mirror of https://gitee.com/openkylin/linux.git
Merge branch 'parisc-4.8-1' of git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux
Pull parisc updates from Helge Deller: - added an optimized hash implementation for parisc (George Spelvin) - C99 style cleanups in iomap.c (Amitoj Kaur Chawla) - added breaks to switch statement in PDC function (noticed by Dan Carpenter) * 'parisc-4.8-1' of git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux: parisc: Change structure intialisation to C99 style in iomap.c parisc: Add break statements to pdc_pat_io_pci_cfg_read() parisc: Add <asm/hash.h>
This commit is contained in:
commit
b067c9045a
|
@ -31,6 +31,7 @@ config PARISC
|
|||
select TTY # Needed for pdc_cons.c
|
||||
select HAVE_DEBUG_STACKOVERFLOW
|
||||
select HAVE_ARCH_AUDITSYSCALL
|
||||
select HAVE_ARCH_HASH
|
||||
select HAVE_ARCH_SECCOMP_FILTER
|
||||
select HAVE_ARCH_TRACEHOOK
|
||||
select HAVE_UNSTABLE_SCHED_CLOCK if (SMP || !64BIT)
|
||||
|
|
|
@ -0,0 +1,146 @@
|
|||
#ifndef _ASM_HASH_H
|
||||
#define _ASM_HASH_H
|
||||
|
||||
/*
|
||||
* HP-PA only implements integer multiply in the FPU. However, for
|
||||
* integer multiplies by constant, it has a number of shift-and-add
|
||||
* (but no shift-and-subtract, sigh!) instructions that a compiler
|
||||
* can synthesize a code sequence with.
|
||||
*
|
||||
* Unfortunately, GCC isn't very efficient at using them. For example
|
||||
* it uses three instructions for "x *= 21" when only two are needed.
|
||||
* But we can find a sequence manually.
|
||||
*/
|
||||
|
||||
#define HAVE_ARCH__HASH_32 1
|
||||
|
||||
/*
|
||||
* This is a multiply by GOLDEN_RATIO_32 = 0x61C88647 optimized for the
|
||||
* PA7100 pairing rules. This is an in-order 2-way superscalar processor.
|
||||
* Only one instruction in a pair may be a shift (by more than 3 bits),
|
||||
* but other than that, simple ALU ops (including shift-and-add by up
|
||||
* to 3 bits) may be paired arbitrarily.
|
||||
*
|
||||
* PA8xxx processors also dual-issue ALU instructions, although with
|
||||
* fewer constraints, so this schedule is good for them, too.
|
||||
*
|
||||
* This 6-step sequence was found by Yevgen Voronenko's implementation
|
||||
* of the Hcub algorithm at http://spiral.ece.cmu.edu/mcm/gen.html.
|
||||
*/
|
||||
static inline u32 __attribute_const__ __hash_32(u32 x)
|
||||
{
|
||||
u32 a, b, c;
|
||||
|
||||
/*
|
||||
* Phase 1: Compute a = (x << 19) + x,
|
||||
* b = (x << 9) + a, c = (x << 23) + b.
|
||||
*/
|
||||
a = x << 19; /* Two shifts can't be paired */
|
||||
b = x << 9; a += x;
|
||||
c = x << 23; b += a;
|
||||
c += b;
|
||||
/* Phase 2: Return (b<<11) + (c<<6) + (a<<3) - c */
|
||||
b <<= 11;
|
||||
a += c << 3; b -= c;
|
||||
return (a << 3) + b;
|
||||
}
|
||||
|
||||
#if BITS_PER_LONG == 64
|
||||
|
||||
#define HAVE_ARCH_HASH_64 1
|
||||
|
||||
/*
|
||||
* Finding a good shift-and-add chain for GOLDEN_RATIO_64 is tricky,
|
||||
* because available software for the purpose chokes on constants this
|
||||
* large. (It's mostly designed for compiling FIR filter coefficients
|
||||
* into FPGAs.)
|
||||
*
|
||||
* However, Jason Thong pointed out a work-around. The Hcub software
|
||||
* (http://spiral.ece.cmu.edu/mcm/gen.html) is designed for *multiple*
|
||||
* constant multiplication, and is good at finding shift-and-add chains
|
||||
* which share common terms.
