mirror of https://gitee.com/openkylin/linux.git
Merge rsync://rsync.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6
This commit is contained in:
commit
a39451c17f
|
@ -304,57 +304,6 @@ tcp_low_latency - BOOLEAN
|
|||
changed would be a Beowulf compute cluster.
|
||||
Default: 0
|
||||
|
||||
tcp_westwood - BOOLEAN
|
||||
Enable TCP Westwood+ congestion control algorithm.
|
||||
TCP Westwood+ is a sender-side only modification of the TCP Reno
|
||||
protocol stack that optimizes the performance of TCP congestion
|
||||
control. It is based on end-to-end bandwidth estimation to set
|
||||
congestion window and slow start threshold after a congestion
|
||||
episode. Using this estimation, TCP Westwood+ adaptively sets a
|
||||
slow start threshold and a congestion window which takes into
|
||||
account the bandwidth used at the time congestion is experienced.
|
||||
TCP Westwood+ significantly increases fairness wrt TCP Reno in
|
||||
wired networks and throughput over wireless links.
|
||||
Default: 0
|
||||
|
||||
tcp_vegas_cong_avoid - BOOLEAN
|
||||
Enable TCP Vegas congestion avoidance algorithm.
|
||||
TCP Vegas is a sender-side only change to TCP that anticipates
|
||||
the onset of congestion by estimating the bandwidth. TCP Vegas
|
||||
adjusts the sending rate by modifying the congestion
|
||||
window. TCP Vegas should provide less packet loss, but it is
|
||||
not as aggressive as TCP Reno.
|
||||
Default:0
|
||||
|
||||
tcp_bic - BOOLEAN
|
||||
Enable BIC TCP congestion control algorithm.
|
||||
BIC-TCP is a sender-side only change that ensures a linear RTT
|
||||
fairness under large windows while offering both scalability and
|
||||
bounded TCP-friendliness. The protocol combines two schemes
|
||||
called additive increase and binary search increase. When the
|
||||
congestion window is large, additive increase with a large
|
||||
increment ensures linear RTT fairness as well as good
|
||||
scalability. Under small congestion windows, binary search
|
||||
increase provides TCP friendliness.
|
||||
Default: 0
|
||||
|
||||
tcp_bic_low_window - INTEGER
|
||||
Sets the threshold window (in packets) where BIC TCP starts to
|
||||
adjust the congestion window. Below this threshold BIC TCP behaves
|
||||
the same as the default TCP Reno.
|
||||
Default: 14
|
||||
|
||||
tcp_bic_fast_convergence - BOOLEAN
|
||||
Forces BIC TCP to more quickly respond to changes in congestion
|
||||
window. Allows two flows sharing the same connection to converge
|
||||
more rapidly.
|
||||
Default: 1
|
||||
|
||||
tcp_default_win_scale - INTEGER
|
||||
Sets the minimum window scale TCP will negotiate for on all
|
||||
conections.
|
||||
Default: 7
|
||||
|
||||
tcp_tso_win_divisor - INTEGER
|
||||
This allows control over what percentage of the congestion window
|
||||
can be consumed by a single TSO frame.
|
||||
|
@ -368,6 +317,11 @@ tcp_frto - BOOLEAN
|
|||
where packet loss is typically due to random radio interference
|
||||
rather than intermediate router congestion.
|
||||
|
||||
tcp_congestion_control - STRING
|
||||
Set the congestion control algorithm to be used for new
|
||||
connections. The algorithm "reno" is always available, but
|
||||
additional choices may be available based on kernel configuration.
|
||||
|
||||
somaxconn - INTEGER
|
||||
Limit of socket listen() backlog, known in userspace as SOMAXCONN.
|
||||
Defaults to 128. See also tcp_max_syn_backlog for additional tuning
|
||||
|
|
|
@ -1,5 +1,72 @@
|
|||
How the new TCP output machine [nyi] works.
|
||||
TCP protocol
|
||||
============
|
||||
|
||||
Last updated: 21 June 2005
|
||||
|
||||
Contents
|
||||
========
|
||||
|
||||
- Congestion control
|
||||
- How the new TCP output machine [nyi] works
|
||||
|
||||
Congestion control
|
||||
==================
|
||||
|
||||
The following variables are used in the tcp_sock for congestion control:
|
||||
snd_cwnd The size of the congestion window
|
||||
snd_ssthresh Slow start threshold. We are in slow start if
|
||||
snd_cwnd is less than this.
|
||||
snd_cwnd_cnt A counter used to slow down the rate of increase
|
||||
once we exceed slow start threshold.
|
||||
snd_cwnd_clamp This is the maximum size that snd_cwnd can grow to.
|
||||
snd_cwnd_stamp Timestamp for when congestion window last validated.
|
||||
snd_cwnd_used Used as a highwater mark for how much of the
|
||||
congestion window is in use. It is used to adjust
|
||||
snd_cwnd down when the link is limited by the
|
||||
application rather than the network.
|
||||
|
||||
As of 2.6.13, Linux supports pluggable congestion control algorithms.
|
||||
A congestion control mechanism can be registered through functions in
|
||||
tcp_cong.c. The functions used by the congestion control mechanism are
|
||||
registered via passing a tcp_congestion_ops struct to
|
||||
tcp_register_congestion_control. As a minimum name, ssthresh,
|
||||
cong_avoid, min_cwnd must be valid.
|
||||
|
||||
Private data for a congestion control mechanism is stored in tp->ca_priv.
|
||||
tcp_ca(tp) returns a pointer to this space. This is preallocated space - it
|
||||
is important to check the size of your private data will fit this space, or
|
||||
alternatively space could be allocated elsewhere and a pointer to it could
|
||||
be stored here.
|
||||
|
||||
There are three kinds of congestion control algorithms currently: The
|
||||
simplest ones are derived from TCP reno (highspeed, scalable) and just
|
||||
provide an alternative the congestion window calculation. More complex
|
||||
ones like BIC try to look at other events to provide better
|
||||
heuristics. There are also round trip time based algorithms like
|
||||
Vegas and Westwood+.
|
||||
|
||||
Good TCP congestion control is a complex problem because the algorithm
|
||||
needs to maintain fairness and performance. Please review current
|
||||
research and RFC's before developing new modules.
|
||||
|
||||
The method that is used to determine which congestion control mechanism is
|
||||
determined by the setting of the sysctl net.ipv4.tcp_congestion_control.
|
||||
The default congestion control will be the last one registered (LIFO);
|
||||
so if you built everything as modules. the default will be reno. If you
|
||||
build with the default's from Kconfig, then BIC will be builtin (not a module)
|
||||
and it will end up the default.
|
||||
|
||||
If you really want a particular default value then you will need
|
||||
to set it with the sysctl. If you use a sysctl, the module will be autoloaded
|
||||
if needed and you will get the expected protocol. If you ask for an
|
||||
unknown congestion method, then the sysctl attempt will fail.
|
||||
|
||||
If you remove a tcp congestion control module, then you will get the next
|
||||
available one. Since reno can not be built as a module, and can not be
|
||||
deleted, it will always be available.
|
||||
|
||||
How the new TCP output machine [nyi] works.
|
||||
===========================================
|
||||
|
||||
Data is kept on a single queue. The skb->users flag tells us if the frame is
|
||||
one that has been queued already. To add a frame we throw it on the end. Ack
|
||||
|
|
|
@ -333,21 +333,14 @@ enum
|
|||
NET_TCP_FRTO=92,
|
||||
NET_TCP_LOW_LATENCY=93,
|
||||
NET_IPV4_IPFRAG_SECRET_INTERVAL=94,
|
||||
NET_TCP_WESTWOOD=95,
|
||||
NET_IPV4_IGMP_MAX_MSF=96,
|
||||
NET_TCP_NO_METRICS_SAVE=97,
|
||||
NET_TCP_VEGAS=98,
|
||||
NET_TCP_VEGAS_ALPHA=99,
|
||||
NET_TCP_VEGAS_BETA=100,
|
||||
NET_TCP_VEGAS_GAMMA=101,
|
||||
NET_TCP_BIC=102,
|
||||
NET_TCP_BIC_FAST_CONVERGENCE=103,
|
||||
NET_TCP_BIC_LOW_WINDOW=104,
|
||||
NET_TCP_DEFAULT_WIN_SCALE=105,
|
||||
NET_TCP_MODERATE_RCVBUF=106,
|
||||
NET_TCP_TSO_WIN_DIVISOR=107,
|
||||
NET_TCP_BIC_BETA=108,
|
||||
NET_IPV4_ICMP_ERRORS_USE_INBOUND_IFADDR=109,
|
||||
NET_TCP_CONG_CONTROL=110,
|
||||
};
|
||||
|
||||
enum {
|
||||
|
|
|
@ -203,13 +203,6 @@ struct tcp_sack_block {
|
|||
__u32 end_seq;
|
||||
};
|
||||
|
||||
enum tcp_congestion_algo {
|
||||
TCP_RENO=0,
|
||||
TCP_VEGAS,
|
||||
TCP_WESTWOOD,
|
||||
TCP_BIC,
|
||||
};
|
||||
|
||||
struct tcp_options_received {
|
||||
/* PAWS/RTTM data */
|
||||
long ts_recent_stamp;/* Time we stored ts_recent (for aging) */
|
||||
|
@ -305,7 +298,7 @@ struct tcp_sock {
|
|||
__u8 reordering; /* Packet reordering metric. */
|
||||
__u8 frto_counter; /* Number of new acks after RTO */
|
||||
|
||||
__u8 adv_cong; /* Using Vegas, Westwood, or BIC */
|
||||
__u8 unused;
|
||||
__u8 defer_accept; /* User waits for some data after accept() */
|
||||
|
||||
/* RTT measurement */
|
||||
|
@ -401,37 +394,10 @@ struct tcp_sock {
|
|||
__u32 time;
|
||||
} rcvq_space;
|
||||
|
||||
/* TCP Westwood structure */
|
||||
struct {
|
||||
__u32 bw_ns_est; /* first bandwidth estimation..not too smoothed 8) */
|
||||
__u32 bw_est; /* bandwidth estimate */
|
||||
__u32 rtt_win_sx; /* here starts a new evaluation... */
|
||||
__u32 bk;
|
||||
__u32 snd_una; /* used for evaluating the number of acked bytes */
|
||||
__u32 cumul_ack;
|
||||
__u32 accounted;
|
||||
__u32 rtt;
|
||||
__u32 rtt_min; /* minimum observed RTT */
|
||||
} westwood;
|
||||
|
||||
/* Vegas variables */
|
||||
struct {
|
||||
__u32 beg_snd_nxt; /* right edge during last RTT */
|
||||
__u32 beg_snd_una; /* left edge during last RTT */
|
||||
__u32 beg_snd_cwnd; /* saves the size of the cwnd */
|
||||
__u8 doing_vegas_now;/* if true, do vegas for this RTT */
|
||||
__u16 cntRTT; /* # of RTTs measured within last RTT */
|
||||
__u32 minRTT; /* min of RTTs measured within last RTT (in usec) */
|
||||
__u32 baseRTT; /* the min of all Vegas RTT measurements seen (in usec) */
|
||||
} vegas;
|
||||
|
||||
/* BI TCP Parameters */
|
||||
struct {
|
||||
__u32 cnt; /* increase cwnd by 1 after this number of ACKs */
|
||||
__u32 last_max_cwnd; /* last maximium snd_cwnd */
|
||||
__u32 last_cwnd; /* the last snd_cwnd */
|
||||
__u32 last_stamp; /* time when updated last_cwnd */
|
||||
} bictcp;
|
||||
/* Pluggable TCP congestion control hook */
|
||||
struct tcp_congestion_ops *ca_ops;
|
||||
u32 ca_priv[16];
|
||||
#define TCP_CA_PRIV_SIZE (16*sizeof(u32))
|
||||
};
|
||||
|
||||
static inline struct tcp_sock *tcp_sk(const struct sock *sk)
|
||||
|
@ -439,6 +405,11 @@ static inline struct tcp_sock *tcp_sk(const struct sock *sk)
|
|||
return (struct tcp_sock *)sk;
|
||||
}
|
||||
|
||||
static inline void *tcp_ca(const struct tcp_sock *tp)
|
||||
{
|
||||
return (void *) tp->ca_priv;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#endif /* _LINUX_TCP_H */
|
||||
|
|
|
@ -99,9 +99,10 @@ enum
|
|||
TCPDIAG_MEMINFO,
|
||||
TCPDIAG_INFO,
|
||||
TCPDIAG_VEGASINFO,
|
||||
TCPDIAG_CONG,
|
||||
};
|
||||
|
||||
#define TCPDIAG_MAX TCPDIAG_VEGASINFO
|
||||
#define TCPDIAG_MAX TCPDIAG_CONG
|
||||
|
||||
|
||||
/* TCPDIAG_MEM */
|
||||
|
@ -123,5 +124,4 @@ struct tcpvegas_info {
|
|||
__u32 tcpv_minrtt;
|
||||
};
|
||||
|
||||
|
||||
#endif /* _TCP_DIAG_H_ */
|
||||
|
|
|
@ -505,25 +505,6 @@ static __inline__ int tcp_sk_listen_hashfn(struct sock *sk)
|
|||
#else
|
||||
# define TCP_TW_RECYCLE_TICK (12+2-TCP_TW_RECYCLE_SLOTS_LOG)
|
||||
#endif
|
||||
|
||||
#define BICTCP_BETA_SCALE 1024 /* Scale factor beta calculation
|
||||
* max_cwnd = snd_cwnd * beta
|
||||
*/
|
||||
#define BICTCP_MAX_INCREMENT 32 /*
|
||||
* Limit on the amount of
|
||||
* increment allowed during
|
||||
* binary search.
|
||||
*/
|
||||
#define BICTCP_FUNC_OF_MIN_INCR 11 /*
|
||||
* log(B/Smin)/log(B/(B-1))+1,
|
||||
* Smin:min increment
|
||||
* B:log factor
|
||||
*/
|
||||
#define BICTCP_B 4 /*
|
||||
* In binary search,
|
||||
* go to point (max+min)/N
|
||||
*/
|
||||
|
||||
/*
|
||||
* TCP option
|
||||
*/
|
||||
|
@ -596,16 +577,7 @@ extern int sysctl_tcp_adv_win_scale;
|
|||
extern int sysctl_tcp_tw_reuse;
|
||||
extern int sysctl_tcp_frto;
|
||||
extern int sysctl_tcp_low_latency;
|
||||
extern int sysctl_tcp_westwood;
|
||||
extern int sysctl_tcp_vegas_cong_avoid;
|
||||
extern int sysctl_tcp_vegas_alpha;
|
||||
extern int sysctl_tcp_vegas_beta;
|
||||
extern int sysctl_tcp_vegas_gamma;
|
||||
extern int sysctl_tcp_nometrics_save;
|
||||
extern int sysctl_tcp_bic;
|
||||
extern int sysctl_tcp_bic_fast_convergence;
|
||||
extern int sysctl_tcp_bic_low_window;
|
||||
extern int sysctl_tcp_bic_beta;
|
||||
extern int sysctl_tcp_moderate_rcvbuf;
|
||||
extern int sysctl_tcp_tso_win_divisor;
|
||||
|
||||
|
@ -1136,6 +1108,80 @@ static inline void tcp_packets_out_dec(struct tcp_sock *tp,
|
|||
tp->packets_out -= tcp_skb_pcount(skb);
|
||||
}
|
||||
|
||||
/* Events passed to congestion control interface */
|
||||
enum tcp_ca_event {
|
||||
CA_EVENT_TX_START, /* first transmit when no packets in flight */
|
||||
CA_EVENT_CWND_RESTART, /* congestion window restart */
|
||||
CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
|
||||
CA_EVENT_FRTO, /* fast recovery timeout */
|
||||
CA_EVENT_LOSS, /* loss timeout */
|
||||
CA_EVENT_FAST_ACK, /* in sequence ack */
|
||||
CA_EVENT_SLOW_ACK, /* other ack */
|
||||
};
|
||||
|
||||
/*
|
||||
* Interface for adding new TCP congestion control handlers
|
||||
*/
|
||||
#define TCP_CA_NAME_MAX 16
|
||||
struct tcp_congestion_ops {
|
||||
struct list_head list;
|
||||
|
||||
/* initialize private data (optional) */
|
||||
void (*init)(struct tcp_sock *tp);
|
||||
/* cleanup private data (optional) */
|
||||
void (*release)(struct tcp_sock *tp);
|
||||
|
||||
/* return slow start threshold (required) */
|
||||
u32 (*ssthresh)(struct tcp_sock *tp);
|
||||
/* lower bound for congestion window (optional) */
|
||||
u32 (*min_cwnd)(struct tcp_sock *tp);
|
||||
/* do new cwnd calculation (required) */
|
||||
void (*cong_avoid)(struct tcp_sock *tp, u32 ack,
|
||||
u32 rtt, u32 in_flight, int good_ack);
|
||||
/* round trip time sample per acked packet (optional) */
|
||||
void (*rtt_sample)(struct tcp_sock *tp, u32 usrtt);
|
||||
/* call before changing ca_state (optional) */
|
||||
void (*set_state)(struct tcp_sock *tp, u8 new_state);
|
||||
/* call when cwnd event occurs (optional) */
|
||||
void (*cwnd_event)(struct tcp_sock *tp, enum tcp_ca_event ev);
|
||||
/* new value of cwnd after loss (optional) */
|
||||
u32 (*undo_cwnd)(struct tcp_sock *tp);
|
||||
/* hook for packet ack accounting (optional) */
|
||||
void (*pkts_acked)(struct tcp_sock *tp, u32 num_acked);
|
||||
/* get info for tcp_diag (optional) */
|
||||
void (*get_info)(struct tcp_sock *tp, u32 ext, struct sk_buff *skb);
|
||||
|
||||
char name[TCP_CA_NAME_MAX];
|
||||
struct module *owner;
|
||||
};
|
||||
|
||||
extern int tcp_register_congestion_control(struct tcp_congestion_ops *type);
|
||||
extern void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
|
||||
|
||||
extern void tcp_init_congestion_control(struct tcp_sock *tp);
|
||||
extern void tcp_cleanup_congestion_control(struct tcp_sock *tp);
|
||||
extern int tcp_set_default_congestion_control(const char *name);
|
||||
extern void tcp_get_default_congestion_control(char *name);
|
||||
|
||||
extern struct tcp_congestion_ops tcp_reno;
|
||||
extern u32 tcp_reno_ssthresh(struct tcp_sock *tp);
|
||||
extern void tcp_reno_cong_avoid(struct tcp_sock *tp, u32 ack,
|
||||
u32 rtt, u32 in_flight, int flag);
|
||||
extern u32 tcp_reno_min_cwnd(struct tcp_sock *tp);
|
||||
|
||||
static inline void tcp_set_ca_state(struct tcp_sock *tp, u8 ca_state)
|
||||
{
|
||||
if (tp->ca_ops->set_state)
|
||||
tp->ca_ops->set_state(tp, ca_state);
|
||||
tp->ca_state = ca_state;
|
||||
}
|
||||
|
||||
static inline void tcp_ca_event(struct tcp_sock *tp, enum tcp_ca_event event)
|
||||
{
|
||||
if (tp->ca_ops->cwnd_event)
|
||||
tp->ca_ops->cwnd_event(tp, event);
|
||||
}
|
||||
|
||||
/* This determines how many packets are "in the network" to the best
|
||||
* of our knowledge. In many cases it is conservative, but where
|
||||
* detailed information is available from the receiver (via SACK
|
||||
|
@ -1155,91 +1201,6 @@ static __inline__ unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
|
|||
return (tp->packets_out - tp->left_out + tp->retrans_out);
|
||||
}
|
||||
|
||||
/*
|
||||
* Which congestion algorithim is in use on the connection.
|
||||
*/
|
||||
#define tcp_is_vegas(__tp) ((__tp)->adv_cong == TCP_VEGAS)
|
||||
#define tcp_is_westwood(__tp) ((__tp)->adv_cong == TCP_WESTWOOD)
|
||||
#define tcp_is_bic(__tp) ((__tp)->adv_cong == TCP_BIC)
|
||||
|
||||
/* Recalculate snd_ssthresh, we want to set it to:
|
||||
*
|
||||
* Reno:
|
||||
* one half the current congestion window, but no
|
||||
* less than two segments
|
||||
*
|
||||
* BIC:
|
||||
* behave like Reno until low_window is reached,
|
||||
* then increase congestion window slowly
|
||||
*/
|
||||
static inline __u32 tcp_recalc_ssthresh(struct tcp_sock *tp)
|
||||
{
|
||||
if (tcp_is_bic(tp)) {
|
||||
if (sysctl_tcp_bic_fast_convergence &&
|
||||
tp->snd_cwnd < tp->bictcp.last_max_cwnd)
|
||||
tp->bictcp.last_max_cwnd = (tp->snd_cwnd *
|
||||
(BICTCP_BETA_SCALE
|
||||
+ sysctl_tcp_bic_beta))
|
||||
/ (2 * BICTCP_BETA_SCALE);
|
||||
else
|
||||
tp->bictcp.last_max_cwnd = tp->snd_cwnd;
|
||||
|
||||
if (tp->snd_cwnd > sysctl_tcp_bic_low_window)
|
||||
return max((tp->snd_cwnd * sysctl_tcp_bic_beta)
|
||||
/ BICTCP_BETA_SCALE, 2U);
|
||||
}
|
||||
|
||||
return max(tp->snd_cwnd >> 1U, 2U);
|
||||
}
|
||||
|
||||
/* Stop taking Vegas samples for now. */
|
||||
#define tcp_vegas_disable(__tp) ((__tp)->vegas.doing_vegas_now = 0)
|
||||
|
||||
static inline void tcp_vegas_enable(struct tcp_sock *tp)
|
||||
{
|
||||
/* There are several situations when we must "re-start" Vegas:
|
||||
*
|
||||
* o when a connection is established
|
||||
* o after an RTO
|
||||
* o after fast recovery
|
||||
* o when we send a packet and there is no outstanding
|
||||
* unacknowledged data (restarting an idle connection)
|
||||
*
|
||||
* In these circumstances we cannot do a Vegas calculation at the
|
||||
* end of the first RTT, because any calculation we do is using
|
||||
* stale info -- both the saved cwnd and congestion feedback are
|
||||
* stale.
|
||||
*
|
||||
* Instead we must wait until the completion of an RTT during
|
||||
* which we actually receive ACKs.
