCL_WIDTH_SHIFT 0
#define SCALER_POS2_ALPHA_MODE_MASK VC4_MASK(31, 30) #define SCALER_POS2_ALPHA_MODE_MASK VC4_MASK(31, 30)
#define SCALER_POS2_ALPHA_MODE_SHIFT 30 #define SCALER_POS2_ALPHA_MODE_SHIFT 30
#define SCALER_POS2_ALPHA_MODE_PIPELINE 0 #define SCALER_POS2_ALPHA_MODE_PIPELINE 0
@ -564,6 +590,80 @@ enum hvs_pixel_format {
#define SCALER_POS2_WIDTH_MASK VC4_MASK(11, 0) #define SCALER_POS2_WIDTH_MASK VC4_MASK(11, 0)
#define SCALER_POS2_WIDTH_SHIFT 0 #define SCALER_POS2_WIDTH_SHIFT 0
/* Color Space Conversion words. Some values are S2.8 signed
* integers, except that the 2 integer bits map as {0x0: 0, 0x1: 1,
* 0x2: 2, 0x3: -1}
*/
/* bottom 8 bits of S2.8 contribution of Cr to Blue */
#define SCALER_CSC0_COEF_CR_BLU_MASK VC4_MASK(31, 24)
#define SCALER_CSC0_COEF_CR_BLU_SHIFT 24
/* Signed offset to apply to Y before CSC. (Y' = Y + YY_OFS) */
#define SCALER_CSC0_COEF_YY_OFS_MASK VC4_MASK(23, 16)
#define SCALER_CSC0_COEF_YY_OFS_SHIFT 16
/* Signed offset to apply to CB before CSC (Cb' = Cb - 128 + CB_OFS). */
#define SCALER_CSC0_COEF_CB_OFS_MASK VC4_MASK(15, 8)
#define SCALER_CSC0_COEF_CB_OFS_SHIFT 8
/* Signed offset to apply to CB before CSC (Cr' = Cr - 128 + CR_OFS). */
#define SCALER_CSC0_COEF_CR_OFS_MASK VC4_MASK(7, 0)
#define SCALER_CSC0_COEF_CR_OFS_SHIFT 0
#define SCALER_CSC0_ITR_R_601_5 0x00f00000
#define SCALER_CSC0_ITR_R_709_3 0x00f00000
#define SCALER_CSC0_JPEG_JFIF 0x00000000
/* S2.8 contribution of Cb to Green */
#define SCALER_CSC1_COEF_CB_GRN_MASK VC4_MASK(31, 22)
#define SCALER_CSC1_COEF_CB_GRN_SHIFT 22
/* S2.8 contribution of Cr to Green */
#define SCALER_CSC1_COEF_CR_GRN_MASK VC4_MASK(21, 12)
#define SCALER_CSC1_COEF_CR_GRN_SHIFT 12
/* S2.8 contribution of Y to all of RGB */
#define SCALER_CSC1_COEF_YY_ALL_MASK VC4_MASK(11, 2)
#define SCALER_CSC1_COEF_YY_ALL_SHIFT 2
/* top 2 bits of S2.8 contribution of Cr to Blue */
#define SCALER_CSC1_COEF_CR_BLU_MASK VC4_MASK(1, 0)
#define SCALER_CSC1_COEF_CR_BLU_SHIFT 0
#define SCALER_CSC1_ITR_R_601_5 0xe73304a8
#define SCALER_CSC1_ITR_R_709_3 0xf2b784a8
#define SCALER_CSC1_JPEG_JFIF 0xea34a400
/* S2.8 contribution of Cb to Red */
#define SCALER_CSC2_COEF_CB_RED_MASK VC4_MASK(29, 20)
#define SCALER_CSC2_COEF_CB_RED_SHIFT 20
/* S2.8 contribution of Cr to Red */
#define SCALER_CSC2_COEF_CR_RED_MASK VC4_MASK(19, 10)
#define SCALER_CSC2_COEF_CR_RED_SHIFT 10
/* S2.8 contribution of Cb to Blue */
#define SCALER_CSC2_COEF_CB_BLU_MASK VC4_MASK(19, 10)
#define SCALER_CSC2_COEF_CB_BLU_SHIFT 10
#define SCALER_CSC2_ITR_R_601_5 0x00066204
#define SCALER_CSC2_ITR_R_709_3 0x00072a1c
#define SCALER_CSC2_JPEG_JFIF 0x000599c5
#define SCALER_TPZ0_VERT_RECALC BIT(31)
#define SCALER_TPZ0_SCALE_MASK VC4_MASK(28, 8)
#define SCALER_TPZ0_SCALE_SHIFT 8
#define SCALER_TPZ0_IPHASE_MASK VC4_MASK(7, 0)
#define SCALER_TPZ0_IPHASE_SHIFT 0
#define SCALER_TPZ1_RECIP_MASK VC4_MASK(15, 0)
#define SCALER_TPZ1_RECIP_SHIFT 0
/* Skips interpolating coefficients to 64 phases, so just 8 are used.
* Required for nearest neighbor.
*/
#define SCALER_PPF_NOINTERP BIT(31)
/* Replaes the highest valued coefficient with one that makes all 4
* sum to unity.
*/
#define SCALER_PPF_AGC BIT(30)
#define SCALER_PPF_SCALE_MASK VC4_MASK(24, 8)
#define SCALER_PPF_SCALE_SHIFT 8
#define SCALER_PPF_IPHASE_MASK VC4_MASK(6, 0)
#define SCALER_PPF_IPHASE_SHIFT 0
#define SCALER_PPF_KERNEL_OFFSET_MASK VC4_MASK(13, 0)
#define SCALER_PPF_KERNEL_OFFSET_SHIFT 0
#define SCALER_PPF_KERNEL_UNCACHED BIT(31)
#define SCALER_SRC_PITCH_MASK VC4_MASK(15, 0) #define SCALER_SRC_PITCH_MASK VC4_MASK(15, 0)
#define SCALER_SRC_PITCH_SHIFT 0 #define SCALER_SRC_PITCH_SHIFT 0