|
||||
*
|
||||
* Looking at 0x0x61C8864680B583EB in binary:
|
||||
* 0110000111001000100001100100011010000000101101011000001111101011
|
||||
* \______________/ \__________/ \_______/ \________/
|
||||
* \____________________________/ \____________________/
|
||||
* you can see the non-zero bits are divided into several well-separated
|
||||
* blocks. Hcub can find algorithms for those terms separately, which
|
||||
* can then be shifted and added together.
|
||||
*
|
||||
* Dividing the input into 2, 3 or 4 blocks, Hcub can find solutions
|
||||
* with 10, 9 or 8 adds, respectively, making a total of 11 for the
|
||||
* whole number.
|
||||
*
|
||||
* Using just two large blocks, 0xC3910C8D << 31 in the high bits,
|
||||
* and 0xB583EB in the low bits, produces as good an algorithm as any,
|
||||
* and with one more small shift than alternatives.
|
||||
*
|
||||
* The high bits are a larger number and more work to compute, as well
|
||||
* as needing one extra cycle to shift left 31 bits before the final
|
||||
* addition, so they are the critical path for scheduling. The low bits
|
||||
* can fit into the scheduling slots left over.
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* This _ASSIGN(dst, src) macro performs "dst = src", but prevents GCC
|
||||
* from inferring anything about the value assigned to "dest".
|
||||
*
|
||||
* This prevents it from mis-optimizing certain sequences.
|
||||
* In particular, gcc is annoyingly eager to combine consecutive shifts.
|
||||
* Given "x <<= 19; y += x; z += x << 1;", GCC will turn this into
|
||||
* "y += x << 19; z += x << 20;" even though the latter sequence needs
|
||||
* an additional instruction and temporary register.
|
||||
*
|
||||
* Because no actual assembly code is generated, this construct is
|
||||
* usefully portable across all GCC platforms, and so can be test-compiled
|
||||
* on non-PA systems.
|
||||
*
|
||||
* In two places, additional unused input dependencies are added. This
|
||||
* forces GCC's scheduling so it does not rearrange instructions too much.
|
||||
* Because the PA-8xxx is out of order, I'm not sure how much this matters,
|
||||
* but why make it more difficult for the processor than necessary?
|
||||
*/
|
||||
#define _ASSIGN(dst, src, ...) asm("" : "=r" (dst) : "0" (src), ##__VA_ARGS__)
|
||||
|
||||
/*
|
||||
* Multiply by GOLDEN_RATIO_64 = 0x0x61C8864680B583EB using a heavily
|
||||
* optimized shift-and-add sequence.
|
||||
*
|
||||
* Without the final shift, the multiply proper is 19 instructions,
|
||||
* 10 cycles and uses only 4 temporaries. Whew!
|
||||
*
|
||||
* You are not expected to understand this.
|
||||
*/
|
||||
static __always_inline u32 __attribute_const__
|
||||
hash_64(u64 a, unsigned int bits)
|
||||
{
|
||||
u64 b, c, d;
|
||||
|
||||
/*
|
||||
* Encourage GCC to move a dynamic shift to %sar early,
|
||||
* thereby freeing up an additional temporary register.