|
||||
*/
|
||||
|
||||
/* Begin taking Vegas samples next time we send something. */
|
||||
tp->vegas.doing_vegas_now = 1;
|
||||
|
||||
/* Set the beginning of the next send window. */
|
||||
tp->vegas.beg_snd_nxt = tp->snd_nxt;
|
||||
|
||||
tp->vegas.cntRTT = 0;
|
||||
tp->vegas.minRTT = 0x7fffffff;
|
||||
}
|
||||
|
||||
/* Should we be taking Vegas samples right now? */
|
||||
#define tcp_vegas_enabled(__tp) ((__tp)->vegas.doing_vegas_now)
|
||||
|
||||
extern void tcp_ca_init(struct tcp_sock *tp);
|
||||
|
||||
static inline void tcp_set_ca_state(struct tcp_sock *tp, u8 ca_state)
|
||||
{
|
||||
if (tcp_is_vegas(tp)) {
|
||||
if (ca_state == TCP_CA_Open)
|
||||
tcp_vegas_enable(tp);
|
||||
else
|
||||
tcp_vegas_disable(tp);
|
||||
}
|
||||
tp->ca_state = ca_state;
|
||||
}
|
||||
|
||||
/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
|
||||
* The exception is rate halving phase, when cwnd is decreasing towards
|
||||
* ssthresh.
|
||||
|
@ -1288,7 +1249,7 @@ static inline void tcp_cwnd_validate(struct sock *sk, struct tcp_sock *tp)
|
|||
static inline void __tcp_enter_cwr(struct tcp_sock *tp)
|
||||
{
|
||||
tp->undo_marker = 0;
|
||||
tp->snd_ssthresh = tcp_recalc_ssthresh(tp);
|
||||
tp->snd_ssthresh = tp->ca_ops->ssthresh(tp);
|
||||
tp->snd_cwnd = min(tp->snd_cwnd,
|
||||
tcp_packets_in_flight(tp) + 1U);
|
||||
tp->snd_cwnd_cnt = 0;
|
||||
|
@ -1876,52 +1837,4 @@ struct tcp_iter_state {
|
|||
extern int tcp_proc_register(struct tcp_seq_afinfo *afinfo);
|
||||
extern void tcp_proc_unregister(struct tcp_seq_afinfo *afinfo);
|
||||
|
||||
/* TCP Westwood functions and constants */
|
||||
|
||||
#define TCP_WESTWOOD_INIT_RTT (20*HZ) /* maybe too conservative?! */
|
||||
#define TCP_WESTWOOD_RTT_MIN (HZ/20) /* 50ms */
|
||||
|
||||
static inline void tcp_westwood_update_rtt(struct tcp_sock *tp, __u32 rtt_seq)
|
||||
{
|
||||
if (tcp_is_westwood(tp))
|
||||
tp->westwood.rtt = rtt_seq;
|
||||
}
|
||||
|
||||
static inline __u32 __tcp_westwood_bw_rttmin(const struct tcp_sock *tp)
|
||||
{
|
||||
return max((tp->westwood.bw_est) * (tp->westwood.rtt_min) /
|
||||
(__u32) (tp->mss_cache_std),
|
||||
2U);
|
||||
}
|
||||
|
||||
static inline __u32 tcp_westwood_bw_rttmin(const struct tcp_sock *tp)
|
||||
{
|
||||
return tcp_is_westwood(tp) ? __tcp_westwood_bw_rttmin(tp) : 0;
|
||||
}
|
||||
|
||||
static inline int tcp_westwood_ssthresh(struct tcp_sock *tp)
|
||||
{
|
||||
__u32 ssthresh = 0;
|
||||
|
||||
if (tcp_is_westwood(tp)) {
|
||||
ssthresh = __tcp_westwood_bw_rttmin(tp);
|
||||
if (ssthresh)
|
||||
tp->snd_ssthresh = ssthresh;
|
||||
}
|
||||
|
||||
return (ssthresh != 0);
|
||||
}
|
||||
|
||||
static inline int tcp_westwood_cwnd(struct tcp_sock *tp)
|
||||
{
|
||||
__u32 cwnd = 0;
|
||||
|
||||
if (tcp_is_westwood(tp)) {
|
||||
cwnd = __tcp_westwood_bw_rttmin(tp);
|
||||
if (cwnd)
|
||||
tp->snd_cwnd = cwnd;
|
||||
}
|
||||
|
||||
return (cwnd != 0);
|
||||
}
|
||||
#endif /* _TCP_H */
|
||||
|
|
|
@ -433,5 +433,95 @@ config IP_TCPDIAG
|
|||
config IP_TCPDIAG_IPV6
|
||||
def_bool (IP_TCPDIAG=y && IPV6=y) || (IP_TCPDIAG=m && IPV6)
|
||||
|
||||
# TCP Reno is builtin (required as fallback)
|
||||
menu "TCP congestion control"
|
||||
depends on INET
|
||||
|
||||
config TCP_CONG_BIC
|
||||
tristate "Binary Increase Congestion (BIC) control"
|
||||
depends on INET
|
||||
default y
|
||||
---help---
|
||||
BIC-TCP is a sender-side only change that ensures a linear RTT
|
||||
fairness under large windows while offering both scalability and
|
||||
bounded TCP-friendliness. The protocol combines two schemes
|
||||
called additive increase and binary search increase. When the
|
||||
congestion window is large, additive increase with a large
|
||||
increment ensures linear RTT fairness as well as good
|
||||
scalability. Under small congestion windows, binary search
|
||||
increase provides TCP friendliness.
|
||||
See http://www.csc.ncsu.edu/faculty/rhee/export/bitcp/
|
||||
|
||||
config TCP_CONG_WESTWOOD
|
||||
tristate "TCP Westwood+"
|
||||
depends on INET
|
||||
default m
|
||||
---help---
|
||||
TCP Westwood+ is a sender-side only modification of the TCP Reno
|
||||
protocol stack that optimizes the performance of TCP congestion
|
||||
control. It is based on end-to-end bandwidth estimation to set
|
||||
congestion window and slow start threshold after a congestion
|
||||
episode. Using this estimation, TCP Westwood+ adaptively sets a
|
||||
slow start threshold and a congestion window which takes into
|
||||
account the bandwidth used at the time congestion is experienced.
|
||||
TCP Westwood+ significantly increases fairness wrt TCP Reno in
|
||||
wired networks and throughput over wireless links.
|
||||
|
||||
config TCP_CONG_HTCP
|
||||
tristate "H-TCP"
|
||||
depends on INET
|
||||
default m
|
||||
---help---
|
||||
H-TCP is a send-side only modifications of the TCP Reno
|
||||
protocol stack that optimizes the performance of TCP
|
||||
congestion control for high speed network links. It uses a
|
||||
modeswitch to change the alpha and beta parameters of TCP Reno
|
||||
based on network conditions and in a way so as to be fair with
|
||||
other Reno and H-TCP flows.
|
||||
|
||||
config TCP_CONG_HSTCP
|
||||
tristate "High Speed TCP"
|
||||
depends on INET && EXPERIMENTAL
|
||||
default n
|
||||
---help---
|
||||
Sally Floyd's High Speed TCP (RFC 3649) congestion control.
|
||||
A modification to TCP's congestion control mechanism for use
|
||||
with large congestion windows. A table indicates how much to
|
||||
increase the congestion window by when an ACK is received.
|
||||
For more detail see http://www.icir.org/floyd/hstcp.html
|
||||
|
||||
config TCP_CONG_HYBLA
|
||||
tristate "TCP-Hybla congestion control algorithm"
|
||||
depends on INET && EXPERIMENTAL
|
||||
default n
|
||||
---help---
|
||||
TCP-Hybla is a sender-side only change that eliminates penalization of
|
||||
long-RTT, large-bandwidth connections, like when satellite legs are
|
||||
involved, expecially when sharing a common bottleneck with normal
|
||||
terrestrial connections.
|
||||
|
||||
config TCP_CONG_VEGAS
|
||||
tristate "TCP Vegas"
|
||||
depends on INET && EXPERIMENTAL
|
||||
default n
|
||||
---help---
|
||||
TCP Vegas is a sender-side only change to TCP that anticipates
|
||||
the onset of congestion by estimating the bandwidth. TCP Vegas
|
||||
adjusts the sending rate by modifying the congestion
|
||||
window. TCP Vegas should provide less packet loss, but it is
|
||||
not as aggressive as TCP Reno.
|
||||
|
||||
config TCP_CONG_SCALABLE
|
||||
tristate "Scalable TCP"
|
||||
depends on INET && EXPERIMENTAL
|
||||
default n
|
||||
---help---
|
||||
Scalable TCP is a sender-side only change to TCP which uses a
|
||||
MIMD congestion control algorithm which has some nice scaling
|
||||
properties, though is known to have fairness issues.
|
||||
See http://www-lce.eng.cam.ac.uk/~ctk21/scalable/
|
||||
|
||||
endmenu
|
||||
|
||||
source "net/ipv4/ipvs/Kconfig"
|
||||
|
||||
|
|
|
@ -5,7 +5,8 @@
|
|||
obj-y := utils.o route.o inetpeer.o protocol.o \
|
||||
ip_input.o ip_fragment.o ip_forward.o ip_options.o \
|
||||
ip_output.o ip_sockglue.o \
|
||||
tcp.o tcp_input.o tcp_output.o tcp_timer.o tcp_ipv4.o tcp_minisocks.o \
|
||||
tcp.o tcp_input.o tcp_output.o tcp_timer.o tcp_ipv4.o \
|
||||
tcp_minisocks.o tcp_cong.o \
|
||||
datagram.o raw.o udp.o arp.o icmp.o devinet.o af_inet.o igmp.o \
|
||||
sysctl_net_ipv4.o fib_frontend.o fib_semantics.o
|
||||
|
||||
|
@ -30,6 +31,13 @@ obj-$(CONFIG_NETFILTER) += netfilter/
|
|||
obj-$(CONFIG_IP_VS) += ipvs/
|
||||
obj-$(CONFIG_IP_TCPDIAG) += tcp_diag.o
|
||||
obj-$(CONFIG_IP_ROUTE_MULTIPATH_CACHED) += multipath.o
|
||||
obj-$(CONFIG_TCP_CONG_BIC) += tcp_bic.o
|
||||
obj-$(CONFIG_TCP_CONG_WESTWOOD) += tcp_westwood.o
|
||||
obj-$(CONFIG_TCP_CONG_HSTCP) += tcp_highspeed.o
|
||||
obj-$(CONFIG_TCP_CONG_HYBLA) += tcp_hybla.o
|
||||
obj-$(CONFIG_TCP_CONG_HTCP) += tcp_htcp.o
|
||||
obj-$(CONFIG_TCP_CONG_VEGAS) += tcp_vegas.o
|
||||
obj-$(CONFIG_TCP_CONG_SCALABLE) += tcp_scalable.o
|
||||
|
||||
obj-$(CONFIG_XFRM) += xfrm4_policy.o xfrm4_state.o xfrm4_input.o \
|
||||
xfrm4_output.o
|
||||
|
|
|
@ -118,6 +118,45 @@ static int ipv4_sysctl_forward_strategy(ctl_table *table,
|
|||
return 1;
|
||||
}
|
||||
|
||||
static int proc_tcp_congestion_control(ctl_table *ctl, int write, struct file * filp,
|
||||
void __user *buffer, size_t *lenp, loff_t *ppos)
|
||||
{
|
||||
char val[TCP_CA_NAME_MAX];
|
||||
ctl_table tbl = {
|
||||
.data = val,
|
||||
.maxlen = TCP_CA_NAME_MAX,
|
||||
};
|
||||
int ret;
|
||||
|
||||
tcp_get_default_congestion_control(val);
|
||||
|
||||
ret = proc_dostring(&tbl, write, filp, buffer, lenp, ppos);
|
||||
if (write && ret == 0)
|
||||
ret = tcp_set_default_congestion_control(val);
|
||||
return ret;
|
||||
}
|
||||
|
||||
int sysctl_tcp_congestion_control(ctl_table *table, int __user *name, int nlen,
|
||||
void __user *oldval, size_t __user *oldlenp,
|
||||
void __user *newval, size_t newlen,
|
||||
void **context)
|
||||
{
|
||||
char val[TCP_CA_NAME_MAX];
|
||||
ctl_table tbl = {
|
||||
.data = val,
|
||||
.maxlen = TCP_CA_NAME_MAX,
|
||||
};
|
||||
int ret;
|
||||
|
||||
tcp_get_default_congestion_control(val);
|
||||
ret = sysctl_string(&tbl, name, nlen, oldval, oldlenp, newval, newlen,
|
||||
context);
|
||||
if (ret == 0 && newval && newlen)
|
||||
ret = tcp_set_default_congestion_control(val);
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
ctl_table ipv4_table[] = {
|
||||
{
|
||||
.ctl_name = NET_IPV4_TCP_TIMESTAMPS,
|
||||
|
@ -611,70 +650,6 @@ ctl_table ipv4_table[] = {
|
|||
.mode = 0644,
|
||||
.proc_handler = &proc_dointvec,
|
||||
},
|
||||
{
|
||||
.ctl_name = NET_TCP_WESTWOOD,
|
||||
.procname = "tcp_westwood",
|
||||
.data = &sysctl_tcp_westwood,
|
||||
.maxlen = sizeof(int),
|
||||
.mode = 0644,
|
||||
.proc_handler = &proc_dointvec,
|
||||
},
|
||||
{
|
||||
.ctl_name = NET_TCP_VEGAS,
|
||||
.procname = "tcp_vegas_cong_avoid",
|
||||
.data = &sysctl_tcp_vegas_cong_avoid,
|
||||
.maxlen = sizeof(int),
|
||||
.mode = 0644,
|
||||
.proc_handler = &proc_dointvec,
|
||||
},
|
||||
{
|
||||
.ctl_name = NET_TCP_VEGAS_ALPHA,
|
||||
.procname = "tcp_vegas_alpha",
|
||||
.data = &sysctl_tcp_vegas_alpha,
|
||||
.maxlen = sizeof(int),
|
||||
.mode = 0644,
|
||||
.proc_handler = &proc_dointvec,
|
||||
},
|
||||
{
|
||||
.ctl_name = NET_TCP_VEGAS_BETA,
|
||||
.procname = "tcp_vegas_beta",
|
||||
.data = &sysctl_tcp_vegas_beta,
|
||||
.maxlen = sizeof(int),
|
||||
.mode = 0644,
|
||||
.proc_handler = &proc_dointvec,
|
||||
},
|
||||
{
|
||||
.ctl_name = NET_TCP_VEGAS_GAMMA,
|
||||
.procname = "tcp_vegas_gamma",
|
||||
.data = &sysctl_tcp_vegas_gamma,
|
||||
.maxlen = sizeof(int),
|
||||
.mode = 0644,
|
||||
.proc_handler = &proc_dointvec,
|
||||
},
|
||||
{
|
||||
.ctl_name = NET_TCP_BIC,
|
||||
.procname = "tcp_bic",
|
||||
.data = &sysctl_tcp_bic,
|
||||
.maxlen = sizeof(int),
|
||||
.mode = 0644,
|
||||
.proc_handler = &proc_dointvec,
|
||||
},
|
||||
{
|
||||
.ctl_name = NET_TCP_BIC_FAST_CONVERGENCE,
|
||||
.procname = "tcp_bic_fast_convergence",
|
||||
.data = &sysctl_tcp_bic_fast_convergence,
|
||||
.maxlen = sizeof(int),
|
||||
.mode = 0644,
|
||||
.proc_handler = &proc_dointvec,
|
||||
},
|
||||
{
|
||||
.ctl_name = NET_TCP_BIC_LOW_WINDOW,
|
||||
.procname = "tcp_bic_low_window",
|
||||
.data = &sysctl_tcp_bic_low_window,
|
||||
.maxlen = sizeof(int),
|
||||
.mode = 0644,
|
||||
.proc_handler = &proc_dointvec,
|
||||
},
|
||||
{
|
||||
.ctl_name = NET_TCP_MODERATE_RCVBUF,
|
||||
.procname = "tcp_moderate_rcvbuf",
|
||||
|
@ -692,13 +667,14 @@ ctl_table ipv4_table[] = {
|
|||
.proc_handler = &proc_dointvec,
|
||||
},
|
||||
{
|
||||
.ctl_name = NET_TCP_BIC_BETA,
|
||||
.procname = "tcp_bic_beta",
|
||||
.data = &sysctl_tcp_bic_beta,
|
||||
.maxlen = sizeof(int),
|
||||
.ctl_name = NET_TCP_CONG_CONTROL,
|
||||
.procname = "tcp_congestion_control",
|
||||
.mode = 0644,
|
||||
.proc_handler = &proc_dointvec,
|
||||
.maxlen = TCP_CA_NAME_MAX,
|
||||
.proc_handler = &proc_tcp_congestion_control,
|
||||
.strategy = &sysctl_tcp_congestion_control,
|
||||
},
|
||||
|
||||
{ .ctl_name = 0 }
|
||||
};
|
||||
|
||||
|
|
|
@ -2333,6 +2333,8 @@ void __init tcp_init(void)
|
|||
printk(KERN_INFO "TCP: Hash tables configured "
|
||||
"(established %d bind %d)\n",
|
||||
tcp_ehash_size << 1, tcp_bhash_size);
|
||||
|
||||
tcp_register_congestion_control(&tcp_reno);
|
||||
}
|
||||
|
||||
EXPORT_SYMBOL(tcp_accept);
|
||||
|
|
|
@ -0,0 +1,331 @@
|
|||
/*
|
||||
* Binary Increase Congestion control for TCP
|
||||
*
|
||||
* This is from the implementation of BICTCP in
|
||||
* Lison-Xu, Kahaled Harfoush, and Injong Rhee.
|
||||
* "Binary Increase Congestion Control for Fast, Long Distance
|
||||
* Networks" in InfoComm 2004
|
||||
* Available from:
|
||||
* http://www.csc.ncsu.edu/faculty/rhee/export/bitcp.pdf
|
||||
*
|
||||
* Unless BIC is enabled and congestion window is large
|
||||
* this behaves the same as the original Reno.
|
||||
*/
|
||||
|
||||
#include <linux/config.h>
|
||||
#include <linux/mm.h>
|
||||
#include <linux/module.h>
|
||||
#include <net/tcp.h>
|
||||
|
||||
|
||||
#define BICTCP_BETA_SCALE 1024 /* Scale factor beta calculation
|
||||
* max_cwnd = snd_cwnd * beta
|
||||
*/
|
||||
#define BICTCP_B 4 /*
|
||||
* In binary search,
|
||||
* go to point (max+min)/N
|
||||
*/
|
||||
|
||||
static int fast_convergence = 1;
|
||||
static int max_increment = 32;
|
||||
static int low_window = 14;
|
||||
static int beta = 819; /* = 819/1024 (BICTCP_BETA_SCALE) */
|
||||
static int low_utilization_threshold = 153;
|
||||
static int low_utilization_period = 2;
|
||||
static int initial_ssthresh = 100;
|
||||
static int smooth_part = 20;
|
||||
|
||||
module_param(fast_convergence, int, 0644);
|
||||
MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence");
|
||||
module_param(max_increment, int, 0644);
|
||||
MODULE_PARM_DESC(max_increment, "Limit on increment allowed during binary search");
|
||||
module_param(low_window, int, 0644);
|
||||
MODULE_PARM_DESC(low_window, "lower bound on congestion window (for TCP friendliness)");
|
||||
module_param(beta, int, 0644);
|
||||
MODULE_PARM_DESC(beta, "beta for multiplicative increase");
|
||||
module_param(low_utilization_threshold, int, 0644);
|
||||
MODULE_PARM_DESC(low_utilization_threshold, "percent (scaled by 1024) for low utilization mode");
|
||||
module_param(low_utilization_period, int, 0644);
|
||||
MODULE_PARM_DESC(low_utilization_period, "if average delay exceeds then goto to low utilization mode (seconds)");
|
||||
module_param(initial_ssthresh, int, 0644);
|
||||
MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold");
|
||||
module_param(smooth_part, int, 0644);
|
||||
MODULE_PARM_DESC(smooth_part, "log(B/(B*Smin))/log(B/(B-1))+B, # of RTT from Wmax-B to Wmax");
|
||||
|
||||
|
||||
/* BIC TCP Parameters */
|
||||
struct bictcp {
|
||||
u32 cnt; /* increase cwnd by 1 after ACKs */
|
||||
u32 last_max_cwnd; /* last maximum snd_cwnd */
|
||||
u32 loss_cwnd; /* congestion window at last loss */
|
||||
u32 last_cwnd; /* the last snd_cwnd */
|
||||
u32 last_time; /* time when updated last_cwnd */
|
||||
u32 delay_min; /* min delay */
|
||||
u32 delay_max; /* max delay */
|
||||
u32 last_delay;
|
||||
u8 low_utilization;/* 0: high; 1: low */
|
||||
u32 low_utilization_start; /* starting time of low utilization detection*/
|
||||
u32 epoch_start; /* beginning of an epoch */
|
||||
#define ACK_RATIO_SHIFT 4
|
||||
u32 delayed_ack; /* estimate the ratio of Packets/ACKs << 4 */
|
||||
};
|
||||
|
||||
static inline void bictcp_reset(struct bictcp *ca)
|
||||
{
|
||||
ca->cnt = 0;
|
||||
ca->last_max_cwnd = 0;
|
||||
ca->loss_cwnd = 0;
|
||||
ca->last_cwnd = 0;
|
||||
ca->last_time = 0;
|
||||
ca->delay_min = 0;
|
||||
ca->delay_max = 0;
|
||||
ca->last_delay = 0;
|
||||
ca->low_utilization = 0;
|
||||
ca->low_utilization_start = 0;
|
||||
ca->epoch_start = 0;
|
||||
ca->delayed_ack = 2 << ACK_RATIO_SHIFT;
|
||||
}
|
||||
|
||||
static void bictcp_init(struct tcp_sock *tp)
|
||||
{
|
||||
bictcp_reset(tcp_ca(tp));
|
||||
if (initial_ssthresh)
|
||||
tp->snd_ssthresh = initial_ssthresh;
|
||||
}
|
||||
|
||||
/*
|
||||
* Compute congestion window to use.
|
||||
*/
|
||||
static inline void bictcp_update(struct bictcp *ca, u32 cwnd)
|
||||
{
|
||||
if (ca->last_cwnd == cwnd &&
|
||||
(s32)(tcp_time_stamp - ca->last_time) <= HZ / 32)
|
||||
return;
|
||||
|
||||
ca->last_cwnd = cwnd;
|
||||
ca->last_time = tcp_time_stamp;
|
||||
|
||||
if (ca->epoch_start == 0) /* record the beginning of an epoch */
|
||||
ca->epoch_start = tcp_time_stamp;
|
||||
|
||||
/* start off normal */
|
||||
if (cwnd <= low_window) {
|
||||
ca->cnt = cwnd;
|
||||
return;
|
||||
}
|
||||
|
||||
/* binary increase */
|
||||
if (cwnd < ca->last_max_cwnd) {
|
||||
__u32 dist = (ca->last_max_cwnd - cwnd)
|
||||
/ BICTCP_B;
|
||||
|
||||
if (dist > max_increment)
|
||||
/* linear increase */
|
||||
ca->cnt = cwnd / max_increment;
|
||||
else if (dist <= 1U)
|
||||
/* binary search increase */
|
||||
ca->cnt = (cwnd * smooth_part) / BICTCP_B;
|
||||
else
|
||||
/* binary search increase */
|
||||
ca->cnt = cwnd / dist;
|
||||
} else {
|
||||
/* slow start AMD linear increase */
|
||||
if (cwnd < ca->last_max_cwnd + BICTCP_B)
|
||||
/* slow start */
|
||||
ca->cnt = (cwnd * smooth_part) / BICTCP_B;
|
||||
else if (cwnd < ca->last_max_cwnd + max_increment*(BICTCP_B-1))
|
||||
/* slow start */
|
||||
ca->cnt = (cwnd * (BICTCP_B-1))
|
||||
/ cwnd-ca->last_max_cwnd;
|
||||
else
|
||||
/* linear increase */
|
||||
ca->cnt = cwnd / max_increment;
|
||||
}
|
||||
|
||||
/* if in slow start or link utilization is very low */
|
||||
if ( ca->loss_cwnd == 0 ||
|
||||
(cwnd > ca->loss_cwnd && ca->low_utilization)) {
|
||||
if (ca->cnt > 20) /* increase cwnd 5% per RTT */
|
||||
ca->cnt = 20;
|
||||
}
|
||||
|
||||
ca->cnt = (ca->cnt << ACK_RATIO_SHIFT) / ca->delayed_ack;
|
||||
if (ca->cnt == 0) /* cannot be zero */
|
||||
ca->cnt = 1;
|
||||
}
|
||||
|
||||
|
||||
/* Detect low utilization in congestion avoidance */
|
||||
static inline void bictcp_low_utilization(struct tcp_sock *tp, int flag)
|
||||
{
|
||||
struct bictcp *ca = tcp_ca(tp);
|
||||
u32 dist, delay;
|
||||
|
||||
/* No time stamp */
|
||||
if (!(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) ||
|
||||
/* Discard delay samples right after fast recovery */
|
||||
tcp_time_stamp < ca->epoch_start + HZ ||
|
||||
/* this delay samples may not be accurate */
|
||||
flag == 0) {
|
||||
ca->last_delay = 0;
|
||||
goto notlow;
|
||||
}
|
||||
|
||||
delay = ca->last_delay<<3; /* use the same scale as tp->srtt*/
|
||||
ca->last_delay = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
|
||||
if (delay == 0) /* no previous delay sample */
|
||||
goto notlow;
|
||||
|
||||
/* first time call or link delay decreases */
|
||||
if (ca->delay_min == 0 || ca->delay_min > delay) {
|
||||
ca->delay_min = ca->delay_max = delay;
|
||||
goto notlow;
|
||||
}
|
||||
|
||||
if (ca->delay_max < delay)
|
||||
ca->delay_max = delay;
|
||||
|
||||
/* utilization is low, if avg delay < dist*threshold
|
||||
for checking_period time */
|
||||
dist = ca->delay_max - ca->delay_min;
|
||||
if (dist <= ca->delay_min>>6 ||
|
||||
tp->srtt - ca->delay_min >= (dist*low_utilization_threshold)>>10)
|
||||
goto notlow;
|
||||
|
||||
if (ca->low_utilization_start == 0) {
|
||||
ca->low_utilization = 0;
|
||||
ca->low_utilization_start = tcp_time_stamp;
|
||||
} else if ((s32)(tcp_time_stamp - ca->low_utilization_start)
|
||||
> low_utilization_period*HZ) {
|
||||
ca->low_utilization = 1;
|
||||
}
|
||||
|
||||
return;
|
||||
|
||||
notlow:
|
||||
ca->low_utilization = 0;
|
||||
ca->low_utilization_start = 0;
|
||||
|
||||
}
|
||||
|
||||
static void bictcp_cong_avoid(struct tcp_sock *tp, u32 ack,
|
||||
u32 seq_rtt, u32 in_flight, int data_acked)
|
||||
{
|
||||
struct bictcp *ca = tcp_ca(tp);
|
||||
|
||||
bictcp_low_utilization(tp, data_acked);
|
||||
|
||||
if (in_flight < tp->snd_cwnd)
|
||||
return;
|
||||
|
||||
if (tp->snd_cwnd <= tp->snd_ssthresh) {
|
||||
/* In "safe" area, increase. */
|
||||
if (tp->snd_cwnd < tp->snd_cwnd_clamp)
|
||||
tp->snd_cwnd++;
|
||||
} else {
|
||||
bictcp_update(ca, tp->snd_cwnd);
|
||||
|
||||
/* In dangerous area, increase slowly.
|
||||
* In theory this is tp->snd_cwnd += 1 / tp->snd_cwnd
|
||||
*/
|
||||
if (tp->snd_cwnd_cnt >= ca->cnt) {
|
||||
if (tp->snd_cwnd < tp->snd_cwnd_clamp)
|
||||
tp->snd_cwnd++;
|
||||
tp->snd_cwnd_cnt = 0;
|
||||
} else
|
||||
tp->snd_cwnd_cnt++;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
* behave like Reno until low_window is reached,
|
||||
* then increase congestion window slowly
|
||||
*/
|
||||
static u32 bictcp_recalc_ssthresh(struct tcp_sock *tp)
|
||||
{
|
||||
struct bictcp *ca = tcp_ca(tp);
|
||||
|
||||
ca->epoch_start = 0; /* end of epoch */
|
||||
|
||||
/* in case of wrong delay_max*/
|
||||
if (ca->delay_min > 0 && ca->delay_max > ca->delay_min)
|
||||
ca->delay_max = ca->delay_min
|
||||
+ ((ca->delay_max - ca->delay_min)* 90) / 100;
|
||||
|
||||
/* Wmax and fast convergence */
|
||||
if (tp->snd_cwnd < ca->last_max_cwnd && fast_convergence)
|
||||
ca->last_max_cwnd = (tp->snd_cwnd * (BICTCP_BETA_SCALE + beta))
|
||||
/ (2 * BICTCP_BETA_SCALE);
|
||||
else
|
||||
ca->last_max_cwnd = tp->snd_cwnd;
|
||||
|
||||
ca->loss_cwnd = tp->snd_cwnd;
|
||||
|
||||
|
||||
if (tp->snd_cwnd <= low_window)
|
||||
return max(tp->snd_cwnd >> 1U, 2U);
|
||||
else
|
||||
return max((tp->snd_cwnd * beta) / BICTCP_BETA_SCALE, 2U);
|
||||
}
|
||||
|
||||
static u32 bictcp_undo_cwnd(struct tcp_sock *tp)
|
||||
{
|
||||
struct bictcp *ca = tcp_ca(tp);
|
||||
|
||||
return max(tp->snd_cwnd, ca->last_max_cwnd);
|
||||
}
|
||||
|
||||
static u32 bictcp_min_cwnd(struct tcp_sock *tp)
|
||||
{
|
||||
return tp->snd_ssthresh;
|
||||
}
|
||||
|
||||
static void bictcp_state(struct tcp_sock *tp, u8 new_state)
|
||||
{
|
||||
if (new_state == TCP_CA_Loss)
|
||||
bictcp_reset(tcp_ca(tp));
|
||||
}
|
||||
|
||||
/* Track delayed acknowledgement ratio using sliding window
|
||||
* ratio = (15*ratio + sample) / 16
|
||||
*/
|
||||
static void bictcp_acked(struct tcp_sock *tp, u32 cnt)
|
||||
{
|
||||
if (cnt > 0 && tp->ca_state == TCP_CA_Open) {
|
||||
struct bictcp *ca = tcp_ca(tp);
|
||||
cnt -= ca->delayed_ack >> ACK_RATIO_SHIFT;
|
||||
ca->delayed_ack += cnt;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static struct tcp_congestion_ops bictcp = {
|
||||
.init = bictcp_init,
|
||||
.ssthresh = bictcp_recalc_ssthresh,
|
||||
.cong_avoid = bictcp_cong_avoid,
|
||||
.set_state = bictcp_state,
|
||||
.undo_cwnd = bictcp_undo_cwnd,
|
||||
.min_cwnd = bictcp_min_cwnd,
|
||||
.pkts_acked = bictcp_acked,
|
||||
.owner = THIS_MODULE,
|
||||
.name = "bic",
|
||||
};
|
||||
|
||||
static int __init bictcp_register(void)
|
||||
{
|
||||
BUG_ON(sizeof(struct bictcp) > TCP_CA_PRIV_SIZE);
|
||||
return tcp_register_congestion_control(&bictcp);
|
||||
}
|
||||
|
||||
static void __exit bictcp_unregister(void)
|
||||
{
|
||||
tcp_unregister_congestion_control(&bictcp);
|
||||
}
|
||||
|
||||
module_init(bictcp_register);
|
||||
module_exit(bictcp_unregister);
|
||||
|
||||
MODULE_AUTHOR("Stephen Hemminger");
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_DESCRIPTION("BIC TCP");
|
|
@ -0,0 +1,195 @@
|
|||
/*
|
||||
* Plugable TCP congestion control support and newReno
|
||||
* congestion control.
|
||||
* Based on ideas from I/O scheduler suport and Web100.
|
||||
*
|
||||
* Copyright (C) 2005 Stephen Hemminger <shemminger@osdl.org>
|
||||
*/
|
||||
|
||||
#include <linux/config.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/mm.h>
|
||||
#include <linux/types.h>
|
||||
#include <linux/list.h>
|
||||
#include <net/tcp.h>
|
||||
|
||||
static DEFINE_SPINLOCK(tcp_cong_list_lock);
|
||||
static LIST_HEAD(tcp_cong_list);
|
||||
|
||||
/* Simple linear search, don't expect many entries! */
|
||||
static struct tcp_congestion_ops *tcp_ca_find(const char *name)
|
||||
{
|
||||
struct tcp_congestion_ops *e;
|
||||
|
||||
list_for_each_entry(e, &tcp_cong_list, list) {
|
||||
if (strcmp(e->name, name) == 0)
|
||||
return e;
|
||||
}
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/*
|
||||
* Attach new congestion control algorthim to the list
|
||||
* of available options.
|
||||
*/
|
||||
int tcp_register_congestion_control(struct tcp_congestion_ops *ca)
|
||||
{
|
||||
int ret = 0;
|
||||
|
||||
/* all algorithms must implement ssthresh and cong_avoid ops */
|
||||
if (!ca->ssthresh || !ca->cong_avoid || !ca->min_cwnd) {
|
||||
printk(KERN_ERR "TCP %s does not implement required ops\n",
|
||||
ca->name);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
spin_lock(&tcp_cong_list_lock);
|
||||
if (tcp_ca_find(ca->name)) {
|
||||
printk(KERN_NOTICE "TCP %s already registered\n", ca->name);
|
||||
ret = -EEXIST;
|
||||
} else {
|
||||
list_add_rcu(&ca->list, &tcp_cong_list);
|
||||
printk(KERN_INFO "TCP %s registered\n", ca->name);
|
||||
}
|
||||
spin_unlock(&tcp_cong_list_lock);
|
||||
|
||||
return ret;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(tcp_register_congestion_control);
|
||||
|
||||
/*
|
||||
* Remove congestion control algorithm, called from
|
||||
* the module's remove function. Module ref counts are used
|
||||
* to ensure that this can't be done till all sockets using
|
||||
* that method are closed.
|
||||
*/
|
||||
void tcp_unregister_congestion_control(struct tcp_congestion_ops *ca)
|
||||
{
|
||||
spin_lock(&tcp_cong_list_lock);
|
||||
list_del_rcu(&ca->list);
|
||||
spin_unlock(&tcp_cong_list_lock);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(tcp_unregister_congestion_control);
|
||||
|
||||
/* Assign choice of congestion control. */
|
||||
void tcp_init_congestion_control(struct tcp_sock *tp)
|
||||
{
|
||||
struct tcp_congestion_ops *ca;
|
||||
|
||||
rcu_read_lock();
|
||||
list_for_each_entry_rcu(ca, &tcp_cong_list, list) {
|
||||
if (try_module_get(ca->owner)) {
|
||||
tp->ca_ops = ca;
|
||||
break;
|
||||
}
|
||||
|
||||
}
|
||||
rcu_read_unlock();
|
||||
|
||||
if (tp->ca_ops->init)
|
||||
tp->ca_ops->init(tp);
|
||||
}
|
||||
|
||||
/* Manage refcounts on socket close. */
|
||||
void tcp_cleanup_congestion_control(struct tcp_sock *tp)
|
||||
{
|
||||
if (tp->ca_ops->release)
|
||||
tp->ca_ops->release(tp);
|
||||
module_put(tp->ca_ops->owner);
|
||||
}
|
||||
|
||||
/* Used by sysctl to change default congestion control */
|
||||
int tcp_set_default_congestion_control(const char *name)
|
||||
{
|
||||
struct tcp_congestion_ops *ca;
|
||||
int ret = -ENOENT;
|
||||
|
||||
spin_lock(&tcp_cong_list_lock);
|
||||
ca = tcp_ca_find(name);
|
||||
#ifdef CONFIG_KMOD
|
||||
if (!ca) {
|
||||
spin_unlock(&tcp_cong_list_lock);
|
||||
|
||||
request_module("tcp_%s", name);
|
||||
spin_lock(&tcp_cong_list_lock);
|
||||
ca = tcp_ca_find(name);
|
||||
}
|
||||
#endif
|
||||
|
||||
if (ca) {
|
||||
list_move(&ca->list, &tcp_cong_list);
|
||||
ret = 0;
|
||||
}
|
||||
spin_unlock(&tcp_cong_list_lock);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Get current default congestion control */
|
||||
void tcp_get_default_congestion_control(char *name)
|
||||
{
|
||||
struct tcp_congestion_ops *ca;
|
||||
/* We will always have reno... */
|
||||
BUG_ON(list_empty(&tcp_cong_list));
|
||||
|
||||
rcu_read_lock();
|
||||
ca = list_entry(tcp_cong_list.next, struct tcp_congestion_ops, list);
|
||||
strncpy(name, ca->name, TCP_CA_NAME_MAX);
|
||||
rcu_read_unlock();
|
||||
}
|
||||
|
||||
/*
|
||||
* TCP Reno congestion control
|
||||
* This is special case used for fallback as well.
|
||||
*/
|
||||
/* This is Jacobson's slow start and congestion avoidance.
|
||||
* SIGCOMM '88, p. 328.
|
||||
*/
|
||||
void tcp_reno_cong_avoid(struct tcp_sock *tp, u32 ack, u32 rtt, u32 in_flight,
|
||||
int flag)
|
||||
{
|
||||
if (in_flight < tp->snd_cwnd)
|
||||
return;
|
||||
|
||||
if (tp->snd_cwnd <= tp->snd_ssthresh) {
|
||||
/* In "safe" area, increase. */
|
||||
if (tp->snd_cwnd < tp->snd_cwnd_clamp)
|
||||
tp->snd_cwnd++;
|
||||
} else {
|
||||
/* In dangerous area, increase slowly.
|
||||
* In theory this is tp->snd_cwnd += 1 / tp->snd_cwnd
|
||||
*/
|
||||
if (tp->snd_cwnd_cnt >= tp->snd_cwnd) {
|
||||
if (tp->snd_cwnd < tp->snd_cwnd_clamp)
|
||||
tp->snd_cwnd++;
|
||||
tp->snd_cwnd_cnt = 0;
|
||||
} else
|
||||
tp->snd_cwnd_cnt++;
|
||||
}
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(tcp_reno_cong_avoid);
|
||||
|
||||
/* Slow start threshold is half the congestion window (min 2) */
|
||||
u32 tcp_reno_ssthresh(struct tcp_sock *tp)
|
||||
{
|
||||
return max(tp->snd_cwnd >> 1U, 2U);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(tcp_reno_ssthresh);
|
||||
|
||||
/* Lower bound on congestion window. */
|
||||
u32 tcp_reno_min_cwnd(struct tcp_sock *tp)
|
||||
{
|
||||
return tp->snd_ssthresh/2;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(tcp_reno_min_cwnd);
|
||||
|
||||
struct tcp_congestion_ops tcp_reno = {
|
||||
.name = "reno",
|
||||
.owner = THIS_MODULE,
|
||||
.ssthresh = tcp_reno_ssthresh,
|
||||
.cong_avoid = tcp_reno_cong_avoid,
|
||||
.min_cwnd = tcp_reno_min_cwnd,
|
||||
};
|
||||
|
||||
EXPORT_SYMBOL_GPL(tcp_reno);
|
|
@ -42,15 +42,8 @@ struct tcpdiag_entry
|
|||
|
||||
static struct sock *tcpnl;
|
||||
|
||||
|
||||
#define TCPDIAG_PUT(skb, attrtype, attrlen) \
|
||||
({ int rtalen = RTA_LENGTH(attrlen); \
|
||||
struct rtattr *rta; \
|
||||
if (skb_tailroom(skb) < RTA_ALIGN(rtalen)) goto nlmsg_failure; \
|
||||
rta = (void*)__skb_put(skb, RTA_ALIGN(rtalen)); \
|
||||
rta->rta_type = attrtype; \
|
||||
rta->rta_len = rtalen; \
|
||||
RTA_DATA(rta); })
|
||||
RTA_DATA(__RTA_PUT(skb, attrtype, attrlen))
|
||||
|
||||
static int tcpdiag_fill(struct sk_buff *skb, struct sock *sk,
|
||||
int ext, u32 pid, u32 seq, u16 nlmsg_flags)
|
||||
|
@ -61,7 +54,6 @@ static int tcpdiag_fill(struct sk_buff *skb, struct sock *sk,
|
|||
struct nlmsghdr *nlh;
|
||||
struct tcp_info *info = NULL;
|
||||
struct tcpdiag_meminfo *minfo = NULL;
|
||||
struct tcpvegas_info *vinfo = NULL;
|
||||
unsigned char *b = skb->tail;
|
||||
|
||||
nlh = NLMSG_PUT(skb, pid, seq, TCPDIAG_GETSOCK, sizeof(*r));
|
||||
|
@ -73,9 +65,11 @@ static int tcpdiag_fill(struct sk_buff *skb, struct sock *sk,
|
|||
if (ext & (1<<(TCPDIAG_INFO-1)))
|
||||
info = TCPDIAG_PUT(skb, TCPDIAG_INFO, sizeof(*info));
|
||||
|
||||
if ((tcp_is_westwood(tp) || tcp_is_vegas(tp))
|
||||
&& (ext & (1<<(TCPDIAG_VEGASINFO-1))))
|
||||
vinfo = TCPDIAG_PUT(skb, TCPDIAG_VEGASINFO, sizeof(*vinfo));
|
||||
if (ext & (1<<(TCPDIAG_CONG-1))) {
|
||||
size_t len = strlen(tp->ca_ops->name);
|
||||
strcpy(TCPDIAG_PUT(skb, TCPDIAG_CONG, len+1),
|
||||
tp->ca_ops->name);
|
||||
}
|
||||
}
|
||||
r->tcpdiag_family = sk->sk_family;
|
||||
r->tcpdiag_state = sk->sk_state;
|
||||
|
@ -166,23 +160,13 @@ static int tcpdiag_fill(struct sk_buff *skb, struct sock *sk,
|
|||
if (info)
|
||||
tcp_get_info(sk, info);
|
||||
|
||||
if (vinfo) {
|
||||
if (tcp_is_vegas(tp)) {
|
||||
vinfo->tcpv_enabled = tp->vegas.doing_vegas_now;
|
||||
vinfo->tcpv_rttcnt = tp->vegas.cntRTT;
|
||||
vinfo->tcpv_rtt = jiffies_to_usecs(tp->vegas.baseRTT);
|
||||
vinfo->tcpv_minrtt = jiffies_to_usecs(tp->vegas.minRTT);
|
||||
} else {
|
||||
vinfo->tcpv_enabled = 0;
|
||||
vinfo->tcpv_rttcnt = 0;
|
||||
vinfo->tcpv_rtt = jiffies_to_usecs(tp->westwood.rtt);
|
||||
vinfo->tcpv_minrtt = jiffies_to_usecs(tp->westwood.rtt_min);
|
||||
}
|
||||
}
|
||||
if (sk->sk_state < TCP_TIME_WAIT && tp->ca_ops->get_info)
|
||||
tp->ca_ops->get_info(tp, ext, skb);
|
||||
|
||||
nlh->nlmsg_len = skb->tail - b;
|
||||
return skb->len;
|
||||
|
||||
rtattr_failure:
|
||||
nlmsg_failure:
|
||||
skb_trim(skb, b - skb->data);
|
||||
return -1;
|
||||
|
|
|
@ -0,0 +1,181 @@
|
|||
/*
|
||||
* Sally Floyd's High Speed TCP (RFC 3649) congestion control
|
||||
*
|
||||
* See http://www.icir.org/floyd/hstcp.html
|
||||
*
|
||||
* John Heffner <jheffner@psc.edu>
|
||||
*/
|
||||
|
||||
#include <linux/config.h>
|
||||
#include <linux/module.h>
|
||||
#include <net/tcp.h>
|
||||
|
||||
|
||||
/* From AIMD tables from RFC 3649 appendix B,
|
||||
* with fixed-point MD scaled <<8.