|
||||
*/
|
||||
if (!__builtin_constant_p(bits))
|
||||
asm("" : "=q" (bits) : "0" (64 - bits));
|
||||
else
|
||||
bits = 64 - bits;
|
||||
|
||||
_ASSIGN(b, a*5); c = a << 13;
|
||||
b = (b << 2) + a; _ASSIGN(d, a << 17);
|
||||
a = b + (a << 1); c += d;
|
||||
d = a << 10; _ASSIGN(a, a << 19);
|
||||
d = a - d; _ASSIGN(a, a << 4, "X" (d));
|
||||
c += b; a += b;
|
||||
d -= c; c += a << 1;
|
||||
a += c << 3; _ASSIGN(b, b << (7+31), "X" (c), "X" (d));
|
||||
a <<= 31; b += d;
|
||||
a += b;
|
||||
return a >> bits;
|
||||
}
|
||||
#undef _ASSIGN /* We're a widely-used header file, so don't litter! */
|
||||
|
||||
#endif /* BITS_PER_LONG == 64 */
|
||||
|
||||
#endif /* _ASM_HASH_H */
|
|
@ -1354,9 +1354,9 @@ int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
|
|||
retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
|
||||
__pa(pdc_result), pci_addr, pci_size);
|
||||
switch(pci_size) {
|
||||
case 1: *(u8 *) mem_addr = (u8) pdc_result[0];
|
||||
case 2: *(u16 *)mem_addr = (u16) pdc_result[0];
|
||||
case 4: *(u32 *)mem_addr = (u32) pdc_result[0];
|
||||
case 1: *(u8 *) mem_addr = (u8) pdc_result[0]; break;
|
||||
case 2: *(u16 *)mem_addr = (u16) pdc_result[0]; break;
|
||||
case 4: *(u32 *)mem_addr = (u32) pdc_result[0]; break;
|
||||
}
|
||||
spin_unlock_irqrestore(&pdc_lock, flags);
|
||||
|
||||
|
|
|
@ -125,22 +125,22 @@ static void ioport_write32r(void __iomem *addr, const void *s, unsigned long n)
|
|||
}
|
||||
|
||||
static const struct iomap_ops ioport_ops = {
|
||||
ioport_read8,
|
||||
ioport_read16,
|
||||
ioport_read16,
|
||||
ioport_read32,
|
||||
ioport_read32,
|
||||
ioport_write8,
|
||||
ioport_write16,
|
||||
ioport_write16,
|
||||
ioport_write32,
|
||||
ioport_write32,
|
||||
ioport_read8r,
|
||||
ioport_read16r,
|
||||
ioport_read32r,
|
||||
ioport_write8r,
|
||||
ioport_write16r,
|
||||
ioport_write32r,
|
||||
.read8 = ioport_read8,
|
||||
.read16 = ioport_read16,
|
||||
.read16be = ioport_read16,
|
||||
.read32 = ioport_read32,
|
||||
.read32be = ioport_read32,
|
||||
.write8 = ioport_write8,
|
||||
.write16 = ioport_write16,
|
||||
.write16be = ioport_write16,
|
||||
.write32 = ioport_write32,
|
||||
.write32be = ioport_write32,
|
||||
.read8r = ioport_read8r,
|
||||
.read16r = ioport_read16r,
|
||||
.read32r = ioport_read32r,
|
||||
.write8r = ioport_write8r,
|
||||
.write16r = ioport_write16r,
|
||||
.write32r = ioport_write32r,
|
||||
};
|
||||
|
||||
/* Legacy I/O memory ops */
|
||||
|
@ -244,22 +244,22 @@ static void iomem_write32r(void __iomem *addr, const void *s, unsigned long n)
|
|||
}
|
||||
|
||||
static const struct iomap_ops iomem_ops = {
|
||||
iomem_read8,
|
||||
iomem_read16,
|
||||
iomem_read16be,
|
||||
iomem_read32,
|
||||
iomem_read32be,
|
||||
iomem_write8,
|
||||
iomem_write16,
|
||||
iomem_write16be,
|
||||
iomem_write32,
|
||||
iomem_write32be,
|
||||
iomem_read8r,
|
||||
iomem_read16r,
|
||||
iomem_read32r,
|
||||
iomem_write8r,
|
||||
iomem_write16r,
|
||||
iomem_write32r,
|
||||
.read8 = iomem_read8,
|
||||
.read16 = iomem_read16,
|
||||
.read16be = iomem_read16be,
|
||||
.read32 = iomem_read32,
|
||||
.read32be = iomem_read32be,
|
||||
.write8 = iomem_write8,
|
||||
.write16 = iomem_write16,
|
||||
.write16be = iomem_write16be,
|
||||
.write32 = iomem_write32,
|
||||
.write32be = iomem_write32be,
|
||||
.read8r = iomem_read8r,
|
||||
.read16r = iomem_read16r,
|
||||
.read32r = iomem_read32r,
|
||||
.write8r = iomem_write8r,
|
||||
.write16r = iomem_write16r,
|
||||
.write32r = iomem_write32r,
|
||||
};
|
||||
|
||||
static const struct iomap_ops *iomap_ops[8] = {
|
||||
|
|
Loading…
Reference in New Issue