|
||||
*/
|
||||
static const struct hstcp_aimd_val {
|
||||
unsigned int cwnd;
|
||||
unsigned int md;
|
||||
} hstcp_aimd_vals[] = {
|
||||
{ 38, 128, /* 0.50 */ },
|
||||
{ 118, 112, /* 0.44 */ },
|
||||
{ 221, 104, /* 0.41 */ },
|
||||
{ 347, 98, /* 0.38 */ },
|
||||
{ 495, 93, /* 0.37 */ },
|
||||
{ 663, 89, /* 0.35 */ },
|
||||
{ 851, 86, /* 0.34 */ },
|
||||
{ 1058, 83, /* 0.33 */ },
|
||||
{ 1284, 81, /* 0.32 */ },
|
||||
{ 1529, 78, /* 0.31 */ },
|
||||
{ 1793, 76, /* 0.30 */ },
|
||||
{ 2076, 74, /* 0.29 */ },
|
||||
{ 2378, 72, /* 0.28 */ },
|
||||
{ 2699, 71, /* 0.28 */ },
|
||||
{ 3039, 69, /* 0.27 */ },
|
||||
{ 3399, 68, /* 0.27 */ },
|
||||
{ 3778, 66, /* 0.26 */ },
|
||||
{ 4177, 65, /* 0.26 */ },
|
||||
{ 4596, 64, /* 0.25 */ },
|
||||
{ 5036, 62, /* 0.25 */ },
|
||||
{ 5497, 61, /* 0.24 */ },
|
||||
{ 5979, 60, /* 0.24 */ },
|
||||
{ 6483, 59, /* 0.23 */ },
|
||||
{ 7009, 58, /* 0.23 */ },
|
||||
{ 7558, 57, /* 0.22 */ },
|
||||
{ 8130, 56, /* 0.22 */ },
|
||||
{ 8726, 55, /* 0.22 */ },
|
||||
{ 9346, 54, /* 0.21 */ },
|
||||
{ 9991, 53, /* 0.21 */ },
|
||||
{ 10661, 52, /* 0.21 */ },
|
||||
{ 11358, 52, /* 0.20 */ },
|
||||
{ 12082, 51, /* 0.20 */ },
|
||||
{ 12834, 50, /* 0.20 */ },
|
||||
{ 13614, 49, /* 0.19 */ },
|
||||
{ 14424, 48, /* 0.19 */ },
|
||||
{ 15265, 48, /* 0.19 */ },
|
||||
{ 16137, 47, /* 0.19 */ },
|
||||
{ 17042, 46, /* 0.18 */ },
|
||||
{ 17981, 45, /* 0.18 */ },
|
||||
{ 18955, 45, /* 0.18 */ },
|
||||
{ 19965, 44, /* 0.17 */ },
|
||||
{ 21013, 43, /* 0.17 */ },
|
||||
{ 22101, 43, /* 0.17 */ },
|
||||
{ 23230, 42, /* 0.17 */ },
|
||||
{ 24402, 41, /* 0.16 */ },
|
||||
{ 25618, 41, /* 0.16 */ },
|
||||
{ 26881, 40, /* 0.16 */ },
|
||||
{ 28193, 39, /* 0.16 */ },
|
||||
{ 29557, 39, /* 0.15 */ },
|
||||
{ 30975, 38, /* 0.15 */ },
|
||||
{ 32450, 38, /* 0.15 */ },
|
||||
{ 33986, 37, /* 0.15 */ },
|
||||
{ 35586, 36, /* 0.14 */ },
|
||||
{ 37253, 36, /* 0.14 */ },
|
||||
{ 38992, 35, /* 0.14 */ },
|
||||
{ 40808, 35, /* 0.14 */ },
|
||||
{ 42707, 34, /* 0.13 */ },
|
||||
{ 44694, 33, /* 0.13 */ },
|
||||
{ 46776, 33, /* 0.13 */ },
|
||||
{ 48961, 32, /* 0.13 */ },
|
||||
{ 51258, 32, /* 0.13 */ },
|
||||
{ 53677, 31, /* 0.12 */ },
|
||||
{ 56230, 30, /* 0.12 */ },
|
||||
{ 58932, 30, /* 0.12 */ },
|
||||
{ 61799, 29, /* 0.12 */ },
|
||||
{ 64851, 28, /* 0.11 */ },
|
||||
{ 68113, 28, /* 0.11 */ },
|
||||
{ 71617, 27, /* 0.11 */ },
|
||||
{ 75401, 26, /* 0.10 */ },
|
||||
{ 79517, 26, /* 0.10 */ },
|
||||
{ 84035, 25, /* 0.10 */ },
|
||||
{ 89053, 24, /* 0.10 */ },
|
||||
};
|
||||
|
||||
#define HSTCP_AIMD_MAX ARRAY_SIZE(hstcp_aimd_vals)
|
||||
|
||||
struct hstcp {
|
||||
u32 ai;
|
||||
};
|
||||
|
||||
static void hstcp_init(struct tcp_sock *tp)
|
||||
{
|
||||
struct hstcp *ca = tcp_ca(tp);
|
||||
|
||||
ca->ai = 0;
|
||||
|
||||
/* Ensure the MD arithmetic works. This is somewhat pedantic,
|
||||
* since I don't think we will see a cwnd this large. :) */
|
||||
tp->snd_cwnd_clamp = min_t(u32, tp->snd_cwnd_clamp, 0xffffffff/128);
|
||||
}
|
||||
|
||||
static void hstcp_cong_avoid(struct tcp_sock *tp, u32 adk, u32 rtt,
|
||||
u32 in_flight, int good)
|
||||
{
|
||||
struct hstcp *ca = tcp_ca(tp);
|
||||
|
||||
if (in_flight < tp->snd_cwnd)
|
||||
return;
|
||||
|
||||
if (tp->snd_cwnd <= tp->snd_ssthresh) {
|
||||
if (tp->snd_cwnd < tp->snd_cwnd_clamp)
|
||||
tp->snd_cwnd++;
|
||||
} else {
|
||||
/* Update AIMD parameters */
|
||||
if (tp->snd_cwnd > hstcp_aimd_vals[ca->ai].cwnd) {
|
||||
while (tp->snd_cwnd > hstcp_aimd_vals[ca->ai].cwnd &&
|
||||
ca->ai < HSTCP_AIMD_MAX)
|
||||
ca->ai++;
|
||||
} else if (tp->snd_cwnd < hstcp_aimd_vals[ca->ai].cwnd) {
|
||||
while (tp->snd_cwnd > hstcp_aimd_vals[ca->ai].cwnd &&
|
||||
ca->ai > 0)
|
||||
ca->ai--;
|
||||
}
|
||||
|
||||
/* Do additive increase */
|
||||
if (tp->snd_cwnd < tp->snd_cwnd_clamp) {
|
||||
tp->snd_cwnd_cnt += ca->ai;
|
||||
if (tp->snd_cwnd_cnt >= tp->snd_cwnd) {
|
||||
tp->snd_cwnd++;
|
||||
tp->snd_cwnd_cnt -= tp->snd_cwnd;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static u32 hstcp_ssthresh(struct tcp_sock *tp)
|
||||
{
|
||||
struct hstcp *ca = tcp_ca(tp);
|
||||
|
||||
/* Do multiplicative decrease */
|
||||
return max(tp->snd_cwnd - ((tp->snd_cwnd * hstcp_aimd_vals[ca->ai].md) >> 8), 2U);
|
||||
}
|
||||
|
||||
|
||||
static struct tcp_congestion_ops tcp_highspeed = {
|
||||
.init = hstcp_init,
|
||||
.ssthresh = hstcp_ssthresh,
|
||||
.cong_avoid = hstcp_cong_avoid,
|
||||
.min_cwnd = tcp_reno_min_cwnd,
|
||||
|
||||
.owner = THIS_MODULE,
|
||||
.name = "highspeed"
|
||||
};
|
||||
|
||||
static int __init hstcp_register(void)
|
||||
{
|
||||
BUG_ON(sizeof(struct hstcp) > TCP_CA_PRIV_SIZE);
|
||||
return tcp_register_congestion_control(&tcp_highspeed);
|
||||
}
|
||||
|
||||
static void __exit hstcp_unregister(void)
|
||||
{
|
||||
tcp_unregister_congestion_control(&tcp_highspeed);
|
||||
}
|
||||
|
||||
module_init(hstcp_register);
|
||||
module_exit(hstcp_unregister);
|
||||
|
||||
MODULE_AUTHOR("John Heffner");
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_DESCRIPTION("High Speed TCP");
|
|
@ -0,0 +1,289 @@
|
|||
/*
|
||||
* H-TCP congestion control. The algorithm is detailed in:
|
||||
* R.N.Shorten, D.J.Leith:
|
||||
* "H-TCP: TCP for high-speed and long-distance networks"
|
||||
* Proc. PFLDnet, Argonne, 2004.
|
||||
* http://www.hamilton.ie/net/htcp3.pdf
|
||||
*/
|
||||
|
||||
#include <linux/config.h>
|
||||
#include <linux/mm.h>
|
||||
#include <linux/module.h>
|
||||
#include <net/tcp.h>
|
||||
|
||||
#define ALPHA_BASE (1<<7) /* 1.0 with shift << 7 */
|
||||
#define BETA_MIN (1<<6) /* 0.5 with shift << 7 */
|
||||
#define BETA_MAX 102 /* 0.8 with shift << 7 */
|
||||
|
||||
static int use_rtt_scaling = 1;
|
||||
module_param(use_rtt_scaling, int, 0644);
|
||||
MODULE_PARM_DESC(use_rtt_scaling, "turn on/off RTT scaling");
|
||||
|
||||
static int use_bandwidth_switch = 1;
|
||||
module_param(use_bandwidth_switch, int, 0644);
|
||||
MODULE_PARM_DESC(use_bandwidth_switch, "turn on/off bandwidth switcher");
|
||||
|
||||
struct htcp {
|
||||
u16 alpha; /* Fixed point arith, << 7 */
|
||||
u8 beta; /* Fixed point arith, << 7 */
|
||||
u8 modeswitch; /* Delay modeswitch until we had at least one congestion event */
|
||||
u8 ccount; /* Number of RTTs since last congestion event */
|
||||
u8 undo_ccount;
|
||||
u16 packetcount;
|
||||
u32 minRTT;
|
||||
u32 maxRTT;
|
||||
u32 snd_cwnd_cnt2;
|
||||
|
||||
u32 undo_maxRTT;
|
||||
u32 undo_old_maxB;
|
||||
|
||||
/* Bandwidth estimation */
|
||||
u32 minB;
|
||||
u32 maxB;
|
||||
u32 old_maxB;
|
||||
u32 Bi;
|
||||
u32 lasttime;
|
||||
};
|
||||
|
||||
static inline void htcp_reset(struct htcp *ca)
|
||||
{
|
||||
ca->undo_ccount = ca->ccount;
|
||||
ca->undo_maxRTT = ca->maxRTT;
|
||||
ca->undo_old_maxB = ca->old_maxB;
|
||||
|
||||
ca->ccount = 0;
|
||||
ca->snd_cwnd_cnt2 = 0;
|
||||
}
|
||||
|
||||
static u32 htcp_cwnd_undo(struct tcp_sock *tp)
|
||||
{
|
||||
struct htcp *ca = tcp_ca(tp);
|
||||
ca->ccount = ca->undo_ccount;
|
||||
ca->maxRTT = ca->undo_maxRTT;
|
||||
ca->old_maxB = ca->undo_old_maxB;
|
||||
return max(tp->snd_cwnd, (tp->snd_ssthresh<<7)/ca->beta);
|
||||
}
|
||||
|
||||
static inline void measure_rtt(struct tcp_sock *tp)
|
||||
{
|
||||
struct htcp *ca = tcp_ca(tp);
|
||||
u32 srtt = tp->srtt>>3;
|
||||
|
||||
/* keep track of minimum RTT seen so far, minRTT is zero at first */
|
||||
if (ca->minRTT > srtt || !ca->minRTT)
|
||||
ca->minRTT = srtt;
|
||||
|
||||
/* max RTT */
|
||||
if (tp->ca_state == TCP_CA_Open && tp->snd_ssthresh < 0xFFFF && ca->ccount > 3) {
|
||||
if (ca->maxRTT < ca->minRTT)
|
||||
ca->maxRTT = ca->minRTT;
|
||||
if (ca->maxRTT < srtt && srtt <= ca->maxRTT+HZ/50)
|
||||
ca->maxRTT = srtt;
|
||||
}
|
||||
}
|
||||
|
||||
static void measure_achieved_throughput(struct tcp_sock *tp, u32 pkts_acked)
|
||||
{
|
||||
struct htcp *ca = tcp_ca(tp);
|
||||
u32 now = tcp_time_stamp;
|
||||
|
||||
/* achieved throughput calculations */
|
||||
if (tp->ca_state != TCP_CA_Open && tp->ca_state != TCP_CA_Disorder) {
|
||||
ca->packetcount = 0;
|
||||
ca->lasttime = now;
|
||||
return;
|
||||
}
|
||||
|
||||
ca->packetcount += pkts_acked;
|
||||
|
||||
if (ca->packetcount >= tp->snd_cwnd - (ca->alpha>>7? : 1)
|
||||
&& now - ca->lasttime >= ca->minRTT
|
||||
&& ca->minRTT > 0) {
|
||||
__u32 cur_Bi = ca->packetcount*HZ/(now - ca->lasttime);
|
||||
if (ca->ccount <= 3) {
|
||||
/* just after backoff */
|
||||
ca->minB = ca->maxB = ca->Bi = cur_Bi;
|
||||
} else {
|
||||
ca->Bi = (3*ca->Bi + cur_Bi)/4;
|
||||
if (ca->Bi > ca->maxB)
|
||||
ca->maxB = ca->Bi;
|
||||
if (ca->minB > ca->maxB)
|
||||
ca->minB = ca->maxB;
|
||||
}
|
||||
ca->packetcount = 0;
|
||||
ca->lasttime = now;
|
||||
}
|
||||
}
|
||||
|
||||
static inline void htcp_beta_update(struct htcp *ca, u32 minRTT, u32 maxRTT)
|
||||
{
|
||||
if (use_bandwidth_switch) {
|
||||
u32 maxB = ca->maxB;
|
||||
u32 old_maxB = ca->old_maxB;
|
||||
ca->old_maxB = ca->maxB;
|
||||
|
||||
if (!between(5*maxB, 4*old_maxB, 6*old_maxB)) {
|
||||
ca->beta = BETA_MIN;
|
||||
ca->modeswitch = 0;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
if (ca->modeswitch && minRTT > max(HZ/100, 1) && maxRTT) {
|
||||
ca->beta = (minRTT<<7)/maxRTT;
|
||||
if (ca->beta < BETA_MIN)
|
||||
ca->beta = BETA_MIN;
|
||||
else if (ca->beta > BETA_MAX)
|
||||
ca->beta = BETA_MAX;
|
||||
} else {
|
||||
ca->beta = BETA_MIN;
|
||||
ca->modeswitch = 1;
|
||||
}
|
||||
}
|
||||
|
||||
static inline void htcp_alpha_update(struct htcp *ca)
|
||||
{
|
||||
u32 minRTT = ca->minRTT;
|
||||
u32 factor = 1;
|
||||
u32 diff = ca->ccount * minRTT; /* time since last backoff */
|
||||
|
||||
if (diff > HZ) {
|
||||
diff -= HZ;
|
||||
factor = 1+ ( 10*diff + ((diff/2)*(diff/2)/HZ) )/HZ;
|
||||
}
|
||||
|
||||
if (use_rtt_scaling && minRTT) {
|
||||
u32 scale = (HZ<<3)/(10*minRTT);
|
||||
scale = min(max(scale, 1U<<2), 10U<<3); /* clamping ratio to interval [0.5,10]<<3 */
|
||||
factor = (factor<<3)/scale;
|
||||
if (!factor)
|
||||
factor = 1;
|
||||
}
|
||||
|
||||
ca->alpha = 2*factor*((1<<7)-ca->beta);
|
||||
if (!ca->alpha)
|
||||
ca->alpha = ALPHA_BASE;
|
||||
}
|
||||
|
||||
/* After we have the rtt data to calculate beta, we'd still prefer to wait one
|
||||
* rtt before we adjust our beta to ensure we are working from a consistent
|
||||
* data.
|
||||
*
|
||||
* This function should be called when we hit a congestion event since only at
|
||||
* that point do we really have a real sense of maxRTT (the queues en route
|
||||
* were getting just too full now).
|
||||
*/
|
||||
static void htcp_param_update(struct tcp_sock *tp)
|
||||
{
|
||||
struct htcp *ca = tcp_ca(tp);
|
||||
u32 minRTT = ca->minRTT;
|
||||
u32 maxRTT = ca->maxRTT;
|
||||
|
||||
htcp_beta_update(ca, minRTT, maxRTT);
|
||||
htcp_alpha_update(ca);
|
||||
|
||||
/* add slowly fading memory for maxRTT to accommodate routing changes etc */
|
||||
if (minRTT > 0 && maxRTT > minRTT)
|
||||
ca->maxRTT = minRTT + ((maxRTT-minRTT)*95)/100;
|
||||
}
|
||||
|
||||
static u32 htcp_recalc_ssthresh(struct tcp_sock *tp)
|
||||
{
|
||||
struct htcp *ca = tcp_ca(tp);
|
||||
htcp_param_update(tp);
|
||||
return max((tp->snd_cwnd * ca->beta) >> 7, 2U);
|
||||
}
|
||||
|
||||
static void htcp_cong_avoid(struct tcp_sock *tp, u32 ack, u32 rtt,
|
||||
u32 in_flight, int data_acked)
|
||||
{
|
||||
struct htcp *ca = tcp_ca(tp);
|
||||
|
||||
if (in_flight < tp->snd_cwnd)
|
||||
return;
|
||||
|
||||
if (tp->snd_cwnd <= tp->snd_ssthresh) {
|
||||
/* In "safe" area, increase. */
|
||||
if (tp->snd_cwnd < tp->snd_cwnd_clamp)
|
||||
tp->snd_cwnd++;
|
||||
} else {
|
||||
measure_rtt(tp);
|
||||
|
||||
/* keep track of number of round-trip times since last backoff event */
|
||||
if (ca->snd_cwnd_cnt2++ > tp->snd_cwnd) {
|
||||
ca->ccount++;
|
||||
ca->snd_cwnd_cnt2 = 0;
|
||||
htcp_alpha_update(ca);
|
||||
}
|
||||
|
||||
/* In dangerous area, increase slowly.
|
||||
* In theory this is tp->snd_cwnd += alpha / tp->snd_cwnd
|
||||
*/
|
||||
if ((tp->snd_cwnd_cnt++ * ca->alpha)>>7 >= tp->snd_cwnd) {
|
||||
if (tp->snd_cwnd < tp->snd_cwnd_clamp)
|
||||
tp->snd_cwnd++;
|
||||
tp->snd_cwnd_cnt = 0;
|
||||
ca->ccount++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Lower bound on congestion window. */
|
||||
static u32 htcp_min_cwnd(struct tcp_sock *tp)
|
||||
{
|
||||
return tp->snd_ssthresh;
|
||||
}
|
||||
|
||||
|
||||
static void htcp_init(struct tcp_sock *tp)
|
||||
{
|
||||
struct htcp *ca = tcp_ca(tp);
|
||||
|
||||
memset(ca, 0, sizeof(struct htcp));
|
||||
ca->alpha = ALPHA_BASE;
|
||||
ca->beta = BETA_MIN;
|
||||
}
|
||||
|
||||
static void htcp_state(struct tcp_sock *tp, u8 new_state)
|
||||
{
|
||||
switch (new_state) {
|
||||
case TCP_CA_CWR:
|
||||
case TCP_CA_Recovery:
|
||||
case TCP_CA_Loss:
|
||||
htcp_reset(tcp_ca(tp));
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
static struct tcp_congestion_ops htcp = {
|
||||
.init = htcp_init,
|
||||
.ssthresh = htcp_recalc_ssthresh,
|
||||
.min_cwnd = htcp_min_cwnd,
|
||||
.cong_avoid = htcp_cong_avoid,
|
||||
.set_state = htcp_state,
|
||||
.undo_cwnd = htcp_cwnd_undo,
|
||||
.pkts_acked = measure_achieved_throughput,
|
||||
.owner = THIS_MODULE,
|
||||
.name = "htcp",
|
||||
};
|
||||
|
||||
static int __init htcp_register(void)
|
||||
{
|
||||
BUG_ON(sizeof(struct htcp) > TCP_CA_PRIV_SIZE);
|
||||
BUILD_BUG_ON(BETA_MIN >= BETA_MAX);
|
||||
if (!use_bandwidth_switch)
|
||||
htcp.pkts_acked = NULL;
|
||||
return tcp_register_congestion_control(&htcp);
|
||||
}
|
||||
|
||||
static void __exit htcp_unregister(void)
|
||||
{
|
||||
tcp_unregister_congestion_control(&htcp);
|
||||
}
|
||||
|
||||
module_init(htcp_register);
|
||||
module_exit(htcp_unregister);
|
||||
|
||||
MODULE_AUTHOR("Baruch Even");
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_DESCRIPTION("H-TCP");
|
|
@ -0,0 +1,187 @@
|
|||
/*
|
||||
* TCP HYBLA
|
||||
*
|
||||
* TCP-HYBLA Congestion control algorithm, based on:
|
||||
* C.Caini, R.Firrincieli, "TCP-Hybla: A TCP Enhancement
|
||||
* for Heterogeneous Networks",
|
||||
* International Journal on satellite Communications,
|
||||
* September 2004
|
||||
* Daniele Lacamera
|
||||
* root at danielinux.net
|
||||
*/
|
||||
|
||||
#include <linux/config.h>
|
||||
#include <linux/module.h>
|
||||
#include <net/tcp.h>
|
||||
|
||||
/* Tcp Hybla structure. */
|
||||
struct hybla {
|
||||
u8 hybla_en;
|
||||
u32 snd_cwnd_cents; /* Keeps increment values when it is <1, <<7 */
|
||||
u32 rho; /* Rho parameter, integer part */
|
||||
u32 rho2; /* Rho * Rho, integer part */
|
||||
u32 rho_3ls; /* Rho parameter, <<3 */
|
||||
u32 rho2_7ls; /* Rho^2, <<7 */
|
||||
u32 minrtt; /* Minimum smoothed round trip time value seen */
|
||||
};
|
||||
|
||||
/* Hybla reference round trip time (default= 1/40 sec = 25 ms),
|
||||
expressed in jiffies */
|
||||
static int rtt0 = 25;
|
||||
module_param(rtt0, int, 0644);
|
||||
MODULE_PARM_DESC(rtt0, "reference rout trip time (ms)");
|
||||
|
||||
|
||||
/* This is called to refresh values for hybla parameters */
|
||||
static inline void hybla_recalc_param (struct tcp_sock *tp)
|
||||
{
|
||||
struct hybla *ca = tcp_ca(tp);
|
||||
|
||||
ca->rho_3ls = max_t(u32, tp->srtt / msecs_to_jiffies(rtt0), 8);
|
||||
ca->rho = ca->rho_3ls >> 3;
|
||||
ca->rho2_7ls = (ca->rho_3ls * ca->rho_3ls) << 1;
|
||||
ca->rho2 = ca->rho2_7ls >>7;
|
||||
}
|
||||
|
||||
static void hybla_init(struct tcp_sock *tp)
|
||||
{
|
||||
struct hybla *ca = tcp_ca(tp);
|
||||
|
||||
ca->rho = 0;
|
||||
ca->rho2 = 0;
|
||||
ca->rho_3ls = 0;
|
||||
ca->rho2_7ls = 0;
|
||||
ca->snd_cwnd_cents = 0;
|
||||
ca->hybla_en = 1;
|
||||
tp->snd_cwnd = 2;
|
||||
tp->snd_cwnd_clamp = 65535;
|
||||
|
||||
/* 1st Rho measurement based on initial srtt */
|
||||
hybla_recalc_param(tp);
|
||||
|
||||
/* set minimum rtt as this is the 1st ever seen */
|
||||
ca->minrtt = tp->srtt;
|
||||
tp->snd_cwnd = ca->rho;
|
||||
}
|
||||
|
||||
static void hybla_state(struct tcp_sock *tp, u8 ca_state)
|
||||
{
|
||||
struct hybla *ca = tcp_ca(tp);
|
||||
|
||||
ca->hybla_en = (ca_state == TCP_CA_Open);
|
||||
}
|
||||
|
||||
static inline u32 hybla_fraction(u32 odds)
|
||||
{
|
||||
static const u32 fractions[] = {
|
||||
128, 139, 152, 165, 181, 197, 215, 234,
|
||||
};
|
||||
|
||||
return (odds < ARRAY_SIZE(fractions)) ? fractions[odds] : 128;
|
||||
}
|
||||
|
||||
/* TCP Hybla main routine.
|
||||
* This is the algorithm behavior:
|
||||
* o Recalc Hybla parameters if min_rtt has changed
|
||||
* o Give cwnd a new value based on the model proposed
|
||||
* o remember increments <1
|
||||
*/
|
||||
static void hybla_cong_avoid(struct tcp_sock *tp, u32 ack, u32 rtt,
|
||||
u32 in_flight, int flag)
|
||||
{
|
||||
struct hybla *ca = tcp_ca(tp);
|
||||
u32 increment, odd, rho_fractions;
|
||||
int is_slowstart = 0;
|
||||
|
||||
/* Recalculate rho only if this srtt is the lowest */
|
||||
if (tp->srtt < ca->minrtt){
|
||||
hybla_recalc_param(tp);
|
||||
ca->minrtt = tp->srtt;
|
||||
}
|
||||
|
||||
if (!ca->hybla_en)
|
||||
return tcp_reno_cong_avoid(tp, ack, rtt, in_flight, flag);
|
||||
|
||||
if (in_flight < tp->snd_cwnd)
|
||||
return;
|
||||
|
||||
if (ca->rho == 0)
|
||||
hybla_recalc_param(tp);
|
||||
|
||||
rho_fractions = ca->rho_3ls - (ca->rho << 3);
|
||||
|
||||
if (tp->snd_cwnd < tp->snd_ssthresh) {
|
||||
/*
|
||||
* slow start
|
||||
* INC = 2^RHO - 1
|
||||
* This is done by splitting the rho parameter
|
||||
* into 2 parts: an integer part and a fraction part.
|
||||
* Inrement<<7 is estimated by doing:
|
||||
* [2^(int+fract)]<<7
|
||||
* that is equal to:
|
||||
* (2^int) * [(2^fract) <<7]
|
||||
* 2^int is straightly computed as 1<<int,
|
||||
* while we will use hybla_slowstart_fraction_increment() to
|
||||
* calculate 2^fract in a <<7 value.
|
||||
*/
|
||||
is_slowstart = 1;
|
||||
increment = ((1 << ca->rho) * hybla_fraction(rho_fractions))
|
||||
- 128;
|
||||
} else {
|
||||
/*
|
||||
* congestion avoidance
|
||||
* INC = RHO^2 / W
|
||||
* as long as increment is estimated as (rho<<7)/window
|
||||
* it already is <<7 and we can easily count its fractions.
|
||||
*/
|
||||
increment = ca->rho2_7ls / tp->snd_cwnd;
|
||||
if (increment < 128)
|
||||
tp->snd_cwnd_cnt++;
|
||||
}
|
||||
|
||||
odd = increment % 128;
|
||||
tp->snd_cwnd += increment >> 7;
|
||||
ca->snd_cwnd_cents += odd;
|
||||
|
||||
/* check when fractions goes >=128 and increase cwnd by 1. */
|
||||
while(ca->snd_cwnd_cents >= 128) {
|
||||
tp->snd_cwnd++;
|
||||
ca->snd_cwnd_cents -= 128;
|
||||
tp->snd_cwnd_cnt = 0;
|
||||
}
|
||||
|
||||
/* clamp down slowstart cwnd to ssthresh value. */
|
||||
if (is_slowstart)
|
||||
tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
|
||||
|
||||
tp->snd_cwnd = min_t(u32, tp->snd_cwnd, tp->snd_cwnd_clamp);
|
||||
}
|
||||
|
||||
static struct tcp_congestion_ops tcp_hybla = {
|
||||
.init = hybla_init,
|
||||
.ssthresh = tcp_reno_ssthresh,
|
||||
.min_cwnd = tcp_reno_min_cwnd,
|
||||
.cong_avoid = hybla_cong_avoid,
|
||||
.set_state = hybla_state,
|
||||
|
||||
.owner = THIS_MODULE,
|
||||
.name = "hybla"
|
||||
};
|
||||
|
||||
static int __init hybla_register(void)
|
||||
{
|
||||
BUG_ON(sizeof(struct hybla) > TCP_CA_PRIV_SIZE);
|
||||
return tcp_register_congestion_control(&tcp_hybla);
|
||||
}
|
||||
|
||||
static void __exit hybla_unregister(void)
|
||||
{
|
||||
tcp_unregister_congestion_control(&tcp_hybla);
|
||||
}
|
||||
|
||||
module_init(hybla_register);
|
||||
module_exit(hybla_unregister);
|
||||
|
||||
MODULE_AUTHOR("Daniele Lacamera");
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_DESCRIPTION("TCP Hybla");
|
|
@ -61,7 +61,6 @@
|
|||
* Panu Kuhlberg: Experimental audit of TCP (re)transmission
|
||||
* engine. Lots of bugs are found.
|
||||
* Pasi Sarolahti: F-RTO for dealing with spurious RTOs
|
||||
* Angelo Dell'Aera: TCP Westwood+ support
|
||||
*/
|
||||
|
||||
#include <linux/config.h>
|
||||
|
@ -88,23 +87,9 @@ int sysctl_tcp_rfc1337;
|
|||
int sysctl_tcp_max_orphans = NR_FILE;
|
||||
int sysctl_tcp_frto;
|
||||
int sysctl_tcp_nometrics_save;
|
||||
int sysctl_tcp_westwood;
|
||||
int sysctl_tcp_vegas_cong_avoid;
|
||||
|
||||
int sysctl_tcp_moderate_rcvbuf = 1;
|
||||
|
||||
/* Default values of the Vegas variables, in fixed-point representation
|
||||
* with V_PARAM_SHIFT bits to the right of the binary point.
|
||||
*/
|
||||
#define V_PARAM_SHIFT 1
|
||||
int sysctl_tcp_vegas_alpha = 1<<V_PARAM_SHIFT;
|
||||
int sysctl_tcp_vegas_beta = 3<<V_PARAM_SHIFT;
|
||||
int sysctl_tcp_vegas_gamma = 1<<V_PARAM_SHIFT;
|
||||
int sysctl_tcp_bic = 1;
|
||||
int sysctl_tcp_bic_fast_convergence = 1;
|
||||
int sysctl_tcp_bic_low_window = 14;
|
||||
int sysctl_tcp_bic_beta = 819; /* = 819/1024 (BICTCP_BETA_SCALE) */
|
||||
|
||||
#define FLAG_DATA 0x01 /* Incoming frame contained data. */
|
||||
#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
|
||||
#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
|
||||
|
@ -333,15 +318,6 @@ static void tcp_init_buffer_space(struct sock *sk)
|
|||
tp->snd_cwnd_stamp = tcp_time_stamp;
|
||||
}
|
||||
|
||||
static void init_bictcp(struct tcp_sock *tp)
|
||||
{
|
||||
tp->bictcp.cnt = 0;
|
||||
|
||||
tp->bictcp.last_max_cwnd = 0;
|
||||
tp->bictcp.last_cwnd = 0;
|
||||
tp->bictcp.last_stamp = 0;
|
||||
}
|
||||
|
||||
/* 5. Recalculate window clamp after socket hit its memory bounds. */
|
||||
static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
|
||||
{
|
||||
|
@ -558,45 +534,6 @@ static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_
|
|||
tcp_grow_window(sk, tp, skb);
|
||||
}
|
||||
|
||||
/* When starting a new connection, pin down the current choice of
|
||||
* congestion algorithm.
|
||||
*/
|
||||
void tcp_ca_init(struct tcp_sock *tp)
|
||||
{
|
||||
if (sysctl_tcp_westwood)
|
||||
tp->adv_cong = TCP_WESTWOOD;
|
||||
else if (sysctl_tcp_bic)
|
||||
tp->adv_cong = TCP_BIC;
|
||||
else if (sysctl_tcp_vegas_cong_avoid) {
|
||||
tp->adv_cong = TCP_VEGAS;
|
||||
tp->vegas.baseRTT = 0x7fffffff;
|
||||
tcp_vegas_enable(tp);
|
||||
}
|
||||
}
|
||||
|
||||
/* Do RTT sampling needed for Vegas.
|
||||
* Basically we:
|
||||
* o min-filter RTT samples from within an RTT to get the current
|
||||
* propagation delay + queuing delay (we are min-filtering to try to
|
||||
* avoid the effects of delayed ACKs)
|
||||
* o min-filter RTT samples from a much longer window (forever for now)
|
||||
* to find the propagation delay (baseRTT)
|
||||
*/
|
||||
static inline void vegas_rtt_calc(struct tcp_sock *tp, __u32 rtt)
|
||||
{
|
||||
__u32 vrtt = rtt + 1; /* Never allow zero rtt or baseRTT */
|
||||
|
||||
/* Filter to find propagation delay: */
|
||||
if (vrtt < tp->vegas.baseRTT)
|
||||
tp->vegas.baseRTT = vrtt;
|
||||
|
||||
/* Find the min RTT during the last RTT to find
|
||||
* the current prop. delay + queuing delay:
|
||||
*/
|
||||
tp->vegas.minRTT = min(tp->vegas.minRTT, vrtt);
|
||||
tp->vegas.cntRTT++;
|
||||
}
|
||||
|
||||
/* Called to compute a smoothed rtt estimate. The data fed to this
|
||||
* routine either comes from timestamps, or from segments that were
|
||||
* known _not_ to have been retransmitted [see Karn/Partridge
|
||||
|
@ -606,13 +543,10 @@ static inline void vegas_rtt_calc(struct tcp_sock *tp, __u32 rtt)
|
|||
* To save cycles in the RFC 1323 implementation it was better to break
|
||||
* it up into three procedures. -- erics
|
||||
*/
|
||||
static void tcp_rtt_estimator(struct tcp_sock *tp, __u32 mrtt)
|
||||
static void tcp_rtt_estimator(struct tcp_sock *tp, __u32 mrtt, u32 *usrtt)
|
||||
{
|
||||
long m = mrtt; /* RTT */
|
||||
|
||||
if (tcp_vegas_enabled(tp))
|
||||
vegas_rtt_calc(tp, mrtt);
|
||||
|
||||
/* The following amusing code comes from Jacobson's
|
||||
* article in SIGCOMM '88. Note that rtt and mdev
|
||||
* are scaled versions of rtt and mean deviation.
|
||||
|
@ -670,7 +604,8 @@ static void tcp_rtt_estimator(struct tcp_sock *tp, __u32 mrtt)
|
|||
tp->rtt_seq = tp->snd_nxt;
|
||||
}
|
||||
|
||||
tcp_westwood_update_rtt(tp, tp->srtt >> 3);
|
||||
if (tp->ca_ops->rtt_sample)
|
||||
tp->ca_ops->rtt_sample(tp, *usrtt);
|
||||
}
|
||||
|
||||
/* Calculate rto without backoff. This is the second half of Van Jacobson's
|
||||
|
@ -1185,8 +1120,8 @@ void tcp_enter_frto(struct sock *sk)
|
|||
tp->snd_una == tp->high_seq ||
|
||||
(tp->ca_state == TCP_CA_Loss && !tp->retransmits)) {
|
||||
tp->prior_ssthresh = tcp_current_ssthresh(tp);
|
||||
if (!tcp_westwood_ssthresh(tp))
|
||||
tp->snd_ssthresh = tcp_recalc_ssthresh(tp);
|
||||
tp->snd_ssthresh = tp->ca_ops->ssthresh(tp);
|
||||
tcp_ca_event(tp, CA_EVENT_FRTO);
|
||||
}
|
||||
|
||||
/* Have to clear retransmission markers here to keep the bookkeeping
|
||||
|
@ -1252,8 +1187,6 @@ static void tcp_enter_frto_loss(struct sock *sk)
|
|||
tcp_set_ca_state(tp, TCP_CA_Loss);
|
||||
tp->high_seq = tp->frto_highmark;
|
||||
TCP_ECN_queue_cwr(tp);
|
||||
|
||||
init_bictcp(tp);
|
||||
}
|
||||
|
||||
void tcp_clear_retrans(struct tcp_sock *tp)
|
||||
|
@ -1283,7 +1216,8 @@ void tcp_enter_loss(struct sock *sk, int how)
|
|||
if (tp->ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
|
||||
(tp->ca_state == TCP_CA_Loss && !tp->retransmits)) {
|
||||
tp->prior_ssthresh = tcp_current_ssthresh(tp);
|
||||
tp->snd_ssthresh = tcp_recalc_ssthresh(tp);
|
||||
tp->snd_ssthresh = tp->ca_ops->ssthresh(tp);
|
||||
tcp_ca_event(tp, CA_EVENT_LOSS);
|
||||
}
|
||||
tp->snd_cwnd = 1;
|
||||
tp->snd_cwnd_cnt = 0;
|
||||
|
@ -1596,28 +1530,14 @@ static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
|
|||
}
|
||||
|
||||
/* Decrease cwnd each second ack. */
|
||||
|
||||
static void tcp_cwnd_down(struct tcp_sock *tp)
|
||||
{
|
||||
int decr = tp->snd_cwnd_cnt + 1;
|
||||
__u32 limit;
|
||||
|
||||
/*
|
||||
* TCP Westwood
|
||||
* Here limit is evaluated as BWestimation*RTTmin (for obtaining it
|
||||
* in packets we use mss_cache). If sysctl_tcp_westwood is off
|
||||
* tcp_westwood_bw_rttmin() returns 0. In such case snd_ssthresh is
|
||||
* still used as usual. It prevents other strange cases in which
|
||||
* BWE*RTTmin could assume value 0. It should not happen but...
|
||||
*/
|
||||
|
||||
if (!(limit = tcp_westwood_bw_rttmin(tp)))
|
||||
limit = tp->snd_ssthresh/2;
|
||||
|
||||
tp->snd_cwnd_cnt = decr&1;
|
||||
decr >>= 1;
|
||||
|
||||
if (decr && tp->snd_cwnd > limit)
|
||||
if (decr && tp->snd_cwnd > tp->ca_ops->min_cwnd(tp))
|
||||
tp->snd_cwnd -= decr;
|
||||
|
||||
tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
|
||||
|
@ -1654,8 +1574,8 @@ static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
|
|||
static void tcp_undo_cwr(struct tcp_sock *tp, int undo)
|
||||
{
|
||||
if (tp->prior_ssthresh) {
|
||||
if (tcp_is_bic(tp))
|
||||
tp->snd_cwnd = max(tp->snd_cwnd, tp->bictcp.last_max_cwnd);
|
||||
if (tp->ca_ops->undo_cwnd)
|
||||
tp->snd_cwnd = tp->ca_ops->undo_cwnd(tp);
|
||||
else
|
||||
tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
|
||||
|
||||
|
@ -1767,11 +1687,9 @@ static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
|
|||
|
||||
static inline void tcp_complete_cwr(struct tcp_sock *tp)
|
||||
{
|
||||
if (tcp_westwood_cwnd(tp))
|
||||
tp->snd_ssthresh = tp->snd_cwnd;
|
||||
else
|
||||
tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
|
||||
tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
|
||||
tp->snd_cwnd_stamp = tcp_time_stamp;
|
||||
tcp_ca_event(tp, CA_EVENT_COMPLETE_CWR);
|
||||
}
|
||||
|
||||
static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
|
||||
|
@ -1946,7 +1864,7 @@ tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
|
|||
if (tp->ca_state < TCP_CA_CWR) {
|
||||
if (!(flag&FLAG_ECE))
|
||||
tp->prior_ssthresh = tcp_current_ssthresh(tp);
|
||||
tp->snd_ssthresh = tcp_recalc_ssthresh(tp);
|
||||
tp->snd_ssthresh = tp->ca_ops->ssthresh(tp);
|
||||
TCP_ECN_queue_cwr(tp);
|
||||
}
|
||||
|
||||
|
@ -1963,7 +1881,7 @@ tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
|
|||
/* Read draft-ietf-tcplw-high-performance before mucking
|
||||
* with this code. (Superceeds RFC1323)
|
||||
*/
|
||||
static void tcp_ack_saw_tstamp(struct tcp_sock *tp, int flag)
|
||||
static void tcp_ack_saw_tstamp(struct tcp_sock *tp, u32 *usrtt, int flag)
|
||||
{
|
||||
__u32 seq_rtt;
|
||||
|
||||
|
@ -1983,13 +1901,13 @@ static void tcp_ack_saw_tstamp(struct tcp_sock *tp, int flag)
|
|||
* in window is lost... Voila. --ANK (010210)
|
||||
*/
|
||||
seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
|
||||
tcp_rtt_estimator(tp, seq_rtt);
|
||||
tcp_rtt_estimator(tp, seq_rtt, usrtt);
|
||||
tcp_set_rto(tp);
|
||||
tp->backoff = 0;
|
||||
tcp_bound_rto(tp);
|
||||
}
|
||||
|
||||
static void tcp_ack_no_tstamp(struct tcp_sock *tp, u32 seq_rtt, int flag)
|
||||
static void tcp_ack_no_tstamp(struct tcp_sock *tp, u32 seq_rtt, u32 *usrtt, int flag)
|
||||
{
|
||||
/* We don't have a timestamp. Can only use
|
||||
* packets that are not retransmitted to determine
|
||||
|
@ -2003,338 +1921,29 @@ static void tcp_ack_no_tstamp(struct tcp_sock *tp, u32 seq_rtt, int flag)
|
|||
if (flag & FLAG_RETRANS_DATA_ACKED)
|
||||
return;
|
||||
|
||||
tcp_rtt_estimator(tp, seq_rtt);
|
||||
tcp_rtt_estimator(tp, seq_rtt, usrtt);
|
||||
tcp_set_rto(tp);
|
||||
tp->backoff = 0;
|
||||
tcp_bound_rto(tp);
|
||||
}
|
||||
|
||||
static inline void tcp_ack_update_rtt(struct tcp_sock *tp,
|
||||
int flag, s32 seq_rtt)
|
||||
int flag, s32 seq_rtt, u32 *usrtt)
|
||||
{
|
||||
/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
|
||||
if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
|
||||
tcp_ack_saw_tstamp(tp, flag);
|
||||
tcp_ack_saw_tstamp(tp, usrtt, flag);
|
||||
else if (seq_rtt >= 0)
|
||||
tcp_ack_no_tstamp(tp, seq_rtt, flag);
|
||||
tcp_ack_no_tstamp(tp, seq_rtt, usrtt, flag);
|
||||
}
|
||||
|
||||
/*
|
||||
* Compute congestion window to use.
|
||||
*
|
||||
* This is from the implementation of BICTCP in
|
||||
* Lison-Xu, Kahaled Harfoush, and Injog Rhee.
|
||||
* "Binary Increase Congestion Control for Fast, Long Distance
|
||||
* Networks" in InfoComm 2004
|
||||
* Available from:
|
||||
* http://www.csc.ncsu.edu/faculty/rhee/export/bitcp.pdf
|
||||
*
|
||||
* Unless BIC is enabled and congestion window is large
|
||||
* this behaves the same as the original Reno.
|
||||
*/
|
||||
static inline __u32 bictcp_cwnd(struct tcp_sock *tp)
|
||||
static inline void tcp_cong_avoid(struct tcp_sock *tp, u32 ack, u32 rtt,
|
||||
u32 in_flight, int good)
|
||||
{
|
||||
/* orignal Reno behaviour */
|
||||
if (!tcp_is_bic(tp))
|
||||
return tp->snd_cwnd;
|
||||
|
||||
if (tp->bictcp.last_cwnd == tp->snd_cwnd &&
|
||||
(s32)(tcp_time_stamp - tp->bictcp.last_stamp) <= (HZ>>5))
|
||||
return tp->bictcp.cnt;
|
||||
|
||||
tp->bictcp.last_cwnd = tp->snd_cwnd;
|
||||
tp->bictcp.last_stamp = tcp_time_stamp;
|
||||
|
||||
/* start off normal */
|
||||
if (tp->snd_cwnd <= sysctl_tcp_bic_low_window)
|
||||
tp->bictcp.cnt = tp->snd_cwnd;
|
||||
|
||||
/* binary increase */
|
||||
else if (tp->snd_cwnd < tp->bictcp.last_max_cwnd) {
|
||||
__u32 dist = (tp->bictcp.last_max_cwnd - tp->snd_cwnd)
|
||||
/ BICTCP_B;
|
||||
|
||||
if (dist > BICTCP_MAX_INCREMENT)
|
||||
/* linear increase */
|
||||
tp->bictcp.cnt = tp->snd_cwnd / BICTCP_MAX_INCREMENT;
|
||||
else if (dist <= 1U)
|
||||
/* binary search increase */
|
||||
tp->bictcp.cnt = tp->snd_cwnd * BICTCP_FUNC_OF_MIN_INCR
|
||||
/ BICTCP_B;
|
||||
else
|
||||
/* binary search increase */
|
||||
tp->bictcp.cnt = tp->snd_cwnd / dist;
|
||||
} else {
|
||||
/* slow start amd linear increase */
|
||||
if (tp->snd_cwnd < tp->bictcp.last_max_cwnd + BICTCP_B)
|
||||
/* slow start */
|
||||
tp->bictcp.cnt = tp->snd_cwnd * BICTCP_FUNC_OF_MIN_INCR
|
||||
/ BICTCP_B;
|
||||
else if (tp->snd_cwnd < tp->bictcp.last_max_cwnd
|
||||
+ BICTCP_MAX_INCREMENT*(BICTCP_B-1))
|
||||
/* slow start */
|
||||
tp->bictcp.cnt = tp->snd_cwnd * (BICTCP_B-1)
|
||||
/ (tp->snd_cwnd-tp->bictcp.last_max_cwnd);
|
||||
else
|
||||
/* linear increase */
|
||||
tp->bictcp.cnt = tp->snd_cwnd / BICTCP_MAX_INCREMENT;
|
||||
}
|
||||
return tp->bictcp.cnt;
|
||||
}
|
||||
|
||||
/* This is Jacobson's slow start and congestion avoidance.
|
||||
* SIGCOMM '88, p. 328.
|
||||
*/
|
||||
static inline void reno_cong_avoid(struct tcp_sock *tp)
|
||||
{
|
||||
if (tp->snd_cwnd <= tp->snd_ssthresh) {
|
||||
/* In "safe" area, increase. */
|
||||
if (tp->snd_cwnd < tp->snd_cwnd_clamp)
|
||||
tp->snd_cwnd++;
|
||||
} else {
|
||||
/* In dangerous area, increase slowly.
|
||||
* In theory this is tp->snd_cwnd += 1 / tp->snd_cwnd
|
||||
*/
|
||||
if (tp->snd_cwnd_cnt >= bictcp_cwnd(tp)) {
|
||||
if (tp->snd_cwnd < tp->snd_cwnd_clamp)
|
||||
tp->snd_cwnd++;
|
||||
tp->snd_cwnd_cnt=0;
|
||||
} else
|
||||
tp->snd_cwnd_cnt++;
|
||||
}
|
||||
tp->ca_ops->cong_avoid(tp, ack, rtt, in_flight, good);
|
||||
tp->snd_cwnd_stamp = tcp_time_stamp;
|
||||
}
|
||||
|
||||
/* This is based on the congestion detection/avoidance scheme described in
|
||||
* Lawrence S. Brakmo and Larry L. Peterson.
|
||||
* "TCP Vegas: End to end congestion avoidance on a global internet."
|
||||
* IEEE Journal on Selected Areas in Communication, 13(8):1465--1480,
|
||||
* October 1995. Available from:
|
||||
* ftp://ftp.cs.arizona.edu/xkernel/Papers/jsac.ps
|
||||
*
|
||||
* See http://www.cs.arizona.edu/xkernel/ for their implementation.
|
||||
* The main aspects that distinguish this implementation from the
|
||||
* Arizona Vegas implementation are:
|
||||
* o We do not change the loss detection or recovery mechanisms of
|
||||
* Linux in any way. Linux already recovers from losses quite well,
|
||||
* using fine-grained timers, NewReno, and FACK.
|
||||
* o To avoid the performance penalty imposed by increasing cwnd
|
||||
* only every-other RTT during slow start, we increase during
|
||||
* every RTT during slow start, just like Reno.
|
||||
* o Largely to allow continuous cwnd growth during slow start,
|
||||
* we use the rate at which ACKs come back as the "actual"
|
||||
* rate, rather than the rate at which data is sent.
|
||||
* o To speed convergence to the right rate, we set the cwnd
|
||||
* to achieve the right ("actual") rate when we exit slow start.
|
||||
* o To filter out the noise caused by delayed ACKs, we use the
|
||||
* minimum RTT sample observed during the last RTT to calculate
|
||||
* the actual rate.
|
||||
* o When the sender re-starts from idle, it waits until it has
|
||||
* received ACKs for an entire flight of new data before making
|
||||
* a cwnd adjustment decision. The original Vegas implementation
|
||||
* assumed senders never went idle.
|
||||
*/
|
||||
static void vegas_cong_avoid(struct tcp_sock *tp, u32 ack, u32 seq_rtt)
|
||||
{
|
||||
/* The key players are v_beg_snd_una and v_beg_snd_nxt.
|
||||
*
|
||||
* These are so named because they represent the approximate values
|
||||
* of snd_una and snd_nxt at the beginning of the current RTT. More
|
||||
* precisely, they represent the amount of data sent during the RTT.
|
||||
* At the end of the RTT, when we receive an ACK for v_beg_snd_nxt,
|
||||
* we will calculate that (v_beg_snd_nxt - v_beg_snd_una) outstanding
|
||||
* bytes of data have been ACKed during the course of the RTT, giving
|
||||
* an "actual" rate of:
|
||||
*
|
||||
* (v_beg_snd_nxt - v_beg_snd_una) / (rtt duration)
|
||||
*
|
||||
* Unfortunately, v_beg_snd_una is not exactly equal to snd_una,
|
||||
* because delayed ACKs can cover more than one segment, so they
|
||||
* don't line up nicely with the boundaries of RTTs.
|
||||
*
|
||||
* Another unfortunate fact of life is that delayed ACKs delay the
|
||||
* advance of the left edge of our send window, so that the number
|
||||
* of bytes we send in an RTT is often less than our cwnd will allow.
|
||||
* So we keep track of our cwnd separately, in v_beg_snd_cwnd.
|
||||
*/
|
||||
|
||||
if (after(ack, tp->vegas.beg_snd_nxt)) {
|
||||
/* Do the Vegas once-per-RTT cwnd adjustment. */
|
||||
u32 old_wnd, old_snd_cwnd;
|
||||
|
||||
|
||||
/* Here old_wnd is essentially the window of data that was
|
||||
* sent during the previous RTT, and has all
|
||||
* been acknowledged in the course of the RTT that ended
|
||||
* with the ACK we just received. Likewise, old_snd_cwnd
|
||||
* is the cwnd during the previous RTT.
|
||||
*/
|
||||
old_wnd = (tp->vegas.beg_snd_nxt - tp->vegas.beg_snd_una) /
|
||||
tp->mss_cache_std;
|
||||
old_snd_cwnd = tp->vegas.beg_snd_cwnd;
|
||||
|
||||
/* Save the extent of the current window so we can use this
|
||||
* at the end of the next RTT.
|
||||
*/
|
||||
tp->vegas.beg_snd_una = tp->vegas.beg_snd_nxt;
|
||||
tp->vegas.beg_snd_nxt = tp->snd_nxt;
|
||||
tp->vegas.beg_snd_cwnd = tp->snd_cwnd;
|
||||
|
||||
/* Take into account the current RTT sample too, to
|
||||
* decrease the impact of delayed acks. This double counts
|
||||
* this sample since we count it for the next window as well,
|
||||
* but that's not too awful, since we're taking the min,
|
||||
* rather than averaging.
|
||||
*/
|
||||
vegas_rtt_calc(tp, seq_rtt);
|
||||
|
||||
/* We do the Vegas calculations only if we got enough RTT
|
||||
* samples that we can be reasonably sure that we got
|
||||
* at least one RTT sample that wasn't from a delayed ACK.
|
||||
* If we only had 2 samples total,
|
||||
* then that means we're getting only 1 ACK per RTT, which
|
||||
* means they're almost certainly delayed ACKs.
|
||||
* If we have 3 samples, we should be OK.
|
||||
*/
|
||||
|
||||
if (tp->vegas.cntRTT <= 2) {
|
||||
/* We don't have enough RTT samples to do the Vegas
|
||||
* calculation, so we'll behave like Reno.
|
||||
*/
|
||||
if (tp->snd_cwnd > tp->snd_ssthresh)
|
||||
tp->snd_cwnd++;
|
||||
} else {
|
||||
u32 rtt, target_cwnd, diff;
|
||||
|
||||
/* We have enough RTT samples, so, using the Vegas
|
||||
* algorithm, we determine if we should increase or
|
||||
* decrease cwnd, and by how much.
|
||||
*/
|
||||
|
||||
/* Pluck out the RTT we are using for the Vegas
|
||||
* calculations. This is the min RTT seen during the
|
||||
* last RTT. Taking the min filters out the effects
|
||||
* of delayed ACKs, at the cost of noticing congestion
|
||||
* a bit later.
|
||||
*/
|
||||
rtt = tp->vegas.minRTT;
|
||||
|
||||
/* Calculate the cwnd we should have, if we weren't
|
||||
* going too fast.
|
||||
*
|
||||
* This is:
|
||||
* (actual rate in segments) * baseRTT
|
||||
* We keep it as a fixed point number with
|
||||
* V_PARAM_SHIFT bits to the right of the binary point.
|
||||
*/
|
||||
target_cwnd = ((old_wnd * tp->vegas.baseRTT)
|
||||
<< V_PARAM_SHIFT) / rtt;
|
||||
|
||||
/* Calculate the difference between the window we had,
|
||||
* and the window we would like to have. This quantity
|
||||
* is the "Diff" from the Arizona Vegas papers.
|
||||
*
|
||||
* Again, this is a fixed point number with
|
||||
* V_PARAM_SHIFT bits to the right of the binary
|
||||
* point.
|
||||
*/
|
||||
diff = (old_wnd << V_PARAM_SHIFT) - target_cwnd;
|
||||
|
||||
if (tp->snd_cwnd < tp->snd_ssthresh) {
|
||||
/* Slow start. */
|
||||
if (diff > sysctl_tcp_vegas_gamma) {
|
||||
/* Going too fast. Time to slow down
|
||||
* and switch to congestion avoidance.
|
||||
*/
|
||||
tp->snd_ssthresh = 2;
|
||||
|
||||
/* Set cwnd to match the actual rate
|
||||
* exactly:
|
||||
* cwnd = (actual rate) * baseRTT
|
||||
* Then we add 1 because the integer
|
||||
* truncation robs us of full link
|
||||
* utilization.
|
||||
*/
|
||||
tp->snd_cwnd = min(tp->snd_cwnd,
|
||||
(target_cwnd >>
|
||||
V_PARAM_SHIFT)+1);
|
||||
|
||||
}
|
||||
} else {
|
||||
/* Congestion avoidance. */
|
||||
u32 next_snd_cwnd;
|
||||
|
||||
/* Figure out where we would like cwnd
|
||||
* to be.
|
||||
*/
|
||||
if (diff > sysctl_tcp_vegas_beta) {
|
||||
/* The old window was too fast, so
|
||||
* we slow down.
|
||||
*/
|
||||
next_snd_cwnd = old_snd_cwnd - 1;
|
||||
} else if (diff < sysctl_tcp_vegas_alpha) {
|
||||
/* We don't have enough extra packets
|
||||
* in the network, so speed up.
|
||||
*/
|
||||
next_snd_cwnd = old_snd_cwnd + 1;
|
||||
} else {
|
||||
/* Sending just as fast as we
|
||||
* should be.
|
||||
*/
|
||||
next_snd_cwnd = old_snd_cwnd;
|
||||
}
|
||||
|
||||
/* Adjust cwnd upward or downward, toward the
|
||||
* desired value.
|
||||
*/
|
||||
if (next_snd_cwnd > tp->snd_cwnd)
|
||||
tp->snd_cwnd++;
|
||||
else if (next_snd_cwnd < tp->snd_cwnd)
|
||||
tp->snd_cwnd--;
|
||||
}
|
||||
}
|
||||
|
||||
/* Wipe the slate clean for the next RTT. */
|
||||
tp->vegas.cntRTT = 0;
|
||||
tp->vegas.minRTT = 0x7fffffff;
|
||||
}
|
||||
|
||||
/* The following code is executed for every ack we receive,
|
||||
* except for conditions checked in should_advance_cwnd()
|
||||
* before the call to tcp_cong_avoid(). Mainly this means that
|
||||
* we only execute this code if the ack actually acked some
|
||||
* data.
|
||||
*/
|
||||
|
||||
/* If we are in slow start, increase our cwnd in response to this ACK.
|
||||
* (If we are not in slow start then we are in congestion avoidance,
|
||||
* and adjust our congestion window only once per RTT. See the code
|
||||
* above.)
|
||||
*/
|
||||
if (tp->snd_cwnd <= tp->snd_ssthresh)
|
||||
tp->snd_cwnd++;
|
||||
|
||||
/* to keep cwnd from growing without bound */
|
||||
tp->snd_cwnd = min_t(u32, tp->snd_cwnd, tp->snd_cwnd_clamp);
|
||||
|
||||
/* Make sure that we are never so timid as to reduce our cwnd below
|
||||
* 2 MSS.
|
||||
*
|
||||
* Going below 2 MSS would risk huge delayed ACKs from our receiver.
|
||||
*/
|
||||
tp->snd_cwnd = max(tp->snd_cwnd, 2U);
|
||||
|
||||
tp->snd_cwnd_stamp = tcp_time_stamp;
|
||||
}
|
||||
|
||||
static inline void tcp_cong_avoid(struct tcp_sock *tp, u32 ack, u32 seq_rtt)
|
||||
{
|
||||
if (tcp_vegas_enabled(tp))
|
||||
vegas_cong_avoid(tp, ack, seq_rtt);
|
||||
else
|
||||
reno_cong_avoid(tp);
|
||||
}
|
||||
|
||||
/* Restart timer after forward progress on connection.
|
||||
* RFC2988 recommends to restart timer to now+rto.
|
||||
*/
|
||||
|
@ -2415,13 +2024,18 @@ static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
|
|||
|
||||
|
||||
/* Remove acknowledged frames from the retransmission queue. */
|
||||
static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
|
||||
static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p, s32 *seq_usrtt)
|
||||
{
|
||||
struct tcp_sock *tp = tcp_sk(sk);
|
||||
struct sk_buff *skb;
|
||||
__u32 now = tcp_time_stamp;
|
||||
int acked = 0;
|
||||
__s32 seq_rtt = -1;
|
||||
struct timeval usnow;
|
||||
u32 pkts_acked = 0;
|
||||
|
||||
if (seq_usrtt)
|
||||
do_gettimeofday(&usnow);
|
||||
|
||||
while ((skb = skb_peek(&sk->sk_write_queue)) &&
|
||||
skb != sk->sk_send_head) {
|
||||
|
@ -2448,6 +2062,7 @@ static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
|
|||
*/
|
||||
if (!(scb->flags & TCPCB_FLAG_SYN)) {
|
||||
acked |= FLAG_DATA_ACKED;
|
||||
++pkts_acked;
|
||||
} else {
|
||||
acked |= FLAG_SYN_ACKED;
|
||||
tp->retrans_stamp = 0;
|
||||
|
@ -2461,6 +2076,10 @@ static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
|
|||
seq_rtt = -1;
|
||||
} else if (seq_rtt < 0)
|
||||
seq_rtt = now - scb->when;
|
||||
if (seq_usrtt)
|
||||
*seq_usrtt = (usnow.tv_sec - skb->stamp.tv_sec) * 1000000
|
||||
+ (usnow.tv_usec - skb->stamp.tv_usec);
|
||||
|
||||
if (sacked & TCPCB_SACKED_ACKED)
|
||||
tp->sacked_out -= tcp_skb_pcount(skb);
|
||||
if (sacked & TCPCB_LOST)
|
||||
|
@ -2479,8 +2098,11 @@ static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
|
|||
}
|
||||
|
||||
if (acked&FLAG_ACKED) {
|
||||
tcp_ack_update_rtt(tp, acked, seq_rtt);
|
||||
tcp_ack_update_rtt(tp, acked, seq_rtt, seq_usrtt);
|
||||
tcp_ack_packets_out(sk, tp);
|
||||
|
||||
if (tp->ca_ops->pkts_acked)
|
||||
tp->ca_ops->pkts_acked(tp, pkts_acked);
|
||||
}
|
||||
|
||||
#if FASTRETRANS_DEBUG > 0
|
||||
|
@ -2624,257 +2246,6 @@ static void tcp_process_frto(struct sock *sk, u32 prior_snd_una)
|
|||
tp->frto_counter = (tp->frto_counter + 1) % 3;
|
||||
}
|
||||
|
||||
/*
|
||||
* TCP Westwood+
|
||||
*/
|
||||
|
||||
/*
|
||||
* @init_westwood
|
||||
* This function initializes fields used in TCP Westwood+. We can't
|
||||
* get no information about RTTmin at this time so we simply set it to
|
||||
* TCP_WESTWOOD_INIT_RTT. This value was chosen to be too conservative
|
||||
* since in this way we're sure it will be updated in a consistent
|
||||
* way as soon as possible. It will reasonably happen within the first
|
||||
* RTT period of the connection lifetime.
|
||||
*/
|
||||
|
||||
static void init_westwood(struct sock *sk)
|
||||
{
|
||||
struct tcp_sock *tp = tcp_sk(sk);
|
||||
|
||||
tp->westwood.bw_ns_est = 0;
|
||||
tp->westwood.bw_est = 0;
|
||||
tp->westwood.accounted = 0;
|
||||
tp->westwood.cumul_ack = 0;
|
||||
tp->westwood.rtt_win_sx = tcp_time_stamp;
|
||||
tp->westwood.rtt = TCP_WESTWOOD_INIT_RTT;
|
||||
tp->westwood.rtt_min = TCP_WESTWOOD_INIT_RTT;
|
||||
tp->westwood.snd_una = tp->snd_una;
|
||||
}
|
||||
|
||||
/*
|
||||
* @westwood_do_filter
|
||||
* Low-pass filter. Implemented using constant coeffients.
|
||||
*/
|
||||
|
||||
static inline __u32 westwood_do_filter(__u32 a, __u32 b)
|
||||
{
|
||||
return (((7 * a) + b) >> 3);
|
||||
}
|
||||
|
||||
static void westwood_filter(struct sock *sk, __u32 delta)
|
||||
{
|
||||
struct tcp_sock *tp = tcp_sk(sk);
|
||||
|
||||
tp->westwood.bw_ns_est =
|
||||
westwood_do_filter(tp->westwood.bw_ns_est,
|
||||
tp->westwood.bk / delta);
|
||||
tp->westwood.bw_est =
|
||||
westwood_do_filter(tp->westwood.bw_est,
|
||||
tp->westwood.bw_ns_est);
|
||||
}
|
||||
|
||||
/*
|
||||
* @westwood_update_rttmin
|
||||
* It is used to update RTTmin. In this case we MUST NOT use
|
||||
* WESTWOOD_RTT_MIN minimum bound since we could be on a LAN!
|
||||
*/
|
||||
|
||||
static inline __u32 westwood_update_rttmin(const struct sock *sk)
|
||||
{
|
||||
const struct tcp_sock *tp = tcp_sk(sk);
|
||||
__u32 rttmin = tp->westwood.rtt_min;
|
||||
|
||||
if (tp->westwood.rtt != 0 &&
|
||||
(tp->westwood.rtt < tp->westwood.rtt_min || !rttmin))
|
||||
rttmin = tp->westwood.rtt;
|
||||
|
||||
return rttmin;
|
||||
}
|
||||
|
||||
/*
|
||||
* @westwood_acked
|
||||
* Evaluate increases for dk.
|
||||
*/
|
||||
|
||||
static inline __u32 westwood_acked(const struct sock *sk)
|
||||
{
|
||||
const struct tcp_sock *tp = tcp_sk(sk);
|
||||
|
||||
return tp->snd_una - tp->westwood.snd_una;
|
||||
}
|
||||
|
||||
/*
|
||||
* @westwood_new_window
|
||||
* It evaluates if we are receiving data inside the same RTT window as
|
||||
* when we started.
|
||||
* Return value:
|
||||
* It returns 0 if we are still evaluating samples in the same RTT
|
||||
* window, 1 if the sample has to be considered in the next window.
|
||||
*/
|
||||
|
||||
static int westwood_new_window(const struct sock *sk)
|
||||
{
|
||||
const struct tcp_sock *tp = tcp_sk(sk);
|
||||
__u32 left_bound;
|
||||
__u32 rtt;
|
||||
int ret = 0;
|
||||
|
||||
left_bound = tp->westwood.rtt_win_sx;
|
||||
rtt = max(tp->westwood.rtt, (u32) TCP_WESTWOOD_RTT_MIN);
|
||||
|
||||
/*
|
||||
* A RTT-window has passed. Be careful since if RTT is less than
|
||||
* 50ms we don't filter but we continue 'building the sample'.
|
||||
* This minimum limit was choosen since an estimation on small
|
||||
* time intervals is better to avoid...
|
||||
* Obvioulsy on a LAN we reasonably will always have
|
||||
* right_bound = left_bound + WESTWOOD_RTT_MIN
|
||||
*/
|
||||
|
||||
if ((left_bound + rtt) < tcp_time_stamp)
|
||||
ret = 1;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* @westwood_update_window
|
||||
* It updates RTT evaluation window if it is the right moment to do
|
||||
* it. If so it calls filter for evaluating bandwidth.
|
||||
*/
|
||||
|
||||
static void __westwood_update_window(struct sock *sk, __u32 now)
|
||||
{
|
||||
struct tcp_sock *tp = tcp_sk(sk);
|
||||
__u32 delta = now - tp->westwood.rtt_win_sx;
|
||||
|
||||
if (delta) {
|
||||
if (tp->westwood.rtt)
|
||||
westwood_filter(sk, delta);
|
||||
|
||||
tp->westwood.bk = 0;
|
||||
tp->westwood.rtt_win_sx = tcp_time_stamp;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static void westwood_update_window(struct sock *sk, __u32 now)
|
||||
{
|
||||
if (westwood_new_window(sk))
|
||||
__westwood_update_window(sk, now);
|
||||
}
|
||||
|
||||
/*
|
||||
* @__tcp_westwood_fast_bw
|
||||
* It is called when we are in fast path. In particular it is called when
|
||||
* header prediction is successfull. In such case infact update is
|
||||
* straight forward and doesn't need any particular care.
|
||||
*/
|
||||
|
||||
static void __tcp_westwood_fast_bw(struct sock *sk, struct sk_buff *skb)
|
||||
{
|
||||
struct tcp_sock *tp = tcp_sk(sk);
|
||||
|
||||
westwood_update_window(sk, tcp_time_stamp);
|
||||
|
||||
tp->westwood.bk += westwood_acked(sk);
|
||||
tp->westwood.snd_una = tp->snd_una;
|
||||
tp->westwood.rtt_min = westwood_update_rttmin(sk);
|
||||
}
|
||||
|
||||
static inline void tcp_westwood_fast_bw(struct sock *sk, struct sk_buff *skb)
|
||||
{
|
||||
if (tcp_is_westwood(tcp_sk(sk)))
|
||||
__tcp_westwood_fast_bw(sk, skb);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* @westwood_dupack_update
|
||||
* It updates accounted and cumul_ack when receiving a dupack.
|
||||
*/
|
||||
|
||||
static void westwood_dupack_update(struct sock *sk)
|
||||
{
|
||||
struct tcp_sock *tp = tcp_sk(sk);
|
||||
|
||||
tp->westwood.accounted += tp->mss_cache_std;
|
||||
tp->westwood.cumul_ack = tp->mss_cache_std;
|
||||
}
|
||||
|
||||
static inline int westwood_may_change_cumul(struct tcp_sock *tp)
|
||||
{
|
||||
return (tp->westwood.cumul_ack > tp->mss_cache_std);
|
||||
}
|
||||
|
||||
static inline void westwood_partial_update(struct tcp_sock *tp)
|
||||
{
|
||||
tp->westwood.accounted -= tp->westwood.cumul_ack;
|
||||
tp->westwood.cumul_ack = tp->mss_cache_std;
|
||||
}
|
||||
|
||||
static inline void westwood_complete_update(struct tcp_sock *tp)
|
||||
{
|
||||
tp->westwood.cumul_ack -= tp->westwood.accounted;
|
||||
tp->westwood.accounted = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* @westwood_acked_count
|
||||
* This function evaluates cumul_ack for evaluating dk in case of
|
||||
* delayed or partial acks.
|
||||
*/
|
||||
|
||||
static inline __u32 westwood_acked_count(struct sock *sk)
|
||||
{
|
||||
struct tcp_sock *tp = tcp_sk(sk);
|
||||
|
||||
tp->westwood.cumul_ack = westwood_acked(sk);
|
||||
|
||||
/* If cumul_ack is 0 this is a dupack since it's not moving
|
||||
* tp->snd_una.
|
||||
*/
|
||||
if (!(tp->westwood.cumul_ack))
|
||||
westwood_dupack_update(sk);
|
||||
|
||||
if (westwood_may_change_cumul(tp)) {
|
||||
/* Partial or delayed ack */
|
||||
if (tp->westwood.accounted >= tp->westwood.cumul_ack)
|
||||
westwood_partial_update(tp);
|
||||
else
|
||||
westwood_complete_update(tp);
|
||||
}
|
||||
|
||||
tp->westwood.snd_una = tp->snd_una;
|
||||
|
||||
return tp->westwood.cumul_ack;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* @__tcp_westwood_slow_bw
|
||||
* It is called when something is going wrong..even if there could
|
||||
* be no problems! Infact a simple delayed packet may trigger a
|
||||
* dupack. But we need to be careful in such case.
|
||||
*/
|
||||
|
||||
static void __tcp_westwood_slow_bw(struct sock *sk, struct sk_buff *skb)
|
||||
{
|
||||
struct tcp_sock *tp = tcp_sk(sk);
|
||||
|
||||
westwood_update_window(sk, tcp_time_stamp);
|
||||
|
||||
tp->westwood.bk += westwood_acked_count(sk);
|
||||
tp->westwood.rtt_min = westwood_update_rttmin(sk);
|
||||
}
|
||||
|
||||
static inline void tcp_westwood_slow_bw(struct sock *sk, struct sk_buff *skb)
|
||||
{
|
||||
if (tcp_is_westwood(tcp_sk(sk)))
|
||||
__tcp_westwood_slow_bw(sk, skb);
|
||||
}
|
||||
|
||||
/* This routine deals with incoming acks, but not outgoing ones. */
|
||||
static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
|
||||
{
|
||||
|
@ -2884,6 +2255,7 @@ static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
|
|||
u32 ack = TCP_SKB_CB(skb)->ack_seq;
|
||||
u32 prior_in_flight;
|
||||
s32 seq_rtt;
|
||||
s32 seq_usrtt = 0;
|
||||
int prior_packets;
|
||||
|
||||
/* If the ack is newer than sent or older than previous acks
|
||||
|
@ -2902,9 +2274,10 @@ static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
|
|||
*/
|
||||
tcp_update_wl(tp, ack, ack_seq);
|
||||
tp->snd_una = ack;
|
||||
tcp_westwood_fast_bw(sk, skb);
|
||||
flag |= FLAG_WIN_UPDATE;
|
||||
|
||||
tcp_ca_event(tp, CA_EVENT_FAST_ACK);
|
||||
|
||||
NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
|
||||
} else {
|
||||
if (ack_seq != TCP_SKB_CB(skb)->end_seq)
|
||||
|
@ -2920,7 +2293,7 @@ static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
|
|||
if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
|
||||
flag |= FLAG_ECE;
|
||||
|
||||
tcp_westwood_slow_bw(sk,skb);
|
||||
tcp_ca_event(tp, CA_EVENT_SLOW_ACK);
|
||||
}
|
||||
|
||||
/* We passed data and got it acked, remove any soft error
|
||||
|
@ -2935,22 +2308,20 @@ static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
|
|||
prior_in_flight = tcp_packets_in_flight(tp);
|
||||
|
||||
/* See if we can take anything off of the retransmit queue. */
|
||||
flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
|
||||
flag |= tcp_clean_rtx_queue(sk, &seq_rtt,
|
||||
tp->ca_ops->rtt_sample ? &seq_usrtt : NULL);
|
||||
|
||||
if (tp->frto_counter)
|
||||
tcp_process_frto(sk, prior_snd_una);
|
||||
|
||||
if (tcp_ack_is_dubious(tp, flag)) {
|
||||
/* Advanve CWND, if state allows this. */
|
||||
if ((flag & FLAG_DATA_ACKED) &&
|
||||
(tcp_vegas_enabled(tp) || prior_in_flight >= tp->snd_cwnd) &&
|
||||
tcp_may_raise_cwnd(tp, flag))
|
||||
tcp_cong_avoid(tp, ack, seq_rtt);
|
||||
if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(tp, flag))
|
||||
tcp_cong_avoid(tp, ack, seq_rtt, prior_in_flight, 0);
|
||||
tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
|
||||
} else {
|
||||
if ((flag & FLAG_DATA_ACKED) &&
|
||||
(tcp_vegas_enabled(tp) || prior_in_flight >= tp->snd_cwnd))
|
||||
tcp_cong_avoid(tp, ack, seq_rtt);
|
||||
if ((flag & FLAG_DATA_ACKED))
|
||||
tcp_cong_avoid(tp, ack, seq_rtt, prior_in_flight, 1);
|
||||
}
|
||||
|
||||
if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
|
||||
|
@ -4552,6 +3923,8 @@ static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
|
|||
|
||||
tcp_init_metrics(sk);
|
||||
|
||||
tcp_init_congestion_control(tp);
|
||||
|
||||
/* Prevent spurious tcp_cwnd_restart() on first data
|
||||
* packet.
|
||||
*/
|
||||
|
@ -4708,9 +4081,6 @@ int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
|
|||
if(tp->af_specific->conn_request(sk, skb) < 0)
|
||||
return 1;
|
||||
|
||||
init_westwood(sk);
|
||||
init_bictcp(tp);
|
||||
|
||||
/* Now we have several options: In theory there is
|
||||
* nothing else in the frame. KA9Q has an option to
|
||||
* send data with the syn, BSD accepts data with the
|
||||
|
@ -4732,9 +4102,6 @@ int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
|
|||
goto discard;
|
||||
|
||||
case TCP_SYN_SENT:
|
||||
init_westwood(sk);
|
||||
init_bictcp(tp);
|
||||
|
||||
queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
|
||||
if (queued >= 0)
|
||||
return queued;
|
||||
|
@ -4816,7 +4183,7 @@ int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
|
|||
*/
|
||||
if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
|
||||
!tp->srtt)
|
||||
tcp_ack_saw_tstamp(tp, 0);
|
||||
tcp_ack_saw_tstamp(tp, 0, 0);
|
||||
|
||||
if (tp->rx_opt.tstamp_ok)
|
||||
tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
|
||||
|
@ -4828,6 +4195,8 @@ int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
|
|||
|
||||
tcp_init_metrics(sk);
|
||||
|
||||
tcp_init_congestion_control(tp);
|
||||
|
||||
/* Prevent spurious tcp_cwnd_restart() on
|
||||
* first data packet.
|
||||
*/
|
||||
|
|
|
@ -2048,6 +2048,7 @@ static int tcp_v4_init_sock(struct sock *sk)
|
|||
tp->mss_cache_std = tp->mss_cache = 536;
|
||||
|
||||
tp->reordering = sysctl_tcp_reordering;
|
||||
tp->ca_ops = &tcp_reno;
|
||||
|
||||
sk->sk_state = TCP_CLOSE;
|
||||
|
||||
|
@ -2070,6 +2071,8 @@ int tcp_v4_destroy_sock(struct sock *sk)
|
|||
|
||||
tcp_clear_xmit_timers(sk);
|
||||
|
||||
tcp_cleanup_congestion_control(tp);
|
||||
|
||||
/* Cleanup up the write buffer. */
|
||||
sk_stream_writequeue_purge(sk);
|
||||
|
||||
|
|
|
@ -774,6 +774,8 @@ struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req,
|
|||
newtp->frto_counter = 0;
|
||||
newtp->frto_highmark = 0;
|
||||
|
||||
newtp->ca_ops = &tcp_reno;
|
||||
|
||||
tcp_set_ca_state(newtp, TCP_CA_Open);
|
||||
tcp_init_xmit_timers(newsk);
|
||||
skb_queue_head_init(&newtp->out_of_order_queue);
|
||||
|
@ -842,8 +844,6 @@ struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req,
|
|||
if (newtp->ecn_flags&TCP_ECN_OK)
|
||||
sock_set_flag(newsk, SOCK_NO_LARGESEND);
|
||||
|
||||
tcp_ca_init(newtp);
|
||||
|
||||
TCP_INC_STATS_BH(TCP_MIB_PASSIVEOPENS);
|
||||
}
|
||||
return newsk;
|
||||
|
|
|
@ -111,8 +111,7 @@ static void tcp_cwnd_restart(struct tcp_sock *tp, struct dst_entry *dst)
|
|||
u32 restart_cwnd = tcp_init_cwnd(tp, dst);
|
||||
u32 cwnd = tp->snd_cwnd;
|
||||
|
||||
if (tcp_is_vegas(tp))
|
||||
tcp_vegas_enable(tp);
|
||||
tcp_ca_event(tp, CA_EVENT_CWND_RESTART);
|
||||
|
||||
tp->snd_ssthresh = tcp_current_ssthresh(tp);
|
||||
restart_cwnd = min(restart_cwnd, cwnd);
|
||||
|
@ -280,6 +279,10 @@ static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb)
|
|||
#define SYSCTL_FLAG_WSCALE 0x2
|
||||
#define SYSCTL_FLAG_SACK 0x4
|
||||
|
||||
/* If congestion control is doing timestamping */
|
||||
if (tp->ca_ops->rtt_sample)
|
||||
do_gettimeofday(&skb->stamp);
|
||||
|
||||
sysctl_flags = 0;
|
||||
if (tcb->flags & TCPCB_FLAG_SYN) {
|
||||
tcp_header_size = sizeof(struct tcphdr) + TCPOLEN_MSS;
|
||||
|
@ -304,17 +307,8 @@ static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb)
|
|||
(tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK));
|
||||
}
|
||||
|
||||
/*
|
||||
* If the connection is idle and we are restarting,
|
||||
* then we don't want to do any Vegas calculations
|
||||
* until we get fresh RTT samples. So when we
|
||||
* restart, we reset our Vegas state to a clean
|
||||
* slate. After we get acks for this flight of
|
||||
* packets, _then_ we can make Vegas calculations
|
||||
* again.
|
||||
*/
|
||||
if (tcp_is_vegas(tp) && tcp_packets_in_flight(tp) == 0)
|
||||
tcp_vegas_enable(tp);
|
||||
if (tcp_packets_in_flight(tp) == 0)
|
||||
tcp_ca_event(tp, CA_EVENT_TX_START);
|
||||
|
||||
th = (struct tcphdr *) skb_push(skb, tcp_header_size);
|
||||
skb->h.th = th;
|
||||
|
@ -521,6 +515,7 @@ static int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len)
|
|||
* skbs, which it never sent before. --ANK
|
||||
*/
|
||||
TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
|
||||
buff->stamp = skb->stamp;
|
||||
|
||||
if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) {
|
||||
tp->lost_out -= tcp_skb_pcount(skb);
|
||||
|
@ -1449,7 +1444,6 @@ static inline void tcp_connect_init(struct sock *sk)
|
|||
tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
|
||||
tp->advmss = dst_metric(dst, RTAX_ADVMSS);
|
||||
tcp_initialize_rcv_mss(sk);
|
||||
tcp_ca_init(tp);
|
||||
|
||||
tcp_select_initial_window(tcp_full_space(sk),
|
||||
tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
|
||||
|
@ -1503,7 +1497,6 @@ int tcp_connect(struct sock *sk)
|
|||
TCP_SKB_CB(buff)->end_seq = tp->write_seq;
|
||||
tp->snd_nxt = tp->write_seq;
|
||||
tp->pushed_seq = tp->write_seq;
|
||||
tcp_ca_init(tp);
|
||||
|
||||
/* Send it off. */
|
||||
TCP_SKB_CB(buff)->when = tcp_time_stamp;
|
||||
|
|
|
@ -0,0 +1,68 @@
|
|||
/* Tom Kelly's Scalable TCP
|
||||
*
|
||||
* See htt://www-lce.eng.cam.ac.uk/~ctk21/scalable/
|
||||
*
|
||||
* John Heffner <jheffner@sc.edu>
|
||||
*/
|
||||
|
||||
#include <linux/config.h>
|
||||
#include <linux/module.h>
|
||||
#include <net/tcp.h>
|
||||
|
||||
/* These factors derived from the recommended values in the aer:
|
||||
* .01 and and 7/8. We use 50 instead of 100 to account for
|
||||
* delayed ack.
|
||||
*/
|
||||
#define TCP_SCALABLE_AI_CNT 50U
|
||||
#define TCP_SCALABLE_MD_SCALE 3
|
||||
|
||||
static void tcp_scalable_cong_avoid(struct tcp_sock *tp, u32 ack, u32 rtt,
|
||||
u32 in_flight, int flag)
|
||||
{
|
||||
if (in_flight < tp->snd_cwnd)
|
||||
return;
|
||||
|
||||
if (tp->snd_cwnd <= tp->snd_ssthresh) {
|
||||
tp->snd_cwnd++;
|
||||
} else {
|
||||
tp->snd_cwnd_cnt++;
|
||||
if (tp->snd_cwnd_cnt > min(tp->snd_cwnd, TCP_SCALABLE_AI_CNT)){
|
||||
tp->snd_cwnd++;
|
||||
tp->snd_cwnd_cnt = 0;
|
||||
}
|
||||
}
|
||||
tp->snd_cwnd = min_t(u32, tp->snd_cwnd, tp->snd_cwnd_clamp);
|
||||
tp->snd_cwnd_stamp = tcp_time_stamp;
|
||||
}
|
||||
|
||||
static u32 tcp_scalable_ssthresh(struct tcp_sock *tp)
|
||||
{
|
||||
return max(tp->snd_cwnd - (tp->snd_cwnd>>TCP_SCALABLE_MD_SCALE), 2U);
|
||||
}
|
||||
|
||||
|
||||
static struct tcp_congestion_ops tcp_scalable = {
|
||||
.ssthresh = tcp_scalable_ssthresh,
|
||||
.cong_avoid = tcp_scalable_cong_avoid,
|
||||
.min_cwnd = tcp_reno_min_cwnd,
|
||||
|
||||
.owner = THIS_MODULE,
|
||||
.name = "scalable",
|
||||
};
|
||||
|
||||
static int __init tcp_scalable_register(void)
|
||||
{
|
||||
return tcp_register_congestion_control(&tcp_scalable);
|
||||
}
|
||||
|
||||
static void __exit tcp_scalable_unregister(void)
|
||||
{
|
||||
tcp_unregister_congestion_control(&tcp_scalable);
|
||||
}
|
||||
|
||||
module_init(tcp_scalable_register);
|
||||
module_exit(tcp_scalable_unregister);
|
||||
|
||||
MODULE_AUTHOR("John Heffner");
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_DESCRIPTION("Scalable TCP");
|
|
@ -0,0 +1,411 @@
|
|||
/*
|
||||
* TCP Vegas congestion control
|
||||
*
|
||||
* This is based on the congestion detection/avoidance scheme described in
|
||||
* Lawrence S. Brakmo and Larry L. Peterson.
|
||||
* "TCP Vegas: End to end congestion avoidance on a global internet."
|
||||
* IEEE Journal on Selected Areas in Communication, 13(8):1465--1480,
|
||||
* October 1995. Available from:
|
||||
* ftp://ftp.cs.arizona.edu/xkernel/Papers/jsac.ps
|
||||
*
|
||||
* See http://www.cs.arizona.edu/xkernel/ for their implementation.
|
||||
* The main aspects that distinguish this implementation from the
|
||||
* Arizona Vegas implementation are:
|
||||
* o We do not change the loss detection or recovery mechanisms of
|
||||
* Linux in any way. Linux already recovers from losses quite well,
|
||||
* using fine-grained timers, NewReno, and FACK.
|
||||
* o To avoid the performance penalty imposed by increasing cwnd
|
||||
* only every-other RTT during slow start, we increase during
|
||||
* every RTT during slow start, just like Reno.
|
||||
* o Largely to allow continuous cwnd growth during slow start,
|
||||
* we use the rate at which ACKs come back as the "actual"
|
||||
* rate, rather than the rate at which data is sent.
|
||||
* o To speed convergence to the right rate, we set the cwnd
|
||||
* to achieve the right ("actual") rate when we exit slow start.
|
||||
* o To filter out the noise caused by delayed ACKs, we use the
|
||||
* minimum RTT sample observed during the last RTT to calculate
|
||||
* the actual rate.
|
||||
* o When the sender re-starts from idle, it waits until it has
|
||||
* received ACKs for an entire flight of new data before making
|
||||
* a cwnd adjustment decision. The original Vegas implementation
|
||||
* assumed senders never went idle.
|
||||
*/
|
||||
|
||||
#include <linux/config.h>
|
||||
#include <linux/mm.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/skbuff.h>
|
||||
#include <linux/tcp_diag.h>
|
||||
|
||||
#include <net/tcp.h>
|
||||
|
||||
/* Default values of the Vegas variables, in fixed-point representation
|
||||
* with V_PARAM_SHIFT bits to the right of the binary point.
|
||||
*/
|
||||
#define V_PARAM_SHIFT 1
|
||||
static int alpha = 1<<V_PARAM_SHIFT;
|
||||
static int beta = 3<<V_PARAM_SHIFT;
|
||||
static int gamma = 1<<V_PARAM_SHIFT;
|
||||
|
||||
module_param(alpha, int, 0644);
|
||||
MODULE_PARM_DESC(alpha, "lower bound of packets in network (scale by 2)");
|
||||
module_param(beta, int, 0644);
|
||||
MODULE_PARM_DESC(beta, "upper bound of packets in network (scale by 2)");
|
||||
module_param(gamma, int, 0644);
|
||||
MODULE_PARM_DESC(gamma, "limit on increase (scale by 2)");
|
||||
|
||||
|
||||
/* Vegas variables */
|
||||
struct vegas {
|
||||
u32 beg_snd_nxt; /* right edge during last RTT */
|
||||
u32 beg_snd_una; /* left edge during last RTT */
|
||||
u32 beg_snd_cwnd; /* saves the size of the cwnd */
|
||||
u8 doing_vegas_now;/* if true, do vegas for this RTT */
|
||||
u16 cntRTT; /* # of RTTs measured within last RTT */
|
||||
u32 minRTT; /* min of RTTs measured within last RTT (in usec) */
|
||||
u32 baseRTT; /* the min of all Vegas RTT measurements seen (in usec) */
|
||||
};
|
||||
|
||||
/* There are several situations when we must "re-start" Vegas:
|
||||
*
|
||||
* o when a connection is established
|
||||
* o after an RTO
|
||||
* o after fast recovery
|
||||
* o when we send a packet and there is no outstanding
|
||||
* unacknowledged data (restarting an idle connection)
|
||||
*
|
||||
* In these circumstances we cannot do a Vegas calculation at the
|
||||
* end of the first RTT, because any calculation we do is using
|
||||
* stale info -- both the saved cwnd and congestion feedback are
|
||||
* stale.
|
||||
*
|
||||
* Instead we must wait until the completion of an RTT during
|
||||
* which we actually receive ACKs.
|
||||
*/
|
||||
static inline void vegas_enable(struct tcp_sock *tp)
|
||||
{
|
||||
struct vegas *vegas = tcp_ca(tp);
|
||||
|
||||
/* Begin taking Vegas samples next time we send something. */
|
||||
vegas->doing_vegas_now = 1;
|
||||
|
||||
/* Set the beginning of the next send window. */
|
||||
vegas->beg_snd_nxt = tp->snd_nxt;
|
||||
|
||||
vegas->cntRTT = 0;
|
||||
vegas->minRTT = 0x7fffffff;
|
||||
}
|
||||
|
||||
/* Stop taking Vegas samples for now. */
|
||||
static inline void vegas_disable(struct tcp_sock *tp)
|
||||
{
|
||||
struct vegas *vegas = tcp_ca(tp);
|
||||
|
||||
vegas->doing_vegas_now = 0;
|
||||
}
|
||||
|
||||
static void tcp_vegas_init(struct tcp_sock *tp)
|
||||
{
|
||||
struct vegas *vegas = tcp_ca(tp);
|
||||
|
||||
vegas->baseRTT = 0x7fffffff;
|
||||
vegas_enable(tp);
|
||||
}
|
||||
|
||||
/* Do RTT sampling needed for Vegas.
|
||||
* Basically we:
|
||||
* o min-filter RTT samples from within an RTT to get the current
|
||||
* propagation delay + queuing delay (we are min-filtering to try to
|
||||
* avoid the effects of delayed ACKs)
|
||||
* o min-filter RTT samples from a much longer window (forever for now)
|
||||
* to find the propagation delay (baseRTT)
|
||||
*/
|
||||
static void tcp_vegas_rtt_calc(struct tcp_sock *tp, u32 usrtt)
|
||||
{
|
||||
struct vegas *vegas = tcp_ca(tp);
|
||||
u32 vrtt = usrtt + 1; /* Never allow zero rtt or baseRTT */
|
||||
|
||||
/* Filter to find propagation delay: */
|
||||
if (vrtt < vegas->baseRTT)
|
||||
vegas->baseRTT = vrtt;
|
||||
|
||||
/* Find the min RTT during the last RTT to find
|
||||
* the current prop. delay + queuing delay:
|
||||
*/
|
||||
vegas->minRTT = min(vegas->minRTT, vrtt);
|
||||
vegas->cntRTT++;
|
||||
}
|
||||
|
||||
static void tcp_vegas_state(struct tcp_sock *tp, u8 ca_state)
|
||||
{
|
||||
|
||||
if (ca_state == TCP_CA_Open)
|
||||
vegas_enable(tp);
|
||||
else
|
||||
vegas_disable(tp);
|
||||
}
|
||||
|
||||
/*
|
||||
* If the connection is idle and we are restarting,
|
||||
* then we don't want to do any Vegas calculations
|
||||
* until we get fresh RTT samples. So when we
|
||||
* restart, we reset our Vegas state to a clean
|
||||
* slate. After we get acks for this flight of
|
||||
* packets, _then_ we can make Vegas calculations
|
||||
* again.
|
||||
*/
|
||||
static void tcp_vegas_cwnd_event(struct tcp_sock *tp, enum tcp_ca_event event)
|
||||
{
|
||||
if (event == CA_EVENT_CWND_RESTART ||
|
||||
event == CA_EVENT_TX_START)
|
||||
tcp_vegas_init(tp);
|
||||
}
|
||||
|
||||
static void tcp_vegas_cong_avoid(struct tcp_sock *tp, u32 ack,
|
||||
u32 seq_rtt, u32 in_flight, int flag)
|
||||
{
|
||||
struct vegas *vegas = tcp_ca(tp);
|
||||
|
||||
if (!vegas->doing_vegas_now)
|
||||
return tcp_reno_cong_avoid(tp, ack, seq_rtt, in_flight, flag);
|
||||
|
||||
/* The key players are v_beg_snd_una and v_beg_snd_nxt.
|
||||
*
|
||||
* These are so named because they represent the approximate values
|
||||
* of snd_una and snd_nxt at the beginning of the current RTT. More
|
||||
* precisely, they represent the amount of data sent during the RTT.
|
||||
* At the end of the RTT, when we receive an ACK for v_beg_snd_nxt,
|
||||
* we will calculate that (v_beg_snd_nxt - v_beg_snd_una) outstanding
|
||||
* bytes of data have been ACKed during the course of the RTT, giving
|
||||
* an "actual" rate of:
|
||||
*
|
||||
* (v_beg_snd_nxt - v_beg_snd_una) / (rtt duration)
|
||||
*
|
||||
* Unfortunately, v_beg_snd_una is not exactly equal to snd_una,
|
||||
* because delayed ACKs can cover more than one segment, so they
|
||||
* don't line up nicely with the boundaries of RTTs.
|
||||
*
|
||||
* Another unfortunate fact of life is that delayed ACKs delay the
|
||||
* advance of the left edge of our send window, so that the number
|
||||
* of bytes we send in an RTT is often less than our cwnd will allow.
|
||||
* So we keep track of our cwnd separately, in v_beg_snd_cwnd.
|
||||
*/
|
||||
|
||||
if (after(ack, vegas->beg_snd_nxt)) {
|
||||
/* Do the Vegas once-per-RTT cwnd adjustment. */
|
||||
u32 old_wnd, old_snd_cwnd;
|
||||
|
||||
|
||||
/* Here old_wnd is essentially the window of data that was
|
||||
* sent during the previous RTT, and has all
|
||||
* been acknowledged in the course of the RTT that ended
|
||||
* with the ACK we just received. Likewise, old_snd_cwnd
|
||||
* is the cwnd during the previous RTT.
|
||||
*/
|
||||
old_wnd = (vegas->beg_snd_nxt - vegas->beg_snd_una) /
|
||||
tp->mss_cache;
|
||||
old_snd_cwnd = vegas->beg_snd_cwnd;
|
||||
|
||||
/* Save the extent of the current window so we can use this
|
||||
* at the end of the next RTT.
|
||||
*/
|
||||
vegas->beg_snd_una = vegas->beg_snd_nxt;
|
||||
vegas->beg_snd_nxt = tp->snd_nxt;
|
||||
vegas->beg_snd_cwnd = tp->snd_cwnd;
|
||||
|
||||
/* Take into account the current RTT sample too, to
|
||||
* decrease the impact of delayed acks. This double counts
|
||||
* this sample since we count it for the next window as well,
|
||||
* but that's not too awful, since we're taking the min,
|
||||
* rather than averaging.
|
||||
*/
|
||||
tcp_vegas_rtt_calc(tp, seq_rtt*1000);
|
||||
|
||||
/* We do the Vegas calculations only if we got enough RTT
|
||||
* samples that we can be reasonably sure that we got
|
||||
* at least one RTT sample that wasn't from a delayed ACK.
|
||||
* If we only had 2 samples total,
|
||||
* then that means we're getting only 1 ACK per RTT, which
|
||||
* means they're almost certainly delayed ACKs.
|
||||
* If we have 3 samples, we should be OK.
|
||||
*/
|
||||
|
||||
if (vegas->cntRTT <= 2) {
|
||||
/* We don't have enough RTT samples to do the Vegas
|
||||
* calculation, so we'll behave like Reno.
|
||||
*/
|
||||
if (tp->snd_cwnd > tp->snd_ssthresh)
|
||||
tp->snd_cwnd++;
|
||||
} else {
|
||||
u32 rtt, target_cwnd, diff;
|
||||
|
||||
/* We have enough RTT samples, so, using the Vegas
|
||||
* algorithm, we determine if we should increase or
|
||||
* decrease cwnd, and by how much.
|
||||
*/
|
||||
|
||||
/* Pluck out the RTT we are using for the Vegas
|
||||
* calculations. This is the min RTT seen during the
|
||||
* last RTT. Taking the min filters out the effects
|
||||
* of delayed ACKs, at the cost of noticing congestion
|
||||
* a bit later.
|
||||
*/
|
||||
rtt = vegas->minRTT;
|
||||
|
||||
/* Calculate the cwnd we should have, if we weren't
|
||||
* going too fast.
|
||||
*
|
||||
* This is:
|
||||
* (actual rate in segments) * baseRTT
|
||||
* We keep it as a fixed point number with
|
||||
* V_PARAM_SHIFT bits to the right of the binary point.
|
||||
*/
|
||||
target_cwnd = ((old_wnd * vegas->baseRTT)
|
||||
<< V_PARAM_SHIFT) / rtt;
|
||||
|
||||
/* Calculate the difference between the window we had,
|
||||
* and the window we would like to have. This quantity
|
||||
* is the "Diff" from the Arizona Vegas papers.
|
||||
*
|
||||
* Again, this is a fixed point number with
|
||||
* V_PARAM_SHIFT bits to the right of the binary
|
||||
* point.
|
||||
*/
|
||||
diff = (old_wnd << V_PARAM_SHIFT) - target_cwnd;
|
||||
|
||||
if (tp->snd_cwnd < tp->snd_ssthresh) {
|
||||
/* Slow start. */
|
||||
if (diff > gamma) {
|
||||
/* Going too fast. Time to slow down
|
||||
* and switch to congestion avoidance.
|
||||
*/
|
||||
tp->snd_ssthresh = 2;
|
||||
|
||||
/* Set cwnd to match the actual rate
|
||||
* exactly:
|
||||
* cwnd = (actual rate) * baseRTT
|
||||
* Then we add 1 because the integer
|
||||
* truncation robs us of full link
|
||||
* utilization.
|
||||
*/
|
||||
tp->snd_cwnd = min(tp->snd_cwnd,
|
||||
(target_cwnd >>
|
||||
V_PARAM_SHIFT)+1);
|
||||
|
||||
}
|
||||
} else {
|
||||
/* Congestion avoidance. */
|
||||
u32 next_snd_cwnd;
|
||||
|
||||
/* Figure out where we would like cwnd
|
||||
* to be.
|
||||
*/
|
||||
if (diff > beta) {
|
||||
/* The old window was too fast, so
|
||||
* we slow down.
|
||||
*/
|
||||
next_snd_cwnd = old_snd_cwnd - 1;
|
||||
} else if (diff < alpha) {
|
||||
/* We don't have enough extra packets
|
||||
* in the network, so speed up.
|
||||
*/
|
||||
next_snd_cwnd = old_snd_cwnd + 1;
|
||||
} else {
|
||||
/* Sending just as fast as we
|
||||
* should be.
|
||||
*/
|
||||
next_snd_cwnd = old_snd_cwnd;
|
||||
}
|
||||
|
||||
/* Adjust cwnd upward or downward, toward the
|
||||
* desired value.
|
||||
*/
|
||||
if (next_snd_cwnd > tp->snd_cwnd)
|
||||
tp->snd_cwnd++;
|
||||
else if (next_snd_cwnd < tp->snd_cwnd)
|
||||
tp->snd_cwnd--;
|
||||
}
|
||||
}
|
||||
|
||||
/* Wipe the slate clean for the next RTT. */
|
||||
vegas->cntRTT = 0;
|
||||
vegas->minRTT = 0x7fffffff;
|
||||
}
|
||||
|
||||
/* The following code is executed for every ack we receive,
|
||||
* except for conditions checked in should_advance_cwnd()
|
||||
* before the call to tcp_cong_avoid(). Mainly this means that
|
||||
* we only execute this code if the ack actually acked some
|
||||
* data.
|
||||
*/
|
||||
|
||||
/* If we are in slow start, increase our cwnd in response to this ACK.
|
||||
* (If we are not in slow start then we are in congestion avoidance,
|
||||
* and adjust our congestion window only once per RTT. See the code
|
||||
* above.)
|
||||
*/
|
||||
if (tp->snd_cwnd <= tp->snd_ssthresh)
|
||||
tp->snd_cwnd++;
|
||||
|
||||
/* to keep cwnd from growing without bound */
|
||||
tp->snd_cwnd = min_t(u32, tp->snd_cwnd, tp->snd_cwnd_clamp);
|
||||
|
||||
/* Make sure that we are never so timid as to reduce our cwnd below
|
||||
* 2 MSS.
|
||||
*
|
||||
* Going below 2 MSS would risk huge delayed ACKs from our receiver.
|
||||
*/
|
||||
tp->snd_cwnd = max(tp->snd_cwnd, 2U);
|
||||
}
|
||||
|
||||
/* Extract info for Tcp socket info provided via netlink. */
|
||||
static void tcp_vegas_get_info(struct tcp_sock *tp, u32 ext,
|
||||
struct sk_buff *skb)
|
||||
{
|
||||
const struct vegas *ca = tcp_ca(tp);
|
||||
if (ext & (1<<(TCPDIAG_VEGASINFO-1))) {
|
||||
struct tcpvegas_info *info;
|
||||
|
||||
info = RTA_DATA(__RTA_PUT(skb, TCPDIAG_VEGASINFO,
|
||||
sizeof(*info)));
|
||||
|
||||
info->tcpv_enabled = ca->doing_vegas_now;
|
||||
info->tcpv_rttcnt = ca->cntRTT;
|
||||
info->tcpv_rtt = ca->baseRTT;
|
||||
info->tcpv_minrtt = ca->minRTT;
|
||||
rtattr_failure: ;
|
||||
}
|
||||
}
|
||||
|
||||
static struct tcp_congestion_ops tcp_vegas = {
|
||||
.init = tcp_vegas_init,
|
||||
.ssthresh = tcp_reno_ssthresh,
|
||||
.cong_avoid = tcp_vegas_cong_avoid,
|
||||
.min_cwnd = tcp_reno_min_cwnd,
|
||||
.rtt_sample = tcp_vegas_rtt_calc,
|
||||
.set_state = tcp_vegas_state,
|
||||
.cwnd_event = tcp_vegas_cwnd_event,
|
||||
.get_info = tcp_vegas_get_info,
|
||||
|
||||
.owner = THIS_MODULE,
|
||||
.name = "vegas",
|
||||
};
|
||||
|
||||
static int __init tcp_vegas_register(void)
|
||||
{
|
||||
BUG_ON(sizeof(struct vegas) > TCP_CA_PRIV_SIZE);
|
||||
tcp_register_congestion_control(&tcp_vegas);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void __exit tcp_vegas_unregister(void)
|
||||
{
|
||||
tcp_unregister_congestion_control(&tcp_vegas);
|
||||
}
|
||||
|
||||
module_init(tcp_vegas_register);
|
||||
module_exit(tcp_vegas_unregister);
|
||||
|
||||
MODULE_AUTHOR("Stephen Hemminger");
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_DESCRIPTION("TCP Vegas");
|
|
@ -0,0 +1,259 @@
|
|||
/*
|
||||
* TCP Westwood+
|
||||
*
|
||||
* Angelo Dell'Aera: TCP Westwood+ support
|
||||
*/
|
||||
|
||||
#include <linux/config.h>
|
||||
#include <linux/mm.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/skbuff.h>
|
||||
#include <linux/tcp_diag.h>
|
||||
#include <net/tcp.h>
|
||||
|
||||
/* TCP Westwood structure */
|
||||
struct westwood {
|
||||
u32 bw_ns_est; /* first bandwidth estimation..not too smoothed 8) */
|
||||
u32 bw_est; /* bandwidth estimate */
|
||||
u32 rtt_win_sx; /* here starts a new evaluation... */
|
||||
u32 bk;
|
||||
u32 snd_una; /* used for evaluating the number of acked bytes */
|
||||
u32 cumul_ack;
|
||||
u32 accounted;
|
||||
u32 rtt;
|
||||
u32 rtt_min; /* minimum observed RTT */
|
||||
};
|
||||
|
||||
|
||||
/* TCP Westwood functions and constants */
|
||||
#define TCP_WESTWOOD_RTT_MIN (HZ/20) /* 50ms */
|
||||
#define TCP_WESTWOOD_INIT_RTT (20*HZ) /* maybe too conservative?! */
|
||||
|
||||
/*
|
||||
* @tcp_westwood_create
|
||||
* This function initializes fields used in TCP Westwood+,
|
||||
* it is called after the initial SYN, so the sequence numbers
|
||||
* are correct but new passive connections we have no
|
||||
* information about RTTmin at this time so we simply set it to
|
||||
* TCP_WESTWOOD_INIT_RTT. This value was chosen to be too conservative
|
||||
* since in this way we're sure it will be updated in a consistent
|
||||
* way as soon as possible. It will reasonably happen within the first
|
||||
* RTT period of the connection lifetime.
|
||||
*/
|
||||
static void tcp_westwood_init(struct tcp_sock *tp)
|
||||
{
|
||||
struct westwood *w = tcp_ca(tp);
|
||||
|
||||
w->bk = 0;
|
||||
w->bw_ns_est = 0;
|
||||
w->bw_est = 0;
|
||||
w->accounted = 0;
|
||||
w->cumul_ack = 0;
|
||||
w->rtt_min = w->rtt = TCP_WESTWOOD_INIT_RTT;
|
||||
w->rtt_win_sx = tcp_time_stamp;
|
||||
w->snd_una = tp->snd_una;
|
||||
}
|
||||
|
||||
/*
|
||||
* @westwood_do_filter
|
||||
* Low-pass filter. Implemented using constant coefficients.
|
||||
*/
|
||||
static inline u32 westwood_do_filter(u32 a, u32 b)
|
||||
{
|
||||
return (((7 * a) + b) >> 3);
|
||||
}
|
||||
|
||||
static inline void westwood_filter(struct westwood *w, u32 delta)
|
||||
{
|
||||
w->bw_ns_est = westwood_do_filter(w->bw_ns_est, w->bk / delta);
|
||||
w->bw_est = westwood_do_filter(w->bw_est, w->bw_ns_est);
|
||||
}
|
||||
|
||||
/*
|
||||
* @westwood_pkts_acked
|
||||
* Called after processing group of packets.
|
||||
* but all westwood needs is the last sample of srtt.
|
||||
*/
|
||||
static void tcp_westwood_pkts_acked(struct tcp_sock *tp, u32 cnt)
|
||||
{
|
||||
struct westwood *w = tcp_ca(tp);
|
||||
if (cnt > 0)
|
||||
w->rtt = tp->srtt >> 3;
|
||||
}
|
||||
|
||||
/*
|
||||
* @westwood_update_window
|
||||
* It updates RTT evaluation window if it is the right moment to do
|
||||
* it. If so it calls filter for evaluating bandwidth.
|
||||
*/
|
||||
static void westwood_update_window(struct tcp_sock *tp)
|
||||
{
|
||||
struct westwood *w = tcp_ca(tp);
|
||||
s32 delta = tcp_time_stamp - w->rtt_win_sx;
|
||||
|
||||
/*
|
||||
* See if a RTT-window has passed.
|
||||
* Be careful since if RTT is less than
|
||||
* 50ms we don't filter but we continue 'building the sample'.
|
||||
* This minimum limit was chosen since an estimation on small
|
||||
* time intervals is better to avoid...
|
||||
* Obviously on a LAN we reasonably will always have
|
||||
* right_bound = left_bound + WESTWOOD_RTT_MIN
|
||||
*/
|
||||
if (w->rtt && delta > max_t(u32, w->rtt, TCP_WESTWOOD_RTT_MIN)) {
|
||||
westwood_filter(w, delta);
|
||||
|
||||
w->bk = 0;
|
||||
w->rtt_win_sx = tcp_time_stamp;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* @westwood_fast_bw
|
||||
* It is called when we are in fast path. In particular it is called when
|
||||
* header prediction is successful. In such case in fact update is
|
||||
* straight forward and doesn't need any particular care.
|
||||
*/
|
||||
static inline void westwood_fast_bw(struct tcp_sock *tp)
|
||||
{
|
||||
struct westwood *w = tcp_ca(tp);
|
||||
|
||||
westwood_update_window(tp);
|
||||
|
||||
w->bk += tp->snd_una - w->snd_una;
|
||||
w->snd_una = tp->snd_una;
|
||||
w->rtt_min = min(w->rtt, w->rtt_min);
|
||||
}
|
||||
|
||||
/*
|
||||
* @westwood_acked_count
|
||||
* This function evaluates cumul_ack for evaluating bk in case of
|
||||
* delayed or partial acks.
|
||||
*/
|
||||
static inline u32 westwood_acked_count(struct tcp_sock *tp)
|
||||
{
|
||||
struct westwood *w = tcp_ca(tp);
|
||||
|
||||
w->cumul_ack = tp->snd_una - w->snd_una;
|
||||
|
||||
/* If cumul_ack is 0 this is a dupack since it's not moving
|
||||
* tp->snd_una.
|
||||
*/
|
||||
if (!w->cumul_ack) {
|
||||
w->accounted += tp->mss_cache;
|
||||
w->cumul_ack = tp->mss_cache;
|
||||
}
|
||||
|
||||
if (w->cumul_ack > tp->mss_cache) {
|
||||
/* Partial or delayed ack */
|
||||
if (w->accounted >= w->cumul_ack) {
|
||||
w->accounted -= w->cumul_ack;
|
||||
w->cumul_ack = tp->mss_cache;
|
||||
} else {
|
||||
w->cumul_ack -= w->accounted;
|
||||
w->accounted = 0;
|
||||
}
|
||||
}
|
||||
|
||||
w->snd_una = tp->snd_una;
|
||||
|
||||
return w->cumul_ack;
|
||||
}
|
||||
|
||||
static inline u32 westwood_bw_rttmin(const struct tcp_sock *tp)
|
||||
{
|
||||
struct westwood *w = tcp_ca(tp);
|
||||
return max_t(u32, (w->bw_est * w->rtt_min) / tp->mss_cache, 2);
|
||||
}
|
||||
|
||||
/*
|
||||
* TCP Westwood
|
||||
* Here limit is evaluated as Bw estimation*RTTmin (for obtaining it
|
||||
* in packets we use mss_cache). Rttmin is guaranteed to be >= 2
|
||||
* so avoids ever returning 0.
|
||||
*/
|
||||
static u32 tcp_westwood_cwnd_min(struct tcp_sock *tp)
|
||||
{
|
||||
return westwood_bw_rttmin(tp);
|
||||
}
|
||||
|
||||
static void tcp_westwood_event(struct tcp_sock *tp, enum tcp_ca_event event)
|
||||
{
|
||||
struct westwood *w = tcp_ca(tp);
|
||||
|
||||
switch(event) {
|
||||
case CA_EVENT_FAST_ACK:
|
||||
westwood_fast_bw(tp);
|
||||
break;
|
||||
|
||||
case CA_EVENT_COMPLETE_CWR:
|
||||
tp->snd_cwnd = tp->snd_ssthresh = westwood_bw_rttmin(tp);
|
||||
break;
|
||||
|
||||
case CA_EVENT_FRTO:
|
||||
tp->snd_ssthresh = westwood_bw_rttmin(tp);
|
||||
break;
|
||||
|
||||
case CA_EVENT_SLOW_ACK:
|
||||
westwood_update_window(tp);
|
||||
w->bk += westwood_acked_count(tp);
|
||||
w->rtt_min = min(w->rtt, w->rtt_min);
|
||||
break;
|
||||
|
||||
default:
|
||||
/* don't care */
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* Extract info for Tcp socket info provided via netlink. */
|
||||
static void tcp_westwood_info(struct tcp_sock *tp, u32 ext,
|
||||
struct sk_buff *skb)
|
||||
{
|
||||
const struct westwood *ca = tcp_ca(tp);
|
||||
if (ext & (1<<(TCPDIAG_VEGASINFO-1))) {
|
||||
struct rtattr *rta;
|
||||
struct tcpvegas_info *info;
|
||||
|
||||
rta = __RTA_PUT(skb, TCPDIAG_VEGASINFO, sizeof(*info));
|
||||
info = RTA_DATA(rta);
|
||||
info->tcpv_enabled = 1;
|
||||
info->tcpv_rttcnt = 0;
|
||||
info->tcpv_rtt = jiffies_to_usecs(ca->rtt);
|
||||
info->tcpv_minrtt = jiffies_to_usecs(ca->rtt_min);
|
||||
rtattr_failure: ;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static struct tcp_congestion_ops tcp_westwood = {
|
||||
.init = tcp_westwood_init,
|
||||
.ssthresh = tcp_reno_ssthresh,
|
||||
.cong_avoid = tcp_reno_cong_avoid,
|
||||
.min_cwnd = tcp_westwood_cwnd_min,
|
||||
.cwnd_event = tcp_westwood_event,
|
||||
.get_info = tcp_westwood_info,
|
||||
.pkts_acked = tcp_westwood_pkts_acked,
|
||||
|
||||
.owner = THIS_MODULE,
|
||||
.name = "westwood"
|
||||
};
|
||||
|
||||
static int __init tcp_westwood_register(void)
|
||||
{
|
||||
BUG_ON(sizeof(struct westwood) > TCP_CA_PRIV_SIZE);
|
||||
return tcp_register_congestion_control(&tcp_westwood);
|
||||
}
|
||||
|
||||
static void __exit tcp_westwood_unregister(void)
|
||||
{
|
||||
tcp_unregister_congestion_control(&tcp_westwood);
|
||||
}
|
||||
|
||||
module_init(tcp_westwood_register);
|
||||
module_exit(tcp_westwood_unregister);
|
||||
|
||||
MODULE_AUTHOR("Stephen Hemminger, Angelo Dell'Aera");
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_DESCRIPTION("TCP Westwood+");
|
|
@ -2025,7 +2025,7 @@ static int tcp_v6_init_sock(struct sock *sk)
|
|||
sk->sk_state = TCP_CLOSE;
|
||||
|
||||
tp->af_specific = &ipv6_specific;
|
||||
|
||||
tp->ca_ops = &tcp_reno;
|
||||
sk->sk_write_space = sk_stream_write_space;
|
||||
sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
|
||||
|
||||
|
|
Loading…
Reference in New Issue